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A UNIQUENESS THEOREM FOR

MINIMAL SUBMANIFOLDS

ROBERT HERMANN

1. Introduction

The following theorem is well known: There is a unique geodesic joining
two points on a complete simply connected Riemannian manifold of nonposi-
tive sectional curvature.

The main point of this paper is the following generalization.
Theorem. Let N and B be minimal submanifolds of a Riemannian mani-

fold M whose sectional curvature is nonpositive. (If dim Λf=dim M— 1, it
would suffice to know that M has nonpositive Ricci curvature.)
Suppose that:

a) N is oriented and finite with oriented boundary dN c B.
b) B is a totally geodesic submanifold of M.
c) Each point p of N can be joined to B by a geodesic, which is perpen-

dicular to B at the end-point, and varies smoothly with p.
Conclusion: NaB.

The main tool is an integral-geometric inequality, which enables one to
make various extensions of the main result, e.g., to the case where B is only
a minimal submanifold of M, or where N is a manifold with singularities,
e.g., a piece of an analytic subvariety of a Kahler manifold.

2. Proof of the theorem

Let M be a complete Riemannian manifold, and N and B submanifolds of
M. (For notations not explained here, refer to [1] and [2].) Let exp:
T{M)-*M be the exponential map of the Riemannian structure, where T(M)
is the tangent bundle of M. Suppose there exists a vector field X on M such
that:

a) For p e N, exp (X(p)) e B.
b) The geodesic t -* exp {tX(p)) is perpendicular to B at t = 1.

Let || j denote the norm on tangent vectors associated with the inner product
< , y defining the Riemannian metric on M, f(p) = \X(p) ||2 for p e N, and ΔN

be the Laplace-Beltrami operator, relative to the induced metric on N. Our
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goal is first to find a convenient formula for dNf, and then to integrate it
over N.

Let p be a point of N, and s -+σ(s) a geodesic of N starting at p. Construct
t h e h o m o t o p y δ(s, t) = e x p (tX(σ(s))), 0 < s , t < 1 . T h e n

\ ^-Kσ(s)) = ± 4 - Γ<d'δ> d>δ>dt

2 as 2 as J
o

(2.1)

= / V A S , dtδ}dt = <9,δ, dtδ} «:ί.
0

Here dtδ(s, t) is the tangent vector to the curve u —• δ(s, u) at u — ί, dtδ is
the corresponding vector field along the homotopy δ, dsδ is defined similarly,
and Ptdsδ(s, t) is the covariant derivative (with respect to the Levi-Civita
affine connection) of the vector field u-+d9δ{s9 u) along the curve u -+δ(s, u).
The rules of this formalism are given in more detail in [1] or [2]. For
example, since each curve t —> δ(s, t) is a geodesic, we have Vtdtδ(s, t) = 0.

2 a

(2.2)

d,δ, R(dtd, dMdtδ

where R(,)( ) is the curvature tensor of M. The last term can be written as

where ϋC(,) is the sectional curvature, and \dsδ Λ dtδ(s, t)\\2 is the square of
the area of the parallelogram spanned by dsδ(s, t) and dtδ(s, /). Let Sf^ , )
and 5f >(,) be the second fundamental form of N and B. Write X = X' + Xn\
where X' is tangent, and AT" perpendicular to N. Then

, 1), 9,5(0, 1)),

, 0) = S5,,(p)(σ'(0),
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Thus,

~ r — T T V O K Ό ) ! * * ! ) = = *^β£ί(o»i)Wβ^(O> 1)> dftδyO, 1 ) )
2 as

+

Let us suppose that B is totally geodesic, and the sectional curvature of M is
nonpositive. Then

Id2

2 ds^

Suppose ul9 ", un form an orthonoπnal basis of Np. Let σa(s) be the
geodesies of iV beginning at p and tangent there to ua, a = 1, , n. Then

2 α CIS2 a

The left-hand side of this inequality is just %ΔNf(j>). Let Xl9 - , Xn be an
orthonormal basis for vector fields on iV so that at the boundary points, X1(p)
is the inward pointing normal to dN. Then, we have the basic inequality

The right-hand side is zero if N is a minimal submanifold of M. Integrate
this over Λf. Green's formula gives

where the volume elements are assumed to be those defined by the induced
Riemannian metric on N and dN.

(2.1) applies to calculate XX(S). In fact, Xτ(f) = (Xl9 X>. Let us assume

that I (Xl9 Xy = 0, and N is a minimal submanifold of Aί, i.e., the trace of
BN

its second fundamental form is zero in every normal direction. (For example,
if dN c By as in the statement of Theorem 1, then X(p) = 0 automatically.)

Thus, we have

Ftdsδ = 0 = Fsdtδ ,



194 ROBERT HERMANN

i.e., X has zero corvariant derivative at every point of N and in every direc-
tion tangential to N. In particular, (X, X} = f is constant along N. We also
have

\\dsdΛdtδΓK(dtδ,dsδ) = O.

If Λf is a hypersurface, we have either N is totally geodesic, or X" = 0 on
an open subset of N; that open subset is a "focal submanifold" for the family
(p, t) —> exp (tX(p)) of geodesies of Λf. At any rate, Theorem 1 is proved.

Final remarks on Theorem 1: If B is a closed submanifold of M, hypothe-
sis b) of Theorem 1 follows from the assumption that the curvature of N is
nonpositive, and, say, an assumption that M is simply connected (see [1]).

3. Weakening the hypothesis

Let δa(s, t) = exp (tX(σa(s)), a= 1, - , n. Using (2.3) again and assum-
ing that the curvature is nonpositive give

Δif) < Σ ^ ( C D O A C O , 1), dsδa(0, 1))

The second term on the right-hand side vanishes, of course, if N is a minimal
submanifold. The first term will also vanish if B is a minimal submanifold,
providing that 9^(0, 1), , dsδn(O, 1) is a basis for the tangent space to B.
This requires

(3.2) dim B = dim N.

Now, if (3.2) is satisfied, and each point peN is not a focal point of B
relative to the geodesic ί-»exp (ίΛΓ(p)), then an orthonormal basis ul9 , un

of Np can be found so that dsδ^O, 1), , dsδn(O, 1) is a basis of Bδ(Ofl). In
this case the argument then goes through.

The argument also goes through if

(3.3) Sf£O-α(0, x)(dA(0, 1), 3A(0, D) > 0 ,

and N is a minimal submanifold. Now, (3.3) can be regarded as a "con-
cavity" condition. The conclusion is that N cannot be completely on the
"concave" side of B, if its boundary lies in B.

It is well known that complex-analytic submanifolds of Kahler manifolds
are minimal submanifolds. One of the goals of minimal-submanifold theory
is to understand whether or not facts known from algebraic geometry about
algebraic varieties extend to general minimal submanifolds. This suggests
that we investigate how singularities in N will affect the above arguments.
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Suppose then that N° is a closed subset of N such that N — N° is a minimal
submanifold, but that N° has no points in common with dN. Let us suppose
that N° can be surrounded with "tube" Te, depending on a parameter e, with
boundary dTe, whose area goes to zero as ε —>0. Let us apply these arguments
to N — Tt instead of N. When applying Stake's theorem to ΔNf, we will have
to take into account a term of the form :

where Xx is the unit normal to the boundary dTe. Note, however, that this
does not depend on the derivative of X, as one would expect a priori. It is
this simple fact that gives hope that the uniqueness proofs can be extended to
manifolds with singularities.

The next situation to be considered should be that where N has constant
positive curvature. However, the methods used here break down in this case.
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