A UNIQUENESS THEOREM FOR MINIMAL SUBMANIFOLDS

ROBERT HERMANN

1. Introduction

The following theorem is well known: There is a unique geodesic joining two points on a complete simply connected Riemannian manifold of nonpositive sectional curvature.

The main point of this paper is the following generalization.
Theorem. Let N and B be minimal submanifolds of a Riemannian manifold M whose sectional curvature is nonpositive. (If $\operatorname{dim} N=\operatorname{dim} M-1$, it would suffice to know that M has nonpositive Ricci curvature.) Suppose that:
a) N is oriented and finite with oriented boundary $\partial N \subset B$.
b) B is a totally geodesic submanifold of M.
c) Each point p of N can be joined to B by a geodesic, which is perpendicular to B at the end-point, and varies smoothly with p.

Conclusion: $\quad N \subset B$.

The main tool is an integral-geometric inequality, which enables one to make various extensions of the main result, e.g., to the case where B is only a minimal submanifold of M, or where N is a manifold with singularities, e.g., a piece of an analytic subvariety of a Kähler manifold.

2. Proof of the theorem

Let M be a complete Riemannian manifold, and N and B submanifolds of M. (For notations not explained here, refer to [1] and [2].) Let exp: $T(M) \rightarrow M$ be the exponential map of the Riemannian structure, where $T(M)$ is the tangent bundle of M. Suppose there exists a vector field X on M such that:
a) For $p \in N, \exp (X(p)) \in B$.
b) The geodesic $t \rightarrow \exp (t X(p))$ is perpendicular to B at $t=1$.

Let $\|\|$ denote the norm on tangent vectors associated with the inner product \langle,$\rangle defining the Riemannian metric on M, f(p)=\|X(p)\|^{2}$ for $p \in N$, and Δ^{*} be the Laplace-Beltrami operator, relative to the induced metric on N. Our
goal is first to find a convenient formula for $\Delta^{N} f$, and then to integrate it over N.

Let p be a point of N, and $s \rightarrow \sigma(s)$ a geodesic of N starting at p. Construct the homotopy $\delta(s, t)=\exp (t X(\sigma(s))), 0 \leq s, t \leq 1$. Then

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d s} f(\sigma(s))=\frac{1}{2} \frac{d}{d s} \int_{0}^{1}\left\langle\partial_{t} \delta, \partial_{t} \delta\right\rangle d t \\
& \quad=\int_{0}^{1}\left\langle\nabla_{s} \partial_{t} \delta, \partial_{t} \delta\right\rangle d t \tag{2.1}\\
& \quad=\int_{0}^{1}\left\langle\nabla_{t} \partial_{s} \delta, \partial_{t} \delta\right\rangle d t=\left\langle\partial_{s} \delta, \partial_{t} \delta\right\rangle \begin{array}{l}
t=1 \\
t=0
\end{array} .
\end{align*}
$$

Here $\partial_{t} \delta(s, t)$ is the tangent vector to the curve $u \rightarrow \delta(s, u)$ at $u=t, \partial_{t} \delta$ is the corresponding vector field along the homotopy $\delta, \partial_{s} \delta$ is defined similarly, and $\nabla_{t} \partial_{s} \delta(s, t)$ is the covariant derivative (with respect to the Levi-Civita affine connection) of the vector field $u \rightarrow \partial_{s} \delta(s, u)$ along the curve $u \rightarrow \delta(s, u)$. The rules of this formalism are given in more detail in [1] or [2]. For example, since each curve $t \rightarrow \delta(s, t)$ is a geodesic, we have $\nabla_{t} \partial_{t} \delta(s, t)=0$.

$$
\begin{gather*}
\frac{1}{2} \frac{d^{2}}{d s^{2}} f(\sigma(s))=\left\langle\nabla_{s} \partial_{s} \delta, \partial_{t} \delta\right\rangle-\left.\left\langle\partial_{s} \delta, \nabla_{s} \partial_{t} \delta\right\rangle\right|_{t=0} ^{1} \\
=\left.\left\langle\nabla_{s} \partial_{s} \delta, \partial_{t} \delta\right\rangle\right|_{t=0} ^{1}-\int_{0}^{1} \frac{\partial}{\partial t}\left\langle\partial_{s} \delta, \nabla_{s} \partial_{t} \delta\right\rangle d t \tag{2.2}\\
=\left.\left\langle\nabla_{s} \partial_{s} \delta, \partial_{t} \delta\right\rangle\right|_{t=0} ^{1}-\int_{0}^{1}\left\langle\nabla_{s} \partial_{t} \delta, \nabla_{s} \partial_{t} \delta\right\rangle d t \\
\quad-\int_{0}^{1}\left\langle\partial_{s} \delta, R\left(\partial_{t} \delta, \partial_{s} \delta\right)\left(\partial_{t} \delta\right)\right\rangle d t
\end{gather*}
$$

where $R()()$, is the curvature tensor of M. The last term can be written as

$$
\int_{0}^{1}\left\|\partial_{s} \delta \wedge \partial_{t} \delta\right\|^{2} K\left(\partial_{t} \delta, \partial_{s} \delta\right) d t
$$

where $K($,$) is the sectional curvature, and \left\|\partial_{s} \delta \wedge \partial_{t} \delta(s, t)\right\|^{2}$ is the square of the area of the parallelogram spanned by $\partial_{s} \delta(s, t)$ and $\partial_{t} \delta(s, t)$. Let $S_{()}^{N}($, , and $S_{(,}^{B}($,$) be the second fundamental form of N$ and B. Write $X=X^{\prime}+X^{\prime \prime}$, where X^{\prime} is tangent, and $X^{\prime \prime}$ perpendicular to N. Then

$$
\begin{aligned}
& \left\langle\nabla_{s} \partial_{s} \delta, \partial_{t} \delta\right\rangle(0,1)=S_{\partial t, 0,1)}^{B}\left(\partial_{s} \delta(0,1), \partial_{s} \delta(0,1)\right), \\
& \left\langle\nabla_{s} \partial_{s} \delta, \partial_{t} \delta\right\rangle(0,0)=S_{x^{\prime \prime}(p)}^{N}\left(\sigma^{\prime}(0), \sigma^{\prime}(0)\right) .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\left.\frac{1}{2} \frac{d^{2}}{d s^{2}} f(\sigma(s))\right|_{s=0}= & S_{\partial t \partial(0,1)}^{B}\left(\partial_{s} \delta(0,1), \partial_{s} \delta(0,1)\right) \\
& -S_{X^{\prime \prime}(p)}^{N}\left(\sigma^{\prime}(0), \sigma^{\prime}(0)\right)-\int_{0}^{1}\left\langle\nabla_{s} \partial_{t} \delta, \nabla_{s} \partial_{t} \delta\right\rangle d t \tag{2.3}\\
& +\int_{0}^{1}\left\|\partial_{s} \delta \wedge \partial_{t} \delta\right\|^{2} K\left(\partial_{t} \delta, \partial_{s} \delta\right) d t .
\end{align*}
$$

Let us suppose that B is totally geodesic, and the sectional curvature of M is nonpositive. Then

$$
\begin{equation*}
\left.\frac{1}{2} \frac{d^{2}}{d s^{2}} f(\sigma(s))\right|_{s=0} \leq S_{X^{\prime \prime}(p)}^{N}\left(\sigma^{\prime}(0), \sigma^{\prime}(0)\right) \tag{2.4}
\end{equation*}
$$

Suppose u_{1}, \cdots, u_{n} form an orthonormal basis of N_{p}. Let $\sigma_{a}(s)$ be the geodesics of N beginning at p and tangent there to $u_{a}, a=1, \cdots, n$. Then

$$
\left.\frac{1}{2} \sum_{a} \frac{d^{2}}{d s^{2}} f\left(\sigma_{a}(s)\right)\right|_{s=0} \leq \sum_{a} S_{X^{\prime \prime}(p)}^{N}\left(u_{a}, u_{a}\right) .
$$

The left-hand side of this inequality is just $\frac{1}{2} \Delta^{N} f(p)$. Let X_{1}, \cdots, X_{n} be an orthonormal basis for vector fields on N so that at the boundary points, $X_{1}(p)$ is the inward pointing normal to ∂N. Then, we have the basic inequality

$$
\frac{1}{2} \Delta^{N} f \leq \sum_{a} S_{X^{\prime \prime}}^{N}\left(X_{a}, X_{a}\right)
$$

The right-hand side is zero if N is a minimal submanifold of M. Integrate this over N. Green's formula gives

$$
\int_{N} \nabla^{N} f=\int_{\partial N} X_{1}(f),
$$

where the volume elements are assumed to be those defined by the induced Riemannian metric on N and ∂N.
(2.1) applies to calculate $X_{1}(f)$. In fact, $X_{1}(f)=\left\langle X_{1}, X\right\rangle$. Let us assume that $\int_{\partial N}\left\langle X_{1}, X\right\rangle=0$, and N is a minimal submanifold of M, i.e., the trace of its second fundamental form is zero in every normal direction. (For example, if $\partial N \subset B$, as in the statement of Theorem 1, then $X(p)=0$ automatically.)

Thus, we have

$$
\nabla_{t} \partial_{s} \delta=0=\nabla_{s} \partial_{t} \delta,
$$

i.e., X has zero corvariant derivative at every point of N and in every direction tangential to N. In particular, $\langle X, X\rangle=f$ is constant along N. We also have

$$
\left\|\partial_{s} \delta \wedge \partial_{t} \delta\right\|^{2} K\left(\partial_{t} \delta, \partial_{s} \delta\right)=0
$$

If N is a hypersurface, we have either N is totally geodesic, or $X^{\prime \prime}=0$ on an open subset of N; that open subset is a "focal submanifold" for the family $(p, t) \rightarrow \exp (t X(p))$ of geodesics of N. At any rate, Theorem 1 is proved.

Final remarks on Theorem 1: If B is a closed submanifold of M, hypothesis b) of Theorem 1 follows from the assumption that the curvature of N is nonpositive, and, say, an assumption that M is simply connected (see [1]).

3. Weakening the hypothesis

Let $\delta_{a}(s, t)=\exp \left(t X\left(\sigma_{a}(s)\right), a=1, \cdots, n\right.$. Using (2.3) again and assuming that the curvature is nonpositive give

$$
\begin{gather*}
\Delta(f) \leq \sum_{a} S_{\partial_{t} \dot{\sigma}_{a}(0,1)}^{B}\left(\partial_{s} \delta_{a}(0,1), \partial_{s} \delta_{a}(0,1)\right) \\
-\sum_{a} S_{X^{\prime \prime}(p)}^{N}\left(\sigma_{a}^{\prime}(0), \sigma_{a}^{\prime}(0)\right) . \tag{3.1}
\end{gather*}
$$

The second term on the right-hand side vanishes, of course, if N is a minimal submanifold. The first term will also vanish if B is a minimal submanifold, providing that $\partial_{s} \delta_{1}(0,1), \cdots, \partial_{s} \delta_{n}(0,1)$ is a basis for the tangent space to B. This requires

$$
\begin{equation*}
\operatorname{dim} B=\operatorname{dim} N \tag{3.2}
\end{equation*}
$$

Now, if (3.2) is satisfied, and each point $p \in N$ is not a focal point of B relative to the geodesic $t \rightarrow \exp (t X(p))$, then an orthonormal basis u_{1}, \cdots, u_{n} of N_{p} can be found so that $\partial_{s} \delta_{1}(0,1), \cdots, \partial_{s} \delta_{n}(0,1)$ is a basis of $B_{\partial(0,1)}$. In this case the argument then goes through.

The argument also goes through if

$$
\begin{equation*}
S_{\hat{\partial}_{t} \delta_{a}(0,1)}^{B}\left(\partial_{s} \delta_{a}(0,1), \partial_{s} \delta_{a}(0,1)\right) \geq 0, \tag{3.3}
\end{equation*}
$$

and N is a minimal submanifold. Now, (3.3) can be regarded as a "concavity" condition. The conclusion is that N cannot be completely on the "concave" side of B, if its boundary lies in B.
It is well known that complex-analytic submanifolds of Kähler manifolds are minimal submanifolds. One of the goals of minimal-submanifold theory is to understand whether or not facts known from algebraic geometry about algebraic varieties extend to general minimal submanifolds. This suggests that we investigate how singularities in N will affect the above arguments.

Suppose then that N^{0} is a closed subset of N such that $N-N^{0}$ is a minimal submanifold, but that N^{0} has no points in common with ∂N. Let us suppose that N^{0} can be surrounded with "tube" T_{c}, depending on a parameter ε, with boundary $\partial T_{\text {e }}$, whose area goes to zero as $\varepsilon \rightarrow 0$. Let us apply these arguments to $N-T_{\varepsilon}$ instead of N. When applying Stoke's theorem to $\Delta^{N} f$, we will have to take into account a term of the form:

$$
\int_{\partial T_{\iota}}\left\langle X_{1}, X\right\rangle,
$$

where X_{1} is the unit normal to the boundary ∂T_{c}. Note, however, that this does not depend on the derivative of X, as one would expect a priori. It is this simple fact that gives hope that the uniqueness proofs can be extended to manifolds with singularities.

The next situation to be considered should be that where N has constant positive curvature. However, the methods used here break down in this case.

References

[1] R. Hermann, Focal points of closed submanifolds of Riemannian spaces, Ned. Akad. Wet. 25 (1963) 613-628.
[2] -, Differential geometry and the calculus of variations, Academic Press, Now York, to appear.

Stanford Linear Accelerator Center
Uuiversity of California, Santa Cruz

