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C H A R A C T E R S OF SL(2) R E P R E S E N T A T I O N S OF 
G R O U P S 

FENG LUO 

Abstract 

Given a compact orientable surface £ , let S (Ti) be the set of isotopy classes 
of essential unoriented simple loops in the surface. We determine a complete 
set of relations for a function defined on SÇS) to a field K to be the character 
of an SL(2, K) representations. Furthermore, the relations are supported in 
the 1-holed torus and the 4-holed sphere subsurfaces. This establishes that 
Grothendieck's reconstruction principle is valid for SL(2, i-Q-character vari­
eties of surface groups. As a consequence, we obtain an explicit description 
of the set of all characters of SL(2, K) representations of a group. 

1. Introduction 

1.1. Given a field K and a representation p of a group to SL(2, K), 
the character of the representation sends a group element g to the trace 
of the matrix p(g). One of the result of the paper is the following, 

Theorem. Suppose K is a field so that each quadratic equation with 
coefficients in K has a root in K. Then a K-valued function defined 
on a group is the character of a SL(2,K) representation of the group 
if and only if its restriction to each 2-generator subgroup is a SL(2,K) 
character. 

The SL(2,K) characters on 2-generator groups are well understood 
since the work of Fricke-Klein [7] and Vogt [33]. They are governed 
by the trace identity: tr(AB) + tr{A~lB) = tr(A)tr(B) for SL(2,K) 
matrices A, B. In [14], Helling gave an elegant axiomatic approach to 
characters based on the above trace identity. Following Helling, a K-
valued function / defined on a group G is called a K-trace function if 
(1) f(xy) + f(x~ly) = f(x)f(y) for all x,y inG and (2) f{id) = 2 where 
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id is the identity element. Evidently an SL(2, K) character is a if- trace 
function. Using the work of [7], [14] and [33] that K-trace functions 
are characters on 2-generator groups, one deduces the following result 
equivalent to the above theorem. 

Corollary. Suppose K is a field so that each quadratic equation 
with coefficients in K has a root in K. Then a K-valued function f 
defined on a group is the character of an SL(2,K) representation of the 
group if and only if f(xy) + f{x~ly) = f(x)f(y) for allx,y in the group 
and f(id) = 2. 

This generalizes a result of Helling [14] who proved that R-trace 
functions are SX(2,R) characters under some additional assumptions. 

1.2. The main result of the paper which implies Theorem 1.1 
gives a characterization of SL(2,K) characters defined on the funda­
mental groups of surfaces using subsurface groups. In contrast to The­
orem 1.1 which uses the hierarchy of subgroups indexed by the number 
of generators to describe the characters, there exists a natural hierar­
chy of surfaces under inclusion indexed by the level. Recall that the 
level of a compact surface of negative Euler number is the minimal 
number of disjoint simple loops decomposing the surface into 3-holed 
spheres. It is also the complex dimension of the Teichmüller space of 
complex structures on the interior of the surface with punctured ends. 
For instance, the 3-holed sphere has level-0 and the 4-holed sphere and 
the 1-holed torus have level-1. This hierarchy of surfaces is promi­
nent in Grothendieck's manuscript [10] and conformai field theory [27]. 
In particular, Grothendieck conjectured that the "tower of Teichmüller 
spaces" can be reconstructed from the Teichmüller spaces of level-1 sur­
faces subject to the relations supported in level-2 surfaces. Motivated 
by this Grothendieck's reconstruction principle, one asks if a character 
can be reconstructed from its restriction to the fundamental group of 
each level-1 subsurface. The main result of the paper gives a complete 
answer to this question. 

To give a precise solution to the above question, we shall first note 
that the fundamental group is not vital with respect to the hierarchy. 
Indeed, if a given element in the fundamental group is "complicated" 
in the sense that it has no representative in any level-1 subsurface, 
then the condition becomes null about the class. Thus, we focus our 
attention to those "simple" elements in the fundamental group. This 
motivates the introduction of the set S(E) of free homotopy classes of 
unoriented homotopically non-trivial simple loops on a surface S. The 
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space S(E) was introduced by Max Dehn [6] in his study of the mapping 
class groups and was independently introduced by Thurston [32] in his 
work on surface theory. If / is an SL(2,K) character defined on the 
fundamental group of a surface E, then / induces a K-valued function 
on S'(E) which we still call an SL(2,K) character. A natural property 
of a character / on S'(E) is that its restriction to each subsurface is 
again a character. To be more precisely, if E' is an essential subsurface 
(i.e., the inclusion map induces a monomorphism between fundamental 
groups), then the restriction map foi* is again a character on S(T.') 
where i* : S(E') —> S(E) is induced by the inclusion. 

We call a if-valued function / defined on the set S(E) of homotopy 
classes of simple loops a trace function if the restriction of the function 
to each S(T.') is a character for each level-1 essential subsurfaces E'. 
Grothendieck's principle predicts that a trace function is a character. 
The main result of the paper shows that this holds except for finitely 
many exceptional trace functions defined on genus zero surfaces when 
the characteristic of the field K is not 2. All exceptional trace functions 
are derived from a single one defined on the 5-holed sphere which we 
describe as follows. Let the characteristic of the field K be not 2, and 
&i,..., &5 be the boundary components of the 5-holed sphere Eo,5- Define 
/o : S(T.Q^) —> K by sending each 6j to 2 and all other elements to 
—2. One checks easily (see §5.4) that /o is a trace function which is 
not the character of any representations. There are sixteen exceptional 
trace functions / on the 5-holed sphere all derived from /Q. Namely, 
an exceptional trace function f : S(T,Q^) —> K satisfies the following 
(1) /(S(S0 ) 5)) = {2 , -2} , (2) nf=1f(bi) = 32, and (3) if a is a non-
boundary parallel class so that a, &,, and bj bound a 3-holed sphere, 
then f(a) = - ì /(Ò,)/(Ò,) . 

The main result of the paper is the following. 

Theorem. Suppose K is a field so that each quadratic equation with 
coefficients in K has a root in K. Let f be a K-valued trace function 
defined on the set S'(E) of homotopy classes of essential simple loops in 
a compact orientable surface E. 

(1) If the characteristic of the field K is 2, then the trace function 
f is the character of an SL(2,K) representation. 

(2) If the characteristic of the field K is not 2, then: 

(2.1) either f is the character of an SL(2,K) representation, or 
(2.2) the genus of the surface E is zero, f takes only values {2, — 2}, 

and there is a level-2 subsurface so that the restriction of f to the sub-
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surface is one of the sixteen exceptional trace functions. 
(2.3) There exist exceptional trace functions on each genus zero sur­

face of level at least 2. The number of exceptional trace functions on a 
fixed surface is finite. 

Note that surfaces in the theorem are connected and could be com­
pact or non-compact of infinite type. 

Theorem 1.2 does not cover the case where the surface E has level 
at most 1. The characterization of SL(2,K) characters on the set of 
simple loops in level-1 surfaces (Propositions 3.4 and 3.5) is well known 
by the work of [7], [9], [14], [16], [26], [33] and others. It is based on the 
following Lemma (Lemma 2.3) well known to the experts in the field. 
Namely, given six elements x\, X2, X3, x\2, £23, ̂ 31 m K-> there exist three 
SL(2, K) matrices Ai, A2, an A3 so that tr{A,{) = Xi and tr(AiAj) = Xij. 

1.3. Given a group G and a field K, the set of all SL(2,K) 
characters on G is called the character variety of the group. Theorem 
1.1 gives an explicit algebraic description of the character variety of the 
group for those field K satisfying the condition in the theorem. If the 
group G is finitely generated, then a well known result (Proposition 
2.2) shows that there exists a finite subset F C G so that each SL(2, K) 
character on the group is algebraically determined by its restriction 
to the finite set F. As a consequence of these and the Hilbert basis 
theorem, one obtains the following corollary which slightly generalizes 
a result of Culler-Shalen [5] who proved it for algebraically closed field 
K. 

Corollary (Culler-Shalen). Suppose G is a finitely generated group 
and K is a field so that each quadratic equation with coefficients in 
K has a root in K. Then the set of all SL(2,K) characters on the 
group forms an affine algebraic variety defined over K. Furthermore, 
the defining equations are integer coefficient polynomials. 

In [11], Gonzalez-Acuha and Montesinos-Amilibia gave a construc­
tive proof of Culler-Shalen's result. Their proof also shows the above 
corollary in the case where the characteristic of K is not 2. 

The assumption on the quadratic closeness of the field K can be 
replaced by extension fields. Namely, suppose K is any field and / is 
a if-trace function defined on a group generated by n elements. Then 
there exists an extension field F of K obtained from K by at most 
n quadratic extensions and a representation of the group to SL(2,F) 
whose character is the given if-trace function. 
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For instance, as a consequence of Gonzâl-Acuna and Montesinos-
Amilibia's theorem and basic results in computational algebraic geom­
etry, given any triangulated 3-manifold, there is an algorithm to decide 
if the 3-manifold group has a non-trivial representation to SL(2, C). 

1.4. There exists an interesting analogy between the hierarchy 
of finitely generated groups indexed by the number of generators and 
the hierarchy of surfaces indexed by the level. It seems that the role of 
level-1 surfaces is similar to that of 2-generator groups. For instance, 
Jorgensen [17] proved that a non-elementary subgroup of SL(2, C) is 
discrete if and only if each 2-generator subgroup is discrete. A conse­
quence of [21] shows that a faithful representation of a surface group 
to ,51/(2, R) is discrete if and only if the restriction of the represen­
tation to each level-1 subsurface group is discrete and uniformizes the 
subsurface. Theorems 1.1 and 1.2 provide another comparison. Here 
is a third pair. Recall that a subgroup in SL(2,K) is reducible if it 
leaves a 1-dimensional linear subspace in K2 invariant. It is known [5] 
that a subgroup in SL(2,K) is reducible if and only if each 2-generator 
subgroup is reducible (see §2.5). The analogous result is the following. 

Theorem. An SL(2,K) representation of a surface group is re­
ducible if and only if its restriction to each level-1 subsurface group is 
reducible. 

In fact, in the statement of the theorem, 3-holed sphere and 1-holed 
torus subgroups suffice. However, there exists an irreducible represen­
tation of a surface group to <SX(2,K) so that the restriction to each 
level-0 subsurface group is reducible. Such irreducible representations 
occur rarely (only on genus 1 surfaces) and are classified in §6 and §7. 

Finally, the analogous result to the well known Proposition 2.2 is 
the following (see §3.9) that there exists a finite set of homotopy classes 
of simple loops on each compact orientable surface so that the charac­
ters of SL(2,K) representations are algebraically determined by their 
restrictions to the finite set. 

1.5. Since each compact 3-manifold has a Heegaard splitting, a 
3-manifold group is the quotient of a surface group by a subgroup of 
the form N1N2 where each TV, is normally generated by disjoint simple 
loops. This shows that simple loops are characteristic for 3-manifold 
groups (among all finitely presented group). By singling out the special 
feature of simple loops in Theorem 1.2, it is hoped that it will have some 
applications to 3-manifold groups. In particular, we are motivated by 
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the following question. Given a Haken 3-manifold M , does there exist 
an irreducible SL(2, K) representation of the fundamental group of the 
3-manifold for some finite field K? See [15] for related topics. 

1.6. As mentioned before, Theorem 1.2 may be interpreted as 
establishing Grothendieck's reconstruction principle for SL(2) charac­
ter varieties. Broadly speaking, the principle says that to study the 
isotopy class of a structure on a surface, one should consider the restric­
tion of the structure to the isotopy classes of all level-1 subsurfaces and 
reconstruct the original isotopy class of the structure from the restric­
tions. Furthermore, level-2 subsurfaces should serve as the "relators" 
in the reconstruction process (see [10] and [24]). This reconstruction 
principle is shown to be valid for hyperbolic metrics and measured lam­
inations in [21] and [22]. The proof of Theorem 1.2 is similar to the 
proof of [21]. Namely, first we prove the result for level-1 and level-2 
surfaces and then we prove the result for all surfaces using a general 
gluing lemma. The main difficulty in proving Theorem 1.2 is caused by 
the existence of irreducible representations whose restrictions to some 
2-generator subgroups are reducible. Similarly, the main difficulty in 
establishing Theorem 1.1 is in the case of free group on 4 generators. 

1.7. The study of the algebra of characters of SL(2,K) represen­
tation was started by Vogt and Fricke-Klein and is developed by many 
authors [3], [4], [5], [14], [16], [18], [25], [26], [29], [31] and others. It 
seems that there is a close relation between what we did here and those 
algebraic approach to the ring of SL(2) characters on a group. 

1.8. The organization of the paper is as follows. In §2, we recall the 
basic facts on traces of SL(2, K) matrices and group representations. In 
§3, we recall the basic facts on simple loops on surfaces and the modular 
structure. We then use the modular structure to describe SL(2,K) 
characters on level-1 surfaces. A multiplication of the simple loops on 
surfaces will also be discussed. In §4 and §5, we prove the main result 
for the genus zero surfaces by making extensive use of the modular 
structure. In §6, we prove Theorem 1.2 for the 2-holed torus. Theorem 
1.2 for all surfaces is proved in §7. In §8, we prove Theorem 1.1. In the 
final Section §9, we discuss some questions arising from the consideration 
of SL(2) characters. 

1.9. After we finish this work, we are informed by A. Sikora that 
Przytycki and Sikora [28] have independently proved Theorem 1.1 for 
field of characteristic 0. Sikora has informed us that Theorem 1.1 for 
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the field C was also proved implicitly by Bullock in [1]. 

1.10. Acknowledgment. I would like to thank F. Bonahon and 
X.-S. Lin for many discussions. This work is supported in part by the 
NSF. 

2. Pre l iminar ies on SL(2 ,K) matr ices 

In this section, we shall introduce notation and recall basic trace 
identities. 

2 . 1 . We shall use the following notation and terminologies. A rep­
resentation p of a group G to SL(2, K) is called reducible if there exists 
a 1-dimensional linear subspace in K2 invariant under the linear action 
of G. Otherwise the representation is called irreducible. Two represen­
tations p\ and p2 of a group G to SL(2, K) are conjugate if there exists 
a matrix X in SL(2, K) so that for all g G G, Xpi(g)X~1 = p2(g)- Evi­
dently, conjugate representations have the same characters. A reducible 
representation is called diagonalizable if it is SL(2,K) conjugate to a 
representation whose image lies in the set of diagonal matrices. The 
character of a reducible (resp. irreducible) representation is also called 
reducible (resp. irreducible). A subgroup of SL(2, K) is called reducible 
if the inclusion map is reducible. 

2.2. The following trace identities will be used frequently. They are 
derived from the first identity (a). The earliest source of these identities 
seems to be [33]. For instance, the less commonly used identity (d) is 
on page S i l in [33]. See [7], [9], [33] and others for a proof. 

L e m m a . Let R be a commutative ring with identity. Suppose 

A,B,Ai,Bi are SL(2,R) matrices where i = 1,2,3. Then the follow­

ing identities hold: 

(a) tr{AB) + tr{A~lB) = tr{A)tr{B). 

(b) tr2(A) + tr2(B) + tr2(AB) - tr(A)tr(B)tr(AB) = tr([A, B}) + 2. 

(c) Let Ai = Ai, A5 = A2, 

3 

P = J2tr(A)tr(Ai+1Ai+2) - tr{A1)tr(A2)tr(A3) 
i=l 
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and 

3 

Q = ̂ ( t r 2 ^ ) + tr\AiAi+l) - t r ( ,4 i ) t r (^ + 1 ) t r (^^ + 1 ) ) 

+ tr(A1A2)tr(A2A3)tr(A3A1) -A. 

Then the two roots of the quadratic equation x2 — Px + Q = 0 are 
tr(AtA2A3) andtriA^A^Aj1). 

(d) tr{AlA3)+tr{A1A2A3A-1) = -tr{AiA2)tr{A2A3)+tr{Ai)tr{A3) 
+ tr(A2)tr(AiA2A3). 

In §3, these equations will be interpreted using the modular config­
uration (Q,P5X(2,Z)). 

As a consequence of the lemma, one has the following useful propo­
sition. See [5], [7], [16] and [33] for a proof. 

Proposition ([5], [7], [16] and [33]). Given a commutative ring R 
with identity, the trace of a word w(Ai,...,An) in the SL(2,R) matri­
ces Ai,..., An is a polynomial with integer coefficients in the traces of 
Ai1...Aik where 1 < ii < ... < i^ < n and k < n. 

Remark. If the commutative ring R is a field K of characteristic 
not equal to 2, then a trace identity in [33] (page S14, line 19) shows 
that the trace tr{AiA2A3Ai) can be expressed in terms of the traces 
of Ai,AiAj, and AjAjA^, 1 < i,j,k < 4. Thus in this case, one can 
strengthen the proposition to tr(Ajil...Aik) where I < ii < ... < i^ < n 
for k < 3. This triple-trace theorem has been rediscovered indepen­
dently by many mathematicians. See [2], [3] and others. 

In [14], Helling proved that all trace identities in Lemma 2.2 still 
hold for i?-trace functions. Since the proof of the above proposition 
uses only identity (a) in Lemma 2.2 and tr(id) = 2, Helling proved the 
following corresponding result for i?-trace functions. 

Corollary([14]). Suppose G is a group generated by n elements 
{xi,...,xn}. Then for each element w G G, there exists an integer 
coefficient polynomial Pw in variables ti1,,,ik, where I < ii < ... < 
ik < n for k < n so that for all R-trace functions f on G, f(w) = 
Pw(f(xi),...,f(xil...xik),...,f(xi...xn)). 
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an (n+1)-holed sphere an n-holed torus 

(a) (b) 

F I G U R E 2.1 

In particular i?-trace functions on the free group Fn of n generators 
< xi,...,xn > are determined by their restrictions to the set {a^.- .a^J 
1 < ii < ... < ik < n and k < n}. Now identify the free group Fn 

with the fundamental group 7ri(£o,n+i) of the (n + l)-holed sphere or 
7Ti(Si ;n_i) of the (n — l)-holed torus. Then we may choose the set of 
n generators {xi, ...,xn} so that each element Xi1...Xik is represented by 
a simple loop in the surface (see Figure 2.1.). This shows that -R-trace 
functions on the fundamental groups of these surfaces are determined 
by their restrictions to the classes of simple loops. 

For the low-rank free groups F^ ̂ F^, and F4, the (2n — l)-element set 
{xi1...Xik\ 1 < ii < ... < ik < n} are closely related to the so called 
modular relation and pentagon relations on the surfaces of genus zero. 
Indeed, take F^ = 7ri(Eo,3). Then the 3-element set {xi^x^ ^xix^} is rep­
resented by the three boundary components. Take F% = 7Ti(£o,4). Then 
the 7-element set {a^i, £2 ,^3, £1^2, a ^ s ^ i ^ ^ i a ^ s } j s represented by 
the four boundary components and three simple loops pairwise inter­
secting at two points (see Figure 2.2). Take Fi = 7ri(£o,5). Then the 
15-element set 

{Xl, X2, X3, X4, XlX'i-, XlX3,XlX4,X2X3,X2X4:, X3X4, X1X2X3, X1X3X1, 

X2X3Xl,XlX2Xl, X1X2X3X1} 

is represented by the five boundary components and 10 more simple 
loops closely related to the pentagon relation (see §3.2 and §4 for more 
discussions). 
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F I G U R E 2.2 

2 .3 . In the rest of the paper, we will always assume that the 
field K is quadratically closed in the sense that each quadratic equation 
x2 + ax + b = 0, a,b G K has roots in K. Under this assumption, 
each SL(2, K) matrix has eigenvalues in K. Furthermore, two SL(2, K) 
matrices are SL(2, K) conjugate if and only if they have the same trace. 

The following lemma is known to experts in the field. Especially, 
in the case where the field K is algebraically closed, it follows from 
the combination of the work of Culler-Shalen [5] and Horowitz ([16], 
Theorem 4.3). Since we have not seen a written proof of the version 
stated below, a proof is given in the appendix for completeness. 

L e m m a . Suppose K is a quadratically closed field. Given six ele­
ments te,te,h,ti2,te3 and hi in K, there exist three SL(2,K) matrices 
AI,AÏ and A3 so that tr{A,{) = ti and tr(AiAj) = t^. 

Combining the lemma with Proposition 2.2 and Lemma 2.2(c), one 
sees that the set of all characters on the free group in three generators 
< xi,X2,x3 > is the hypersurface {(*i,*2,*3>*12, tes,hi, ^123) G K7\ the 
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equation (*) holds}, 

3 3 

m *i23+( n *» ~ s *i*j*)ti2s+s **+s *# 
+n*«-E*^*y-4=o-

In equation (*), i^...^ = tr(p(xi1...Xik)) and the indices i , j , A; are pair-
wise distinct. This fact was well known after the work of Culler-Shalen 
[5] and Horowitz [16]. See §3.5 for more details. 

2.4. It is easy to see that (BA1B~1,BA2B-1,BA3B-1) and 
(Aï ,Ay ,A% ) are other solutions in Lemma 2.3. In fact, these are 
the set of all solutions to the the equation tr(Xj) = ti,tr(XiXj) = tij if 
and only if the group generated by < Ai, A2, A3 > is irreducible. To de­
rive this, let us recall the following lemma proved by Culler and Shalen 
([5] Lemma 1.5.2). 

Lemma (Culler-Shalen). Suppose the field K is quadratically closed. 
If pi and p2 are two representations of a group to SL(2,K) so that pi is 
irreducible, then pi is conjugate to p2 if and only if they have the same 
character functions. 

As a consequence of Culler-Shalen's lemma, Lemma 2.2 and Propo­
sition 2.2, we see that if the group generated by {Ai, A2, A3} in Lemma 
2.3 is irreducible, then the solution (Ai, A2, A3) in Lemma 2.3 is unique 
up to conjugation and inverse. Evidently, if the group < Ai,A2,As > 
in Lemma 2.3 is reducible, then the solution is not unique in the above 
sense. 

2.5. Due to the importance of irreducible representations, we need 
an irreducibility criterion. The following is well known. See [5] Lemma 
1.5.5, or [26] for instance. 

Lemma. Suppose the field K is quadratically closed. The group 
< A,B > generated by two elements A,B in SL(2,K) is reducible if 
and only if tr([A, B]) = 2. 

By Lemma 2.2(b), the condition in the above lemma is the same 
as tr2(A) + tr2(B) + tr2(AB) - tr(A)tr(B)tr(AB) - 4 = 0. Since this 
expression will occur frequently, following [26], let us denote tr2(A) + 
tr2(B) + tr2(AB) - tr(A)tr(B)tr(AB) - 4 by A(A, B). 

As a consequence of the lemma, one has the following criterion for re-
ducibility. A slightly different criterion can be found in [5], [11] (Propo­
sition 4.4) and [26]. 
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Corollary. Suppose the field K is quadratically closed. 
(a). The group < Ai,A2,A^ > generated by three elements A\,A2 

and A3 in SL(2,K) is reducible if and only if A(Ai,Aj) = 0 and 
A(A1,A1A2A3) = 0 where (i,j) = (1, 2), (2, 3), (3,1)-

(b). The group < A\,...,An > in SL(2,K) generated by n elements 
is reducible if and only if each 3-generator subgroup < Ai,Aj,Ak > is 
reducible, i.e., for all possible choice of indices i,j,k, A(Ai,Aj) = 0 and 
A{Ai,AiAjAk) = 0. 

(c) (Culler-Shalen). A subgroup of SL(2,K) is reducible if and only 
if each 2-generator subgroup is reducible. 

Proof. To see part (a), we may assume that none of A;b is ±id 
since otherwise it reduces to Lemma 2.5. Thus each A;b has at most two 
eigenspaces. By Lemma 2.5, each pair (Ai,Aj) has a common eigenspace 
for i ^ j . Now if one of A;b has exactly one eigenspace, then all A\,A2, 
and ^3 share this unique eigenspace. Thus the group is reducible. If 
otherwise, each A;b has two distinct eigenspaces Lj and Lk,i ^ j ^ k ^ i. 
Now suppose that the group < Ai,A2,A$ > is irreducible. Then all 
three eigenspaces are pairwise distinct, i.e., L\ 7̂  L2 7̂  L3 7̂  L\. But 
by assumption, A\ and A1A2A3 have a common eigenspace L. Due 
to A\(L) = L, thus L must be either L<2 or I/3, say, L = L^. Then 
^1^2^43(^2) = 1/2 implies that A^iLï) = L2, i.e., L2 is either L\ or L3 
which contradicts the assumption. 

Parts (b) and (c) follow from part (a) easily. To see (b), we first 
drop all generators A;b which are ±id. Thus, we may assume that each 
Ai has at most two eigenspaces. By the assumption, any three elements 
Ai,Aj, and A^ have a common eigenspace. The goal is to show that all 
elements Ai have a common eigenspace. To this end, we form a graph 
whose vertices are eigenspaces of A^s. To each element Ai, we draw an 
edge ending at the eigenspaces of A;b (the edge becomes a loop if Ai has 
only one eigenspace). Now by the assumption, any three edges of the 
graph has a common vertex. Thus all edges of the graph share a vertex. 

To see part (c), take a subgroup G of SL(2, K) which has the prop­
erty that each 2-generator subgroup is reducible. By parts (a) and (b), 
we see that each finitely generated subgroup of G is reducible. Now 
by the same graph theoretical argument as in part (b), we see that the 
group G is reducible. q.e.d. 

2.6. Given a reducible representation p of a group to SL(2, K), we 
may assume after conjugate p by an SL(2, K) matrix that the image of p 
is in the set of upper triangular matrices. Let p' be a new representation 
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so that p'(g) is the diagonal matrix whose diagonal entries are that of 
p(g). Then the diagonalizable representation p' has the same character 
as that of p. Evidently the diagonal representation is unique up to con­
jugation. We call p' the diagonalization of the reducible representation 
p. 

Lemma. Suppose K is a quadratically closed field. Let pi and 
p<2 be two non-diagonalizable reducible representations of the free group 
< x,y > on two generators to SL(2,K). If pi and pi have the same 
character and tr(pi(x)) ^ ±2, then they are conjugate. 

Indeed, under the assumption, we can conjugate the pair (pi(x),pi(y)) 

to the pair of matrices (I \ - i ) > ( n -1 J ) w r i e r e ^ ¥" ü-

3. Simple loops on surfaces and the modular configuration 

We shall recall some basic facts on the set S'(E) of isotopy classes 
of simple loops on surfaces, and express the results in §2 in terms of a 
(QP1 , PSL(2, Z)) modular structure on the set S'(E). We also establish 
several irreducible conditions in terms of the modular structure. 

The field K is always assumed to be quadratically closed. 

3.1. The following notation and terminologies will be used. Let 
E = SS)j. be a compact orientable surface of genus g with r boundary 
components. The level of the surface E9>r is defined to be 3g+r — 3 which 
is the minimal number of disjoint simple loops decomposing the surface 
into 3-holed spheres. Recall that S'(E) is the set of isotopy (homotopy) 
classes of unoriented homotopically non-trivial simple loops on E. Let 
<S"(E) be the subset of 5(E) consisting of non-boundary parallel isotopy 
classes. The fundamental group of the surface is denoted by 7ri(E). 
The isotopy class of a loop s will be denoted by [s]. If 6 is a boundary 
component of the surface E, we usually use b to denote [&]. Given 
two isotopy classes a and ß in S'(E), let I(a,ß) be their geometric 
intersection number which is min{|a n b\ \a G a, b G ß}. If / is a function 
defined on S'(E), we define f(a) = f{[a\). In particular, the intersection 
number I ([a], [b]) is also denoted by I(a,[b]) = I([a],b) = I(a,b). We 
use a _L ß to denote two elements a, ß G S (T.) so that I (a, ß) = 1. And 
we use a _l_o ß to denote two elements a and ß so that I(a, ß) = 2 and 
their algebraic intersection number is zero. Two elements a, ß are called 
disjoint, denoted by a n ß = 0, if I (a, ß) = 0 and a ^ ß. If I(a, ß) ^ 0, 
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we say that a intersects ß. Two isotopie curves a, b will be denoted by 
a = b. 

Let Q = QU{oo} = Q P 1 . Two rational numbersp/q,p' /q' satisfying 
pq' —p'q = ± 1 will be denoted by p/q _L p'/q'. The relation (Q, _L) is the 
so called modular relation. It is well known from elementary number 
theory that one may identify Q with the set of cusps in Figure 3.1 so that 
two cusps are joint by an edge if and only if the corresponding rational 
numbers r,r' satisfy r _l_ r'. We say three elements (a, ß,j) in Q form 
a triangle if a _l_ ß _L 7 _L a, and four distinct elements (a, ß, 7; 7') form 
a quadrilateral if both (a, ß, 7) and (a, ß, 7') are triangles (see Figure 
3.1). 

F I G U R E 3.1 

We shall always fix an orientation on Q so that the triangle (0 ,1 , 00) 
is positively oriented (i.e., the right-hand orientation in Figure 3.1). A 
triangle is positively oriented if it determines the fixed orientation. The 
group of orientation preserving bijection of (Q, _L) is PSL(2, Z) where 
the action of the matrices is given by the fractional linear transforma­
tions. 

The importance of (Q, SL(2, Z)) in surface theory was predicted by 
Grothendieck in [10] (page 11, second paragraph). 

3.2. Suppose S is a level-1 surface E ^ i or £o,4- Then there exists 
a bijection (a slope map) n : S"(S) —> Q = Q U {00} so that n(a) = p/q 
and 7r(/3) = p'/q' satisfy pq' —p'q = ± 1 if and only if I ( a , ß) = 1 for E = 
S i ; i and I(a,ß) =2 for E = Eo,4- This important fact was established 

by M. Dehn [6] by using Dehn's coding I J of classes in S"(E). 

Here is one way to construct a slope map n : <S"(E) —> Q. It is well 
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known that for the torus Si,o, ^ ( S i ^ ) can be naturally identitied with 
the set of primitive elements in the first homology group i ï i ( E i ; i , Z ) 
modulo ± 1 . Thus, by fixing a basis for the first homology group, one 
constructs a slope map n : S^E^o) —> Q. For the 1-holed torus S i , i , 
let i be an inclusion map from E ^ i to Si ;o- Then the induced map i* 
from 5"(Si ; i) to S^E^o) is a bijection preserving the relation _L. Thus a 
slope map for S"(Si ;i) is the composition n o i*. For the 4-holed sphere 
Eo,4, there exists a natural bijection P : S"(Eo,4) ~~> S"(^i,i) s o that 
P(a) _l_ P(ß) if and only if a _l_o ß. The bijection P is constructed as 
follows. Let T : E ^ i —> Ei ;i be a hyperelliptic involution. It is well 
known that T(s) = s for any simple loop s. Let Eo,4 be the quotient 
space Ei^i/a; ~ T(x) with a regular neighborhood of the branch points 
removed. Then for each [a] G S"(Eo,4) the inverse image of a in E ^ i 
consists of two disjoint simple loops b and T(b). Define P([a]) = [b]. 
Thus a slope map for Eo,4 is n o i* o P. 

Just like in the modular configuration, for a level-1 surface E, we 
can talk about triangles and quadrilaterals in S"(E). Furthermore, when 
the surface E is oriented, by making all maps n, i and P orientation 
preserving, we can talk about oriented triangles in S"(E). 

T = «ß T = ß a _ 

ab a b aba b 

Right-hand orientation on the front faces 

F I G U R E 3.2 

The relationship between the fundamental group and the modular 
structure on S'(E) can be described as follows. For the 1-holed torus 
E i ; i , if (a, ß, 7; 7') is a quadrilateral in 5"(Ei ; i) , then we can choose 
generators a,b in the fundamental group 7ri(Ei ;i) so that a, ß, 7, and 
7 ' are represented by a,b,ab and a~lb respectively (see Figure 3.2). 
By Proposition 2.2, the values of an SL(2,K) character on S^E^i) is 
determined by its restriction on a triangle. 

For the 4-holed sphere SQ,4, if (a, ß, 7; 7') is a quadrilateral in 
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S"(Eo,4), then we can choose three generators x\,X2,x^ in the funda­
mental group 7Ti(Ei)i) so that (1) the four boundary components of the 
surface are homotopic to x\, X2,x^ and x\Xix?„ and (2) the classes a, ß, 
7 and 7 ' are represented by x\X2, X2X3, x\x% and x\X2X^x^ (see Figure 
3.3(a)). By Proposition 2.2 for 3-generator groups, it follows that an 
SL(2,K) character defined on 5^0 ,4 ) is determined by its restriction 
to a triangle and the four boundary components. 

Thus triangles, quadrilaterals and boundary components in ^(Eo^) 
and S^Ei^i) are exactly the elements appeared in Lemma 2.2. One 
advantage of using the modular configuration is the symmetry in the 
modular configuration. For instance, each triangle in the modular con­
figuration 5^0 ,4 ) is invariant under all permutations of the four bound­
ary components (see Figure 3.3(b)). As a consequence, there exists a 
24-fold symmetry in the equation (c) in Lemma 2.2. 

x1x2x3 

x 1 x 2 •--

x1 x2 x2 x3 x x 

Right-hand orientation on the front faces 

F I G U R E 3.3 (a) 

/^' y. 
/ \ / r 

/ \ 

/--
V 

/ 
) 

/ 

/ 
Y 

'/ 

the Seifert surface is Σ the truncated sphere is \4 

The three-fold symmetry in the modular configuration 

F I G U R E 3.3 (b) 

In the following, we shall give a necessary and sufficient condition 
for a if-valued function defined on S(E) to be a character by translat-
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ing information on the fundamental group TTI(E) to £ ( £ ) . These results 
are certainly well known (see for instance [9], [16], [26], [11] and oth­
ers). The only novelty is that it is formulated in terms of the modular 
configuration. 

3 .3 . For the level-0 surface So,3, its fundamental group is the free 
group on 2-generator < x, y > where x, y and xy represent the three 
boundary components &i,&2 and 63. Furthermore, we have £(£0,3) = 
{bi,b2,bz}. By Proposition 2.2, Lemmas 2.3 and 2.5, one obtains the 
following result (see [9]). 

Propos i t ion . Suppose 9So,3 = b\ U 62 U Ò3. Any function f : 

S(T,Q^) —> K is an SL(2,K) character. Furthermore, the character is 

reducible if and only if Y,ì=i f2(bi) ~ f (h) f (h) f {h) = 4. 

By a simple calculation and Lemma 2.6, one obtains the following. 

Corollary. Under the same assumption as above, 

(a) if f : £(£0,3) ~~> K satisfies f2{b\) = 4, then f is reducible if 
and only if fibs) = /(&i)/(&2)/2 when the characteristic of K is not 
2 and fibs) = f{b^) when the characteristic of K is 2. In particular, 
if the characteristic of K is not 2, and f2(b\) = /2(&2) = 4, then f is 
reducible if and only «//(&i)/(&2)/(&3) = 8. 

(b) If f : S(EQ^) —>• K is a reducible representation so that f2{b\) 7̂  
4, then there exist exactly two SL(2,K) conjugacy classes of SL(2,K) 
representations whose characters are f. 

3.4. For the 1-holed torus, we have, 

Propos i t ion . Let b = 9 £ i ; i . A function f : S^S^i) —>• K is an 
SLÌ2, K) character if and only if the following hold: 

3 3 

(a) YJf\^i)-\{f(ai)-f(b) = 2 and 
i=l i=l 

(b) f(a3)+f(a3) = f(a1)f(a2), 

where (« i , «2,03) and (« i , «2, c/3) are distinct triangles in S"(£i ; i ) . 
The character f is reducible if and only if 

E/2^)-n/^)-4=o-
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Proof. The necessity of the conditions follows from the trace iden­
tities in Lemma 2.2 and the choice of generators for the fundamental 
group in §3.2 (see Figure 3.2). Due to the modular relation, if f\ and f'2 
are two functions satisfying equation (b) in the proposition so that they 
coincide when restricted to a triangle, then f\ = f'2. Thus by Lemma 
2.3 we obtain the sufficiency of the condition. q.e.d. 

Corollary. Suppose f is an irreducible SL(2,K) character defined 
on the set .^ (E^i) . Then either there exists a 3-holed sphere E ' in E ^ i so 
thai the restriction f\s{s') *s irreducible or the characteristic of K is not 
2 and / ( ô E ^ i ) = —2 and f(a) = 0 for all a G S"(£i ; i ) . Furthermore, if 
the characteristic of K is not 2, there exists an irreducible representation 
p of 7Ti(Eii) so that trp(a) = 0 and trp(dT.n) = —2 for all a G 
S'(Ei,i)-

Proof. Let the boundary of £ i ; i be b. By the irreducible as­
sumption, f(b) 7̂  2. Suppose otherwise that the restriction of / to 
each 3-holed sphere is reducible. Since each essential 3-holed sphere is 
bounded by b and two copies of a G ^ ' (Ei^i) , by Lemma 2.5 we have 
2 / 2 ( « ) + f2(b) - f2(a)f(b) = 4 for all a G S ' (£ 1 ; 1 ) . Since /(Ö) + 2, 
this shows that f2(a) = f{b) + 2 for all a G 5"(Ei ; i) . Now take 
three elements a, G S^E^i) forming a triangle in the modular con­
figuration. By the above proposition and f2{on) = f(b) + 2, we obtain 
/ 2 ( a i ) ( 3 - f(at)) = f2(ai). Thus either (1) f(at) = 0 and /(&) = - 2 or 
(2) /( t t j) = 2 and f(b) = 2. But the case (2) and the case (1) when the 
characteristic of i f is 2 are excluded by the irreducibility assumption. 

If the characteristic of K is not 2, then one constructs an SL(2, K) 
representation of 7ri(Ei)i) satisfying the above condition as follows. 
First we note that the unit quarternion group of eight elements 

{ ± 1 , ±i,±j,±A;} is a subgroup of SL(2,K) where i = I I and 

j = I I—- I. Now the character of any representation of 

7Ti(£i;i) onto the unit quarternion group takes value zero on 5"(Ei ;i) 
and —2 on the boundary component. Any two such representations are 
SL(2, K) conjugate. q.e.d. 

3 .5 . For the 4-holed torus, we have, 

Propos i t ion . Let 9Eo,4 = uf= 16j . A function f : ^ (Eo^) —> K 
is an <SX(2,K) character if and only if for each triangle (« i , «2, «3) in 
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<S"(£o,4) the following hold: 

z'gt
%) j = l i = l r = l r = l 

- E /(ai)/(&r)/(ft8)-4 = 0, 
(i,r,s)G-P 

where P ={ (i,r,s) \(ai,br,bs) bounds a £0,3} and, 

(b) f(a3) + j V 3 ) = - / ( a i ) / ( a 2 ) + /(6*)/(&j) + / ( M / ( M 

together with (3,i,j) and (3,k,l) in P. 
A character is irreducible if and only if there is a 3-holed sphere so 

that the restriction of f to the 3-holed sphere is irreducible. 

Proof. The necessity of the conditions follows from the trace iden­
tities in Lemma 2.2 and the choice of generators for the fundamental 
group in §3.2 (see Figure 3.3). 

To show the sufficiency of the conditions, we first note that by the 
modular relation and the iteration equation (b), each / is determined 
by its restriction to a 7-element set {ai,br\i = 1,2,3; r = 1,2,3,4} 
where CKJ'S form a triangle. We choose a set of generators x;b for the 
fundamental group 7ri(£o,4) as in §3.2 so that a^ is represented by XjXj, 
i 7^ j ¥" k ¥" i- Let ti = f(bj) and tij = /(o^) where i = 1,2,3, 
ihj) = (1? 2), (2, 3), (3,1) and k 7̂  i 7̂  j 7̂  k. By Lemma 2.3, we find 
Ai G SL(2,K) so that tr(Aj) = ti and tr(Aij) = tij. By equation 
(a), /(Ò4) is a root of the quadratic equation x2 — Px + Q = 0 where 
P and Q are the same as in Lemma 2.2. By Lemma 2.2 (c), we may 
assume, after change (Ai, A2, A3) to (A^ ,A^ ,A% ) if necessary, that 
f{bi) = tr{AiA2A$). Define a representation of 7ri(Eo,4) by sending the 
generator Xi to Ai. Then the character of this representation and the 
function / take the same values on the seven specific elements. Thus 
they are the same. 

The irreducibility condition follows from Corollary 2.5(a). q.e.d.. 

Corollary, (a) Suppose f is an irreducible character defined on 
SCEQ^). Then for any element a G S" (£0,4), there exists an element ß 
with I (a, ß) = 2 and a 3-holed sphere £ ' bounded by ß and two compo­
nents of <9E so that the restriction f\s(ii') *s irreducible. 

(b) Let b be a boundary component of d£o,4 and p be an irreducible 
representation of 7ri(£o,4)- If p(b) 7̂  ±id, in particular if trp(b) 7̂  
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± 2 , then there exists a level-0 subsurface £ ' having b as a boundary 
component so that the restriction of p to E ' is irreducible. 

(c) If an SL(2,K) representation o/7ri(£o,n) «s reducible on each 
level-0 subsurface group, then the representation is reducible. 

(d) If f is a reducible character on SÇEo^), then for any quadrilateral 
(a,ß,r,j')inS'(Z0,4),f(1) = f(Y). 

Proof. To prove (a), suppose otherwise that / is reducible on each 
level-0 subsurface £ ' in Eo,4 bounded by a simple loop intersecting a 
at two points. Then take a quadrilateral with vertices (a,ß,aß; ßa). 
Choose three generators {xi,x2,x3} for 7ri(£o,4) as in Figure 3.3 so 
that ß, aß, ßa are represented by x2x3, xix3, and xix2x3x^ • Let 
the SL(2,K) representation corresponding to the character / send Xi 
to the matrix Ai and let A4 = AiA2A3. Since the representation is 
reducible over six 3-holed spheres bounded by ß, aß and ßa, we obtain 
the following reducible equations by Lemma 2.5; namely, 

A(AUA3) = A(A2,A3) = A{A2,AXA3) = A(A3, AXA2A3A^) = 0. 

It turns out that these four equations imply that the group 
< Ai, A<2, A3 > is reducible. Indeed, if A3 = ±id, then 

A(A2,A1A3) = A(A2,A1) = 0 

shows that the group 

< Ai,A2, A3 > = < Ai,A2, ±id > 

is reducible by Lemma 2.5. Suppose A3 has exactly one eigenspace. 
Then A(A\,A3) = A(A2,A3) = 0 imply that the eigenspace is fixed by 
both Ai and A2. Thus the group is again reducible. Finally, suppose 
A3 has exactly two distinct eigenspaces L\ and L2 so that none of Li 
is fixed by both A\ and A2. Since A(A3,Ai) = 0 for i = 1,2, we may 
assume that Ai{Lì) = L^ for i = 1,2. By A(A3, A\A2A3A2 ) = 0, one 
of the eigenspace L^ is fixed by AiA2A3A^ • If A\A2A3A^ (L2) = L2, 
then Ai(L2) = L2. Thus the group has a common eigenspace L2 and 
is reducible. If AiA2A3A2~

1(Li) = Lt, then A^A^iLi)) = A^l(Li). 
Thus either A^ ( l a ) = L\ or A^ (Li) = L2. In the first case, L\ is 
a common eigenspace for the group. The second case implies Li = L2 

which is absurd. In summary, we have shown that the group is reducible 
which contradicts the assumption. 
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To prove (b), suppose otherwise that the restrictions of p to all level-
0 subsurfaces having b as a boundary component are reducible. Let us 
choose a set of generators x\,x2,xs for 7ri(Eo,4) as in §3.2 so that x\ 
corresponds to b. Let p{xj) be the matrix Aj in SL(2,K). Then by 
the assumption, A(Ai,A2) = A(Ai,A3) = A(Ai,AiA2A3) = 0. Since 
p(b) ^ ±id, the matrix A\ has at most two eigenspaces. If it has 
exactly one eigenspace, then A(Ai,A2) = A (AL, .A3) = 0 implies that 
the eigenspace is invariant under both A2 and A3. This contradicts the 
irreducible assumption. If AL has two distinct eigenspaces L2 and L3 so 
that Ai(Lj) = Li for i = 2,3, then due to A(Ai, A1A2A3) = 0, one of L;b 

is invariant under A1A2A3. But this again implies that L;b is a common 
eigenspace of AL, A2 and A3. 

To prove (c), we first note that the result holds for n = 3 by part (a). 
For n > 3, take generators xi,..., xn-\ for the free group 7ri(£o,n) so that 
the boundary components are freely homotopic to Xi or x\...xn-\ as in 
Figure 2.1. Now each 3-generator subgroup < Xi, Xj,Xk > lies in a level-
1 subsurface subgroup. Thus the restriction of the representation to the 
3-generator subgroup is reducible. By Corollary 2.5(b), this shows that 
the representation is reducible. 

To see part (d), we may assume that / is the character of a diag-
onalizable representation p. Choose a set of generators {xi,x2,xz} for 
the fundamental group so that 7 and 7' are represented by x\x% and 
x\x2x^x^ as in Figure 3.3. Then 7(7) =trp{x\x%) = trp{x\x2x^X2 ) = 
/(Y)- q.e.d. 

3.6. In this section, we give a different interpretation of the trian­
gles and quadrilaterals in the set S(E). This new interpretation is the 
basis for us in dealing with simple loops in the rest of the paper. 

We begin by introducing some notation. Recall that surfaces are 
oriented. If a and b are two arcs intersecting transversely at a point p, 
then the resolution of aUb at p from a to b is defined as follows. Fix 
any orientation on a and use the orientation on the surface to determine 
an orientation on b. Then resolve the intersection according to the 
orientations (see Figure 3.4). The resolution is evidently independent 
of the choice of the orientations on a. If a _l_ ß or a _l_o ß, take a £ a, 
b G ß so that \aC\b\ = I (a, ß). Then the curve obtained by resolving all 
intersection points in a (lb from a to 6 is again a simple loop denoted 
by ab. We define aß to be the isotopy class of ab. It follows from 
the definition that when a _L ß then aß _l_ a, ß, and when a _l_o ß 
then aß _l_o a,ß. In particular, if E has level-1, then the positively 

file:///aC/b/
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oriented triangles in <S"(£) are (a,aß,ß) where a _l_ ß or «o _L ß. Also 
the quadrilaterals are (a,ß,aß;ßa). Let N(a) and N(b) be two small 
regular neighborhoods of a and b. Then N(a U b) = N(a) U N(b) is 
homeomorphic to E^i when a _L ß, and to £0,4 when a _l_o /?. We use 
d(a, ß) to denote the set of isotopy classes of the curves in dN(a U ft). 

b 

p 

ab ba 

Resolution from a to b Resolution from b to a 

Right-hand orientation on the front faces 

FIGURE 3.4 

In terms of these notation, the equations (b) in Propositions 3.4 
and 3.5 say that if a _L ß, then f(aß) is determined by / ( a ) , f(ß) and 
f(ßa), and if a _l_o ß, then f(aß) is determined by the values of / on 
{a, ß, ßa} and d(a,ß). More precisely, a function / : £(£) —> K is a 
trace function if and only if it satisfies: 

(1) / ( a0 ) + /09a) = / (« ) / (£ ) , for a ± ß, 
(2) / 2 («) + f\ß) + / 2 M ) - f(a)f(ß)f(aß) = f(d(a,ß)) + 2 for 

a -L ß, 
^)f\oi) + f(ß)+f\aß) + f{a)f(ß)f{aß)+IiUf^i) + ^=1f\li) 

- / (« ) ( / (7 i ) / (72) + /(73)/(74)) - /( /9)(/(7i)/(73) + /(72) /(74)) 
- /(«)9)(/(7i)/(74) + /(72)/(73)) - 4 = 0, for a J_0 A d(a,/T) = 
{71,...,74} so that (0,71,72) and (/?,71,73) bound level-0 subsurfaces, 

(4) /(a/5) + /09a) = -f(a)f(ß) + / (7i ) / (7 4 ) + fMHls) under 
the same assumption as in (3). 

3.7. One of the main reduction lemma for simple loops is the 
following which generalizes Lickorish's Lemma 2 in [19]. See [22] Lemma 
7 for a proof. 

Lemma. Suppose 71, . . . ,7m are pairwise disjoint classes in S(T.). If 
a G S (E) intersects 71 and is not _L or _l_o related to 71, £/ien a = /3i/?2 
utì/ì /?i _l_ /32 or ß\ J_o A so f/iaf 
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(1) / ( f t , 7 l ) < / ( a ,7 i ) , I(ßulj) < Ifajj), / ( f t f t ,7 i ) < / (a ,7 i ) 
and I(ftft ,77) < I(a,jj) for alii = 1,2 and j = 2, ...,m, and, 

(2) if ßi J_o ft, #ïen /or each element ö G d(ßi,ß2), I(ô,j\) < 
I (a ,7 i ) and I{ô,jj) < I{a,jj) for j = 2,..., m. 

The lemma says that one can "simplify" a unless a n 71 = 0, or 
a _L 71, or a J_o 7i- In particular, if we set Ço = {a £ S(E)\ for each 
i, either a n 7$ = 0, or a _L 7,, or a _l_o 7i}, then by induction on 
(/(a, 71 ), . . . , /(a, 7TO)), we have S'(S) = U£L0£n where Qn+i = Qn U {a| 
a = ftft either (1) ß1 J_ ß2 and {/?i,/52,/32/?i} C Qn or (2) ft _L0 Ä 
and{ft,ft,ftft}UO(ft,ft)cö„}. 

By the remark in the last two paragraphs in §3.6, we obtain, 

Corollary, (a) Let 7 i , . . . ,7m &e pairwise disjoint classes in S(E) 
and f and g be two trace functions on S(E). If f(a) = g (a) for each 
class a G S (E) so that for each i either aH^i = 0, or a _L 7, or a _l_o 7i, 
then f = g. 

(b) Let 71 and 72 are two disjoint classes in S"(E) so that 71 bounds 
a Si ;i and 72 lies in S^i. If f and g are two trace functions on S(E) 
so that / ( a ) = g (a) for all a _L 72 and a _l_o 71, then f = g. 

Indeed, in part (b), if a _l_o 71, then a _l_o 72 cannot occur. Thus 
part (b) follows from part (a). 

3.8. As a second consequence of the above lemma, we obtain the 
following result which will be used in §6. Part (a) of the corollary was 
known to many people [20]. 

Corollary, (a) Given two non-separating classes a and a', there 
exists a sequence of non-separating classes {cn\i = l,...,ra} starting 
from, a and ending at a' so that ai _L cn+i for all i. 

(b) Given two essential 1-holed tori (resp. level-1 surfaces) T and 
T' in S ; there exists a sequence of essential 1-holed tori (resp. level-
1 surfaces) {Ti } starting from T and ending at T" so that <S"(Tj) n 
S'{Ti+l) ^ 0 for alii. 

Proof. Let us denote two classes a and a' satisfying the conclusion 
of (a) by a ~ a'. We use the induction on I(a , a') to prove part (a). 
Clearly if a Pia' = 0 or a _l_ a', then a ~ a'. If a _l_o a', since both a and 
a' are non-separating, one of the element ß G d(a, a') is non-separating. 
Thus a ~ ß ~ a'. In the remaining cases, by Lemma 3.7, we can write 
a = ß\ßi where either ß\ _L ft or ft _l_o ft and /(ft, a') < I ( f t ,a ) , 



598 FENG LUO 

i = 1,2. Since a is non-separating, one of ß\ or ft, say ft, is again non-
separating. Thus by the induction hypothesis, ß\ ~ a'. But ß\ _l_ a or 
ft _l_o a. Thus a ~ a'. 

To see part (b), take a G 5"(T) and a' G 5"(T'). Let Ti = T, 
TTO+i = T' and T;b be the 1-holed torus containing both on and a,+i. 
Then the result follows. The result for level-1 surfaces T and T' is 
simpler. We omit the proof. 

3.9. It is shown in Section 3 of [21] that there exists a finite 
set F0 G S'(S) so that S'(S) = U%L0Fn where Fn+1 = Fn U {a\ a = 
ftft either (1) ß1 J_ ß2 and {ft, ft, ftft} C F n or (2) ft _L0 ft and 
{ft, ft, ftft} U d(f t , f t ) C F n } . In particular, if / is a trace function 
defined on S (E), then / is algebraically determined by f\p- This shows 
the following result analogous to Proposition 2.2. 

Propositoin. There exists a finite set of isotopy classes of simple 
loops in each compact orientable surface E so that SL(2,K) characters 
and trace functions on S(T.) are algebraically determined by the restric­
tions of the characters on the finite set. 

4. SL(2,K) characters on the 5-holed sphere 

4.1. We shall use the following terminologies. If / is a trace 
function on S(T.) and E' is a subsurface of E, then we call f\s(ii') the 
restriction of / to the subsurface E'. If f\sçs') 1S irreducible, we say E' 
is an irreducible subsurface with respect to / . We say a subsurface E' 
is bounded by «i,. . . , a^ G <S"(E) if 9E' = a\ U ... U a^ U b\ U ... U bm so 
that ai G a, and bj C 9E. 

The goal of this section is to prove the following case of Theorem 
1.2 for the 5-holed sphere. 

Theorem. Suppose K is a quadratically closed field. If f is a 
K-valued trace function on S(T.Q^) SO that either f is reducible on all 
level-0 subsurfaces or f is irreducible on a level-0 subsurface bounded by 
two disjoint elements in S'(T.Q^), then f is an SL(2,K) character. 

In §5.2, we prove that if / is a trace function on ^(Eo^) which does 
not satisfy the conditions in the above theorem, then / is exceptional. 

4.2. The Pentagon Relations. Given five pairwise distinct 
elements a\, ..., «5 in S"(Eo,5) so that en n CCJ = 0 for i ^ j ± 1 mod 
5, it is shown in [23] that a, _l_o aj+i for all indices i mod 5 (see Figure 
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4.1). We say {«i , ..., «5} forms a pentagon in this case. If {«i,. . . , «5} 
forms a pentagon, then the following conditions hold: 

(a) (a>iaj)ak = ai(a>jak). 

(b) aiai+iai+2 = ai+3ai+4. 

(c) (otioij) n (aiak) = 0 and {ajOii) n (akai) = 0, i # j ^ k ^ i . 

(d) atiCXjCXk = ctjOtiOtk and akOtjOti = akCXiCtj, if i 7̂  j =t 1 mod 5. 

(e) «jOyO!, = « j if % = j ± 1 mod 5. 
These can be verified easily using the definition of resolution or see 

[22] or [23] for a proof. Note that , by (c), if {«i , «2, «3, «4, «5} forms 
a pentagon, then {aia2,a2,«3ö2,a4,a5} is also a pentagon (see Figure 
4.1). 

4 . 3 . In this section, we prove that if / is a trace function which is 
irreducible on a 3-holed sphere bounded by two elements «2 and «5 in 
<S"(£o,5), then / is a character. 

Let X and Y be the level-1 subsurfaces bounded by «2 and «5 
respectively. By Proposition 3.5, we find two representations px and 
pY of 7Ti(X) and TTI(Y) respectively so that xpx

 = f\s(x) and xpY
 = 

/ | s ( y ) . The restrictions of px and py to 7ri(X n y ) have the same 
character by the construction and both are irreducible. Thus by Lemma 
2.4, these two restrictions are conjugate. After conjugate px-, we may 
assume that Px\7T1(xnY) =

 PY^UXOY)- This defines a representation 
p : 7Ti(£o,5) ~~> SL(2,K) so that its restrictions to ni(X) and ni(Y) are 
px and py respectively. Let g be the character of p. Then f(a) = g (a) 
for all a G S(X) U S(Y). The goal is to show that / = g using the 
irreducibility condition. 

By Corollary 3.7 applied to / and g, it suÆces to prove that for 
each on so that «i-Lo «2 and « i _l_o «5, we have / ( a i ) = s(û!i). To this 
end, we extend {«i , «2, «5} to a set {«i , ..., «5} forming a pentagon 
by setting «3 = d{ai,a§) fl £'(£0,5) and «4 = d{ai,oi2) n <S"(£o,5). We 
shall use Proposition 3.5 to derive a system of linear equations and show 
that the system has a unique solution and that both f(a>i) and g{a{) 
are solutions. 

We begin by introducing some notation. Let h be a trace func­
tion defined on £(£0,5). Given a set of indices ii,...,«&, A; = 1,2,3, 
let 

xii...ik — h(cxi1...cxik) when on1...onk is not in S(X) U S(Y) and let 
aii....ik

 = h(a>il...cxik) when on1...onk G SpO U S(Y). Let ft be the 
component of <9£o,5 s o that {aj_i,/3j, « j+i} bounds a 3-holed sphere 
(indices mod 5) and let ftj = /i(/%) (see Figure 4.1). Let r be the ori­
entation preserving involution of £0,5 SO that r sends «i+j to a i_ j and 
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ßl+i tO ßl-i. 
Now we derive equations for Xi, Xij and x^ with coefficient in /j(a)'s 

where a G S(X) U S'(y) using Proposition 3.5. 

β β4 α2 α 5 3 β4 α2 α5 

Both 5-elements sets form pentagons T 

The right-hand orientation on the front face 

F I G U R E 4.1 

Since «3 _l_o «4 and 9(a3 ,a4) fl S"(So,s) = « i , by Proposition 3.5 
(b), we obtain 

h{a^ai) + /i(o!40!3) = - / i ( a 3 ) / i ( a 4 ) + h(a.i)h(ß{) + h(ß2)h(ß5). 

This is the same as, 

(1) ^34 + ^43 - M i = Pi-

Here and below, pi always denotes some polynomial with integer 
coefficient in h(a),s where a G S(X) U S(Y). 

Since oti J-o «2 with <9(ai,0!2) H <S"(So,5) = «4 £ •S'PO) w e obtain, 

(2) Xn + X21 + a2Xi = P2-

Apply the involution r to the equation (2), we obtain 

(3) xi5 + x5i + a5xi = p3. 

Since «2 J-o «3«4) Qf2(o!30!4) = «5«i and d(cx2, 0*301^) fl S"(Eo,s) = 
«5«4 G S(X), we obtain, 

(4) 3̂ 51 +a;342 +02^34 = P4-
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Since «4 J_o 01302, cn{ot30t2) = «105, OL^OLIOL^ = OL^OL^OLI and 9(04, c ^ a ^ n 
<S"(£o,5) = o>ia>2, we obtain, 

(5) Xi5 + X342 - blXi2 = P5-

Subtracting (4) by (5), we obtain, 

(6) x5i-xi5 + a2x34 + bixi2=p6. 

Apply the involution r to equation (6), we obtain, 

(7) £21 - X\2 + 05^43 + M l 5 = Pi-

Since «102 J-o a5i &5((Xicx2) = a%cn and d(aicx2, «5) n S"(£o,5) = 
«302 G »S00, we obtain, 

(8) X34: + Xi25+a5Xi2=P$. 

Apply the involution r to (8) and use the fact that £125 = £152 (due 
to §4.1(d)), we obtain, 

(9) X43 + X125 + a2xi5 = p9. 

Subtracting (8) by (9) gives, 

(10) £34 - X43 - 0,2X15 +a5Xi2 = Pw-

Now consider the system of linear equations (1), (2), (3), (6), (7), 
and (10). By (1), (2) and (3), we obtain X21 = —(122:1 — x\2 + P2, 
X51 = — C15X1—X15+P3 and £43 = bixi—xzi+pi. Thus, after substituting 
these into (6), (7) and (10), we obtain the following system of linear 
equations. 

61x12 - 2a;i5 + «2^34 - 052:1 = pu 

(11) -2a;i2 + &1Z15 - 05X34 + (a5bi - a 2 )x i = pt2 

a5xi2 - a2xi5 + 22:34 - bixi = p13. 



602 FENG LUO 

Let A be the 3 x 4 coefficient matrix of the linear system and B 
be the 3 x 3 submatrix obtained from A by removing the 4-th column. 
Then the determinant of B is 2A where A = a | + a^ + b\ — a2a^,b\ — 4. 
Suppose B* is the adjoint matrix of B. Then a simple calculation shows 
that B*A is 

2A 0 0 a2A 
0 2A 0 a5A 
0 0 2A -&iA 

Assume now that h is irreducible on the 3-holed sphere bounded 
by a2 and «5, i.e., A / 0 . Then we obtain a simpler system of linear 
equations satisfied by £12,^15,£34 and x\. 

1x\2 + a2x\ = pu 

(12) 2^15 + a5xi = pis 

2^34 - 61x1 =pw-

By equations (1), (2), (3) and (12), we obtain 

2^21 + a2xi = pn 

(13) 22:51 + a5xi = pis 
22:43 - 612:1 =pi9. 

On the other hand, there are many different extensions of {a2, «5} to a 
set forming a pentagon. For instance, {a[, a2, a'3, «4, «5} ={a\a2, «2, «302, «4, «5} 
is such an extension. For this extension, the same equations (12) and 
(13) hold. Here we have x'21 = h(a2a'1) = h(a2a\a2) = h(a\) = xi, 
x'51 = h{ac,a']) = h(a^aia2) = h{a$ai) = 2:34 and x\ = h(a'1) = x\2. 
By (13) for the new pentagon, we obtain 

( •. 2xi + a2xi2 = p20 

22:34 + a52;i2 =P2i-

Comparing (14) with (12), we obtain 

(15) (4 - afjxi = p22, 

and 
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(16) (2bi - a2a5)xi = P23-

Apply the involution r to (15), we obtain 

(17) ( 4 - o i ) œ i = p 2 4 . 

Since a | + 05 +òf — 020561 — 4 ^ 0 , if the characteristic of the field K 
is not 2, then one of the coeÆcients 4 — a | , 4 — a\ and 2&i — 0205 is not 
zero. Thus we can solve x\ uniquely from (15)-(17). If the characteristic 
of the field K is 2, then one of the coeÆcients 02, 05 or 61 is not zero. 
Thus we can solve x\ uniquely from (12). 

Now take h = f and h = g respectively. The condition f\s(x)uS(Y) = 
g\s(x)uS(Y) shows that x\ = f(a\) and x\ = g(a\) are the solutions of 
the same equations (1) -(17). Since both / and g are irreducible on the 
3-holed sphere bounded by «2 and «5, we conclude that f{a\) = g{a\). 
Thus by Corollary 3.7, f = g follows in this case. 

4 .4 . In this section, we prove that if / is a trace function which 
is reducible on each level-0 subsurface, then / is the character of a 
reducible representation. 

We choose a 3-holed sphere decomposition of Eo,5 by «2 and «5 as 
follows. If there exists a G S" (£0,5) so that f2(a) 7̂  4 then choose 
«2 to be one of these elements. If otherwise that f2(a) = 4 for all 
a G S"(Eo,5), choose «2 and «5 to be any pair of disjoint elements. 
We shall use the same notation introduced in §4.3. Thus X and Y are 
level-1 subsurfaces bounded by «2 and «5 respectively so that X C\Y 
is a level-0 subsurface. By Proposition 3.5, we find two representa­
tions px and pY of iri(X) and ni(Y) respectively so that their char­
acters are the restrictions of / to S(X) and S(Y). By the reducibil-
ity criterion Lemma 2.5, both px and py are reducible. Thus we 
may modify px and py without changing their characters so that both 
PX{KI(X n Y)) and py(-Ki(X n Y)) consist of diagonal matrices. Now 
since both px\7T1(xr\Y) and pY\7T1(xnY) are diagonalizable and have the 
same character, thus they are conjugate. We may assume after a conju­
gation that Px\7T1(xnY) =

 PY^UXCY)- By the same argment as in §4.3, 
we construct a diagonalizable representation p of 7ri(So,5) to SL(2,K) 
extending both px and py. Let g be the character of p defined on 
S(Zo,5)- By the construction f\S(x)us(Y) = g\s(x)us(Y)- The goal is to 
show that f = g under the reducible condition. 
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Since / is reducible on all level-0 subsurfaces, by Corollary 2.5, / is 
reducible on all level-1 subsurfaces. In particular, by Corollary 3.5(d), 
f(aß) = f(ßa) for all a _L0 ß-

We now set up the same system of linear equations in a;^...^, 1 < k < 
3 as in §4.3. Then equations (1) - (10) still hold. Due to the reducibility, 
x\2 = £21, #15 = X51 and £34 = £43. Thus equations (12)-(17) still hold. 
(Indeed, equation (12) is a consequence of (1) and x\2 = £21 •) 

Now if there is a G S"(£0,5) s o t h a t P(a) + ^ t h e n 4 ~ / 2 («2 ) + 0 
by the choice of a2. Thus we can solve x\ uniquely from (15). In 
particular, by the same argument as in §4.3, we obtain f{a\) = g{a\). 

In the remaining case, f2(a) = 4 for all a G 5"(Eo,s). First we note 
that Corollary 3.3(a) implies f2(ß) = 4 for all boundary component 
ß in S ^ E Q ^ ) . For each boundary component ß, f(ß) = g(ß) by the 
construction. We claim that that / ( a ) = g (a) for all a G S"(Eo,s). 
Indeed, for each a G <S"(£o,5), there exists two boundary components 
ßi and ß2 so that ßi,ß2 and a bound a level-0 subsurface. By the 
reducibility of / and g over the level-0 subsurface and Corollary 3.3(a), 
we conclude that / ( a ) = f(ß1)f{ß2)/2 = g{ß1)g{ß2)/2 = g (a). (Here 
we have used the convention that if the characteristic of K is 2, then 
aft/2 is meant to be ft when a = 2). 

4 .5 . As a consequence of Theorem 4.1, we have, 

Corollary. Let f be a trace function defined on S^Eo,«). Suppose 
Eo,n is decomposed as a union X1UX2 of two incompressible subsurfaces 
X\ and X2 where X\ ["1X2 = £0,3 is bounded by two elements in S"(E). 
If f\s(Xi) is an SL(2,K) character for i = 1,2 and either f\s(x1nx2) 
is irreducible or f is reducible on all level-0 subsurfaces, then f is an 
SL(2,K) character. 

Proof. Let pi be an SL(2,K) representation whose character is 
f\s(Xi)i i = 1)2. If / is reducible on all level-0 subsurfaces, then by 
Corollary 3.5(c), both p\ and p2 are reducible. In this case, we may 
assume without changing the characters that both pi and p2 are diago-
nalizable. Now by the same arguments as in §4.3 and §4.4, we produce a 
representation p of 7ri(Eo,n) so that its restriction to 7TI(XJ) is conjugate 
to pi. Let g be the character of p and ß\ and ß2 be two classes in S"(Eo,n) 
which bound X\ n X2. Then / and g are identical on S(X\) U S(X2) 
={a G S(T.Qtn)\ a is disjoint from either ß\ or ß2}. To show / = g, by 
Corollary 3.7, it suffices to prove / ( a ) = g (a) for a _l_o ßi, i = 1,2. Fix 
such a class a. Let £ ' be the incompressible level-2 subsurface which 
contains X\ n X2 and a. Then by the proof of Theorem 4.1 for E' 
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with respect to the decomposition £ ' = (£ ' n X i ) U (E' n X2), we have 

/ Is(s ' ) = g\s(s>)- I n particular, f(a) = g (a). q.e.d. 

5. Except iona l trace funct ions on planar surfaces 

5.1. Recall that a trace function which is not the character of any 
representation is called exceptional. There are no exceptional trace 
functions on level-0 and level-1 surfaces. However, there exist finitely 
many exceptional trace functions on £o,n f ° r a n y n > 5. The main 
result of the section is to identify all exceptional trace functions. 

T h e o r e m . Suppose f : S(Eojn) —>• K, n > 5, is an exceptional trace 

function. Then the characteristic of K is not 2 and f satisfies, 

(a) / ( 5 ( S 0 ) n ) ) = { 2 , - 2 } and, 

(b) there exists an exceptional level-2 subsurface in £o,n-

The proof of the theorem is by induction on n. In §5.2 we prove it 
for n = 5 and in §5.3, we prove it for all n > 6. 

We shall use the following notation. If a\,..., am are disjoint classes 
in 5"(E9;„) so that they decompose the surface into subsurfaces £ ö i , n i 

and (gi,ni) 7̂  {gi,ni) for i > 2, then we use T,gi>ni(ai,..., am) to denote 
the subsurface S S l > n i . A class a G S" (E) is a boundary class if it bounds 
a level-0 subsurface. 

5.2. We prove a slightly stronger version of Theorem 5.1 for n = 5 

in this section. 

Let 61,. . . , Ò5 be the boundary components of £0,5. 

Propos i t ion . If f : S(T.Q^) —> K is an exceptional trace function, 

then 

(a) the characteristic of K is not 2, 

(b) / ( 5 ( S 0 ) 5 ) ) = {2, - 2 } and n f = 1 / ( 6 , ) = 32 ; and, 
(c) a level-0 subsurface is irreducible if and only if it is of the form, 

£o,3(«) for some a £ S"(E0,5)-

Proof. By Theorem 4.1, we see that £0,3(0!, ß) is reducible for all 
disjoint a, ß G S"(£o,5) a n d there exists one irreducible £0,3(7). 

L e m m a . Suppose 0:1,0:4 are two disjoint elements in S"(£o,s) so 
that £0,3(0:1) is irreducible. Then / 2 ( « i ) = / 2 («4 ) = f2(bi) = 4 and 
^0,3(^4) is again irreducible. Furthermore, the characteristic of K is 
not 2. 
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Proof. Since £0,3(04) c £0,4(^4) and £0,3(04) is irreducible, we 
see that £0,4(04) is irreducible. By Corollary 3.5(a) applied to OL\ in 
£0,4(^4) and by the assumption that £0,3(0, «4) is reducible, there 
exists «2 J-o «1 in £0,4(^4) so that £0,3(02) is irreducible. Extend 
{ex 1, «2, «4} to a pentagon set {«i, «2, «3, «4, «5} so that CKJ J_o cnj+i 
where indices are counted mod 5. For i = 3,4,5, £0,4(0;,) is irre­
ducible since it contains one of £0,3(07), j = 1 or 2. By Corollary 
3.5(b) applied to a, in £0,4(0?) and by the assumption that £0,3(0^,/3) 
is reducible, it follows that f2{a.j) = 4 for i = 3,4,5. Let the bound­
ary components of £0,5 be so labelled that (CKJ-I, ftj, CHÌ+I) bounds a 
3-holed sphere. For each i = 1, 2,..., 5, £0,3(0^-4, CÜJ+I) is reducible and 
one of / 2 (a ,_ i ) or /2(aj+i) is 4. By Corollary 3.3(a), it follows that 
f(°i) = /(cKj_i)/(cKi-|_i)/2 (here aft/2 is meant to be ft if the character­
istic of K is 2 and a = 2). In particular f2(b^) = 4. The values of / on 
<9£0,3(«i) are 

{/(«l),/(&3),/(&4)} = { / (« l ) , / («2) / (« 4 ) /2 , / (« 3 ) / («5) /2} , 

whose multiplication is |n | = 1 / (o! j ) . For i = 3,4,5, the values of / on 
<9£0,3(«i) are 

{/(«,), f(bi+2), f(bt+3)} = {f(ai),f(ai-1)f(ai+1)/2, f(al+2)f(at+3)/2}, 

whose multiplication is again ^n|= 1 /(o!j) . Since £0,3(04) is irreducible 
and f2{bi) = f2{aì) = 4 for i = 3,4,5, by Corollary 3.3(a), it follows 
that £0,3(a,) is irreducible. 

Now by the same argument above applied to {«3, «4} instead of 
{o!i,0!2}, we conclude that f2(a\) = /2(«2) = 4. Thus f2(h) = 4 for 
all i. In particular, this implies that the characteristic of K is not 2. 
Indeed, if otherwise, then all f{aì) = /(ftj) = 0. Thus £0,3(04) would 
be reducible. q.e.d. 

To finish the proof of the proposition, take a\ G S"(£0,5) so that 
£0,3(^1) is irreducible. Given any a G 5"(£o,s), by a result of Harvey 
[13] (see also [12]), there exists a sequence of elements ß\ = a\, /?2,..., ßm 

= a in S"(£o,5) so that /% n /%+i = 0. By the lemma applied to the 
sequence, we conclude that f2(a) = 4 and £0,3(0) is irreducible. 

Suppose a G 5"(£o,s) so that ft, and bj are in the boundary of 
£0,3(0). Then by Corollary 3.3(a), f(a) = -\f{bi)f{bj). This shows 
that / is determined by / | a s 0 6 - Furthermore, take two disjoint a, a' 
in S"(£Q,5) SO that &4 C 9£o,3(a, a'). Then due to the reducibility and 
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Corollary 3.3(a), f(h)f(a)f(a') = 8. But also 

/(«)/(«') = \f(b2)Hh)f(h)f(b5). 

Thus n?=1/(6i) = 32. q.e.d. 

5.3. We use the induction on n to prove Theorem 5.1. Assume 
that n > 6. The proof consists of several steps. 

Let / be an exceptional trace function on S,(So,n). 

Claim 1. There exists an exceptional subsurface Eo,n-i(/3) m 

By Corollary 4.5, there exists an irreducible level-0 subsurface E' in 
E0,„. Now E' is either S0,3(o;i, a2), or S0,3(o;i), or S0,3(o;i, a2, a3) for 
disjoint classes a i , . . ,a3 in 5"(So,n). If S' = Eo,3(oa, a2), by Corollary 
4.5, one of the subsurface bounded by OL\ or «2 is exceptional. Take any 
Eo,n-i(/ö) which contains this exceptional subsurface, then the claim 
follows. 

If E' = Eo,3(ai), we use the following lemma. 

Lemma. //Eo,3(a;) is irreducible and ßi,ß2 are two disjoint classes 
in <S"(Eo,n) so that they bound a level-1 subsurface which contains Eo,3(a), 
then one of the subsurface bounded by ßi is exceptional. 

FIGURE 5.1 
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Indeed, by Corollary 3.5(a), there exists 7 l o a in Eo^/Öi , /^ ) so 
that one of £0,3(7, ft), say £0,3(7, ßi), is irreducible. By Corollary 4.5, 
one of the subsurface bounded by 7 or ß\ is exceptional. But each 
subsurface bounded by 7 or ß\ is contained in a subsurface bounded by 
ßi or ßi. Thus the lemma follows. 

If £ ' = £0,3(01, «2, «3)5 let £ " be the irreducible subsurface bounded 
by « i , «2 which contains £ ' . If £ " is exceptional, then Claim 1 follows. If 
the £ " is a 4-holed sphere, then by Corollary 3.5(a) applied to «3 in £" , 
we find an irreducible £0,3 {a-u &') where i = 1 or 2. The claim follows by 
the previous argument. In the remaining case, the level of £ " is at least 
2 and f\srs") is the character of a representation p of 7ri(£"). Since 
p is irreducible, there exists a boundary component b C 9£o,n H 9 £ " 
so that p(b) 7̂  ± i d Consider a level-1 subsurface of £ " of the form 
£-0,4(01, 02, 04) so that it contains £0,3(01, «2, «3) and contains b as 
a boundary component. By Corollary 3.5(b) applied to this level-1 
subsurface, we find an irreducible £0,3(0;, a ' ) having b as a boundary 
component. Thus the claim follows. 

Now by the induction hypothesis applied to £o,n-i( /ö), it follows 
that £o,n contains an exceptional level-2 subsurface, i.e., part (b) of the 
Theorem 5.1 follows. 

Claim 2. Let 61 and Ò2 be the boundary components of £o,n which 
are not in the exceptional £o,n- i( /3) . Then fl{b.{) = 4 for i = 1, 2. 

Indeed, if n > 7, for each 6j, there exists an (n — l)-holed sphere 
containing both b;b and the exceptional level-2 subsurface in £o,n_i(/9). 
Thus by the induction hypothesis, we conclude that /(h)2 = 4 for 
i = 1,2. 

If n = 6, we pick a boundary class ß' G <S"(£o,6) so that T.Qß(ß') 
is in the exceptional £o,s(/9) (see Figure 5.2). Let ß\ and ßi be two 
disjoint boundary classes so that ßi fi ß' = 0 and ßi _l_o ß. Since £0,5(ß) 
is exceptional, £0,3(ß') is irreducible. By the above lemma applied to 
a = /3', we conclude that one of £o,s(/3j), say £o,s(/3i), is exceptional. 
Since 61 C £0,5(ßi), it follows that /2(&i) = 4. Next we assert that 
^Oßiß) is reducible. Assuming the assertion, by Corollary 3.3(a), we 
conclude that f{b2) = f(h)f(ß)/2 = ±2 . To see that £0,3(/3) is re­
ducible, we construct two disjoint boundary classes 71,72 in £0,6 which 
are in £0,5 (ß). If £o,3(/3) were irreducible, then by the above lemma 
applied to {/9,7i,72j-, we conclude that one of £0,5(7?), say £0,5(71), 
is exceptional. Let 7 be a class disjoint from ß and 71 and 7 _l_o 72-
Then £0,3 (ß, 7) is irreducible since it is in the exceptional £o,s(/9). But 
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^0 ,3 (AT) is also reducible since it is in the exceptional 20,5(71). This 
is a contradiction. 

(a) (b) 

FIGURE 5.2 

Claim 3. If a _l_o ß where £o,n-i(/ö) is exceptional, then / ( a ) = 
±2. 

Choose a class ß' G <S"(£o,n) disjoint from ß so that /?', a and one of 
6i or &2) say &i, bound a 3-holed sphere £o,3(/3',o;) (see Figure 5.2(c)). 
By the induction hypothesis applied to £o,«-i(/3), we have f(ß') = ±2. 
If £0,3(0;, ß') is reducible, then by Corollary 3.3(a), we obtain f(a) = 
f{ß')f{bi)/2 = ±2. If E0t3(a,ß') is irreducible, then by Corollary 4.5, 
one of the subsurface X bounded by ß' or a which contains £0,3(0;, ß) is 
exceptional. Thus by the induction hypothesis applied to a subsurface 
containing X and a, f(a) = ±2. 

Claim 4. For all a G 5"(£0,„), / ( a ) = ±2. 

We use the induction on / (a , ß) to prove the claim. By Claim 3, 
the result holds for / (a , ß) < 2. If / ( a , /?) > 4, by Lemma 3.7, we can 
express a = a'a" so that a' _l_o a", d(a',a") = ß\ U ... U /?4 satisfy 
I(a',ß),I(a!',ß), I(a"a'iß),I(ß,hß) < I(a,ß). Thus by the induction 
hypothesis the values of / on the seven elements {a', a", a"a', ßi,..., ^4} 
are in {2, —2}. Now the following lemma implies that f(a) = ±2. 

5.4. Lemma. Xei 9£o,4 = b\ U 62 U 63 U 64 and «i , «2; a r̂f «3 
6e i/iree classes forming a triangle in £'(£0,4). / / / : £(£0,4) —> K is 
a character so that its values on the 7-element set {a>i,bj} are {2, —2}. 
Then /(5(E0 ,4)) C {2 , -2} . Furthermore, 

(a) 2nf=1/(«,) = m=1f(b3), 
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(b) if the characteristic of K is not 2, then f is reducible if and only 

«/n J
4

= i /(& J) = i6 . 
(c) If g : {a^bj} -+ { 2 , - 2 } satisfies 2U3

i=1g(ai) = U4
j=1g(bj) = 

— 16, then g can be extended to an SL(2,K) character on SCEQ^). 

Proof. Fix an orientation on each b;b and consider it as an el­
ement in the fundamental group. Let p be a representation whose 
character is / . Changing p to p' by p'(bi) = ±p(6j), i = 1,2,3, will 
not effect the conclusion of the lemma. Thus we may assume that 
f(bi) = f{b2) = / (6 3 ) = 2. Now if / (6 4 ) = 2, then Proposition 3.5(a) 
shows that 8 S f = 1 / ( a j ) - n f = 1 / ( o ! , ) = 40. Since f(aì) = ± 2 , the only so­
lution of the equation is f(a.{) = 2. By Proposition 3.5(b), this implies 
that f(a) = 2 for all a. If f{bé) = —2, then Proposition 3.5(a) says 
that n?= 1 / (o! j) = —8. Furthermore, Proposition 3.5(b) implies that 
f(a!

3) + f(az) = — f{ai)f{a<2) where (« i , a2, «3; c/3) forms a quadrilat-
eral. But f(a3) = _ ^ / ( a i ) / ( a 2 ) . Thus f(a'3) = / ( a 3 ) = ±2 . By 
the modular configuration, this implies that / (S^So^) ) C {2, —2}. The 
last argument also shows that for any assignments of ± 2 to «j's so that 
their product is —8, there exists an extension of the assignment to a 
character. Thus part (c) follows. q.e.d. 

The following figure 5.3 illustrates the set of all possible assignments 
of ± 2 to the 7-element set {bi, aj} in the lemma. 

2 2 2 a 1 a 1 

a 1a 2a 3 = -8 a 1a 2a 3 = -8 

F I G U R E 5.3 

As a consequence of the Theorem 5.1(b) and the fact that trace 
functions are determined by their values on a finite subset of S(E) (§3.9), 
we see that there are only finitely many exceptional trace functions on 
each planar surface. 

5 .5 . The goal of this section is to prove that exceptional trace 
functions exists on each planar surface of level at least 2. 
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There are sixteen exceptional trace functions / on £0,5 which we 
describe as follows. Let <9£o,5 = &i U ... U Ò5. Suppose / : {&i,..., Ò5} —> 
{2, - 2 } satisfies Tl5

i=1f(bi) = 32. We extend / to / : S(So,s) -> {2, - 2 } 
as follows. Given any boundary class a so that the level-0 subsurface 
^0,3(0) contains bi,bj, then f(a) = — \f{bi)f{bj). Ones checks easily 
using Lemma 5.4 that / is a trace function on £(£0,5). Furthermore, by 
the construction / is reducible on each £0,3(0, ß) and irreducible on each 
^0,3 (oO- There is no representation whose character is the trace function 
/ . Indeed, if Xp = / f° r a representation p and a G S"(£o,s), then by 
Corollary 3.5(b) applied to £0,4(0), we have p(a) = ±id. But this 
implies that p is reducible on £0,3(0) which contradicts the assumption. 
Thus these are the set of all 16 exceptional trace functions on £0,5-

If n > 6, we construct an exceptional trace function on £o,n as 
follows. Let bi,...,bn be the boundary components of £o,n- Define 
/ : S(S0,„) - • {2,-2} as follows. Let /(h) = 2 for all i. For a G 
<S"(£o,n), we define f(a) as follows. Suppose a decomposes £o,n into 
two subsurfaces X\ and X2. Let Si be the number of components of 
{&i,...,65} which are in X;b. Define f(a) to be —2 if (si,S2) = (2,3) 
and to be 2 otherwise. By a simple calculation using Lemma 5.4, one 
shows that / is a trace function and there exists an exceptional level-2 
subsurface. Thus / is an exceptional trace function. 

6. The characterization theorem for the z-holed torus 

We show that each trace function on £(£1,2) is a character in this 
section. 

6.1. The pentagon relation. A five-element set {«i,..., «5} in 
<S"(£i,2) is said to form a pentagon if a, n a-i+2 = 0 for all % mod 5. It is 
shown in [23] that the set is unique up to homeomorphism of the surface 
and that exactly two adjacent elements a, and CKJ+I, say «3 and «4, are 
separating classes and «3 _l_o «2 _L ct\ _L «5 _l_o «4. See figure 6.1. 

If {ai,..., «5} forms a pentagon with 1(03, a4) = 4, then we have, 
(a) (aia,j)a,k = a^aja^) where the indices i,j,k are pairwise dis­

tinct, 
(b) a-iajUk = ajaj/Xk if the indices are pairwise distinct and c^riOy = 

0, 
(c) ct2{ot20t\aci) = a^a^ai, (0*2011 «5)«2 = aia^, and c^aias fl ct\ = 

0, 
(d) aia2 fl « las = 0 and «201 fl «501 = 0, 
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(e) otictzctz n a\a^ = 0 and a^a^a^ n «105 = 0. 
See [22] or [23] for a verification. One can also verify (a)-(e) directly. 

For instance 0,10,5 and «102 are obtained by applying the positive Dehn 
twist along a\ to «5 and «2- Thus (d) holds. 

By property (d), if {«i, «2, «3, «4, «5} forms a pentagon, then 
{«i, «201, «3, «4, o^ai} is also a pentagon. 

6.2. In this section, we prove the following, 

Proposition. / / / is a trace function on ^(Ei^) and there exist two 
disjoint elements a i , a 4 in S'ÇEip) with 04 separating so that f2(a>i) 7̂  
f{oi) + 2, then f is a character. 

Proof. Let X and Y be the level-1 subsurfaces bounded by «4 
and oti respectively. Then X n Y is a level-0 subsurface bounded by 
a 4 , a i , a i . Since f2(a>i) + f2(a>i) + / 2 ( a 4 ) - / ( a i ) / ( a i ) / ( a 4 ) - 4 = 
(/(a4) - 2)(/(a4) + 2 - f(a>i)), / is reducible o n l n Y i f and only 
if /(o!4) = 2. We now construct a representation p of 7TI(EI ;2) SO that 
the restrictions of the character of p to X and Y are the same as f\s(x) 
and /|5(y) as follows. If / ( a 4 ) 7̂  2, due to the irreducibility of / on 
I n y , the construction is the same as in §4.3. If / ( a 4 ) = 2, then 
f(&2) ¥" Ì 2 by the assumption. By Lemma 2.6, there are exactly two 
conjugation classes of SL(2,K) representations of ni(X) (respectively 
iri(X nY)) whose characters are f\s(x) (resp. f\s(xr\Y))- Furthermore, 
due to f{a<2) 7̂  ±2, the restriction of the non-diagonalizable represen­
tation of 7Ti(X) to 7Ti(X n Y) is still non-diagonalizable. Now take a 
representation py of TTI(Y) whose character is / |s(y). Then there ex­
ists a representation px of 7ri(X) whose character is f\s(x) s o that 
PxlmtxnY) = Py|7Ti(xny)- ^et p be the representation of TTI(E) whose 
restrictions to 7ri (X) and 7ri (y ) are px and py and let g be its charac­
ter. We have / ( a ) = g (a) for a G S"(X) U S'(y). The goal is to show 
that / = g. By Corollary 3.7, it suÆces to prove that for each class 
a5 _L «i and a5 _L0 «4, / («s) = ^(«s)-

Extend {«i, a4, «5} to a 5-element set {«i,..., «5} forming a pen­
tagon. The proof of / (as ) = 3(«5) follows the same strategy as in §4.3 
by introducing a system of linear equations. 

We shall use the same notation as in §4.3. Let h be a trace function 
on SÇEip) so that h2(a\) 7̂  /i(a4) + 2. Given a set of indices ii,...,ik, 
1 < k < 3, let a;^...^ = ^(o^. . .«^) if a^. . .«^ is not in S(X) U S'(y) 
and a,il...ik = h(ai1...a>ik) if a^.-.a^ G S'(X) U S'(y). Let ß\ and ,02 be 
the boundary components of £12 and 6, = h{ßi). 
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Using Propositions 3.4 and 3.5, we now derive a system of linear 
equations in Xi1,,,ik and show that the system of equation has a unique 
solution. 

Since «i _l_ «5, by Proposition 3.4(b), we obtain 

h(a\a^) + h{a^ai) = h{a\)h{a^). 

This is the same as, 

(1) x\<s + x5i = aix5. 

Since «4 _l_o «5 so that <9(a4,a5) = {«2, o ^ A , / ^ } , by Proposition 
3.5, we obtain, 

(2) £45 + x54l = -a4a;5 + pi, 

where p\ and the p^s below are polynomials with integer coefficients in 
h(a)'s where a G S{X) U S(Y). 

Since «2 J- a^ot-xOLf, so that ( ^ ( O ^ Ö I ^ S ) = a^a^ai and («201 «5)«2 = 
«las and OLIOLXU^, G S (Y), we obtain, 

(3) £451 + Xi5 =p2. 

Let T be the orientation reversing involution of £^2 fixing each «j's 
(see Figure 6.f). Then r(aß) = T(ß)r(a) for all a _L ß or a _l_o /3. 

α 2 α 4 

α 5 α α 5 α 

The pentagon relation The orientation reversing involution 

FIGURE 6.1 
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A p p l y T t o (3), we o b t a i n 

(4) Xi54+X5i=p3. 

Since «4 _l_o « l a s so t h a t d(ai, a\a^) = OL\OL2 G S(X), we o b t a i n , 

(5) £415 + ^ 1 5 4 + CL4X15 = p4. 

Since «4 fi a i = 0, it follows t h a t 

(6) £415 = £145. 

Final ly , since OL\ _l_ « 4 « 5 , by (6) we o b t a i n , 

(7) £145 + £451 - a i£45 = 0. 

S u b t r a c t i n g (7) by (5) a n d us ing (6), we o b t a i n 

(8) £451 - £154 - a i £ 4 5 - a4a;i5 = p5. 

T h e s u b t r a c t i o n (4) by (3) gives, 

(9) Xi54: - X451 + X5i - Xi5 = p6. 

T h e s u m of (8) a n d (9) gives 

(10) £51 - £15 - 0,1X45 - a 4 £ i 5 = p7. 

Using (1), we simplify (10) a n d o b t a i n 

(11) a i £ 4 5 + (2 + a4)a;i5 - atx5 = p8. 

Since (11) ho lds for any 5-element set {a[,..., a'4, a'5} fo rming a p e n ­

t a g o n so t h a t a[ = a\ a n d a 4 = «4 , it ho lds for t h e set 

{ « I , (X2OC1, « 3 , «4 , « 5 0 1 } = { « i , a 2 , « 3 , «4 , « 5 } . 



CHARACTERS OF S L ( 2 ) REPRESENTATIONS OF GROUPS 615 

Now h(a[a!
5) = h{a\a^ai) = h{a^) = x$, h(a!

5) = h{a^a\) = x^\ = 
a\x^—xi5 and h(a'4a'5) = ̂ a^a^ai) = 0:451 = —«ìs+fó- Thus equation 
(11) for this new pentagon set gives, 

a i ( - « 1 5 +P2) + (2 + 04)2:5 - ai(aix5 - xi5) = p9, 

which is 

(2 + CL4 — ai)xs, = p$. 

Thus £5 can be solved uniquely. Now take h = f and h = g. We see 
that / ( a s ) = g{oih)- By Corollary 3.7, it follows that / = g. 

6.3 . Suppose now that / is a trace function so that f2(a>i) = 
/(oii) + 2 for all separating «4 and non-separating a\ with a\ n «4 = 0. 

We begin with the following lemma. 

L e m m a . Let E = E9 ;„ be a surface of level at least 2 so that g > 1 
and f is a K-valued trace function on S'(E). Let P ( E ) = {(a,ß) G 
S(E)\a bounds a E^ i in E and ß is a non-separating class lying in 

Si,i}-
(a) If for all (a,ß) G P ( E ) ; f2(ß) = f(a) + 2, tfien eitfier /or 

a// (a,/T) G P ( E ) ; (f(a),f(ß)) = ( - 2 ,0 ) o r / o r a// (a,ß) G P ( S ) ; 

( / (« ) , / ( /* ) ) = (2, ±2) . 
f&J If there exists a pair (a,ß) G P ( E ) so £/ia£ /2(/3) 7̂  / ( a ) + 2, 

then there exits a pair (a',ß') G P ( E ) so £/ia£ f2(ß') 7̂  / ( « ' ) + 2 and 
one of f2(a') or f2(ß') is not 4-

Proof. To prove (a), fix a G S"(E) which bounds a E ^ i and 
let Pa be the set of all non-separating classes ß lying in E ^ i . Take 
three elements ß\,ßi and ß% in Pa forming a triangle in the modular 
configuration. Let / ( a ) + 2 be /J,2. Then f2(ßi) = ß2. By Proposition 
3.4(a), we obtain 3//2 ± //3 = //2. Thus either p = 0 or /j,2 = 4, i.e., 
either ( / (« ) , / ( / ? ) ) = ( - 2 , 0) for all ß G P« or ( / (« ) , / ( / ? ) ) = (2, ±2) for 
all ß G P a . 

To finish the proof of (a), we need to show that the above two 
cases cannot occur simultaneously. The above proof shows that being 
(f(a)if(ß)) = (2) ±2) or ( — 2,0) depends only on the 1-holed torus 
bounded by a. Thus part (a) follows from Corollary 3.8(b). 

To prove part (b), we may assume that the characteristic of the 
field K is not 2 (otherwise by part (a) the result follows). Now suppose 
otherwise that for all (a,ß) G P ( E ) so that f2(ß) ^ f{a) + 2, we 
have f2(a) = f2{ß) = 4. This implies that / ( a ) = —2. Consider 
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the level-1 subsurface £ i ; i bounded by a which contains ß. Let ß, 
ß2 and ß3 be three classes in S"(Si ;i) which form a triangle in the 
modular configuration. Then for i = 2,3, either f2(ßi) = 4 (if f2(ßi) ^ 
f(a) + 2) or p(ßi) = 0 (if / 2 ( f t ) = / ( a ) + 2). By Proposition 3.4(a), 
we have f2(ß) + f2(ß2) + f2(ß3) - f (ß) f (ß2) f (ß3) = / ( « ) + 2. Thus 
4 + /2(/92) + f2{ßz) = ±2f(ß2)f(ß3). But this is impossible since either 
f(ßi) = 4 or 0 for i = 2, 3. q.e.d. 

6.4. Let 3Si ;2 be b\ and 62- By Proposition 6.2 and Lemma 6.3, 
it remains to prove the following. 

Propos i t ion . Suppose f is a K valued trace function on S(T.it2) so 
that either (a) for all (a,ß) G P ( S i , 2 ) , (f(a),f{ß)) = ( - 2 ,0 ) or (b) for­
ali (a,ß) G P ( £ i , 2 ) , {f{a),f{ß)) = (2, ±2 ) . Then f is a character. 

6.5 . We construct a representation whose character is / satisfying 
condition (a) in the Proposition 6.4 in this section. 

L e m m a . Let dY,\ß be b\ U62- Under the assumption of Proposition 

6.4(a), we have f2(bi) = 4 and /(&i)/(&2) = - 4 . 

Proof. Take (ai,ß\) G P ( S i ; i ) and let Eo,4 and E ^ i be the sub­
surfaces bounded by ß\ and ct\. Take /32 to be a non-separating class 
lying in £0,4 so that /32 J-o « i - Then ai/32 and ß^o-i are both non-
separating. By the assumption, /(/%) = / ( /3 2 a i ) = / (a i /3 2 ) = 0 and 
/ ( a ) = —2. By Proposition 3.5(a) applied to £0,4 with respect to the 
triangle (ai , /92 , oa/32), we obtain /(&i) + /(&2) = 0. By Proposition 
3.5(b) applied to £0,4 with respect to {a\ = /92(ai/92), (ai/32)/32}, we 
obtain / ( 6 i ) / ( ò 2 ) = —4. Thus the result follows. q.e.d. 

Here is a construction of a representation p : 7Ti(£i)2) —> SL(2,K) 
whose character is / . For simplicity, let /(&i) = 2 and / (ò 2 ) = —2. 
Let £ i ; i be obtained by attaching a disc to the òi boundary component 
of the surface £ i ) 2 . By Corollary 3.4, there is a representation po : 

7Ti(£i;i) ->• SL{2,K) so that tr(p0(a)) = 0 for all a G S"(£i,i) and 
tr(/9o(&2)) = —2. Define p = po o i where i : 7ri(£i )2) —> 7ri(£i ;i) is 
the homomorphism induced by the inclusion map. Since i sends non-
separating classes to non-separating classes, it follows that the character 
of p i s / . 

6.6. We construct a representation whose character is the trace 
function / satisfying condition (b) in the Proposition 6.4. 

We may assume that the characteristic of the field K is not 2 in this 
section (otherwise it is covered by §6.5). 
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Lemma. Under the assumption of Proposition 6.4 (b), we have 
/(&i) = /(&2) = =t2. In particular, f is reducible over all level-0 sub-
surfaces. 

Proof. Since f(a) = 2 for all separating classes a, / is reducible on 
all 1-holed tori. In particular, if OL\ 1 02, then by Proposition 3.4(a), 
f{a\ci<i) = \f {a\)f [ci'i)• Thus f{a\ci<i) = f{aiOL\). On the other hand, 
if ß and 7 are two non-separating classes so that ß _l_o 7, then there 
exists three non-separating classes 6\ _L 62 -L 63 so that ß = 616263 and 
7 = ^3^2^1- (Indeed, the pair (ß, 7) is unique up to the homeomorphism 
of the surface). Thus we have f(ß) = f{^). 

§3 

FIGURE 6.2 

Now take two classes OL\ _L «2- Since f {u\)f {0.2)f {o>-\ct2) = 8, we 
may assume that f{a\) = 2. Let £0,4 be the subsurface bounded by a.\ 
and let «3 J_o «4 be two non-separating classes lying in £0,4• Then both 
«5 = «304 and «g = «403 are separating classes. By the observation 
above, f(az) = f{ai) and / (as) = f(a'5) = 2. By Proposition 3.5(a) 
applied to the triangle («3, «4, «5) in £o,4? we obtain /(&i) + /(&2) = i 4 . 
By Proposition 3.5(b) applied to «5, «5, we obtain /(&i)/(&2) = 4. Thus 
/(61) = /(&2) = =t2. Since / ( a ) = 2 for all separating classes, this shows 
that / is reducible on all level-0 subsurface bounded by a. Thus / is 
reducible on all level-0 subsurfaces. q.e.d. 

We now construct a diagonalizable representation p of 7TI(EI ;2) whose 
character is / as follows. 

Take (a,ß) G P(£i ;2) and let X and Y be the level-1 subsurfaces 
bounded by a and ß respectively. By the same argument as in §6.2, 
we construct a diagonalizable SL(2,K) representation of 7TI(£I ;2) SO 

that its character g equals / on S(X) U S(Y). To show that g = f, 
by Corollary 3.7, it suffices to prove f{^) = 5(7) for all 7 _l_o a and 
7 _l_ ß. Let 6 be a class disjoint from a and 7. Then f(6) = g{6). By 
the reducibility of / and g on the level-0 subsurface bounded by 6, 7, it 
follows that / (7) = \f(bi)f(6) = \g(bi)g(6) = 5(7). q.e.d. 
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7. The Proof of Theorem 1.2 

The goal of this section is to prove Theorem 1.2 for surfaces of pos­
itive genus by using the induction on the level of the surface. 

Let E = E9)„ be a surface of positive genus and / a K-valued trace 
function defined on S(E). Recall that P(S) is defined to be {(a,ß) G 
S(T.gìn) x S(Egtn)\ a bounds a E^i and ß is a non-separating class lying 
in the subsurface E^i} . The proof breaks into the following two cases: 
(a) there exists (a,ß) G P(E) so that f2(ß) ^ f(a) + 2, and (b) for all 
(a, ß) G P(E) fl{ß) = f{a) + 2. By Lemma 6.3, case (b) is equivalent 
to two subcases (bl) for all (a,ß) G P(E), (f(a)J(ß)) = (-2,0) and 
(b2) for all (a,ß) G P(E), (f(a),f(ß)) = (2, ±2). 

We will deal with these three cases (a), (bl) and (b2) separately in 
the following sections. 

7.1. Suppose the case (a) occurs. By Lemma 6.3(b), we may as­
sume that one of f2(a) or f2(ß) is not 4. Let X be the level-1 subsurface 
bounded by a and let Y be the subsurface E — int(N(ß)). Since f\s(Y) 
takes some values other than ±2, by the induction hypothesis if g > 2 
and by the result in §5 if g = 1, f\s(Y) is a character, say f\s(Y) = XpY 

for an SL(2,K) representation py of -K\{Y). Now if / ( a ) ^ 2, then 
both f\s(x) a n d f\s(xr\Y) a r e irreducible. Let px '• v"i(X) —> SL(2,K) 
be any representation whose character is f\s(x)- By Lemma 2.4, we 
may assume after a conjugation that that Pxln^xnY) =

 PYITT^XHY)- If 
f(a) = 2, then both f\s(x) a n d /Is(xny) a r e reducible. Since one 
of f2(a) or f2(ß) is not 4, by Lemma 2.6, there exist exactly two 
SL(2,K) conjugacy classes of representations of ni(X) whose charac­
ters are f\s(x)- Thus we may choose an SL(2,K) representation px of 
TTI(X) so that pxU(xnY) = PY^XHY)

 a n d xPx = f\s(x)-

Define a representation p : 7Ti(E) —> SL(2,K) by p\wifx) = Px 
and PIK^Y) = PY- Let g be the character of p. Then öisp^us^r) = 

f\s(X)US(Y)-
To show that g = f,by Corollary 3.7, it suÆces to prove /(-y) = g (-y) 

for all 7 _l_o a and 7 _L /3. Given such 7, consider the level-2 subsurface 
Ei 2 containing both X and 7. Then by the proof of Proposition 6.2 
applied to Ei^ with respect to the decomposition X and Y n Ei^, it 
follows that 3(7) = / (7) . 

7.2. To show the remaining cases, we need 

Lemma. Suppose f is a trace function on E9>r so that the case (bl) 
or (b2) holds. Then f is reducible on all level-0 subsurfaces. 
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Proof. Since each level-0 subsurface is contained in a 3-holed torus 
subsurface, it suffices to prove the lemma for the 3-holed torus £1,3. 
Each level-0 subsurface in £1,3 is either contained in a 2-holed torus 
subsurface or is bounded by a boundary class. By §6.5 and §6.6, those 
level-0 subsurfaces contained in a 2-holed torus are reducible. It remains 
to show the reducibility of the level-0 subsurface £0,3(7) bounded by a 
boundary class 7 and two boundary components 61 and 62 of £1,3. Take 
disjoint non-separating classes 71 and 72 so that 7$ n 7 = 0 for i = 1, 2 
and take 73 so that 73 n 7, = 0 for i = 1, 2 and 73 _l_o 7. Note that 73, 
737 and 773 are non-separating classes. 

In the case (bl) , (f (a), f (ß)) = ( - 2 ,0 ) for all (a,ß) G P (£ i , 3 ) -
By Proposition 3.5(a) applied to the level-1 subsurface bounded by 71, 
72 and the triangle (7,73,773), we obtain f2(bi) + / 2 (6 2 ) + f2{l) -
f (l)f (hi)f $2) —4 = 0. Thus by Proposition 3.3, £0,3(7) is reducible. 

In the case (b2), we may assume that the characteristic of K is 
not 2 (otherwise the result is clear). Now both £0,3(73,71), i = 1,2 
and £0,3(71,72,7) are reducible since they lie in some 2-holed torus 
subsurfaces. Thus, by Corollary 3.3, /(6j) = ^f (is)f ("Ji), « = 1,2 
and / ( 7 ) = è / (7 i ) / (72 ) - This implies that f (h) f (b2) f (j) = 8. By 
Corollary 3.3, this shows that £0,3(7) is reducible. q.e.d. 

7 .3 . We now show that in the case (bl) or (b2), the trace function 
/ is a character. 

Take (a, ß) G P(E) and let X be the £1,1 subsurface bounded by a 
and let Y be the subsurface bounded by ß. 

If ( / ( a ) , f(ß)) = (2, ±2) , then by Lemma 7.2, we construct a diago-
nalizable representation p of 7ri (£) so that its character g = Xp satisfies 
g\s(x)uS(Y) = f\s(x)us(Y)- To show that / = g, by Corollary 3.7, it 
suffices to prove /(-y) = 5(7) for all 7 _l_o a and 7 _l_ ß. Consider the 
level-2 subsurface £1,2 containing X and 7. Since both / and g are 
reducible on all level-0 subsurfaces, by the proof of Proposition 6.2, it 
follows that 7(7) = 5(7). 

If (f(a),f(ß)) = (2,0) and the characteristic of K is not 2, we note 
that the genus g of £ 5 , n must be 1. Indeed, if g > 2, then there exists 
essential subsurface £1,2 whose boundary components ßi, i = 1,2 are 
non-separating simple loops in £ 9 , n . By the assumption f(ßi) = 0. 
But by Lemma 6.5 applied to £1,2, we have f(ßi) = ± 2 which is a 
contradiction. 

We now construct a representation as follows. Let <9£i,n be b\,..., bn 

and let % : 7ri(£i,n) —> 7Ti(£i,i) be the homomorphism induced by the 
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inclusion map j : Ei;„ —> E^i so that j(bn) = <9£i,i. Let p' : Ei^i —> 
SL(2,K) be a representation so that Xp'(a) = 0 for all non-separating 
class a and xp'(d^i,i) = —2 (see Corollary 3.4). Let po = p' ° i be a 
representation of 7ri(Si;„). The fundamental group 7ri(Si;„) is a free 
group on (n + 1) generators x\, ...,xn+\ where xi,...,xn-i correspond 
to the boundary components &i,...,ò„_i. Now modify po to produce a 
new representation p of 7ri(Si;„) by redefining p(xi) = ±po(xi) so that 
Xp(xi) = f{bi) for i = 1) 2, ...,n—1. Let g be the character of p defined on 
S(Si,„). Then g satisfies (#(a),#(/3)) = (-2,0) for all (a,ß) G P(Si,n) 
(indeed each non-separating loop in Si ;„ becomes a non-separating loop 
in £ i i). Furthermore, by Lemma 7.2, the character g is reducible over 
all level-0 subsurfaces. We prove that / = g by induction on n. The 
result follows for n = 1,2. We first claim that f(bn) = g(bn). To see 
this, take a boundary class a' so that Eo,3(c/) contains bn and 6n-i-
By the induction hypothesis applied to the subsurface Si ;„_i bounded 
by a', we conclude that / ( a ' ) = g (a1). By the reducibility of / and g 
on £0,3(0') and / (6 n - i ) = ffl&n-i), it follows that /(ftn) = g(bn). Now 
for any separating 7, let E' be the planar subsurface bounded by E' 
in Ei ;„. Since / and g are both reducible on all level-0 subsurfaces, / 
and g are reducible on E'. Furthermore, / and g have the same values 
on all but one boundary component 7 of E'. Thus, by the reducibility, 

fii) = gii)- q-e.d. 

8. Proof of Theorem 1.1 

We begin with the following special case of Theorem 1.1. 
8.1. Proposition. Suppose K is a quadratically closed field and f 

: G —>• K is a K-trace function defined on a finitely generated group G. 
Then f is the character of an SL(2,K) representation of the group. 

Proof. We first show that the result holds for G = Fn, the free group 
on n generators. Consider Fn as the fundamental group 7ri(Eijn_i) of 
the genus 1 surface with n — 1 boundary components. Then by the work 
of [14], / induces a trace function, denoted by / ' , defined on S'(Eijn_i). 
By Theorem 1.2, there exists a representation p of the fundamental 
group 7Ti(Ei;n_i) to SL(2, K) whose character is / ' . Thus xpix) = fix) 
for each x G vri(Ei;n_i) which has a simple loop representative. Now 
by the remark following Corollary 2.2, / is the character of p on G. 

For the general n-generator group G, we follow an observation of 
Gonzalez-Acuha and Montesinos-Amilibia [11]. Let <f> : Fn —> G be an 
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epimorphism with ker(cfi) = H. Then g = f o (fi is a if- trace function 
defined on Fn. Thus there exists a representation p of Fn whose char­
acter is g. Furthermore, by the construction trp(x) = 2 for all x £ H. 
Now we use the following lemma of [11]. 

L e m m a ([11]). Suppose p : Fn =< xi,...,xn >—> SL(2,K) is a 
representation and x G Fn so that trp(x) = 2 and tr(p([x,Xi])) = 2 for 
all i. Then either p(x) = id or p is reducible. 

Indeed, if p(x) ^ id, then p(x) has a unique eigenspace in K2. But 
tr(p([x,Xi\) = 2 shows that this eigenspace is invariant under all p{xj). 
Thus p is reducible. 

By the lemma, if p is irreducible, then p(x) = id for all x G H. 
In particular, the representation p induces a representation p' of G to 
SL(2, K) whose character is / . If p is reducible, we may replace p by its 
diagonalization p' without changing the character. Now tr(p'(x)) = 2 if 
and only if p'{x) = id. Thus the same argument goes through and we 
construct a representation whose character is / . q.e.d. 

8.2. We now prove Theorem 1.1 for any group G. Let / be a 
if- trace function defined on G. We shall consider the following three 
cases: (1) there exist x, y G G so that f([x,y]) ^ 2, (2) for all x,y G G, 
f([x, y]) = 2 but there exists t G G so that f(t) ^ ±2 , (3) for all 
x,y G G, f([x,y]) = 2 and f{x) = ±2 . 

In the first case, consider the subgroup < x, y > and restriction 
f\<x,y>- By Lemma 2.3, there exists an irreducible representation po of 
< x,y > whose character is f\<x,y>- Given any element z G G, consider 
the subgroup < x,y,z > and the restriction f\<x,y,z>- By Lemma 2.3, 
there exists a representation p :< x,y,z >—> SL(2,K) so that its char­
acter is f\<x,y,z>- Both p\<x,y> and po have the same character and both 
are irreducible. By Lemma 2.4, we may assume after conjugating p by 
an element in SL(2,K) so that p\<x,y> = Po- We denote this represen­
tation by pz :< x,y,z >—> SL(2,K). Note that since pz is irreducible, 
pz is unique. Now define a map p : G —> SL(2,K) by p(z) = pz(z). 
Clearly tr(p(z)) = f(z) by the construction. We claim that p is a 
representation. Indeed, given zi,Z2 G G, consider the 4-generator sub­
group < x,y,zi,Z2 > and the restriction f\<x,y,zi,z2>- By Proposi­
tion 8.1, there exists a representation ö :< x,y,zi,Z2 >—> SL(2,K) 
whose character is f\<x,y,zi,z2>- By Lemma 2.4, we may assume af­
ter conjugating by an element in SL(2,K) that 6\<Xty> = po. Thus 
we obtain pZi = 8\<XìVìZi> for i = 1,2. In particular this implies that 
p{z\Z2) = p{zi)p(z2). 
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In the case (2), we consider the subgroup < x,y > where y = x so 
that f2(x) ^ 4. Let po be a diagonal representation of < x,y > whose 
character is f\<x,y>- Note that the assumption f([a, b]) = 2 implies the 
reducibility of the representations on all 2-generator subgroup. We go 
through the same argument as in the previous paragraph by taking all 
representations pz,ô to be diagonalizable. Since f2(x) ^ 4, by Lemma 
2.6, these representations are unique. Thus the result follows. 

Finally in the case (3), we have f(x) = ± 2 and f([x,y]) = 2 for all 
x,y G G. If the characteristic of K is 2, then / = 0 and / is the character 
of the trivial representation. If the characteristic of K is not 2, then by 
Lemma 2.2 (b), we obtain f(xy) = f(x)f(y)/2. Define a representation 

p of G by p(x) = I , , , . Then the character of p is / . 

q.e.d. 

Remark . As the proof shows, Theorem 1.1 follows as long as one 
establishes Theorem 1.1 for the free group on 4 generators. 

9. S o m e quest ions 

There are some questions arising from the above considerations con­
cerning the finite presentations. It is known that there exists a finite 
set F C S(T.) so that the Teichmuller space (respectively the space of 
measured laminations) of E is defined by the restrictions of the length 
functions to F subject to a finite set of polynomial equations supported 
in level-1 subsurfaces. The analogous question for the mapping class 
group of the surface seems to be open. Namely, whether the mapping 
class group has a finite presentation whose generators are finitely many 
Dehn twists and whose relations (in these generators) are supported in 
level-1 subsurfaces. A recent work of Gervais [8] shows that one can find 
a finite set of Dehn twists generating the mapping class group so that the 
relations (in these generators) are supported in level-3 subsurfaces. Mo­
tivated by these, it is natural to ask if there exists a finite set F C S(E) 
so that SL(2,K) characters are determined by their restrictions to F 
subject to polynomial equations supported in level-1 subsurfaces. The 
proofs in §4 and §6 strongly suggest that the answer is aÆrmative. If 
the answer is positive, it also implies that the character variety of any 
finitely generated group can be defined by the restrictions of the char­
acters to a finite set of group elements subject to polynomial equations 
supported in 3-generator subgroups. The work of [11] shows that the 
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one can take the equations to be supported in 5-generator subgroups. 
There are several other related problems which seem to be interst-

ing. The first question is that given a topological group and a complex 
valued continuous trace function on the group, is it the character of a 
continuous SL(2,C) representation of the group? The second question 
is whether Theorem 1.1 remains true for the characters of GL(n,C) 
representations. To be more precise, suppose / is a complex valued 
function defined on the fundamental group of a surface so that the re­
striction of the function to each level-1 subsurface group is a GL(2, C) 
character. Is there a GL(n, C) representation p of the fundamental 
group so that tr(p(x)) = f(x) for all x lying in some level-1 subsur­
face? The third question is motivated by Royden's theorem [30] for 
the Teichmüller spaces. Suppose <f) is an algebraic automorphism of the 
SL(2, C) character variety of a surface group preserving the peripheral 
structure. Is <f) induced by a self-homeomorphism of the surface? Fi­
nally the analogous result to Jorgensen's discreteness criterion seems 
to be the following. Suppose p is a faithful representation of a closed 
surface group to SL(2, C) so that p is discrete when restricted to each 
level-1 subsurface group. Is p discrete? 

Appendix : A Proof of Lemma 2.3 

Lemma 2.3. Suppose K is a field in which all quadratic equations 
with coefficients in K have roots in K. Given six numbers x\,X2,X3,xi2, 
X23 and £31 in K, there exist three matrices Ai,A2, and A3 in SL(2,K) 
so that trAi = x;b and trAjAj = Xij, for i = 1,2,3 and (i,j) = 
(1,2), (2, 3), and (3,1). 

Proof. We divide the proof into three cases: in case 1, some x;b 7̂  2, 
in case 2, some Xij 7̂  ±2, and in case 3, all a;,'s and Xifs are ±2. 

Case 1. Some x;b 7̂  ±2, say x\ 7̂  ±2. Choose A in if so that 
'A 0 \ â _ (a 6N 

x v \ 
^ 3 = j be three SL(2) matrices. We will find a,b,c,d,x,y,z,w 

in K solving the trace equations. By ir^2 = X"2 and trA\A2 = £12, 
we obtain a + d = X2 and Xa + \~ld = x\2- Because A 7̂  ±1 , we can 
solve this system of linear equations uniquely in a, d in K. Similarly, 
by trA^ = X3 and trA^Ai = X31, we also solve x,w uniquely in K. It 
remains to find b,c,y,z in K so that be = ad — 1, yz = xw — 1 and 

xi = A + A"1. Clearly A 7̂  ±1 . Let Ai = _x , A 2 = , and 
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i r ^ 2 ^ 3 = ^23, i.e., cy + bz = X22 — ax — dw. If ad — 1 ^ 0, i.e., be ^ 0, 
choose 6 = 1 . Let c = ad—1. Now, due to be ^ 0, cy+bz = x^z — ax — dw 
and yz = xw — 1 can be solved in terms of y, z. If ad — 1 = 0, there are 
two more subcases: p = x^z — ax — dw ^ 0 or p = 0. If p = 0, we take 
b = c = 0 and choose any pair y, z so that yz = xw — 1. If p ^ 0, choose 
ft = 1, c = 0. Then we have z = p j^ 0 and y = (xw — l)/p. Thus, in all 
cases, we find three matrices in SL(2, K) satisfying the trace equations. 

Case 2. Some Xij ^ ±2 , say x\2 7̂  ±2 . Then by case 1 applied to 
the six ordered numbers {#12, £2, ^2^3 — ^23, ^ i , £31, ^2^3 ~~ ^2^23 — 2:3}, 
we find three SL(2,K) matrices Bi,B2, and B3 so that trB\ = x\i, 
trB<2 = X2, and trB% = X2X3 — 2:23, trB\B2 = xi, trB\B^ = X13 and 
trB2B% = X2X3—X2X23—X3. (Indeed, we take B\ = A1A2, B2 = A^ and 
B3 = A^XAZ to find the six numbers). Now let A\ = B\B2,Ä2 = B2 

and A3 = B^ B3. By the basic trace identity (Lemma 2.2(a)), it follows 
that trAi = x;b and trAjAj = Xij. 

Case 3 . All x^s and x^s are ±2 . First we note that if trAi = Xi 
and trAjAj = Xij, then (—Ai,A2,As) solves the problem for the six 
numbers {—xi,X2,xz, — £12,2:23, ~~ ̂ 31}- Thus, by changing the signs of 
XiS if necessary, we may assume that x\ = X2 = X3 = 2. There are 
four cases for (x\,X2,X2-,x\2-,£23,^31) up to symmetry: (2 ,2 ,2 ,2 ,2 ,2) , 
( 2 , 2 , 2 , - 2 , 2 , 2 ) , ( 2 , 2 , 2 , - 2 , - 2 , 2 ) and ( 2 , 2 , 2 , - 2 , - 2 , - 2 ) . The corre­
sponding solutions are listed below. 

For (2 ,2 ,2 ,2 ,2 ,2) , a solution (AuA2,A-i) is (id,id,id). For 
(2, 2, 2, —2, 2, 2), a solution is 

(G :)•(-, !)•(; ?))• 
For (2, 2, 2, - 2 , - 2 , 2), a solution is 

<G :).(-4 " ) • ( - Î)»-
Finally for (2, 2, 2, - 2 , - 2 , - 2 ) , a solution is 

^0 l J ' - 4 l J ' - 4 3P" 

q.e.d. 
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