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CURVATURE AND THE EIGENVALUES OF
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1. Introduction

A famous formula of H. Weyl [19] states that if D is a bounded region
of Rd with a piecewise smooth boundary B, and if 0 > 71 > 72 > 73 >
etc. I — oc is the spectrum of the problem

(la) Δf = (d2/dxl + + d2/dx2

d)f = Ίf in £>,

(ib) / e C2(D) n C(D),

(lc) / = 0 on B,

then

(2) -in ~ C(d)(n/vol Df/d{n ] 00),

or, what is the same,

(3) Z = sp elΔ = ] Γ exp ( 7 nt) - (4τr£)-d/2 x vol U (t | 0),

where C(d) = 2π[d/2)!]d/2.
A. Pleijel [13] and M. Kac [6] took up the matter of finding cor-

rections to (3) for plane regions D with a finite number of holes. The
problem is to find how the spectrum of Δ reflects the shape of D. Kac
puts things in the following amusing language : thinking of D as a
drum and 0 < —71 < —72 < etc. as its fundamental tones, is it possi-
ble, just by listening with a perfect ear, to hear the shape of DΊ Weyl's
estimate (2) shows that you can hear the area of D. Kac proved that
for D bounded by a broken line B,

area D length B/A

7Γ2-72

+ the sum over the corners of — h o(l) (t [ 0),
24τr7
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0 < 7 < 2π being the inside-facing angle at the corner1, esp., you can
hear the perimeter oϊ such D. By making the broken line B approximate
to a smooth curve, Kac was led to conjecture

<•"»

for regions D with smooth B and h < oc holes, and was able to prove
the correctness of the first 2 terms. This jibes with an earlier conjecture
of A. Pleijel and suggests that you can hear the number of holes. (4b)
will be proved below in a form applicable both to open manifolds with
compact boundary and to closed manifolds.

Given a closed d-dimensional, smooth Riemannian manifold M with
metric tensor g = (gtj), let A be the associated Laplace-Beltrami oper-
ator:

1

where g ι = {gιi), and let 0 = 70 > 71 > 72 > etc. J, — oc be its
spectrum. Define also the scalar curvature K at a point of M (= the
negative of the spur Σ R%ij °̂  the ^ c c i tensor) and partition function

Z Ξ S P etΔ — Σ e x p (7n£) Then, as will be proved in §§4 and 7,

(5a)

(4πt)d/2Z = the (Riemannian) volume of M

t f t2 f
+ - x the curvatura integra / K + — - / (1(L4 - B + 2C) + o(t3),

3 JM 180 JM

where JM stands for the integral relative to the Riemannian volume
element \/det gdx, and A, B, C stand for a particular basis of the space
of polynomials of degree 2 in the curvature tensor R which are invariant
under the action of the orthogonal group [see (7.2)]; 0(ί3) cannot be
improved. For d = 2,10^4 — B + 2C = 12K2, and an application of
the classical Gauss-Bonnet formula for the Euler characteristic E of
M (2πE = JMK), (5a) simplifies to

xKac [6] expresses the corner correction (π 2 — 72)/24π7 as complicated integral.
D. B. Ray [private communication] derived it by a simpler argument, beginning with
the Green function G for s — Δ(s > 0) expressed as a Kantorovich-Lebedev transform

G(A,B) =π~2 Γ
Jo

X [cosh (TΓ - |α - β\)x - S m cosh (7 - a - β)x + \π - Ί)x c o g h ^
sinh jx sinh jx

in which A = aey/^la, B = be^/^lβ, and K is the usual modified Bessel function.
The corner correction (π2—72)/24τr7 follows easily, and this jibes with Kac's integral
upon applying ParsevaΓs formula to the latter.
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esp., the Euler characteristic of M is audible.

Consider now an open d-dimensional manifold D with compact (d-
1)- dimensional boundary B,D = DUB being endowed with a smooth
Riemannian geometry, and let 0 > 7f > 7^ > etc. | — 00 and 0 =
7o~ > 7+ > 72" > etc. i — 00 be the spectra of

Δ~ = Δ \C°°(D) Π (u:u = 0onB),

+ Π (u:u = OonB),

where stands for differentiation in the inward-pointing direction per-
pendicular to B.

Bring in also the mean curvature J at a point of B (= double the
spur of the second fundamental form) and the partition function Z± =
sp etΔ± = ^exp(7^£). Then, as will be proved in §5,

(6) (Aπt)d/2Z± = the (Riemannian) volume of D

± -jV4τrt x the (Riemannian) surface area of B

H- — x the curvatura integra / K
^ JD

x the integrated mean curvature / J + o(ί3//2),
6
 JB

where JB stands for the integral over B relative to the element of Rie-
mannian surface area 0(ί3/2) cannot be improved. Kac-Pleijel's conjec-
ture (4b) for a plane region D with smooth boundary B and h < 00 holes
is obtained from (6) and the Gauss-Bonnet formula (fM K + JβJ =
2π x the Euler characteristic) for the closed manifold M = the double
of D upon noting that the Euler characteristic of the handle-body M is
just 2(1 - ft).

The estimates leading to (5) and (6) will be proved not just for Δ
but for any smooth elliptic partial differential operator of degree 2 (2, 3,
4, 5), and some additional comments will be made about Z = spetΔ for
Δ acting on exterior differential forms (6). The basic idea, due to Kac,
is to make a pointwise estimate of the pole of the elementary solution
of du/dt = Δu and then to integrate over M to get an estimate of Z =
spetΔ. The curvatura integra coefficient in (5a) is computed directly in
§4 and then re-computed (for Δ only) in §7 using more sophisticated
algebraic ideas about differential invariants of the orthogonal group. A
list of open problems is placed at the end of the paper [9].



46 H. P. MCKEAN, JR. & I. M. SINGER

The new results of this paper are mainly for the case of manifolds
with boundary. For a closed manifold, N. G. de Bruijn [private commu-
nication] obtained the curvatura Integra coefficient independently as did
V. Arnold [private communication from M. Berger]. Berger also kindly
communicated his formula for the next coefficient, which suggested the
approach in §7 . Berger's results for closed manifolds can be found in
[1]. His method is different from ours, but we arrive at the same formula
for the coefficient of t2 provided his norms τ 2 , \ρ\2, and |i?|2 are equal
to our 4A, B, and 2C respectively.

It is a pleasant duty to thank M. Kac for suggesting this problem
and for a number of stimulating conversations about it. Thanks are
also due to T. Kotake for help with the Levi sums of §3.

2. Manifolds and elliptic operators

Consider a closed, d-dimensional, smooth manifold Mand let Q : C°°(M)
C°°(M) be an elliptic partial differential operator of degree 2, with
Q(l) = 0. On a patch U C M, Q can be expressed as

Q = a

ijd2/dxidxj + Vdjdxi = ad2 + bd

with coefficients a = (aιj) and b = (bι) from C°°(ί/). By changing the
sign of Q if necessary, we can take the quadratic form based upon a as
positive (]jΓ a^yiy^ > 0, yφϋ), and under a change of local coordinates
x —» x with Jacobian c, a transforms according to the rule a = cac*, so
g = a~ι transforms like a Riemannian metric tensor. M is now endowed
with this Riemannian geometry, and Q is re-expressed as the sum of the
associated Laplace-Beltrami operator Δ plus a part of degree 1:

y/detg ox

Because Δ does not depend upon the choice of local coordinates, hd is
a vector field.

Δ is symmetric (/ uΔv = J vΔu) and non-positive (f uΔu < 0) rel-
ative to the Riemannian volume element v

/det~ρ dx, where J f = JM f
always means JM f^det g dx. Q enjoys the same properties relative to
some volume element ewyfdek~g dx if and only if the vector field hd
is conservative; this is the same as to say that the exterior differential
1-form dual to this field is an exact differential (= dw), as is plain from
the fact that, for a patch U and compact u and v e C°°(U),

I (uQv — vQu)ew = I (u grad υ — v grad u){h — g~ι grad w)
Ju Ju
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cannot vanish unless h = g~λ grad w (Nelson [12]), where grad =
(d/dxw- ,d/dxd).

Consider, next, the elementary solution e — e(t, x, y) of du/dt —
Qu computed relative to the volume element ^άet g dx and recall the
following facts:

(la) 0<eeC°°[(0,oo) x M2],

(lb) de/dt = Qxe = Qle,

(ic) / ,

(Id) limi-'l<,e=-j[x!,]2,

where Q* is the dual of Q relative to ϊ/det g dx, and [xy] is the Rie-
mannian distance between x and y\ see [16] for (d) and [10] for the
rest.

Now if Q is symmetric relative to the volume element e^Vdet g dx,
then e(t, x, y) exp [—w(y)] is symmetric in x and y, and since its spur
Z = J e(t, x, x) converges, etQ : / —> / ef is a compact mapping of the
(real) Hubert space H = L2[M, ewy/^eTg dx]. This implies that Q has
a discrete spectrum

(2) 0 = 7o > 7i > 72 > etc. | - oo

with corresponding eigen functions fn £ C°°(M) forming a unit per-
pendicular basis of H; in addition,

e = 2 ^ exp (ηfnt)fn ® fn
n>0

with uniform convergence on compact figures of (0, oo) x M 2 , and the
spur Z is easily evaluated as (see for example [10])

(3) Z = ί Σ eMΊnt)fne
w = £ exp(Ίnt).

** n>0 n>0

Kac's method for the proof (4a) is now imitated to obtain (5a): one
estimates the pole e(t, x, x) locally and then integrates over M. This is
done in §§3 and 4 using a method of E. E. Levi; the actual estimate is
just as easy for the general Q, so the condition that the vector field hd
be conservative is not insisted upon.

Now let Q = Δ 4- hd be defined on a smooth open, d-dimensional
manifold D with smooth, compact, (d — l)-dimensional boundary B,
suppose that g =• a~λ is positive and smooth on the whole of D so that
it induces a nice Riemannian geometry on DL and let the vector field
hd be smooth on D too. Both Q~ = Q | C°°(D) Π (u : u = 0 on B) and
<Q+ = Q I C°°(D) Π (u : u = 0 on B), ' standing for differentiation in
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the inward-pointing direction perpendicular to B, have nice elementary
solutions e = e^ subject to

(4a) 0<eeC°°[(0, oo) x D%

(4b) Jt

Q* being the dual of Q relative to x/det g dx,

(4c-) / e" 1 1 (U 0),

(4c+)

(4d) ^ r J

(4e-) e~ = 0 on B x D,

(4e+) e + = 0 on J3 x £>,

and for ζ) symmetric relative to some volume element, the spectra are
as before except at the upper end:

(5a) 0 > 7f > 7̂ " > etc. j —oo,

(5b) 0 = 7+ > 7+ > 7+ etc. | -oo,

and the formula for the partition function still holds:

(6) Z± = ί e±(t,x1x) = V exp (7 nt),
JD

so that (6) can likewise be derived by estimating the pole e±(ί,x,a:).

3. Levi's sum for the elementary solution

Given closed M and Q = A -f- hd as above, one can express the elemen-
tary solution e = e(t, x, y) of du/dt = Qu by means of a sum due to E.
E. Levi; this computation has been carried out in a very careful manner
by S. Minakshisundaram [10], but it will be helpful to indicate the idea
in a form suited to the present use.

Consider a little closed patch U of M with smooth (d—l)-dimensional
boundary B, view U as part of Rd, extend Q' — Q \ U to the whole
of Rd in such a way that the coefficients of the extension belong to
C°°(Rd) and Q' = d2/dx\ + + d2/dx2

d near oo, let e' be the elemen-
tary solution of du/dt = Q'u, and let us prove that inside U x U,

(1) I e' - e I < exp(-constant/ί) (t [ 0)
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with a positive constant depending only upon the distance to B.

Proof. Bring in the elementary solution e" of du/dt = Qu subject
to u — 0 on B. Given a compact function υ e C°°(U), u = f(e" — e)υ
solves du/dt = Qu on (0, oo)xU and tends to 0 uniformly on U as t j 0.
But this means that in the figure [0, t] x U, \u\ peaks on [0, t] x B, so
that by an application of the estimate of Varadhan [(2. Id), (2. 4d)]x,

u\ < max
[0,t]xJ5

ί {e" - e)v

R being the shortest (Riemannian) distance from (υ φ 0) C U to B.
The rest of the proof is self-evident.

Because of (1), it is permissible, for the estimation of the pole
e(ί, x, x) up to an exponentially small error, to replace M by Rd and to
suppose that Q = d2 jdx\ + + d2/dx^ far out; this modification of
the problem is now adopted,

Define now Q° to be Q with its coefficients frozen at y e Rd, and
let e°(t,x,y) be the elementary solution of du/dt = Q°u evaluated at
t > 0, x e Rd, and the same point y e Rd at which the coefficients of
Q° are computed:

(2) e°(t, x, y) = (4τrt)-d/2 exp (- | α0^ (y - x - b°t) \2/4t)

with an obvious notation. Because of (2. lb), (2. lc) and (2. Id),

fl d f
(3a) e(t,x,y)-e°(t,x,y)= / ds— / e(s,x, )e°(ί - 5, ,y)

Jo ^ 5 J i? d

= [
Jo

ds [ (e°Q*e - eQ°e°)
Ji? d

= ί ds ί e(s,x, )(Q-Q°)e°(t-s,;y),
Jo JRd

in short,

(3b) e = eo + e t t / ?

with (J denoting the composition on the final line of (3a) and

f = (Q-Q°)e°(t-s,x,y).

Upon iteration, this identity produces the (formal) sum for e :

(4) e = e° + J ] e o # / t f .. tf / (n-fold).

ι(2. Id) denotes equation (Id) of §2.
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Actually this formal sum converges to e uniformly on compact figures

of (0, oo) x R2d the main point is that since

Q = d2/dx\ + + d2/dx2

d near oo,

(5a) I/I < C l ( ̂ -J»- + J±-* i + 1 t-ά^ exp (- c2| s - y\2/t)

< C3ί~"^d+1^2 exp (— C4I x — y|2/ί),

ci, ,C4 standing for positive constants, as can easily be verified by a
direct computation, and this leads easily to the bound

Accordingly, the formal sum (4) converges rapidly to a nice function e
of magnitude

(6) ,eKx^V^\

n>0 v "/-/

which satisfies (3b). A moment's reflection shows that e is an elementary
solution of du/dt = Qu. But du/dt = Qw has only 1 elementary
solution subject to (6), so e = (4) is it. This is proved by noticing
that any elementary solution subject to (6) is also a solution of (3b),
and then proving that (3b) + (6) has just 1 solution.

4. Estimation of the pole

Levi's sum (3.4) can now be used to estimate the pole e(ί, x, x) for t j 0,
up to terms of magnitude tλ~άl2\

(1) (4πt)d/2e(t, x, x) = 1 + | ϋ f - | div Λ - | | Λ | 2 + 0(ί2),

in which ϋ" is the scalar curvature (= the negative spur Σ ^lj °f ^ n e

Riccitensor), div h is the (Riemannian) divergence [= (det g)~^dhι(det g) 2 /dx
and I /ι I is the (Riemannian) length (= Qijhιh?). (1) can be integrated
over M to get an estimate of Z = / e(ί, x, x) (since / div Λ = 0):

(2) (Ant)d^Z = Jl+t-Jκ-t-J\hf+ 0(t2),

esp., if Q = Δ, then /ι = 0 and (2) = (1. 5a). A little extra attention to
the proof, which is left to the industrious reader, shows the existence of
an expansion
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(3) (4πt)d/2e(ί, x, x) = 1 + M + M 2 4- + M n + o(t n + 1 ) .

This was proved by S. Minakshisundaram [10] for Q = Δ; the only novel
point is the evaluation k\ = K/S — (div h)/2 — \ h |2/4. &2 is computed
in §7, using a more sophisticated method.

Proof of (1). e can be replaced by the sum (3.4), and the terms
of index n > 4 can be neglected in view of (3. 5b). Put x = 0 for
simplicity and bring in new coordinates on Rd coinciding with the old
near oo and such that

(4) gij(x) = δij + -RikβXkXi + 0(| x |3) near o,

R being the curvature tensor associated with g\ this is accomplished
by applying the exponential map to the tangent space at 0 to obtain
coordinates on a patch and then fixing things up outside [3, Chapter
10]. An estimate of / = (Q — Q°)e°(t — s, x, y) finer than (3. 5a) is now
possible:

(5)
t2

where Ci,C2, etc. stand for positive constants. This is used to prove

(6a)

e°UU\ < f dax ί ds2 IJo Jo JB

, x I \y-x\3 \x\\y-x
X _ i

t

and the similar but easier bound

(6b) \e°UUU\ <c7t
2~d'\

which shows that, up to terms of magnitude < constant x ί2"^2, one
is left with

(7) e(t,0,0) = e°(t,0,0)

+ [ ds [ e°(t - 5,0,x)(Q - Q°)e°(s, x, 0)Vdet g dx.
Jo Jκd
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A moment's reflection will convince the reader that, up to the desired
precision, the integrand e°(t — s,0,x)(Q — Q°)e°(s,x,0)v

/det g can be
replaced by the product of a factor 1 + a linear function / of x + o(t) +
o(|x and the expression

where r = s(t—s)/t. Now the factor alluded to above (8) can be replaced
by 1, since / x (8) integrates to 0 while the last 2 terms contribute
< c8t

2~d/2. Consequently, up to the desired precision,

(9a) = t~1 f ds [ (8)dx
Jo JRd

d2gij

(0) x (0,1/3, or 1 according as ijkl comprises

< 1 pair, 2 unequal pairs, or 2 equal pairs)

all evaluated at x = 0.

Cartan's formula (4), combined with the skew symmetry of the curva-
ture tensor R, permits an additional simplification of (9a) to
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(9b) - - * - v * _ : _ £ - div ft
1 J i J

1 r> l n 1 „ 1 j L— /? R • -\ P Γ\\ΛΓ h
^^^ JL ί-"i 0 ^ 1 ^ ^''7 1 *? 1 I ^"J 'ϊ *? 'ϊ v Λ X V # C/

_ 1

~~3

and (1) follows upon noting that

(10) (4π^/2e°M,0) = e-IM0)*|a/« = 1 - ί | Λ |2 +o{t)2.

5. Manifolds with boundary

Now let D be an open manifold with compact boundary B as at the
end of §2, M = D U B U D* the (closed) double of £>, and Q the
double to M of a smooth elliptic operator of degree 2 on D, and, as
in §2, define Q~(Q+) to be Q\ C°°(D) subject to ϋ = 0(u = 0) on
B. The coefficients (det ^)~^9^^(det g)%/dxi occurring in Q jump as
x crosses B, but du/dt = Qu still has a nice elementary solution e of
class C°°[(0, oc) x (M - £) 2 ] n Cι{M2), approximate even on B by
Levi's sum, and the elementary solutions e ± of du/dt = Q±u can be
expressed on (0, oo) x D2 as

(1) e±(t,x,y) =e(t,x,y) ±e(t,x,y),

y e D* being the double of y e D. By use of this formula, Z± =
fD e±(ί, x, x) can be estimated as follows:

(2) {Aπt)d/2Z± = the (Riemannian) volume / 1
JD

± -λ/iπί x the (Riemannian) surface area / 1
4 V ;

 JB

± - / flux ft + - x the curvatura Integra / K
2 JB 3 ,/D

x the integrated mean curvature / J
6 JB

D ^ JD

To explain the new terms involved in this formula, pick a self-double
patch [/ of M covering a patch £7 Π ί? of I? endowed as in the diagram
with local coordinates x such that
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a) 1 > xι > 0 in U Π D, b) xλ = 0 on U Π B, c) xi(x*) = -xi(a ), and
d) the positive xi-direction is perpendicular to B. This has the effect
that

(3a) 9ij(x*) = -9ij(x) for i = l <j or i> j = 1

= + 9ij{x) for i = j = 1 or i, j > 2,

(3b) Pij(^) = 0 fof i — 1 < j or i > j = 1 on B,

(3c)

= the element of (Riemannian) surface area on B.

Now JB stands for integration relative to ^/det g/g\\dx2 dxd, flux h
is the (outward-pointing) flux of h at a point of 5 ( = — y/guh1), and
the mean curvature J at a point of J5 is (double) the spur of the second
fundamental form [= (#ndet g)\/gϊϊ/det g]1, representing (twice) the
sum of inner curvatures of 2-dimensional sections perpendicular to B.
Because of Green's formula (JD div h = JB flux ft), a little cancellation

xHere " stands for the one-sided partial in the positive 1-direction perpendicular
to β. To prove that (g^det g)\/gϊΐ/ det g is (double) the spur of the second
fundamental form of B, it is preferable to further specialize the local coordinates on
U so as to make

g = (Ql1^) on U and glλ = 1 on U Π B.
V 0\h'

The second fundamental form / is the (Riemannian) gradient along B of the inward-
pointing unit normal field n:

nk = { y } = the Christoffel bracket (*• J * 2 )
Computing this for the special g adopted above gives ^h~λh', so that double the
spur is

sp h-λh = (lg det h) = (lg g11 det g)' = (p n det g)'/det g,

as desired (g11 = gu = 1 on B).
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occurs in (2) for Q+. (2) = (1.6) for Q = A (h = 0). The proof of (2)
is broken up into a number of steps.

Step 1. Consider a subregion D' C D at a positive distance from B.
Varadhan's bound (2. 4d) implies that fD, e(t,x,x) < exp (—ci/ί), so
by (4.1),

(4a) (4πt)d/2 [ e±(t,x,x)= [ \l + \κ - \ div ft - £| h

+ an exponentially small error,

esp., it is enough to estimate JUnD e±(t,x,x) for such a patch [7 as de-
scribed above. A close look at Levi's sum will convince the reader that

(t,x,x) can be developed in powers of y/t. B can be covered by a
finite number of patches U of small total volume, so terms like t x vol U
can be neglected: they can only influence the coefficient of £3/2. As a
simple application of this fact, the first term e°(ί, x, x) of the expansion
of e±(t, x, x) contributes

(4b) (Aπt)d/2 / e °( ί , x , x ) = 1 + an error of magnitude

< a constant multiple of ί x vol U,

so that, in view of (4a) and the fact that (3. 5b) still holds, it suffices
for the proof of (2) to check that

(5a) (4τrί)d/2 / e°(t,x,i)
JUΠD

=-V^Jri 1 + - / flux h + o{t x vol 17),

(5b)

(5c) (4τrί)d/2 / e°Jt /(ί, x, x) = o(t x vol U).
JUΠD

Step 2 [proof of"(5a)].

(6)

— x —

exp(—gnxl/t — fx\ — \b\2t/4)dxι= / dx2 - dxd /
JunB JO
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where Q = A + hd — ad2 + bd and / = g\kbk\ the following simplifica-
tions can be made by ignoring negligible terms:

(a) Vdetg can be replaced by \/detg° + (y/detg)'xι, where o
stands for evaluation at x° — (0, #2, * * i%d) £ B, since

(b) exp(—gι\x\/t — fx\ — \ b \2t/4) can be replaced by

e-9ii «ϊ/*(i _ ^ n χf/ί - /o^i) for the same reason. (0 < e~x - 1 + x <
x2/2 for x > 0.)

(c) /0 can be replaced be /0°°, since J^° e~ClXl^ < exp(—
After these simplifications, (6) becomes

(7)
ί
/

Ju

'" dxd

u n B

/
Jo

up to a negligible error, and performing the inside integral gives

(8)

1 rr- f Λ/detg0

-V4τrt / —7=^dx2-
4 Ju n B

+ *- ί
2 Ju n B

9h

/° is now computed with the aid of (3):

Vclet #

and (5a) follows.
3 [proof o/(5b)]. (5b) is not so cheap.

(9a)

, )

f Λ* ί
In

exp{- -x- b(y)(t - s)} - s)}

x<M-|^,».-,-KxM|V4.}/—^

Γ l
x j-^gik(x)(yk -Xk- bk(x)s)gjl(x)(yι -x\- bχ{x)s)

L

2s 2s
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(9a) can actually be replaced by

(9b)
rt Γ eTV

Jo JE

Vdet g(x)dy

up to the desired degree of precision, where

r = s(t - s)t, fj = (det g)idgij(det gγ*/dxi(j < d).

For example, to replace the first exponential in (9a) by

it suffices to note the following points:
(a) The integration over Rd can be restricted to the figure \y —

x\ < (t — s)2/5 since, for t [ 0, the remainder makes a contribution of
magnitude smaller than

Clt
d/2 [ ds [ dy

Jo J\y-x\>(t-s)2/s

e-c2\y-x\2/(ts) e-c2\y-x\2/s

_ s)d/2 sd/2

x (terms like s~2\y — x|3, s~λ\y — x|,etc, replaceable

by C3S~1//2 after reducing c<ι to C4 < C2)

e-c4\w\2/r^ ί ds

<C5 -γz
dw-

dS _^_/'+_o\4/5 i

o

which is negligible.
(b) Performing the integral just over y — x < (t — s)2lh and using

e~A-e~B < (B-A)e~Λ(0 < A < B) to estimate the difference between
the 2 integrands, one finds that the indicated replacement produces an
error of magnitude smaller than

fdsί
Jθ J\y-a

e-cio\y-x\2/(t-s)

\y-x\3 , l 2 Ί e~c™\y-χ\
ιy ' +\y-x\2 + t - \t-S

x (terms like s~2\y — x|3, s~λ\y — x|, etc.)
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which is also negligible after integrating over U Π D.

(c) Finally, one makes use of the fact that for the new exponential,
the integral over \y — x\ > (t — s)2/5 is likewise negligible.

(9b) is also to be integrated over U Π D; for this purpose, similar
estimates permit us to replace it by

(9c) fdsί
Jo JERd {4πr)d/2

Met g°dy

As2

9Jι
2s

is aΛ has the following meaning: for fixed x° = (0, #2? * * * ,χd) ̂
broken line with the same corner as g at x\ = 0 (and no other corners),
while / is a step function with a single jump at X\ = 0 agreeing with /
at xι = 0±.

Do the integration fRd-idy2'-dyd and use the special form of
g° [(36)]. This gives

(10a) / ds /
+oo eg°ίl(y1-x1)

2/4:r

dyi

n° n° n°

k,l>2

2s

ή r
= ds

Jo JR

e-9Ϊi(yι-χi)2/*r

dyi

4 r 2

As2 2s
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(3a) implies that for i = j = 1 or i, j>2, gι^(yi,x°) — g^(x) =
(yi — xi)tj' or —(yι + xι)gιj' according as y\ > 0 or y\ > 0; also
/1(2/i,x°)-/1(x) = 0 or -2(det g°)-^2{gιιy/t^ g)- according as yλ >
0 or yi, < 0,gny/detg being even across B, so (10a) simplifies to

(10b) f ds ί

x 4-2
4s2 2s

Do next the integral JQ (10b)\/det ^ dxi, replacing ^ by ρ° extending
the integration from 1 to + oo, and changing

/•oo r—xi pθ p-

/ dx\ \ dw\ into / dw\ I
Jo J—oo J—oo Jθ

dx\ :

(11)
ft /•<s°ldsL

Ό „-€

_ y

25

_ pt ( 11. r / , _ \2 f _
nrυ / Λ.ς ̂  ^ I 3 -̂  ^

t2 t

M
= ty/det g° x
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since gtj'gij — — (detg)Vdet g. An integration fΌ n B(ll)dx2 -
now gives the desired formula (5b).

Step 4. The proof of (5c) is practically the same, so it is left to the
industrious reader.

6. Λ on differential forms

Given a closed manifold M, let Δ act on the space Λp of smooth exterior
differential p-forms (p < d). Λp is a pre-Hilbert space relative to the in-
ner product (/i, /2) = / < /i, /2 >, < /i, /2 > being the Riemannian
inner product of p-forms at a point of M, and Δ can be expressed as
-(dd* +d*d),d: Λp~ι -> Λp(l <p<d) being the exterior differential
and d* : ylp+1 -^ Λp(0 < p < d) its dual relative to the above inner
product. Δ acting on Λp is symmetric with a discrete spectrum:

0 > 7o > 7i > 72 > etc. j —oo,

the corresponding eigenforms / form a unit perpendicular basis of Λp,
the sum

n>0

converges uniformly on compact figures of (0, oo) x M 2 to the elementary
solution of du/dt = Δu for p-forms and the spur Zp = ̂  exp(7nt) of
e t z l on Λp can be expressed [14] as the integral over the manifold of the
pole sp ep = Σ exp (ηfnt) < fn, fn >: Zp = /sp ep.

Define Z to be the alternating sum of Zp(p < d) : Z = Z° - Zι +
'•-±Zd. Then

(1) Z = the Euler Characteristic ϋ? of M,

as will be proved below. Poincare duality makes this trivial for odd
dimensions (Zp = Zd~p); also, in 2 dimensions Z° = Z2 for the same
reason, so from (1. 5b) and (1) it follows that for d — 2,

p,

Given a number 7 < 0, define Sp to be the eigenspace of p-forms / such
that Δf = 7/. By de Rham's theorem [14],

(3a) dim 3° - dim 31 + ± dim 3d = E for 7 = 0,

so (1) is the same as

(3b) dim 3° - dim 31 + ± dim 3d = 0 for 7 < 0.
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Chern [4] discovered a beautiful extension of the classical Gauss-
Bonnet formula to manifolds of even dimension d > 2. Chern's formula
states that JC = E. C is a (complicated) homogeneous polynomial
of degree d/2 in the entries of the curvature tensor, reducing to the
classical integrand K/2π = —R\2/2π for d = 2. Because of the complete
cancellation of the time-dependent part of the alternating sum Z, it is
natural to hope that some fantastic cancellation will also take place in
the small, i.e., in the alternating pole sum:

(odd

even

Poincare duality does it for odd d with o(l) = 0 , but the even-dimensional
proof eludes us, except for d = 2 in which case

(5) sp e° - sp e 1 + sp e 2 = C + -AC + o(t2)
o

(see [8] for additional information for d = 4). The proof of (5) is post-
poned until after the

Proof of (1) = (3b). Choose 7 < 0, let 3p(p < d) be the correspond-
ing eigenspaces, and make the convention that 3 " 1 = 3d+ι = 0. Δ =
-(d*d+dd*) commutes with d and d*, so d3p~ι+d*3p+ι C 3*\ Because

d2 = 0,(d3*>-\

d * 3 P+i) = ( r f23p-i5 gp+ij = Q5 s o t h e s u m i s d i r e c t ? a n d i t fiUs u p

the whole of 3P(= d^~ι Θ d * ^ 1 ) since, for / C 3*,

) = (d*/, &-1) = 0, (/,d*3 p + 1) = (d/,3 p + 1) = 0

make d*/ = df = 0, so that 7/ = Δf = 0 and / = 0(7 φ 0); esp.,

dim 3p = dim dtf-1 H- dim d*3ί>+1 (p < d),

and so

(6) Σ{-l)p dim 3 P = ] J Γ ( - dim d*3 2 p + dim 32 ί > - dim d3 2 p).

p<d

But 32 ί ? = dS 2 ^" 1 Θ d*3 2 *+\ so that

dim 32 ί ? - dim d*3 2 p - dim d32p

= dim dS 2 ^- 1 + dim d * 3 2 ί ) + 1 - dim d*d32ί>~1 - dim dd*3 2 ί ? + 1 > 0,

and also

dim 32p - dim d*32p - dim dZ2p

= dim 4 3 2 ί ? - dim d*3 2 p - dim d32ί>

< dim dd*32p + dim d*d3 2 p - dim d*32 ί ? - dim d32p < 0;



62 H. P. MCKEAN, JR. & I. M. SINGER

in brief, dim 3 2 p = dim d32p + dim d*32p, and the whole of the alter-
nating dimension sum (6) collapses to 0.

Proof of (5) (d = 2). 3 1 = </3° ® d*32 for 7 < 0, and for / e 3°,

||d/||2 = (df,df) = -(d*df,f) = -(ΔfJ) = -7II/H2

with a similar result (||oP/||2 = -7II/H2) for / e 32. Because of this,

with a self-evident notation. But, for / e Λ°,

so, by the Poincare duality between 3° and 32,

~Έ, SP e l = ~ Σ 7 « β X p ^n*) < fnJn >= 2 ^Z β X p (7«*) <

0 ) 2 - 2fnΔfn] = Δ sp e° - 2 | E

or, what is the same,

— (sp e° — sp e1 + sp e2) = Δ sp e°.
at

sp e° has an expansion beginning with a multiple of t~ι and proceeding
by ascending powers of t as stated in §4, and a little extra attention to
the proof shows that the formal application of Δ to this expansion gives
the expansion for Δ sp e°. Consequently, (4.1) implies

sp e° - sp e1 + sp e2 = B + -ΔC + o(t2)
6

with C — the Gauss-Bonnet integrand K/2π, and to complete the proof
of (5), it remains to check that B — C. Pick local coordinates so
that Cartan's formula (4.4) holds. A moment's reflection shows that
B can be expressed as a (universal) combination of second partials of
9ij{hj ^ 2); as such, it is a (universal) constant multiple of the one
nonzero component Λ1212 of the Riemann tensor, and the constant can
be identified as — l/2π by using the Gauss-Bonnet formula in the special
case of the Riemann sphere:

2 = E = / (sp e° - sp e1 + sp e2) = B

= constant x / -R1212 = — constant x 4τr.
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7. Algebraic computation of fci and k2

The style of proof just used to finish the verification of (2.5) will now
be exploited to compute the third coefficient of the Minakshisundaram
expansion (4.3) for Q = Δ:

(1)

with

(2a)

k2 = (10 A -B + 2C) + constant x ΔK,
180

(2b)

(2c) C = (Rijki)2-

The constant multiplier of ΔK in (1) is not known, but JM ΔK = 0,

so

(3) /
M

2C),
M

as needed for (1. 5a); in any case, this constant is universal, i.e., it is the
same for all manifolds M. The method will also provide us with a new
derivation of the formula fci = K/S. A short table of special expansions
will be helpful for the proof; in this table Z is computed up to an
exponentially small error for several standard manifolds. D2(DS) is the
2(3)-dimensional Lobachevsky space modulo a discontinuous group of
motions.

Pick exponential coordinates on a patch about a point o e M as for
(4.4). The coefficients of the power series expansion of g about o will be
polynomials in the curvature tensor R and its covariant derivatives [3,
Chapter 10, §4], and it follows from this and from Levi's sum for the pole
of e that the coefficients of (4.3) are expressible as polynomials of the
same kind. A scaling argument now gives the degree of these polynomi-
als. Change g into C2g(C2 > 0). Then Δ is changed into C~2Δ, and
the pole of the elementary solution becomes e(ί/C2,o, o)C~d, so that
kn is simply multiplied by C2n. But also, an /-fold covariant derivative
of R(C2g) is a multiple of C 2 + z . Consequently, kn = kn(g) is a "homo-
geneous polynomial" of degree 2n in R and its covariant derivatives, if

M

S2

s 3

D2

D*

K

1

3

- 1

- 3

A

1

9

1

9

B

2

12

2

12

ΓABLE

C

2

6

2

6

Z/(4πt)d/2 x vol M

S J ^ S ^ + i ^ +
e* = 1 + t +£ t2 +

e~* = 1 - 1 + \tι + • •
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to an /-fold covariant derivative is ascribed the degree 2 4-/, esp., k\ is
a form of degree 1 in R, while fc2 is a form of degree 2 in R plus a form
of degree 1 in second covariant derivatives of R. Clearly, the coefficients
of these forms depend upon M only via the dimension.

The next step is to exploit the fact that an orthogonal transforma-
tion of the tangent space changes one exponential coordinate system
x into another. Because the pole of e depends on x only via ydet #,
which is an orthogonal invariant, the coefficients of its expansion are
likewise orthogonal invariants, esp.,kι is an invariant form of degree
1 in R, and as such, it is a constant multiple of K = — Σ Rijij [19,

i<3

Chapter 5]. This constant depends upon the dimension of M only, so
to complete the evaluation of k\, it suffices to check that the constant
is dimension-free and to compute it for M = S2, say (see the TABLE).
To settle the first point, look at a product manifold, M = Mi x M2.
Δ(M) = Δ(Mι) <g> 1 Θ 1 <8> Δ(M2), so e(M) = e(Mλ) <g> e(M2), and it
follows from (4.3) that kλ(M) = fci(Afi) + fci(M2). But also R(M) =
R(Mλ) Θ R(M2), so that K(M) = K(Mλ) + K(M2), and varying the
dimension of M 2 leads at once to the proof.

fc2 is not so simple.

Step 1 is to notice that the forms of degrees 2 and 1 into which k2 is
split are separately invariant under the action of the orthogonal group.
As stated before, the coefficients of these forms depend upon dimension
only.

Step 2. For d > 3, the space of curvature tensors at a point of M,
viewed as a representation space of the orthogonal group 0(d), splits
into 3 irreducible pieces. One piece is the kernel of the contraction
map Rijki —> RijW The orthogonal complement can be viewed as the
space of symmetric matrices with 0(d) acting by similarity (x —> o* xo),
and this piece splits into the scalars plus symmetric matrices with spur
0 [19, Chap. 5]. Consequently, the space of invariant polynomials of
degree 2 is 3-dimensional, the 3 polynomials A,B,C exhibited in (2)
provide us with a nice basis, and the corresponding part of fe is simply
c$A+C\B+C2C with coefficients depending (perhaps) on the dimension.
The same still holds for dimensions 2 and 3, except that

(4a) B = C = 2A (d

(4b) B = A + C/2 (d

which make the splitting simpler.
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Step 3. The part of k2 which is an invariant form of degree 1 in
second covariant derivatives of R can only be obtained by a 3-fold
contraction [19, Chap. 5], and only 2 candidates present themselves:
Rijij kk = —2ΔK and Rikjk ij But, by the Bianchi identities,

~τ~ -^ikki jj ~ι

so the second candidate is half the first, and

(5) k2 = c0A + ciB + c2C + c3ΔK

with coefficients depending upon dimension only.

Step 4 is to prove that the coefficients are dimension-free. This
is done, as in the proof of kι = K/3, by looking at a product M =
Mi x M2. R(M) = R(Mχ) Θ Λ(M2), so

(6a) A(M) = A(Mλ) 4- A(M2) + 2K(M1)K(M2),

(6b) B(M) = B{Mι)

(6c)

also

(6d) e(M) = e(Mi)®e(M2),

and a comparison of the expansion

(7a) 1 + t 2

+ ί2 x

ci(d)[B(Mi) + B(M2)] + C2(d)[C(Λfi) + C(M2)]

d being dim M, with the expansion

(7b)

x \^

+ C2(di)C(Mi)

+ co(d2)A(M2) + Cl(d2)B(M2) + c2(d2)C(M2) + c3(d2)ΔK(M2)

+ o(t3)

in case M\ is a flat torus [iϊ(Mi) = 0] shows that the expression
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(8) co{d)A(M2) + c1{d)B{M2) + C2(d)C(M2) + C3(d)ΔK(M2)

is independent of d > d2. The fact that the coefficients are dimension-
free for d > 4 is immediate from this. For d < 3, the coefficients can be
chosen to be the same as for higher dimensions.

Step 5 is to compute the actual values of the coefficients. Comparison
of the terms involving K(M1)K(M3) in (7a) and (7b) gives

(9a) co - 1/18,

and, from the TABLE placed at the beginning of this section,

(9b) Cl = -1/180,

(9c) c2 - 1/90,

so that only c3 is still unknown. This completes the proof.
For d = 4, the integrand for Chern's extension of the Gauss-Bonnet

formula [5] is easily evaluated as ( δ π 2 ) " 1 ^ - B + C/2). The formula
states that this integrates to the Euler characteristic E of M, whence,
for d = 4,

(10a)

(10b) M is a flat space if / k2 = 0 and E > 0,

(10c) / fc2 7̂  0 if M is simply connected,

(lOd) if the sectional curvatures of M do not change sign, then

/ k2 = 0 only for a flat space,

while, for d < 3,

(lOe) k2>0 and k2 = 0 only for a flat space.

Proo/. (10a) is immediate from Chern's formula and (10b) follows,
since / C = 0 makes M flat. E > 0 if M is simply connected. But a
flat compact space is not simply connected, so (10c) is proved. (lOd)
is proved in the same way using the fact that E > 0 if the sectional
curvatures of M do not change sign [5]. The proof of (10e) is immediate
from (1) and (4).

The computation of £3, £4, etc. is a problem of classical invariant
theory; see for instance [17]. It looks pretty hopeless.
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8. Open problems

1°. For Q — Δ, compute all the coefficients of Minakshisundaran's
expansion (4.3) and explain the geometrical significance of each. It is an
open problem to find the corresponding corrections to WeyΓs formula
(1.2). But notice that even for M — S2,—ηn does not behave like
c-\n + Co + c\n~ι + etc..

2°. Prove or disprove (6.4) for even d > 4; see (7. 10a) for partial
in formation in case d = 4.

3°. J. Milnor [8] proved that the spectrum of Δ acting on the
differential forms of a closed manifold M is not sensitive enough to
discriminate between the possible Riemannian geometries on M. Mil-
nor's example depends upon an example of E. Witt of 2 self-dual 16-
dimensional lattices Γ, dissimilar under the action of 0(16), but with
β(i?) = $(ω e Γ : \ω\ < R) the same for both. Because the lattices are
dissimilar, the tori M — R16/Γ are not isometric. But the spectrum of
Δ on functions is just the numbers 4π2 \ω\2 with ω from Γ. Because
Δ(fdxi1 Λ Λ dxip) — (Δf)dxiλ Λ Λ dxiP, the spectrum of Δ on p-
forms is the same, but just repeated 16!/p!(16 — p)\ times, so that the 2
tori are identical from the spectral point of view. Despite this example,
it may be possible to "hear" the geometry of M for small dimensions
(d = 2, for instance) or for a special class of manifolds (topological
spheres, for instance). Kac [6] has asked if the spectra of both Δ for a
flat plane region D suffice to determine D up to a rigid motion of Â ; his
conjecture is no. If that is so then probably the complete geometry of
a closed manifold cannot be heard even for d = 2 and M a topological
sphere. But it should be noted that for D = (0,1), 0 < / e C[0,1], and
Qu = fu", f can be recovered from the spectra of Qb [2].

4°. Jacobi's transformation of the theta-function shows that for Δ
acting on functions on a flat torus M = Rd/Γ,

,-4π2\ω\2t _ v°l M

vol M
an exponentially small error,

where JΠ* is the dual lattice of Γ. Does there exist a Jacobi like transfor-
mation of Z for any other manifolds? To our knowledge the only similar
thing is the so-called Kramers-Wannier duality for the 2-dimensional
ISING model of statistical mechanics. Both Kramers-Wannier and Ja-
cobi's transformation are instances of Poisson's summation formula [7].
Perhaps Selberg's trace formula could be helpful in this. A simple case
to look at would be a compact symmetric space M = G/K of rank 1,
since the pole sp e° is constant on M and can be computed using just
the radial part ^~1~§R^^R of Δ (A = the area of the spherical surface
of radius R about the north pole). A second interesting case would
be that of a closed Riemann surface of genus > 2, viewed as the open
unit disc modulo a discontinuous group. One may conjecture that the
breaking off the expansion of Z at the first (volume) term happens for
fiat spaces only [see (7. 10) for the proof in case d < 3 and for partial
information in case d = 4].
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5°. A Jacobi transformation for Z goes over into a Riemann like
identity for the zeta-like function Σ \ln\~s via the transformation

1 /

Jo

OO

s -ts-\Z-l)dt.

Minakshisundaram [9] used (4. 3) to prove that this zeta-function is
meromorphic in the whole s-plane; see [11] for additional information.
Expanding Z as c0t~

d/2 + cιt~d/2+1 + etc., one finds that the zeta-
function has simple poles with residues cn at the places d/2 - n(n > 0)
if d is odd, (0 < n < d/2) if d is even. For even d, the value of the
zeta-function at s = 0 is Cd/2 — / &d/2> s o that contact is made with R.
Seeley's computation of this number [15] and with 2°.
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