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1. In troduct ion 

In Berger's classification [1] of holonomy groups of Riemannian man­
ifolds there are two special cases, the exceptional holonomy groups G<2 
in 7 dimensions and Spin(7) in 8 dimensions. Bryant [2] and Bryant and 
Salamon [3] showed that such metrics exist locally, and wrote down ex­
plicit, complete metrics with holonomy G<2 and Spin(7) on noncompact 
manifolds. 

The first examples of metrics with holonomy G<i and Spin(7) on 
compact 7- and 8-manifolds were constructed by the author in [10], 
[11], [12]. The survey paper [13] provides a good introduction to these 
constructions. Here is a brief description of the method used in [10] 
to construct compact 8-manifolds with holonomy Spin(7), divided into 
four steps. 

(a) We start with a flat Spin(7)-structure ( f ^ g o ) on the 8-torus T 8 , 
and a finite group V of isometries of T 8 preserving ( f ^ g o ) - Then 
T8/r is an orbifold, a singular manifold with only quotient singu­
larities. 

(b) For certain T one can resolve the s ingu la r i t i e so fT 8 / r in a natural 
way, using complex geometry. This gives a nonsingular, compact 
8-manifold M, and a projection n : M —> T8 /T. 
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(c) We write down a 1-parameter family of Spin(7)-structures (Qt,g t) 
on M for t G (0, e), such that (Qt,g t) has small torsion when t is 
small, and converges to the singular Spin(7)-structure 7r*(Oo,go) 
as t —> 0. 

(d) Using analysis we prove that for small t, the Spin(7)-structure 
(Qt,g t) can be deformed to a nearby Spin(7)-structure (Ùt,g t) on 
M, with zero torsion. Then g t has holonomy Spin(7). 

In this paper we will describe a new method for constructing com­
pact 8-manifolds with holonomy Spin(7), in which one starts not with 
a torus T 8 but with a Calabi-Yau A-orbifold Y with isolated singular 
points pi,... ,p k. We use algebraic geometry to find a number of suit­
able complex orbifolds Y, which in the simplest cases are hypersurfaces 
in weighted projective spaces CP a0 a . 

Then, instead of a finite group T, we suppose we have an antiholo-
morphic, isometric involution u : Y —> Y, whose only fixed points are 
pi,... ,p k- This involution does not preserve the SU(4)-structure on Y, 
but it does preserve the induced Spin(7)-structure. We think of a as 
breaking the structure group of Y from SU(4) down to Spin(7). De­
fine Z = Y/(a). Then Z is an orbifold with isolated singular points 
pi,... , p k, and the Calabi-Yau structure on Y induces a torsion-free 
Spin(7)-structure on Z. 

If the singularities of Z are of a suitable kind, we can resolve them 
to get a compact 8-manifold M with holonomy Spin(7), as in steps (b ) -
(d) above. To perform the resolution we need to find Asymptotically 
Locally Euclidean Spin(7) -manifolds corresponding to the singularities 
of Z, which are a special class of noncompact Spin(7)-manifolds asymp­
totic to quotient singularities R 8 / G . 

Our construction then yields new examples of compact 8-manifolds 
M with holonomy Spin(7). We calculate the Betti numbers b (M) in 
each case. They turn out to be rather different to the Betti numbers 
arising from the previous construction in [10]. In particular, in this new 
construction the middle Betti number b4 tends to be rather large, as big 
as 11 662 in one example, whereas the manifolds of [10] all satisfied b4 < 
162. 

Sections 2 and 3 introduce the holonomy group Spin(7) and Calabi-
Yau orbifolds, and §4 defines the idea of ALE Spin(7)-manifold, and 
gives a number of examples. Section 5 then proves our main result, 
that given a Calabi-Yau 4-orbifold Y and an antiholomorphic involution 
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a : Y —>• Y satisfying certain conditions, we can construct a compact 
8-manifold M with holonomy Spin(7). 

We explain in §6 how to use the construction in practice, and ways of 
computing the Betti numbers of the resulting 8-manifolds M. Sections 
7-10 apply the construction to generate new examples of compact 8-
manifolds with holonomy Spin(7), and we finish in §11 with a discussion 
of our results. 

The material in this paper will be discussed in the author 's book 
[14], which pays much attention to the exceptional holonomy groups, 
and also gives a more sophisticated version of the original construction 
[10] of compact 8-manifolds with holonomy Spin(7). 

2. Background on the ho lonomy group Spin(7) 

We now collect together some facts we will need about the holonomy 
group Spin(7), taken from the books by Salamon [18, Ch. 12] and the 
author [14, Ch. 10]. First we define Spin(7) as a subgroup of GL(8,R). 

Definit ion 2 .1 . Let R8 have coordinates (xi,... ,x&). Write d x ^ 
for the 4-form dx A dx j A dx^ A dx; on R8 . Define a 4-form ÇIQ on R8 by 

ft0 =dx i234 + dxi256 + d x i 2 7 8 + d x i 3 5 7 - d x i 3 6 8 

(1) - d x i 4 5 8 - d x i 4 6 7 - dx2 358 - d x 2 3 6 7 ~ dx 2 457 

+ d x 2 4 6 8 + dx 3 4 5 6 + dx 3 4 7 8 + dx 5 6 7 8 . 

The subgroup of GL(8, R) preserving QQ is Spin(7). It is a compact, con­
nected, simply-connected, semisimple, 21-dimensional Lie group, which 
is isomorphic as a Lie group to the double cover of SO(7). This group 
also preserves the orientation on R8 and the Euclidean metric go = 

dx? H \- dxj on R8. 
Let M be an 8-manifold. For each p G M , define A p M to be the 

subset of 4-forms Q G A4T*M for which there exists an isomorphism 
between T p M and R8 identifying fl and the 4-form Q0 of (1). Let AM 
be the bundle with fibre A p M at each p G M. Then AM is a subbundle 
of A 4 T*M with fibre GL(8 ,R) /Spin(7) . It is not a vector subbundle, 
and has codimension 27 in A 4 T*M. We say that a 4-form Q on M is 
admissible if Q\p G A p M for each p G M. 

Now the conventional definition of a Spin(7)-structure on an 8-
manifold M (which we will not use) is a principal subbundle Q of the 
frame bundle F with structure group Spin(7). There is a 1-1 corre-
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spondence between Spin(7)-structures Q in this sense, and admissible 
4-forms Q G C°°(AM) on M. Each Spin(7)-structure Q induces a 4-
form Q, a metric g and an orientation on M, corresponding to ÇÎQ, gQ 
and the orientation on R8 . 

Defini t ion 2 .2 . Let M be an 8-manifold, O an admissible 4-form 
on M, and g the associated metric. We shall abuse notation by referring 
to the pair (Q, g) as a Spin(7)-structure on M. Let r be the Levi-Civita 
connection of g. We call r f 2 the torsion of (O, g), and we say that (O, g) 
is torsion-free if r O = 0. A triple (M, Q, g) is called a Spin(7)-manifold 
if M is an 8-manifold, and (O, g) a torsion-free Spin(7)-structure on M . 

Let (£l,g) be a Spin(7)-structure on an 8-manifold M. Then (il,g) 
is torsion-free if and only if dO = 0. If (ii, g) is torsion-free then g is 
Ricci-flat, and M is spin and has a constant positive spinor. If M is 
compact and Hol(g) = Spin(7) then the positive Dirac operator 

D+ : C°°(S+) -+ C°°(S-) 

has kernel R and cokernel 0. Thus D+ has index 1. 
But the index of D+ is the A-genus A(M), and is given by 

(2) 24A(M) = - 1 + bl(M) - b2(M) + b3(M) + b\(M) - 2b4_(M), 

where b = b (M) are the Betti numbers of M. Thus a compact 8-
manifold M with holonomy Spin(7) must satisfy b3 + b\ = b2 + b i + 25. 
As in [10, Th. C], one can use this to show: 

T h e o r e m 2 .3 . Let (M,Q,g) be a compact Spin(7)-manifold. Then 
Hol(g) = Spin(7) if and only if M is simply-connected, and b3 + b\ = 
b2 + bt + 25. 

The following result [10, Th. D] describes the moduli space of holon­
omy Spin(7) metrics. 

T h e o r e m 2.4 . Let M be a compact 8-manifold admitting metrics 
with holonomy Spin(7). Then the moduli space of metrics with holon­
omy Spin(7) on M, up to diffeomorphisms isotopic to the identity, is a 
smooth manifold of dimension 1 + b i (M) . 

Our next proposition follows from the ideas of [14, x10.6]. 

Propos i t i on 2.5. Let M be an 8-manifold. Then there exists a 
tubular open neighbourhood TM of AM in A4T*M which is a fibration 
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over M, a smooth map of fibre bundles 0 : TM —> AM, and positive 
constants p, C, such that 

(i) If (Q,g) is a Spin(7)-structure and £ a 4-form on M with j£ — 
üj g <p, thenÇeC°°(TM). 

(ii) Suppose (£l,g) is a Spin(7)-structure on M, and £ a A-form on 
M with j£ - nj g < p. Write Q' = 6(£), and let {Q',g') be the 
associated Spin(7)-structure. Then j£ — Çl'j gi < jÇ — Qj g. If (il, g) 
is also torsion-free, then | r ( £ — fl')\ , < C | r ( £ — £l)\ . 

Here r , r are the Levi-Civita connections of g and g', and j.j g, j . j g' 
the norms defined using g and g'. 

This is an entirely local result, involving calculations at a point, and 
p, C are independent of M. The inequality j£ — Çl'j gi < j£ — Qj g in part 
(ii) should be understood as saying that Q' = ©(£) is the Spin(7)-form 
closest to £. That is, TM is a small open neighbourhood of AM in 
A4T*M, and 0 is the projection from TM to the nearest point in AM. 
But as we have not fixed a metric on M, we do not have a way to 
measure distance in A4T*M, and so we use the metrics g, g' associated 
to the Spin(7)-forms O, Q! to do this. 

Our final result is proved in [fO, Th. A & Th. B], and also in 
[14, Ch. 13]. 

Theorem 2.6. Let X,p,u be positive constants. Then there exist 
positive constants K, K such that whenever 0 < t < K, the following is 
true. 

Let M be a compact 8-manifold, and (£l,g) a Spin(7) -structure on 
M. Suppose that <f> is a smooth A-form on M with dO + dcf) = 0, and 

(i) k0k L2 < At9/2 and kd<f>k Lw < Xt, 

(ii) the injectivity radius ö(g) satisfies ö(g) > pt, and 

(iii) the Riemann curvature R(g) satisfies \\R(g)\\C0 < ut~2. 

Then there exists a smooth, torsion-free Spin(7)-structure (Cl,g) on M 
with k f ì - f ik Co <Ktll2. 

Here is how to interpret this result. As rf2 = 0 if and only if dQ = 0 
and d(p + dO = 0, the torsion rf2 is determined by dcf). Thus we can 
think of 0 as a first integral of the torsion of (£l,g). So k0k L2 and 
kd0k Lio are both measures of the torsion of (£l,g). As t is small, part 
(i) of the theorem says that (O, g) has small torsion in a certain sense. 
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Parts (ii) and (iii) say that the injectivity radius of g should not 
be too small, and its curvature not too large. When a metric becomes 
singular, in general its injectivity radius goes to zero and its curvature 
becomes infinite. So we can interpret (ii) and (iii) as saying that g is 
not too close to being singular. 

Thus, the theorem as a whole says that if the torsion of (O, g) is small 
enough, and g is not too singular, then we can deform (O, g) to a nearby, 
torsion-free Spin(7)-structure (Ù, g) on M. We can hence use Theorem 
2.3 to show that if M is simply-connected and b3 + b\ = b2 + b + 25, 
then g has holonomy Spin(7). 

We prove Theorem 2.6 using analysis: we write the condition that 
(&,g) be torsion-free as a nonlinear elliptic p.d.e., which can be approx­
imated by a linear elliptic p.d.e. when Q — Q is small. Then we use 
tools such as Sobolev spaces, the Sobolev Embedding Theorem and el­
liptic regularity to show that this nonlinear elliptic p.d.e. has a smooth 
solution. 

3. C a l a b i - Y a u manifolds and orbifolds 

We now give a brief introduction to Calabi-Yau geometry, and the 
relation between Calabi-Yau 4-folds and Spin(7)-manifolds. Some suit­
able references are Salamon [18, Ch. 8] and the author [14, Ch. 6]. 

Defini t ion 3 . 1 . A Calabi-Yau manifold or orbifold is a compact 
Kahler manifold or orbifold (Y, J, g) of dimension m, with Hol(g) = 
SU(m). 

Now Calabi-Yau manifolds and orbifolds are nearly the same thing 
as Ricci-flat Kahler manifolds and orbifolds, as we see in the next propo­
sition. It follows from elementary properties of holonomy groups and 
Kahler geometry. 

Propos i t i on 3 .2 . Any Calabi-Yau orbifold (Y,J,g) is Ricci-flat. 
Conversely, let (Y, J, g) be a compact Ricci-flat Kahler orbifold of di­
mension m, with singular set S. Suppose that Y\S is simply-connected 
and h p'°(Y) = 0 for 0 < p < m. Then Hol(g) = SU(m), so Y is a 
Calabi-Yau orbifold. 

But using Yau's proof of the Calabi conjecture [20], one can show 
that suitable complex orbifolds admit Ricci-flat Kahler metrics. 

T h e o r e m 3 .3 . Let (Y,J) be a compact complex orbifold admit-
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ting Kahler metrics, with c\{Y) = 0. Then there is a unique Ricci-flat 
Kahler metric in each Kahler class on Y. 

Now the action of SU(m) on m fixes the complex m-form 
dz\ A • • • A dz m. It follows by general principles of Riemannian holon-
omy that any Riemannian manifold or orbifold with holonomy SU(m) 
admits a complex m-form 9 corresponding to dz\ A • • • A dz m which is 
constant under the Levi-Civita connection r . So we get: 

Propos i t i on 3 .4 . Let (Y, J,g) be a Calabi-Yau manifold or orbifold 
of dimension m, with Kahler form LO. Then there exists a constant 
(m,0)-form 9 on Y, such that near every point p G Y we can choose 
complex coordinates (zi,... ,z m) in which 

g = jdzij2 + --- + jdz m j 2 , 

(1) LO =-(dzi A dzi-\ \-dz mAdz m), 

and 9 = dzi A • • • A dz m 

at p. This form 9 is unique up to multiplication by e i^ for some 

</>£ [0,27r). 

We call 9 the holomorphic volume form of Y. Now we restrict our 
attention to complex dimension 4. Here is a criterion for a complex 
4-orbifold to be Calabi-Yau. 

Propos i t i on 3 .5 . Let (Y, J) be a compact complex A-orbifold with 
ci(Y) = 0, admitting Kahler metrics. Suppose YnS is simply-connected, 
where S is the singular set of Y, and h2,0(Y) = 0. Then each Kahler 
class on Y contains a unique metric g such that (Y, J,g) is a Calabi-Yau 
A-orbifold. 

Proof As m(YnS) = 0 we have b^Y) = 0, so that h1'0Y) = 0. 
Since 7i"i (Y n S) = 0 and c\ (Y) = 0 the canonical bundle K Y of Y is 
trivial, and this implies that h p>°(Y) = h4-p>°(Y). Thus h3>°(Y) = 0. 
But we are given that h2,0(Y) = 0. Hence h p,0(Y) = 0 for 0 < p < 4, and 
the proposition follows from Proposition 3.2 and Theorem 3.3. q.e.d. 

A Calabi-Yau 4-fold Y has holonomy SU(4), and so carries a natu­
ral torsion-free SU(4)-structure. Since SU(4) C Spin(7) C SO(8), this 
SU(4)-structure induces a Spin(7)-structure on Y, which is also torsion-
free. 

Propos i t i on 3 .6 . Suppose (Y,J,g) is a Calabi-Yau 4-orbifold, with 
Kahler form u> and holomorphic volume form 6. Define a A-form Q. on 
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Y by il = 2wAw + Re(ö). Then (£l,g) is a torsion-free Spin(7)-structure 
on Y. 

Proof. Let p b e a point in Y. Then by Proposition 3.4 we can choose 
complex coordinates (z\,... , z4) near p such that g,u> and 6 are given 
by (1) at p, with m = 4. Define real coordinates (x\,... ,x&) on Y near 
p such that (zi,... , z4) = (x\ + ix2, x3 + ix4, x$ + ixQ, x-J + ix%). Then 
from (1) we see that g, u> and Re(#) are given at p by 

g = dx\ H + dxl, co = d x i 2 + dx 3 4 + dx 5 6 + dx 7 8 

and 

Re(0) = d x i 3 5 7 - d x i 3 6 8 - dx i 4 5 8 - dx i 4 6 7 

- d x 2 3 5 8 - d x 2 3 6 7 - d x 2 4 5 7 + dx 2 4 68 , 

where dxjj...j = dx A dx j A • • • A dxi. 
It follows from this equation that Q = ^cv A LO + Re(ö) coincides 

with the 4-form QQ defined in (1). As this holds for all p G Y, we see 
that (il,g) is a Spin(7)-structure on Y, in the sense of Definition 2.2. 
Now r w = r6 = 0, where r is the Levi-Civita connection of g, and so 
r O = 0. But r O is the torsion of (f2,g), so that (£l,g) is torsion-free, 
as we want. q.e.d. 

Thus Calabi-Yau 4-folds are also Spin(7)-manifolds. 

4 . A L E Spin(7)-manifolds 

ALE manifolds, or Asymptotically Locally Euclidean manifolds, are 
a class of noncompact Riemannian manifolds with one end modelled 
asymptotically on a quotient singularity R n jG. 

Defini t ion 4 .1 . Let G be a finite subgroup of SO(n) which acts 
freely on R n n {0}. Let X be a noncompact n-manifold and rr : X —> 

n1G a continuous, surjective map, such that TT _ 1 (0 ) is a compact sub­
set of X, and n : X n v r " 1 ^) ->• (R" /G) n {0} is a diffeomorphism. Then 
we call (X,ir) a real resolution of n / G . 

A metric g on X is called Asymptotically Locally Euclidean, or ALE, 
if 

r ( T T * ( g ) - g0) = O{r~n-1) on {x G R n / G : r{x) > R}, for all l > 0. 
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Here go is the Euclidean metric on n /G, r is the radius function on 
R 8 / G , and R > 0 is a constant. We say that (X,g) is asymptotic 
toR'/G. 

One reason ALE manifolds are interesting is that if you have an 
ALE manifold (X,g X) asymptotic to n /G, and a compact Riemannian 
orbifold (Y,g Y) with isolated singularities modelled on n /G, then you 
can glue X and Y together to get a nonsingular, compact Riemannian 
manifold (M,g M). We think of this as resolving the singularities of Y 
using X. 

This technique is particularly valuable when X and Y both have 
special holonomy, so that Hol(g X) and Hol(g Y) both lie in some holon-
omy group H C SO(n), as then we can hope to construct a metric g M on 
M with H o l g M) Ç H. So ALE manifolds (X,g X) with Hol(g X) Ç H are 
ingredients in a construction for compact manifolds with holonomy H. 

In fact the only interesting candidates for the holonomy group H 
are U(m) and SU(m) for m > 2, and Spin(7). Kronheimer [16], [17] 
constructed and classified all ALE 4-manifolds with holonomy SU(2). 
Calabi [4, p. 285] found an explicit family of ALE manifolds with holon­
omy SU(m) asymptotic to m / Z m, and more generally the author [15], 
[14, Ch. 8] gave existence theorems for ALE manifolds with holonomy 
SU(m). No examples of ALE 8-manifolds with holonomy Spin(7) are 
known, at the time of writing. 

However, we can construct compact 8-manifolds with holonomy 
Spin(7) using only ALE 8-manifolds whose holonomy is a proper sub­
group of Spin(7) such as SU(4) or Z2 n SU(4), and many examples of 
these can be found using the results of [15]. To discuss these, it is useful 
to define the idea of ALE Spin(7) -manifold, as in [14, Ch. 13]. 

Definit ion 4 .2 . Let G be a finite subgroup of Spin(7) which acts 
freely on R8 n {0}, let (X,ir) be a real resolution of Rs/G, and (fi, g) a 
torsion-free Spin(7)-structure on X. We call (X,il,g) an ALE Spin(7)-
manifold if 

r l(7T*(fi) - fio) = O(r-s-l) on {x G R8/G : r{x) > R}, for all l > 0. 

Here fio is the Spin(7) 4-form on R 8 / G given in (1), r the radius function 
on R 8 / G , and R > 0 a constant. 

In the rest of the section we give some examples of ALE Spin(7)-
manifolds. 
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4 .1 A n e x a m p l e of a n A L E Spin(7 ) -mani fo ld 

We define a finite group G C Spin(7), such that R 8 / G has an isolated 
singularity at 0, and construct two topologically distinct ALE Spin(7)-
manifolds (Xi,Qi,gi) and (X2, ^2,g2) asymptotic to R 8 / G . These will 
be used in §5 as part of a construction of compact 8-manifolds with 
holonomy Spin(7). 

Let R8 have coordinates (xi,... ,xg) and Spin(7)-structure (570)g0)? 
as in Definition 2.1. Use the complex coordinates 

(zi,z2,z3,z4l) = (xl +ix2,x3 + i x , x 5 +ixe,x7 +ixs) 

to identify R8 with C 4 . Then g0 = jdzij2 H h jdz4j
2, and O0 = \LO0 A 

coo + Re(öo), where LOO is the Kahler form of go and 0Q = dz\ A • • • A dz ̂  
the complex volume form on C 4 . 

Define a, ß : C4 - • C4 by 

a : ( z i , . . . ,z4) !->• (izi,iz2,iz3,iz4:), 

ß : ( z 1 , . . . , z 4 ) !->• ( z 2 , - z 1 , ^ 4 , - z 3 ) -

Then a G SU(4) C Spin(7) and /3 G Spin(7), and a,/3 satisfy a 4 = 
/34 = 1, a2 = ß2 and a/3 = ßa3. Let G = (a,ß). Then G is a finite 
nonabelian subgroup of Spin(7) of order 8 which acts freely on R8 \ {0}. 

Now C 4 / ( a ) is a complex singularity, as a G SU(4). Let (Yi,7ri) be 
the blow-up of C 4 / ( a ) at 0. Then Y\ is the unique crepant resolution 
of C / ( a ) . The action of ß on C 4 / ( a ) lifts to a free antiholomorphic 
map ß : Yx ->• Yx with ß2 = 1. Define Xx = Yi/(/?). Then Xx is a 
nonsingular 8-manifold, and the projection -K\ : Y\ —> C 4 / ( a ) pushes 
downtoTTi :Xi ->• R8/G. 

By [15, Th. 3.3, Th. 3.4] there exist ALE Kahler metrics gt on Yx 

with holonomy SU(4), which were in fact written down explicitly by 
Calabi [4, p. 285]. Each such g\ is invariant under the action of ß on 
Y\. Let LUI be the Kahler form of gi, and 6\ = 7r*(öo) the holomorphic 
volume form on Y\. Then Proposition 3.6 defines a torsion-free Spin(7)-
structure (Q\,g\) on Y\ with Çl\ = ^LO\ ALO\ + Re(#i). 

As ß*{u}\) = —LUI and ß*(9i) = 6\, we see that ß preserves (Qi,gi). 
Thus (ili,gi) pushes down to a torsion-free Spin(7)-structure (ili,gi) 
on Xi. Then (Xi,ili,gi) is an ALE Spin(7)-manifold asymptotic to 
R8/G. The Betti numbers of Xt are b1 = b2 = b3 = 0 and b4 = 1, 
a n d 7 T I ( X L ) = Z2. 
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4.2 A second ALE Spin(7)-manifold asymptot ic to R8/G 

Define new complex coordinates (wi,... ,w4) on R8 by 

(wi,w2,w3,w4) = (-xi + i x3 , x2 + i x , ~x5 + i x 7 , xë + ix%). 

Then go = jdwij2 + • • • + jdw4j2 and ilo = \OJ'O ALO'0 + Re(90), where LO0 

is the Kahler form of go with respect to the complex structure induced 
by the w j , and 6'0 = dw\ A • • • A dw ^ is the complex volume form on C 4 . 

As the action of SU (4) on R8 = C4 induced by the w j preserves 
go,u'o and 9'0, it preserves (fio,go)- Thus the action of SU(4) on R8 

compatible with the coordinates w j is a subgroup of Spin(7). Note that 
this is a different SU(4) subgroup of Spin(7) to that considered above, 
induced by the z j . In the coordinates w j , we find that a, ß act by 

a : (wi,... ,w4) !->• (w2,-wi,w,-w3), 

ß : (wi,... ,w4) i-)- (iwi,iw2, iw3, iw4). 

Observe that (4) and (5) are the same, except that the roles of a, ß are 
reversed. Therefore we can use the ideas above again. 

Let Y2 be the crepant resolution of C4 /( /?). The action of a on 
C J(ß) lifts to a free antiholomorphic involution of Y%. Let X2 = Y ^/(a). 
Then X% is nonsingular, and as above there exists a torsion-free Spin(7)-
structure (^2,g2) on X2, making (X ^ , ^ , ^ ) into an ALE Spin(7)-
manifold asymptotic to R8 /G. 

Now (Xi, Qi,gi), (X2, £12,g2) are clearly isomorphic as Spin(7)-mani-
folds, but they should be regarded as topologically distinct ALE mani­
folds, because the isomorphism between them acts nontrivially on R8 /G. 
Thus, we have found two topologically distinct ALE Spin(7)-manifolds 
(X\,Qi,gi), (X2, 0,2,g2) asymptotic to the same singularity R8 /G. 

4.3 Other examples of ALE Spin(7)-manifolds 

We can use the ideas above to construct other ALE Spin(7)-manifolds 
too. Here we very briefly describe two infinite families of ALE Spin(7)-
manifolds X n, X n for n = 1, 3, 5 , . . . . For simplicity they will not be 
used in the rest of the paper, although they easily could be. 

Identify R8 and C4 as in §4.1. Let n > 1 be an odd integer, and 
define a, ß, 7 : C4 —> C4 by 

a : (zu... ,z4) ^ (e2^n z1,e-2^n z2,e27Ti^n z3,e-'27T^n z4), 

ß : (zi,... ,z4) i->- (izi,iz2,iz3,iz4), 

7 : (zi,... ,z4) i->- (z2,-zi,z4,-z3). 
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Then a, ß G SU(4) and 7 G Spin(7), and G n = (a, ß, 7) is a finite 
nonabelian subgroup of Spin(7) of order 8n which acts freely on R8 n {0g. 
Note that G1 coincides with the group G of §4.1-§4.2. 

We can construct a family of ALE Spin(7)-manifolds asymptotic 
to Rs/G n as follows. The complex singularity C4/(a,ß) has a unique 
crepant resolution Y n, which can be described explicitly using toric 
geometry. The action of 7 on C 4 / (« , /?) lifts to a free antiholomorphic 
involution 7 : Y n —> Y n, so that X n = Y n/'(7) is a nonsingular 8-
manifold with a projection 7rn : X n —> R 8 / G n. 

By the results of [15], there exist ALE Kahler metrics g n on Y n 
with holonomy SU(4). We can choose g n to be 7-invariant, and then 
the induced Spin(7)-structure (Qn,g n) on Y n is also 7-invariant, and 
pushes down to X n, making (X n, Qn, g n) into an ALE Spin(7)-manifold 
asymptotic to R8 /G n. Using the idea of §4.2, we can also construct a 
second ALE Spin(7)-manifold (X n ,Qn ,g n) asymptotic to R8/G n. 

5. P r o o f of t h e construct ion 

Starting with a Calabi-Yau 4-orbifold Y with isolated singularities 
of a certain kind, and an antiholomorphic involution a on Y, we will 
now construct a compact 8-manifold M by resolving Z = Y/{a), and 
prove that there exist torsion-free Spin(7)-structures (Ù,g) on M, which 
have holonomy Spin(7) if M is simply-connected. 

5.1 A c las s o f Spin(7) -orbi fo lds Z 

We set out below the ingredients in our construction, and the assump­
tions they must satisfy. 

Condi t ion 5 .1 . Let (Y, J) be a compact complex 4-orbifold with 
c\(Y) = 0, admitt ing Kahler metrics. Let a be an antiholomorphic 
involution on Y. That is, o : Y —>• Y is a diffeomorphism satisfying 
a2 = id and a*(J) = -J. Define a : C4 -> C4 by 

(6) a : (zi,z2,z3,z4:) 1—> {izx.iz ^.iz ^.iz ^). 

Then a 4 = 1, so that (a) = Z4, and C 4 / ( a ) has an isolated singular 
point at 0. We require that the singular set of Y should be k isolated 
points pi,... ,p k for some k > 1, each modelled on C*/{a), and that 
the fixed set of a in Y is exactly {pi,... ,p k g- We also suppose that 
Y n {pi,... ,p k g is simply-connected, and h2,0(Y) = 0. 
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In the rest of the section we assume that Condition 5.1 holds. 

Propos i t i on 5 .2 . There is a a-invariant metric g Y on Y making 
(Y,J,g Y) into a Calabi-Yau orbifold. We can choose the holomorphic 
volume form 9Y on (Y,J,g Y) such that a*(9Y) = 0Y. Let (ÇlY,g Y) be the 
torsion-free Spin(7)-structure on Y from Proposition 3.6. Then (QY,g Y) 
is a-invariant. 

Proof. Let g' be a Kahler metric on Y. Then o~*(g') is also a Kahler 
metric on Y, and so g" = g' + o~*(g') is a a-invariant Kahler metric on 
Y. Let K be the Kahler class of g". Then K is a-invariant, regarded as 
an equivalence class of metrics on Y. By Condition 5.1 we know that 
ci(Y) = 0 and h2,0(Y) = 0, and that Y n S is simply-connected, where 
S = {pi,... ,p k g is the singular set of Y. Thus by Proposition 3.5, 
the Kahler class K contains a unique metric g Y such that (Y, J,g Y) is a 
Calabi-Yau orbifold. As K is a-invariant we see that g Y is a-invariant, 
by uniqueness of g Y. 

Proposition 3.4 shows that there exists a holomorphic volume form 9 
on Y. Since a is antiholomorphic, it is easy to show that a* (9) = e ^ ö , 
for some <f> G [0, 2ir). Define 9Y = e i^>29. Then 9Y is a holomorphic 
volume form for (Y, J,g Y), and a*(6Y) = 9Y, as we want. 

Let (flY,g Y) be as in Proposition 3.6. Then ÇlY = ^LOY AcoY+Re(9Y), 
where LOY is the Kahler form of g Y. As o*(g Y) = g Y and o*(J) = —J we 
have o*(u}Y) = — u>Y, and a*(Re(9Y)) = Re(9Y) as o*(9Y) = 9Y. Thus 
QY and g Y are both a-invariant. q.e.d. 

In our next result, if Y is an orbifold and p G Y an orbifold point 
modelled on n /G, then we say that the tangent space T p Y to Y at p is 

n /G, in the obvious way. The proof looks complicated, but it is really 
only linear algebra. 

Propos i t i on 5 .3 . For each j = 1 , . . . ,k we can identify the tangent 
space T p Y to Y atp j with C 4 / ( a ) so that g Y is identified with jdz\j2 + 
• • • + jdz4j2 at p j , 9Y is identified with dz\ A • • • A dz ^ at p j , and d a : 
T p Y —> T p Y is identified with the map ß : C 4 / ( a ) —> C 4 / ( a ) given by 

(7) ß : (zi,...,zi){a) i—> (z2,-zi,z4,-z3){a). 

Proof. Since J,g Y and 9Y form a Calabi-Yau structure on Y, there 
certainly exists an isomorphism i : T p Y —> C 4 / ( a ) which identifies g Y 
with jdzij2 + • • • + j d z j 2 and 9Y with dzi A • • • A dz ^. This i is unique 
up to the action of SU(4) on C 4 / ( a ) . That is, if B G SU(4), then 
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Boi :T p Y -
6Y with dzi A 

Nowda:T p j Y p j 

with the map 7 : C 4 / ( a ) 

4 / ( a ) also identifies g Y with jdzij2 + • • • + j d z j 2 and 
A dz4 . 

TY is complex antilinear, and so t identifies der 
—> C 4 / ( a ) given by 

(8) 7 : 

z l \ 
z-i 

z'A 

z 

: k = 0 ,1 , 2, 3 i k A 

>, 

zA 
z 2 

z 3 w 
: k = 0,1, 2, 3 

for some 4 x 4 complex matrix A. In fact A is only defined up to 
multiplication by a power of i. 

As d a preserves g Y and takes 0Y to Y on T p j Y, it follows that 7 
preserves jdzij2 + - • - + jdz4j2 and takes dzi A- • • Adz4 to dzi A- • • Ad^4 on 
C4/{a). These imply that AA = I and det(A) = 1, and so A G SU (4). 
Also, 7 2 = I as a2 = id, and this implies that AA = i k I for k = 0 ,1 , 2 
or 3. And because cr fixes only p i , . . . ,p k in Y, the only fixed point of 
7 in C*/{a) is 0. 

So A lies in SU(4) and satisfies AA = i k I. When we replace t by 
B o 1 for B G SU(4), the matrix A is replaced by BAB t. We wish to 
show that we can choose B G SU(4) such that the maps ß of (7) and 7 
of (8) coincide. That is, we must show that there exists B G SU(4) and 
l = 0 ,1 , 2 or 3 such that 

(9) i l BAB t 

/ 0 1 0 0\ 
- 1 0 0 0 
0 0 0 1 

\ 0 0 - 1 0 / 

Now AA = i I shows that A and A commute, and so AA = A A = 
AA . Thus i k I is a real matrix, which implies that k = 0 or 2, and 
AA = ± I . By studying the eigenvectors of A, one can prove that there 
exists B G SU(4) such that BAB t is one of 

(I 0 
0 1 
0 0 

\ 0 0 

°\ / 0 1 0 0\ / 0 1 0 0\ 
0 
0 

-v 
Î 

- 1 0 0 0 
0 0 0 1 
o 0 -1 o) 

) i 
- 1 0 0 0 
0 0 0 1 
0 0 - 1 o) 

We exclude the first three possibilities because 7 fixes (1 ,0 ,0 ,0) (a) in 
C 4 / ( a ) , contradicting the fact that the only fixed point of 7 in C4 /(a) 
is 0. Put t ing l = 0 in the fourth case and l = 3 in the fifth, we see that 
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(9) holds. Thus Boi identifies T p j Y with C / ( a ) and satisfies all the 
conditions of the proposition, and the proof is complete. q.e.d. 

Now §4.1 defined a finite group G = {a, ß) acting on R8, and the 
definitions (6) and (7) of a and ß above coincide with (4) in §4.1. Thus 
the singularities of Z = Y/(a) are all modelled on R8 /G, and we easily 
prove: 

Corollary 5.4 . Define Z = Y/(a). Then Z is a compact, real 8-
dimensional orbifold. The Spin(7)-structure (flY,g Y) on Y pushes down 
to give a torsion-free Spin(7)-structure (flZ,g Z) on Z. The singularities 
of Z are k points pi,... ,p k- For each j = 1 , . . . , k there is an isomor­
phism ij : R81G —> T p j Z which identifies the Spin(7)-structures (fio, go) 
on R8 j G and (flZ,g Z) on T p j Z. Here G and (fio, go) are defined in §^.i. 

5.2 Desingularizing Z to get a compact 8-manifold M 

So far we have constructed a Spin(7)-orbifold (Z,flZ,g Z) with finitely 
many singular points p\,... ,p k, each modelled on the singularity R 8 / G 
of §4.1. But in §4.1 and §4.2 we wrote down two ALE Spin(7)-manifolds 
X\ and X2 asymptotic to R 8 / G . We shall now resolve each singular 
point p j in Z using either X\ or X2 to get a compact 8-manifold M. 
We include a parameter t G (0,1] in the construction. 

Definit ion 5.5. For each j let ij be as in Corollary 5.4, and let 
exp p j : T p j Z —> Z be the exponential map, which is well-defined as Z is 
complete. Then exp p o tj maps R 8 / G to Z. Choose £ > 0 small, and 
let B2((R

8/G) be the j open ball of radius 2( about 0 in R8/G. Define 
U j C Z by U j = exp p j o t j ( B 2 C ( R 8 / G ) ) , and ^ : B2((R

8/G) ->• U j by 
ipj = exp p j o ij. Let Ç > 0 be chosen small enough that U j is open in Z 
and ipj : B2ç(R8 /G) —> U j is a diffeomorphism for 1 < j < k, and that 
U n U j = 0 when i ^ j . 

Propos i t i on 5.6. There is a smooth 3-form Oj on B2((R
8/G) for 

1 < j < k and a constant C\ > 0, such that tpjfàZ) — ^0 = duj and 
j r lo-j j < C i r 3 " l on B2((R

8/G), for l = 0 ,1 ,2. Here j . j and r are 
defined using the metric go on B2ç(R8/G), and r : B2ç(R8/G) —> [0, 2£) 
is the radius function. 

Proof. The derivative of exp p j at 0 is the identity map on T p j Z. 
Thus the derivative of ipj at 0 is ij : R 8 / G —> T p j Z, and so ij*(flZ)jo = 
i*(nZ) = n0j 0, since ij identifies OQ and flZ. Therefore ij*(flZ) — fio at 
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0 in B2((R
8/G). As ij*(nZ) - fi0 is a 4-form on a subset of R8/G, we 

can pull it back to R8, and regard ij*(QZ) — fio as a 4-form on the ball 
B2({R8) of radius 2C inR8 . 

Then ij*(QZ) — fio is a smooth G-invariant 4-form on B2ç(R8) which 
vanishes at 0. But G contains —1 : R8 —> R8, and any 4-form invariant 
under this map —1 has zero first derivative at 0. Hence ij*(QZ) — fio van­
ishes to first order at 0 in B2^(R8), and so by Taylor's Theorem we can 
show that \ij*(nZ) - fi01 = O{r2) and \rij*(nZ)\ = O{r) on BK{R8). 

Now fiZ and fio are closed, so that ij*(QZ) — fio is closed, and as 
B2C(R8/G) is contractible we can write ij*(QZ) — fio = d<7j for some 
smooth 3-form j on B2^(R8 /G). Since ^*(fiZ) — fio vanishes to first 
order at 0 we can easily arrange that Uj vanishes to second order at 0, 
and therefore j r lCj j = O(r3~l) for l = 0, f,2, using Taylor's Theorem 
as above. Thus there exists C\ > 0 such that j r lCj j < C\r3~l on 
B2((R

8/G), for l = 0, f,2 and j = 1, . . . ,k. q.e.d. 

Definition 5.7. Let the ALE Spin(7)-manifolds (X n,Qn,g n) and 
projections irn : X n —> R8 jG be as in x4.1 and x4.2 for n = 1, 2. For each 
t G (0,1] and n = 1,2 let X t n = X n, define a Spin(7)-structure (fin,g n) 
on X t n by fin = t4fin and g t n = t2g n, and define it^ : X n —> R8 jG by 
7n = t7n. Then (X n , f in ,n ) is an ALE Spin(7)-manifold asymptotic 
t oR 8 /G . 

Using the ideas of [15] or the explicit formula of Calabi [4, p. 285] 
we can show that there exist C2 > 0 and a smooth 3-form Tt n on 
R8/G\B t((R

8/G)i satisfying 

(10) (7n)*(fin) = fi0 + d n t and | r l n t | < Ctr'1'l for l = 0,1,2 

on R8/G\B tç(R8/G), where j . j and r are defined using the metric go. 

For j = 1 , . . . ,k, choose n j to be 1 or 2. There are 2k ways of 
defining the n j . We shall resolve each singular point p j in Z using X t n j 
to get a 1-parameter family of resolutions (M t,^ t) of Z. 

Definition 5.8. For each j = 1,... ,k, define open subsets M t in 
Z and M j in . n t for 1 < j < k by 

k 

M0t = Z \ U j ( B / 5 C ( R 8 / G ) ) and M j = (7n)-1 (B2 t4 /5C (R8 /G)) . 
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That is, M t is the complement in Z of the closed balls of radius t4'5( 
about p j for 1 < j < k, and M t is the inverse image of B2t4/5AR /G) 
i n X t 

Define an equivalence relation ' ~ ' on the disjoint union U j = 0 M t by 
x ~ y if either (a) x = y, 

(b) x G M t and y G U jCÌM t and ipj°^ n(x) = yi for some j = 1 , . . . , k, 
or 

(c) y G M t and x G U jCÌM t and 4,j°'Kn(y) = xi for some j = 1 , . . . , k. 

Define the resolution M t of Z to be H j = o M / ~- I t is easy to see 
that M t is a compact 8-manifold. Define a projection irt : M t —>• 
Z by vrt([x]) = x when x G M t, and vrt([x]) = ipj o -Kt n j(x) when 
x G M t for some j = f,... , k, where [x] is the equivalence class of 
x under ~ . Then 7t is well-defined, continuous and surjective, and 
•Kt : M t \ U k = 1 ( 7 t ) _ 1 ( p j) —> Z\fpi,... ,p k g is a diffeomorphism. 

Since the resolutions ( M t, 7rt) of Z form a smooth connected family, 
they are all diffeomorphic to the same compact 8-manifold M. We can 
regard M t as an open subset of M t for j = 0 , . . . , k, and then the M t 
form an open cover of M t. If 1 < i, j < k and i ^ j then M t n M t = 0. 
The overlap M t n M t is naturally isomorphic to an annulus in R 8 / G , 
with inner radius t 4 ' 5 ( and outer radius 2 t 4 ' 5 ( . The reason for including 
the factors t4'5 will be explained shortly. 

We now calculate the fundamental group of M t. 

Propos i t i on 5.9. If n j = 1 for j = 1, . . . , k then v r^M t) = Z 2 . 
Otherwise, M t is simply-connected. 

Proof. Since Y n fp\,... ,p£.g is simply-connected by Condition 5.1 
and a acts freely on Ynfp\,... ,p k g, we see that the fundamental group 
of Z n fpi,... ,p k g is Z 2 . The natural inclusion of Z n f p i , . . . ,p k g 
in M t induces a homomorphism from ni [Z n fpi,... ,p k g) to TTliM t), 
which is easily shown to be surjective. Also, as X thj is X\ or X 2 we 
have TTI(X t ) ^ Z 2 . 

Therefore, 7ri(M t) is Z 2 if the generator of ~K\{Z n fpi,... ,£k g) 
projects to the nonzero element of iri(X n ) for all 1 < j < k, and 
7Ti(M t) is trivial otherwise. But calculation shows that the generator of 
-K\[Znfpi,... ,p k g) is nonzero in ni(X n ) if and only if n j = 1. q.e.d. 

This shows that of the 2k possible ways of choosing the n j , one 
possibility gives -K\(M t) = Z2 , and the remaining 2k — 1 possibilities all 
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give simply-connected M t. 

5.3 A S p i n ( 7 ) - s t r u c t u r e (Qt ^g t) o n M t w i t h s m a l l t o r s i o n 

Each open subset M t in M t carries a torsion-free Spin(7)-structure, 
(QZ,g Z) for j = 0 and (fîn j ,g n j) for 1 < j < k. We shall join these 
Spin(7)-structures together with a partition of unity to get a Spin(7)-
structure (Qt,g t) on M t and estimate its torsion. 

Defini t ion 5.10. Let 77 : [0, 00) —> [0,1] be a smooth function with 
7](x) = 0 for x < C and 77(x) = 1 for x > 2£. Define a 4-form ^ t on M t 
by £t = nZ in M t \ U k i M j , and et = n j in M j \ M t for 1 < j < k, 
and 

(11) t = n0 + d ( 7 ? ( t - 4 / 5 r ) j ) + d ( ( l - ? ? ( t - 4 / 5 r ) ) n . ) in M n M j 

for 1 < j < k, where we identify M t n M t with an annulus in R 8 / G in 
the natural way. Since QZ = QQ + doj and iit n j = QQ + d n j in M t n M j , 
it follows that £t is smooth, and as QZ, f n j and Oo are closed, Çt is 
closed. 

L e m m a 5 .11 . There exists C3 > 0 such that for each j = 1 , . . . ,k 
and t G (0,1], this A-form £t satisfies 

(12) | e t - ^ o | < C 3 t 8 / 5 and | r (Ct - O 0) | < C 3 t 4 / 5 

in M t n M t ; where | . | and r are defined using the metric go. 

Proof. Expanding (11) we find that 

t - n0 = n ( t - 4 / 5 r ) d j + (1 - r , ( t - 4 / 5 r ) )d n. 

+ t - 4 / V ( t _ 4 / 6 r ) d r A ( j - n t j) 

in M t n M j . Since t 4 / 5 ( < r < 2 t 4 / 5 ( , Proposition 5.6 and (10) show 
that 

\oj\< 8CiC3 t1 2 / 5 , |do-j| < 4CiC 2 t 8 / 5 , | r d o j | < 2 C i ( t 4 / 5 , 

| n . | < C 2 r 7 t 1 2 / 5 , |d n . | < C 2 r 8 t 8 / 5 and | r d ^ | <C2C
9t4^. 

Combining these with the previous equation and using the facts that 
|dr| = 1 and 7/ is bounded independently of t, we soon prove (12). 

q.e.d. 
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We can now explain why we chose the power t4 '5 in Definition 5.8. 
Suppose we had defined M t and ^ t using ta in place of t4 '5, for some 
a G [0,1]. Then in the calculation above the Uj and n j terms would 
contribute O(t2a) and O(ts~Sa) to £t — fio respectively, and so £t — fio 
would be O(t2a) + O(t 8 _ 8 a ) . This is smallest when 2a = 8 - 8a, that 
is, when a = 4/5. So the power 

t4/5 
minimizes the size of ^ t — Oo-

Now we can define the Spin(7)-structures (fit,g t) on M t. 
Definition 5.12. Let p be as in Proposition 2.5, and choose 

e G (0, f] such that C3e8/5 < p. Suppose t G (0, e]. Then 

in M t n M t for f < j < k by (12), and so £t lies in T M t on M t n M t 
by part (i) of Proposition 2.5. But £t is fiZ or fin j outside the overlaps 
M t n M t, and thus £t G C ̂ iTM t). For each t G (0, e] define fit = 0(£t), 
where 0 is given in Proposition 2.5. Then fit G C°°(AM t), and so fit 
extends to a Spin(7)-structure (fit,g t) on M t. Define a 4-form t on 
M t by </t = £ t - fit. Then dfit + d</t = 0, as d^ t = 0 on M t. 

Here ^ t is a 4-form which does not lie in AM t, but is close to AM t 
for small t, and fit is the section of AM t closest to £t. What is really 
happening is that the Spin(7)-structure (fit,g t) is equal to (fin ,g t n j) in 
M j \ M t and to (fiZ, gz) outside M t for j = 1, . . . , k, and (fit, g t) interpo­
lates smoothly between these two possibilities on the annulus M t n M t. 

5.4 Existence of torsion-free Spin(7)-structures on M 

Next we shall show that (fit,g t) can be deformed to a torsion-free 
Spin(7)-structure on M when t is small. 

Theorem 5.13. In the situation above, there exist constants A, p, v > 
0 such that for all t G (0, e] we have 

(i) | | t | |L2 < At24/5 and | |d^| |Lio < At3 6/2 5; 

(ii) the injectivity radius 8{g t) satisfies 8{g t) > pt; and 

(ii) the Riemann curvature R{g t) satisfies ||R(g t)||C0 < vt~2. 

Here all norms are calculated using the metric g t on M t. 

Proof. Outside the overlaps M t n M t for 1 < j < k we either have 
^ = fit = ÇiZ or ^ = fit = fit n.. In both cases t = ^ t - fit = 0, and 
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so (jt is zero outside the M t n M j . In M t n M j we apply part (ii) of 
Proposition 2.5 with Q = QQ and £ = £t, to get 

| ^ | g t < l e t - f i o g and | r g V g t < C | V g 0 ( e t - ^ o ) | g o . 

Combining this with (12) gives 

\4t<C3t^ and |d t|g t < | r t * | g t < CC3 t4 /5 . 

Now each M t n M t is an annulus in R 8 / G with inner radius t4 '5C 

and outer radius 2t4'5(, and the metric g t on M t n M t is close to the 

flat metric go on R8 / G . Therefore we can find C4 > 0 independent of t 

such that P j=i vol(M) n M j ) < C 4 t 3 2 / 5 . Hence 

Z | t f dV < (C 3 t 8 / 5 ) 2 C 4 t 3 2 / 5 and 

| d ^ | 1 0 d V < (CC 3 t 4 / 5 ) 1 0 C 4 t 3 2 / 5 . 

Taking roots gives part (i) of the theorem, with A = C3 max(C 4 , C C 4 ) 
Parts (ii) and (iii) are elementary. The metric g t n is made by 

C° = scaling g n j by a factor t. Thus 6(g t n) = tö(g n j) and \\R(g t n 
t~2\\R(g n j)\\Co. We make g t by gluing together the g t n j on the patches 
M j for j = 1 , . . . , k and g Z on M t. It is clear that for small t, the 
dominant contributions to 8{g t) and 11R(g t)||C0 come from 6(g t n) and 
\\R(g t n j l l C 0 for some j , and these are proportional to t and t~2. This 
proves (ii) and (iii) for some /J,,V > 0, and the theorem is complete. 

q.e.d. 

Finally we can prove our main result. 

T h e o r e m 5.14. Suppose Condition 5.1 holds, and let M be the 
compact 8-manifold defined in Definition 5.8. Then there exist torsion-
free Spin(7)-structures (£l,g) on M. If m(M) = {1} then Hol(g) = 
Spin(7) ; and if m(M) = Z 2 then Hol(g) = Z 2 n SU(4). 

Proof. Let A, /z, u be as in Theorem 5.13. Then Theorem 2.6 gives a 
constant K > 0. Choose t > 0 with t < e < 1 and t < K. Let (O, g) be 
the Spin(7)-structure (Î7t, g t) on M = M t, and 0 the 4-form t. Then 
dQ + def) = 0 by Definition 5.12, and parts (i)-(iii) of Theorem 5.13 
imply (i)-(iii) of Theorem 2.6, as t < 1. 

Therefore all the hypotheses of Theorem 2.6 hold, and the theorem 
shows that there exists a torsion-free Spin(7)-structure (Ù, g) on M . 
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It remains to identify the holonomy group Hol(g) of g. Now we can 
regard the Spin(7)-orbifold (Z,QZ,g Z) as the limit as t —> 0 of the 
Spin(7)-manifolds (M, 0 , g ) . Because of this, it is not difficult to show 
that Hol(g Z) Ç Hol(g). 

Now H o l ( g ) = Z 2 n SU(4), and thus 

Z 2 n SU(4) Ç Hol(g) Ç Spin(7). 

If 7Ti(M) = {1} then Hol(g) is connected. But the only connected 
Lie subgroup of Spin(7) containing Z 2 n SU(4) is Spin(7), so Hol(g) = 
Spin(7). If TTI(M) = Z 2 then Hol(g) ^ Spin(7) by Theorem 2.3. 
This forces Hol (g) = SU(4), and it is then easy to see that Hol(g) 
= Z 2 n S U ( 4 ) . q.e.d. 

Since by Proposition 5.9 we can always choose the n j so that M 
is simply-connected, we can always arrange for g to have holonomy 
Spin(7). When ni(M) = Z 2 , the complex orbifold Y has a crepant 
resolution Y, which admits Kahler metrics g with holonomy SU(4), 
making it into a Calabi-Yau manifold. The action of a on Y lifts to 
a free action of a on Y, and so M = Y /(a) is a compact 8-manifold. 
If we choose g to be cr-invariant then it pushes down to M , and has 
holonomy Z 2 n SU(4). 

6. H o w to apply t h e construct ion 

We now explain ways of finding orbifolds Y and involutions a : Y —> 
Y satisfying Condition 5.1, and how to calculate the Betti numbers of 
the resulting 8-manifolds M with holonomy Spin(7). 

6.1 F i n d i n g s u i t a b l e C a l a b i - Y a u 4 - o r b i f o l d s Y 

To apply the construction of §5 we need a source of compact Kahler 4-
orbifolds Y with c\ (Y) = 0 and isolated singularities modelled on C4 /Z4. 
Fortunately, physicists and algebraic geometers have been studying Ca­
labi-Yau manifolds for many years, mainly in complex dimension 3. 
Several powerful methods have been developed for constructing Calabi-
Yau manifolds, and we will adapt some of these to our problem. 

The main idea we shall use is borrowed from Candelas, Lynker and 
Schrimmrigk [5], who constructed a large number of Calabi-Yau 3-folds 
as crepant resolutions of hypersurfaces in weighted projective spaces 
C P ao a4- We shall explain their methods, beginning with weighted 
projective spaces, which are an important class of complex orbifolds. 
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Defini t ion 6 .1 . Let m > 1 be an integer, and ao ,a i , • • • ,a m pos­
itive integers with highest common factor 1. Let C m + 1 have complex 
coordinates on (zo,... ,z m), and define an action of the complex Lie 
group C* on C m + 1 by 

(13) (z0,...,z m)u(u aoz0,...,u a m z m), forueC*. 

Define the weighted projective space CP m a m to be (C m + 1 n {0})/C*, 
where C* acts on C m + 1 n {0} with the action (13). Then CP mv..)a m is 
compact and Hausdorff, and has the structure of a complex orbifold. 

Let [zo,... , z m] be a point in CP m a , and let k be the highest 
common factor of the set of those a j for which z j ^ 0. If k = 1 then 
[zo, . . . , z m] is a nonsingular point of CP m a , and if k > 1 then 
[z0, . . . , z m] is an orbifold point with orbifold group Z k. 

We call a polynomial f(zo, • • • , z m) weighted homogeneous of degree 
dif 

f(u a°z0,... ,u a m z m) =u d f(z0ì... ,z m) for all u,z0,... ,z me 

m Let f be such a polynomial, and define a hypersurface Y in 

by 

Y = {[z0,...,z m]GCP m ^ ì a m:f(z0ì...ìz m)=0}. 

Then we call Y a hypersurface of degree d in CP m . 
We say that f is transverse iff(zo,... , z m) = 0 and df(zo, • • • , z m) = 

0 have no common solutions in C m + 1 n {0}. If f is transverse then the 
only singular points of Y are also singular points of CP m a m, and Y is 
an orbifold, all of whose orbifold groups are cyclic. Note that for given 
weights ao, • • • ,a m and degree d, there may not exist any transverse 
polynomials f. 

So let Y be a hypersurface of degree d in CP m , defined by 
a transverse polynomial. Using the adjunction formula, we find that 
c\ (Y) = 0 if and only if d = ao + • • • + a m. In this case it is easy to show 
that Y is a Calabi-Yau orbifold. Candelas et al. [5] considered the case 
m = 4, and used a computer to search for Calabi-Yau 3-orbifolds of this 
kind, finding some 6000 examples. They then resolved the singularities 
of each to get a Calabi-Yau 3-manifold. 

As we are interested in Calabi-Yau 4-orbifolds, we shall consider 
hypersurfaces Y in CP ̂ o . Here is a simple class of such Y. 
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E x a m p l e 6 .2 . Let ao,... , as be positive integers with highest com­
mon factor 1, and let d = ao + • • • + a5. Usually we order the a j with 
aQ < a\ < • • • < a^,. Suppose that a j divides d for j = 0 , . . . , 5, and 
define k j = d/a j . Define a hypersurface Y in CP a0 a& by 

Y = {[zQ,...,z5]£CP5ao_aB:z° + ---+z k5>=0}. 

Since a j k j = d we see that z0° + • • • + z5
5 is a weighted homogeneous 

polynomial of degree d, and it is also transverse. 
Therefore Y is a complex orbifold, with singularities only at the 

intersection of Y with the singular set of CP a0 a . Since the degree 
d of Y satisfies d = ao + • • • + as, we have c\{Y) = 0. Also Y admits 
Kahler metrics, as CP a0 ag is Kahler. So Y is a compact complex 
orbifold with c\(Y) = 0, admitt ing Kahler metrics. 

Now to apply the construction of §5, the singular points of Y must 
satisfy Condition 5.1. This is a strong restriction on a o , . . . , as, which 
admits only a few solutions. However, we can get many other suitable 
orbifolds Y by generalizing our construction a bit. Here are four ways 
to do this. 

• Def ining Y by a different po lynomia l . We could define Y 
using some more general transverse weighted homogenous poly­
nomial of degree d in zQ , . . . , z$, instead of z k° + • • • + z k5. The 
requirement that a j divides d for j = 0 , . . . , 5 is then replaced by 
some other condition on the a j and d. 

• D iv id ing by a finite group. Let W be a Calabi-Yau hypersur­
face in CP a0 , and G a finite group acting on W preserving its 
Calabi-Yau structure. Then Y = W/G is a Calabi-Yau orbifold. 

• Part ia l crepant resolut ions . Let W be a Calabi-Yau hypersur­
face in CP a0 a& which has some singularities of the kind we want, 
together with other singularities that we don't want. We let Y be 
a partial crepant resolution of W, which resolves the singularities 
that we don't want, leaving those that we do. 

• C o m p l e t e intersect ions in CP m a . Rather than a hypersur­

face in CP a0 a , we take Y to be a complete intersection of m — 4 

hypersurfaces in CP m a , for some m > 5. 

We can also use combinations of these four techniques — for in­
stance, we can take Y to be a partial crepant resolution of W/G, where 
W is a hypersurface in CP aQ a , and G a finite group acting on W. 
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6.2 A n t i h o l o m o r p h i c m a p s a : Y —>• Y 

Suppose we have chosen an orbifold Y as above, with isolated singular 
points pi,... ,p k- The next ingredient in our construction is an antiholo­
morphic involution a : Y —> Y, which should fix only pi,... ,p k- For 
example, suppose Y is a hypersurface in CP a0 . Then to find a we 
would look for an antiholomorphic involution a : CP a0 ag —> CP a0 ag 

with a(Y) = Y, and restrict a to Y. 

The most obvious such a maps [zo, . . . ,z§] *-> [zo, • • • , z§\. But this 
will not do, as its fixed points are not isolated in Y. To get isolated 
fixed points we need to try something more subtle. Here is an example 
of the kind of thing we mean. 

E x a m p l e 6 .3 . In the situation of Example 6.2, suppose that 
aQ, . . . , a3 are odd and a4,a5 even with ao = a\, a2 = a3 and ai = a5-

Define a : CP ao,...,a5 ~~̂  CP ao,.-,^ 
by 

a : [z0,... ,z5] !->• [zi,-z0,z3,-z2,z5,z4\. 

As cr swaps the pairs zo, z1 and z2,z3 and z , z&, we need ao = a i , a2 = a3 
and a = a5 for a to be well-defined. Clearly a is antiholomorphic, 
and o{Y) = Y. 

Now a2 acts by 

cr2 : [z0i... ,z5] \-+ [-z0,-zi,-z2,-z3,z4,z5]. 

But putt ing u = - l i n (13) gives [-zo,-zi,-z2,-z3,z4,z5] = [z0,... ,z5], 
as ao, • • • , a3 are odd and a , a5 even. Thus cr2 = 1, and a : Y —> Y is 
an antiholomorphic involution. 

It is not difficult to show that the fixed points of a in CP a0 ag are 

{ [0 ,0 ,0 ,0 , l , e i ö ]GCP5 0 ) . . . , a e : # e [ 0 , 2 7 r ) } . 

Now [0,0,0,0, l , e iö] lies in Y if 1 + e k8iO = 0. The solutions to this 
equation are hcf (k4, k5) isolated points in Y. 

Observe the trick we have used here: if a j = a j+i then we can choose 
a to act on the coordinates z j,z j+i by (z j,z j+i) *-> ( j + i , — j)• All the 
fixed points of a will then satisfy z j = z j + \ = 0. By doing this with two 
pairs of coordinates, say zo,zi and z2,z 3 , the fixed points of a satisfy 
zo = z\ = z<2 = z3 = 0. Thus they will be of complex codimension 4 in 
Y, and will be isolated, as we want. 
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This trick can also be adapted to more general situations, in which 
Y is a quotient by a finite group, or a partial crepant resolution, and 
so on. Note that as a2 maps (z j,z j+i) H- (—z j,—z j+i), care must be 
taken to ensure that o2 = 1. 

6.3 Calculating the Euler characteristic of Y 

To determine the Betti numbers of the 8-manifold M that we con­
struct, we will need to know the Euler characteristic of Y. Now there 
are two different notions of the Euler characteristic of an orbifold, de­
fined by Satake [19, §3.3]. The version we are interested in is the 
ordinary Euler characteristic x(Y), which is an integer and satisfies 
x(Y) = P j=o(~Ijfj YO- There is also the orbifold Euler characteristic 
Xv(Y), which is a rational number that crops up naturally in problems 
involving characteristic classes. 

In the next example we explain an elementary and fairly crude 
method for finding x(Y) in the case that Y is a hypersurface in CP m a m 
of the kind considered in Example 6.2. It is also possible to calculate 
Xv(Y) using Chern classes and get x(Y) by adding on contributions 
from the singular set (see for instance Hosono et al. [9, §2]), but we will 
not discuss this. 

E x a m p l e 6.4. Let ao, • • • , a m, ko,... ,k m and d be positive integers 
with a j k j = d for j = 0 , . . . , m. For each j = 0 , . . . , m, define Y j C 

CP jo,...,«j by 

Y j = {[zo, . . . , z ] € CP0,...,a j : z ° + • • • + z = 0}, 

and define Tj : Y j ->• CP a~^ ;a._1 by vj : [z0, • • • , z j] H> [z0, • • • , z j-i]. 
Suppose for simplicity that a, divides a j for 0 < i < j < m. Then 

for each j , Tj is a k j-fold branched cover 
of CP a . . , a j_i> branched over 

Y j-i. That is, if p G CP a~^ a j_1 then ij~ (p) is one point whenp G Y j - \ 

and k j points when p £ Y j - \ . It follows that 

( 1 4 ) X{Y j) = k j • xiCP a l a . J + (1 - j)x(Y--i) 

= k j j + (l-k j)x(Y j - 1 ) , 

since x(CP a~ .̂. a-i) = j - This equation gives x(Y j) in terms of x(Y j-i). 
Hence by induction we can write x(Y m) in terms of x(Yo)- But YQ = 0 
so that X(YQ) = 0, and thus we determine x(Y m)-
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If a i does not divide j for some 0 < i < j < m, then Tj is also 
branched over other parts of CP a"1 a j _ . Let p = [zQ, ... ,z j-i] be in 
CP a"1 a j_ n Y j-i, and let I be the set of i in f0 , . . . , j — 1g for which 
z i 7̂  0. Define l = hcf(a i : i G I) and m = hcf(l,a j). Then it turns out 
that 7j~ (p) is k j m/l points in Y j . Clearly k j m/l = k j if l = m, that is, 
if l divides a j . 

Thus -Kj is also branched over subsets of CP a~ .̂ a j_1 n Y j _ \ corre­
sponding to subsets I Ç f0 , . . . , j — 1g for which l = hcf(a i : i G I) does 
not divide a j . To calculate x(Y j) in this case we must modify (14) by 
adding in contributions from each such I. We will explain this when we 
meet it in examples later. 

6.4 How to find topological invariants of Y, Z and M 

To calculate the cohomology and fundamental group of our complex 
orbifolds Y we will need the following result, a form of the Lefschetz 
Hyperplane Theorem. It is proved in Griffiths and Harris [8, p. 156] and 
Goresky and MacPherson [6, p. 153]. 

Theorem 6.5. Let M be a compact, m-dimensional complex man­
ifold, N a nonsingular hypersurface in M, and L the holomorphic line 
bundle over M associated to the divisor N. Suppose L is positive. Then: 

(a) the map H k(M, C) ->• H k(N, C) induced by the inclusion N ^ M 
is an isomorphism for 0 < k < m — 2 and injective for k = m — l, 
and 

(b) the map of homotopy groups nk(N) —> nk(M) induced by the inclu­
sion N <—^ M is an isomorphism for 0 < k < m — 2 and surjective 
for k = m — 1. 

The result also holds if M and N are orbifolds instead of manifolds, 
and N is a nonsingular hypersurface in the orbifold sense. 

Here is a procedure for calculating the fundamental group and Betti 
numbers of Y, Z and M. The most difficult part is finding the Euler 
characteristic x(Y), which we have already explained above. 

(a) Calculate TTI(Y), H2{Y,C) and H3{Y,C) explicitly. This can usu­
ally be done using Theorem 6.5. If Y is a hypersurface in CP a0 ag 

then 7ri(Y) = f1g, H2{Y,C) = C and H3(Y,C) = 0. Verify'that 
vri (Y n fpt,... ,p k g) = f1g and h2fi{Y) = 0, as in Condition 5.1. 
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(b) Compute the Euler characteristic x(Y) of Y? as in §6-3. 

(c) Calculate H2(Z,C) and H3(Z,C) from H 2 (Y,C) and H3(Y,C). 
Note that H ( Z , C) is the cr-invariant part of H j (Y, C). Since a 
swaps H p>q(Y) and H<^(Y) , it follows that b3{Z) = \b3{Y). 

(d) Compute the Euler characteristic x(Z) of Z- If °" n xes k points in 
Y, then this is given by x(Z) = \{x{Y) + k)• 

(e) From (c) we know b2{Z) and b3(Z), and ^ ( Z ) = 0 as TTI(Z) is 
finite. Thus we can calculate b4(Z) using the formula b4(Z) = 
x(Z)-2-2b2{Z) + 2b3{Z). 

(f) Now M was constructed in §5 by gluing X ni,... ,X n k into Z, 
where n j = I or 2 and X i , X2 are defined in §4. It is easy to show 
that the Betti numbers of X\ and X2 are b1 = b2 = b3 = 0 and 
b4 = 1. Therefore the Betti numbers b (M) satisfy 

(15) b ( M ) = b ( Z ) for j = 1,2,3, and b 4(M) = b4{Z) + k. 

Also, Proposition 5.9 gives -KI(M). 

(g) As M has metrics with holonomy Spin(7) or Z2 n SU(4) by The­
orem 5.14, we know that A(M) = 1. Thus (2) gives 

b2(M) - b3{M) - b\{M) + 2 b i ( M ) + 25 = 0. 

So we can calculate b%{M) using the equations 

b\(M) = \{b2{M)- b3(M) + 2 b ( M ) + 25), 

b i ( M ) = | ( - b 2 ( M ) + b3{M) + b ( M ) - 25). 

6.5 A w a y of c h e c k i n g t h e a n s w e r s 

If you make a mistake at some stage in these calculations, which is quite 
easy to do, then you are likely not to notice unless your values for b±(M) 
are not integers. Thus it is desirable to have some method for checking 
the answers. Here is a way of doing this. All of our examples have been 
checked for consistency in this way and others, but for brevity we will 
leave out the calculations. 

Suppose we can compute the Hodge number h 3 , 1 (Y) , using complex 
geometry. Then we can compute b i (Z) using the formula 

bi(Z) = h^iY) + b2{Y) - b2{Z) - 1. 
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But as Xi and X2 have b i = 1, as in (15) we have bi(M) = b4_(Z) + k. 
This gives an independent way of finding b4_(M), which can be compared 
with your answer in part (g) above. 

Now there is a complicated method for computing h5,1(Y) involving 
spectral sequences, and also a much simpler method called the 'polyno­
mial deformation method' which does not always give the right answer. 
Both are discussed by Green and Hubsch [7]. Here is a sketch of the 
polynomial deformation method. 

For simplicity suppose that Y is a hypersurface of degree d in CP ao a 
As Y is a Calabi-Yau orbifold, h3,1(Y) is the dimension of the moduli 
space of complex structures on Y. We assume (this is not necessarily 
true) that every small deformation of Y is also a hypersurface of degree 
d in CP a0 , and that two nearby isomorphic hypersurfaces Y,Y' of 

degree d are related by an automorphism of CP a0 a . 

If these assumptions hold, then h 3 î l (Y) = m — n, where m is the 
dimension of the space of hypersurfaces of degree d in CP a0 a , and n 

is the dimension of the automorphism group 
of C P ao,...)aB- Both m and 

n are readily computed from ao,... ,a§ and d. 

7. A s imple e x a m p l e 

Let Y be the hypersurface of degree 12 in CP X 11144 given by 

Y = {[zo,... ,z5] G CPf )1 )1 )M)4 : zf + z\2 + zf + zf + z\ + z\ = 0 } . 

T h e n c i ( Y ) = 0, as 12 = 1 + 1 + 1 + 1 + 4 + 4, and Y is Kahler as C P ^ 4 

is Kahler. Calculation shows that Y has three singular points p\ = 
[ 0 , 0 , 0 , 0 , 1 , - 1 ] , p2 = [0,0,0,0,l ,e™/3] a n d p = [0 ,0 ,0 ,0 ,1 , e~ml% 
satisfying Condition 5.1. 

We use the method of §6.3 to calculate the Euler characteristic x(Y)-

Propos i t i on 7 .1 . The orbifold Y defined above has x(Y) = 4887. 

Proof. Define Y j and Tj as in §6.3, where Y5 = Y. Then Y\ is the 
set of 12 points [z0,zi] in CP 1 with z\2 + z\2 = 0, and so x(Yi) = 1 2-
Now 7T2 : Y'i —> CP is a 12-fold branched cover branched over Y\, so by 
(14) we have 

X(Y2) = 12x(CPx) - l l x (Yi ) = 12 • 2 - 11 • 12 = - 1 0 8 . 
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Similarly, IÏ3 : Y3 —> CP 2 is a 12-fold branched cover branched over Y2, 
so that 

X(Y3) = 12X(CP2) - l l x ( Y 2 ) = 12 • 2 - 11 • (-108) = 1224. 

And 7T4 : Y4 —> CP 3 is a 3-fold branched cover of CP 3 branched over Y3, 
giving 

X(Y4) = 3x(CP3) - 2X(Y3) = 3 • 4 - 2 • 1224 = -2436 . 

Finally, 7TS : Y —> CP 4 1114 is a 3-fold branched cover of CPf 1114 
branched over Y4, and so 

X(Y) = 3x(CPl )1 )1 )1 )4) - 2X(Y4) = 3 • 5 - 2 • (-2436) = 4887, 

as we want. q.e.d. 

Propos i t i on 7.2. The Betti numbers of Y are 

b°(Y) = 1, bÇY) = 0, b2{Y) = 1, b3{Y) = 0 and b4(Y) = 4883. 

Also Y n {pi,p2,p3g is simply-connected and h2,0(Y) = 0. 

Proof Theorem 6.5 shows that H k(Y,C) = H k(CP5
h...;4,C) for 0 < 

k < 3. Since b fc(CPf ;_ j4) is 1 for k even with 0 <k'< 10 and 0 
otherwise, this shows that b°(Y) = b2(Y) = 1 and b^Y) = b3(Y) = 0, 
and so b ( Y ) = 4883 as x(Y) = 4887. 

Theorem 6.5 also gives iri{Y) = 7ri(CPf 4 ) , so Y is simply-connected. 
As the nonsingular set of CPf 4 is simply-connected, we can strengthen 
this to show that Yn {pi,p2,p3g is simply-connected. The isomorphism 
H k{Y,C) = H k{CPl_4,C) above identifies H pq(Y) w i t h H ^ ( C P f v . . ; 4 ) , 
and so h p'q(Y) = h p''q(CPfr..)4) for p + q < 3. Hence h2>°(Y) = 0. 

q.e.d. 

Now define a map cr : Y —> Y by 

er : [zo,... ,z5] 1 > [z1,-z0,^3,-^2,z5,z4]-

As in Example 6.3, we find that a is an antiholomorphic involution of Y, 
and that the fixed points of a are exactly pi,p2,p3- Thus Condition 5.1 
holds for Y and a. So we can apply the construction of §5, and resolve 
the orbifold Z = Y/(a) to get a compact 8-manifold M. Choosing 
n j = 2 for at least one j = 1,2,3, Proposition 5.9 shows that M is 
simply-connected, and Theorem 5.14 shows that M admits metrics with 
holonomy Spin(7). 
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T h e o r e m 7.3 . This compact 8-manifold M has Betti numbers 

b° = 1, b1 = b2 = b3 = 0, b = 2446, b% = 1639 and bi = 807. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 808. 

Proof. We first calculate the Betti numbers of Z. As a fixes 3 points 
in Y, by properties of the Euler characteristic we find that x(Z) = 

\{x{Y) + 3)- But x(Y) = 4887 by Proposition 7.1, so x(Z) = 2445. As 
H k(Z, C) is the a-invariant part of H k(Y, C) we see from Proposition 7.2 
that b°(Z) = 1 and bl{Z) = b3{Z) = 0. Also H 2 (Y,C) is generated by 
[Y] and a*(cüY) = - Y , so a acts as —1 on H 2 (Y, C), and H2(Z, C) = 0. 

Thus b°(Z) = 1, bl{Z) = b2{Z) = b3{Z) = 0 and x (Z) = 2445, 
giving b4(Z) = 2443. Equation (15) then gives the Betti numbers of 
M, and (16) gives b±. Theorem 5.14 shows that there exist torsion-free 
Spin(7)-structures (£l,g) on M , with Hol(g) = Spin(7) as M is simply-
connected. By Theorem 2.4 the moduli space of metrics on M with 
holonomy Spin(7) is a smooth manifold of dimension 1 + b4_(M) = 808. 

q.e.d. 

7.1 A variation on this example 

Here is a variation on the above, using the idea of partial crepant res­

olution mentioned in §6.1. Let Y be as above, but define a' : Y —>• Y 

by 

a : [z0,... ,z5] i—> [zi,-z0,z3,-z2,z4:,z5]. 

Then u' is an antiholomorphic involution of Y, which fixes the point 
p i = [0, 0,0, 0 ,1 , —1] in Y, and no other points. In particular, a' swaps 
over the other two singular points p2,p3-

Thus Y and a' do not satisfy Condition 5.1, because the fixed set of 
a' is not the same as the singular set {pi,p2,p3g of Y. To rectify this 
we resolve the singular points p2,p3- Let Y' be the blow-up of Y at pi 
and p3- This is a crepant resolution of Y, and so is also a Calabi-Yau 
orbifold. 

Then Y' has just the one singular point p\. The action of a' on Y 
lifts to Y', with sole fixed point p\. Thus Condition 5.1 holds for Y' 
and a'. Therefore we can apply the construction of §5 to Y' and a', 
so that Z' = Y'I'(a') is a compact Spin(7)-orbifold with one singular 
point pi modelled on R 8 / G . Choosing n\ = 2 we get a resolution M' of 
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Z', which is a compact, simply-connected 8-manifold admitt ing metrics 
with holonomy Spin(7). 

We shall calculate the topological invariants of Y' and M'. 

Propos i t i on 7.4. The Betti numbers of Y' are 

b° = 1, b1 = 0, b2 = 3, b3 = 0 and b4 = 4885, so that x(Y') = 4893. 

Also, Y' n fpig is simply-connected and h2,0(Y') = 0. 

Proof. By definition Y' is the blow-up of Y at p2,p3- Each blow-up 
fixes bl and b3 and adds f to b2 and b4. So the Betti numbers of Y' 
follow from Proposition 7.2. As Y nfpi,p2,pzg is simply-connected and 
h2,0(Y) = 0, we see that Y'nfpig is simply-connected and h2,0(Y') = 0. 

q.e.d. 

Here is the analogue of Theorem 7.3: 

T h e o r e m 7.5. This compact 8-manifold M' has Betti numbers 

b° = 1, b1 = 0, b2 = 1, b3 = 0, b = 2444, b% = 1638 and bi = 806. 

There exist metrics with holonomy Spin(7) on M', which form a smooth 
family of dimension 807. 

Proof. As a fixes 1 point in Y' we have x(Z') = \{x(Y') + 1)? 
so x{Z') = 2447 by the previous proposition. Since H k(Z',C) is the a-
invariant part of H k{Y\ C) we have b°(Z') = 1 and bl{Z') = b3{Z') = 0. 
Now b2(Y') = 3, and H2(Y'C) is generated by [ c*Y] and the cohomol-
ogy classes dual to the two exceptional divisors CP 3 introduced by blow­
ing up p2 and p3- But a' swaps pi and p%, so a\ swaps the correspond­
ing classes in H 2 ( Y ' , C ) , and <T*(UY) = —uY' by definition. Therefore 
H2(Y'C) = C © C2 , where < acts as 1 on C and - 1 on C2 . Hence 
H2(Z',C) ^ C , and b2(Z') = 1. 

Thus b°(Z') = b2(Z') = 1, bl{Z') = b3(Z') = 0 and X(Z') = 2447, 
giving bA{Z') = 2443. Equation (15) then gives the Betti numbers of 
M , and (16) gives bj_. Theorem 5.14 shows that there exist torsion-free 
Spin(7)-structures (£l,g) on M , with Hol(g) = Spin(7) as M is simply-
connected. By Theorem 2.4 the moduli space of metrics on M with 
holonomy Spin(7) is a smooth manifold of dimension 1 + b (M) = 807. 

q.e.d. 
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Observe that the Betti numbers of M and M' in Theorems 7.3 and 
7.5 are very similar. It is an interesting question whether one can regard 
M and M' as two different resolutions of some singular Spin(7)-manifold 
Mo, not necessarily an orbifold. We leave this as a research exercise for 
the reader; the answer is not as simple as it looks. 

8. Examples from hypersurfaces in CP a0 a& 

Here are three more examples based on hypersurfaces in CP ao . 

8.1 A hypersurface of degree 16 in C P ^ 1 1 1 4 8 

Let Y be the hypersurface of degree 16 in CPf 1114g given by 

Y = {[zQì... ,z5] G CPf)1)1)M)8 : z^+zf+zf+z^+zi + z2 = Cl}. 

Then c\{Y) = 0. We find that Y has two singular pointsp\ = [0, 0,0, 0,1, i] 
and p2 = [0,0, 0,0,1, —i], both satisfying Condition 5.1. 

Following Propositions 7.1 and 7.2, we find that x(Y) = 9498, and 

Proposition 8.1. The Betti numbers of Y are 

b° = 1, b1 = 0, b2 = 1, b3 = 0 and b4 = 9494. 

Also Y n {pi,p2g is simply-connected and h2,0(Y) = 0. 

Define an antiholomorphic involution u : Y —> Y by 

a : [z0,... ,z5] I > [zii-z0iz3,-z2,z4,-z5]-

The fixed points of a are exactly the singular points pi,p2 of Y. Thus 
Condition 5.1 holds for Y and a, and we can apply the construction of 
§5. Resolving Z = Y/(a) gives a compact 8-manifold M. We choose at 
least one of ni,n2 to be 2, so that M is simply-connected. Then as in 
Theorem 7.3, we get: 

Theorem 8.2. This compact 8-manifold M has Betti numbers 

b° = 1, b1 = b2 = b3 = 0, b4 = 4750, b\ = 3175 and b4_ = 1575. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 1576. 
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8.2 A hypersurface of degree 24 in CP^ 111 8 12 

Let Y be the hypersurface of degree 24 in CPf 111 8 12 given by 

Y = {[z0ì ...,z5]e CPti.1,1,8,12 : z + zf + zf + z324 + z\ + z5
2 = 0 } . 

Thenci(Y) = 0 . We find that Y has one singular point p\ = [0, 0,0, 0, —1, f], 
which satisfies Condition 5.1. 

Following Proposition 7.1, we find that x(Y) = 23 325. Care is 
needed to get the right answer here. Define 1x5 : Y —> CP4 111 g by 
7T5 : [z0, • • • , z5] ^ [z0,... , z4], and Y4 C CP4

;1)1;1)8 by 

Y4 = { z , • • • , z4] G CPti.1,1,8 :z4 + zi + z224 + z 4 + z = o}-

Then 7TS is a double cover of CP4
 x x x 8 branched over Y and the point 

[0,0, 0,0,1] in CPfjljljlj8. Hence we get 

X(Y) = 2X(CPti,i,i,8) - X(YA) - x([0,0, 0,0,1]) = 9 - x(Y4). 

If we had not observed that 7r5 is also branched over [0, 0,0, 0,1], then 
we would have got x(Y) = 23 326, which is incorrect. 

As in Proposition 7.2, we show: 

Proposition 8.3. The Betti numbers of Y are 

b° = 1, b1 = 0, b2 = 1, b3 = 0 and b4 = 23 231. 

Also Y n fpig is simply-connected and h2,0(Y) = 0. 

Define an antiholomorphic involution a : Y —> Y by 

a : [z0,... ,z5] 1—> [ z1 , - z0 , ^3 , - ^2 ,z4 ,z5 ] -

The fixed points of a are exactly the singular point p\ of Y. Thus 
Condition 5.1 holds for Y and a, and choosing the simply-connected 
resolution M of Z = Y/hai, in the usual way we get: 

Theorem 8.4. This compact 8-manifold M has Betti numbers 

b° = 1, b1 = b2 = b3 = 0, b4 = 11 662, b% = 7783 and bi = 3879. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 3880. 

This is the example with the largest value of b4 known to the author. 
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8.3 A hypersurface of degree 40 in CP^ 1 5 5 8 20 

Here is a more complicated example, in which the hypersurface in 
CP a0 ag has other singularities which must first be resolved. Let W 
be the hypersurface of degree 40 in CP11 5 5 8 2Q given by 

W = {[z0i...,z5]£CPllt5t5fitn--z0 + z 0 + z + z + z + z = o}-
Then c\{W) = 0. The singularities of W are the disjoint union of the 
single point p\ = [0, 0,0, 0, —1,1] and the nonsingular curve E of genus 
3 given by 

E = { [0 ,0 ,zz3 ,0 ,z5 ] G CPf,1,5,5,8,20 : z + z + z = 0}-

The singular point at p\ satisfies Condition 5.1. The singularity at 
each point of E is modelled on C x C3/Zs, where the generator ß of Z5 
acts on C3 by 

ß : (z0,zuz4) h-». (e2^/5zo,e2wi/5zi,e-4^/5z4). 

Now the singularity C3/Zs normal to E in W has a unique crepant 
resolution X, which can be described using toric geometry. Let Y be 
the partial crepant resolution of W which resolves the singularities at 
E using X, but leaves the singular point p\ unchanged. 

Proposition 8.5. The Betti numbers of Y are 

b° = 1, b1 = 0, b2 = 3, b3 = 12, and b4 = 7453. 

Also Y n fpig is simply-connected and h2,0(Y) = 0. 

Proof. Calculating the Betti numbers of W in the usual way gives 

(17) b°(W) = l, b1(W)=0, b2(W) = l, b3{W) = 0, b4{W) = 7U9. 

As W is modelled on C x C3/Zs at each point of E, the resolution Y is 
modelled on C x X. Since b2{X) = bA{X) = 2, the Betti numbers of Y 
satisfy 

b k(Y) = b k{W) + 2bfc"2(E) + 2bfc-4(E). 

But E has genus 3, and so its Betti numbers are b°(E) = b2(E) = 1 and 
b1(E) = 6. Combining this with (17) gives the Betti numbers of Y. The 
last part follows as in Proposition 7.2. q.e.d. 
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Define a : W —> W by 

a : [z0,... ,z5] i—> [ z1 , - z0 , ^3 , - ^2 ,z4 ,z5 ] -

The only fixed point of a is p\. Moreover, a lifts to the resolution Y of 
W, and a : Y —?• Y is an antiholomorphic involution which fixes only 
pi in Y. Thus Condition 5.1 holds for Y and a, and we can apply the 
construction of §5, and resolve Z = Y/(a) to get a simply-connected 
8-manifold M. Proceeding in the usual way, the end result is 

T h e o r e m 8.6. This compact 8-manifold M has Betti numbers 

b° = l, b1 = b2 = 0, b3 = 6, b4 = 3730, b% = 2493 and bi = 1237. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 1238. 

Note that b3 > 0 in this example; this is because the resolution of 
the singular curve E contributes H1 (S , C) <g> H2 {X, C) = C6 <g> C2 = C12 

to H3(Y, C). Half of this C12 is a-invariant, and so pushes down to 
H3(Z,C) and lifts to H3{M,C). 

9. A hypersurface in CPi 1112 2 over Z2 

Let W be the hypersurface of degree 8 in CPf 11122 given by 

W = {[z0,... ,z5] G CPf)1)1)1)2)2 : zl +z\ + z\ + z + z + z = 0 } . 

Then c\{W) = 0. We find that W has four singular points pi, • • • ,p± 
modelled on C 4 / { ± 1 } , given by 

[ 0 , 0 , 0 , 0 , l , e - / 4 ] , [ 0 , 0 , 0 , 0 , l , e 3 - / 4 ] , 

[ 0 , 0 , 0 , 0 , l , e 5 - / 4 ] , [ 0 , 0 , 0 , 0 , l , e 7 - / 4 ] . 

Define ß : W ->• W by 

ß : [z0,... ,z5] \-+ [izo,izi,iz2,iz3,z4:,z5]. 

Then/3 2 = 1, as [z0,... ,z5] = [-z0,-zi,-z2,-z3,z4,z5] in CPf j l ; l j l ;2 j2. 
The fixed set of ß is the four points p\,... ,p± together with the compact 
complex surface S in W, given by 

S = {[zo,z1,z2,z3,0,0] G CPf )1 )1)1)2)2 : z + z + z + z = 0 } . 
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Thus W/(ß) is a compact complex orbifold. Its singular set is the dis­
joint union of pi,... ,p4 and S. Each singular point p j is modelled on 
C4/Z4, where the generator a of Z4 acts on C4 by (6). Each singular 
point in S is locally modelled on C2 x C2/{±1g. 

Let Y be the blow-up of W/(ß) along S. Because the singularities 
normal to S are modelled on C2/{±1g, this is a partial crepant resolu­
tion. So Y is a compact complex orbifold with isolated singular points 
p i , . . . ,p4, modelled on C4 / (a) . Now cx{W) = 0, so c(W/(ß)) = 0, 
and as Y is a partial crepant resolution of W/(ß) we see that c\(Y) = 0. 

Proposition 9.1. The Betti numbers of Y are 

b° = 1, b1 = 0, b2 = 2, b3 = 0 and b4 = 1806. 

Also Y n {pi,... ,p4g is simply-connected and h2,0(Y) = 0. 

Proof. As in Proposition 7.1, we find x(W0 = 2708 and x(S) = 304. 
Thus 

x(W/{ß)) =\ {x(W) + x(4 points) + X(S)) 

=1(2708 + 4 + 304) = 1508. 

Using Theorem 6.5 we find that W has b° = b2 = 1 and b1 = b3 = 0, 
and it soon follows that W/(ß) also has b° = b2 = 1 and b1 = b3 = 0. 
Since x(W/{ß}) = 1508 we see that b4(W/{ß}) = 1504. 

Now Y is the blow-up of W/(ß) along S1, so that each point of S is 
replaced by a copy of CP . It can be shown that the Betti numbers of 
Y satisfy 

(18) b k{Y) = b k(W/(ß)) + b k~2(S). 

But S can be thought of as an octic in CP , and by the usual method 
we find that the Betti numbers of S are b° = 1, b1 = 0, b2 = 302, 
b3 = 0 and b4 = 1. Combining these with (18) and the Betti numbers 
of W/(ß) above gives the Betti numbers of Y. The last part follows as 
usual. q.e.d. 

Define an antiholomorphic involution u : W —> W by 

a : [z0,... ,z5] 1—> [zi,-z0,z3,-z2,z5,z4]. 

The fixed points of a are exactly the singular points pi,... ,p4 of W. 
Also a commutes with ß, and acts freely on S. Hence a pushes down to 
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an antiholomorphic involution of W/{ß), and lifts to the blow-up Y, to 
give an antiholomorphic involution a : Y —> Y with fixed points pi, • • • ,p±. 

Thus Condition 5.1 holds for Y and a, and in the usual way we 
choose a simply-connected resolution M of Z = Y/(a) satisfying: 

T h e o r e m 9.2 . This compact 8-manifold M has Betti numbers 

b° = l, b1 = b2 = b3 = 0, b4 = 910, b\ = 615 and bi = 295. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 296. 

9.1 A variation on this example 

We shall use the idea of §7.1 to make a second 8-manifold M' from the 

orbifold Y above. Let W and Y be as in §9.1, but define a' : W —>• W 

by 

a' : [z0,... ,z5] i—> [zi,-zo,z3,-z2,z4,iz5]. 

Then a' pushes down to W/{ß) and lifts to Y as above. However, 
this time a' fixes the singular points p\ = [0,0, 0,0, l e * i ' 4 ] and p2 = 
[0,0,0,0, l,e57ri/4] in Y, but it swaps round p3 = [0, 0,0, 0, l,e37ri/4] 
a n d p = [0,0,0,0, l ,e7™/4] . 

Thus, Condition 5.1 does not hold for Y and a', as the fixed set 
{pi,p2g of a' does not coincide with the singular set {pi,... ,p4g of Y. 
So let Y' be the blow-up of Y at p3 and p±. Then Y' is a partial crepant 
resolution of Y, as the singularities at p3jpi are modelled on C 4 /Z4 . 
The singularities of Y' are p\,p2, and o~' lifts to an antiholomorphic 
involution of Y' fixing only p\ and p2 • 

We find the Betti numbers of Y' by adding contributions to those 
of Y, as in §7.1. Applying the construction of §5 to Y' and a' gives a 
simply-connected 8-manifold M', such that 

T h e o r e m 9 .3 . This compact 8-manifold M' has Betti numbers 

b° = 1, b1 = 0, b2 = 1, b3 = 0, b4 = 908, b% = 614 and bi = 294. 

There exist metrics with holonomy Spin(7) on M', which form a smooth 
family of dimension 295. 
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10. C o m p l e t e intersect ions in CP a0 a 

We now try starting with the intersection of two hypersurfaces in 

C P ao,---,ae-

10 .1 T h e i n t e r s e c t i o n o f t w o o c t i c s in CP^ 111444 

Let Y be the complete intersection of two octics in CPf 111444 given 
by 

Y = {[z0,... , z5] G CP? )1)1)1)4)4)4 :zl+z\ + 2iz\ - 2iz\ + z\ - z\ = 0, 

1iz\ - 2iz\ + z\ + z\ + z\ - z\ = 0 } . 

Then c\(Y) = 0. We find that Y has 4 singular points 

pi = [0, 0,0, 0 ,1,1,1] , p2 = [0, 0,0, 0 ,1 , - 1 , - 1 ] , 

p 3 = [0 ,0 ,0 ,0 ,1 ,1 , -1 ] and p 4 = [ 0 , 0 , 0 , 0 , 1 , - 1 , 1 ] , 

satisfying Condition 5.1. 
By adapting the method of §6.3 we can show that x Y 0 = 2580, 

and applying Theorem 6.5 twice we find that b k(Y) = b k(CP1 4) for 
0 < k < 3. Thus we prove: 

Propos i t i on 10 .1 . The Betti numbers of Y are 

b° = 1, b1 = 0, b2 = 1, b3 = 0 and b4 = 2576, 

Also Y n {pi,... ,p4g is simply-connected and h2,0(Y) = 0. 

Define an antiholomorphic involution u : Y —> Y by 

a : [z0,... ,z6] 1—> [zi,-zQ,z3,-z2,zi,z$,z(>]-

The fixed points of a are exactly the singular points pi, • • • ,p± of Y, 
and Condition 5.1 holds for Y and a. Proceeding in the usual way, we 
set Z = Y'/(a) and resolve Z to get a simply-connected 8-manifold M , 
which satisfies: 

T h e o r e m 10.2 . This compact 8-manifold M has Betti numbers 

b° = 1, b1 = b2 = b3 = 0, b = 1294, b\ = 871 and b4_ = 423. 

There exist metrics with holonomy Spin(7) on M, which form a smooth 
family of dimension 424. 
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10.2 A variation on this example 

Now let Y be as in §10.1, but define a' : Y —> Y by 

a : [z0,... ,z6] i—> [z3,-z2,zi,-zo,z4:,z6,z5]. 

Then a' is an antiholomorphic involution, with fixed points p\ and p2, 
which swaps round p3 and p±. Following the method of §7.1, define Y' 
to be the blow-up of Y at p% and p±. Then Y' is a Calabi-Yau orbifold, 
a' lifts to Y', and Condition 5.1 holds for Y' and a'. 

As usual we set Z' = Y'/(a!) and resolve Z' to get a simply-
connected 8-manifold M', such that we have 

Theorem 10.3. This compact 8-manifold M' has Betti numbers 

b° = 1, b1 = 0, b2 = 1, b3 = 0, b = 1292, b\ = 870 and bi = 422. 

There exist metrics with holonomy Spin(7) on M', which form a smooth 
family of dimension 423. 

10.3 The intersection of two 12-tics in CP33 33444 

Let P(zi, zS,zQ) and Q(z4, z&, zQ) be generic homogeneous cubic polyno­
mials with real coefficients, and define W to be the complete intersection 
of two 12-tics in CP3 333444 given by 

W = {[z0,... ,z5] G C P a ^ a ^ ^ : z\ + z\ + z\ + z\ + P(z4,z5,z6) = 0, 

iz0 — izi + 2iz2 — 2iz3 + Q(z4, z5,zQ) = 0}. 

Then c\(W) = 0 . As P and Q are generic, the singular set of W is the 
disjoint union of the 9 points pi,... ,pg given by 

{ [0 ,0 ,0 ,0 ,z4,z5,z6] G CP3,3,3,3,4,44 : P(z4,z5,ze) = Q{z4,z5,z6) = 0 } , 

and the curve E of genus 33 given by 

X = {[z0,z1,z2,z3,0,0,Ö\ G CP,3,3,3,4,4,4:z + z1 + z + z = 0, 

iz0 — izi + 2iz2 — 2iz3 = 0}. 

Each point p j satisfies Condition 5.1, and each point of E is modelled 
on C x C3/Z3, where the action of Z3 on C3 is generated by 

ß : (z4,zò,z6) H- (e2^z4,e
2m^z5,e

2^3ze). 
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Define an antiholomorphic involution u : W —> W by 

a : [z0,... ,z6] i—> [zi,-zQ,z3,-z2,zi,z$,z(>]-

Then the fixed points of a are some subset of {pi,... ,pgg. Exactly 
which subset depends on the choice of P and Q, but a must fix an odd 
number of the the remaining p j are swapped in pairs. 

So let a fix 2k +1 of the p j , for some k = 0 , . . . ,4 , and number the p j 
such that a fixes pi, • • • ,p2k+i and swaps p2k+2-> • • • ?p9 in pairs. Define 
Y k to be the blow-up of W along S and at the points p2k+2-, • • • ,p9-
Then Y k is a partial crepant resolution of W. Thus Y k is a Calabi-Yau 
orbifold, with singular points p\,... ,p2k+i- Also a lifts to Y k to give an 
antiholomorphic involution a : Y k —>• Y k with fixed points p i , . . . ,p2k+i-

It can be shown that we can choose P and Q so that k takes any 
value in {0,1, 2, 3,4g. For example, if P = z\ — z\ and Q = z\ — z\ then 
a fixes only p\ = [0, 0,0, 0 ,1,1,1] , so that k = 0, but if P = z\z ^ — z\ 
and Q = z zQ—zQ then a fixes the 9 points [0, 0,0, 0 ,1 , z&,zQ] for z$,zQ G 
{ 1 , 0 , - 1 g , and k = 4. 

Combining the methods used to prove Propositions 8.5 and 10.1, we 
get 

Propos i t i on 10.4 . The Betti numbers of Y k are b° = 1, b1 = 0, 

b2 = 10 - 2k, b3 = 66 ; b4 = 395 - 2k, b% = 262 and bi = 133 - 2k. 

Also Y k n {pi,... ,p2k+ig is simply-connected, and h2 '°(Y k) = 0. 

In the usual way we resolve Z k = Y kj'(a) to get M k, which satisfies 

T h e o r e m 10.5 . For each k = 0 , . . . ,4 there is a compact 8-mani-

fold M k with Betti numbers b° = I, b1 = 0, b2 = 4 - k, b3 = 33, 

b4 = 200 + 2k, b\ = 132 + k and b i = 68 + k. There exist metrics with 

holonomy Spin(7) on M k, which form a smooth family of dimension 69+ 

k. 

These examples have the largest value of b3 and the smallest values 
of b4 that the author has found using this construction. 

11. Conclus ions 

In Table 1 we give the Betti numbers (b2 ,b3 ,b4) of the compact 8-
manifolds with holonomy Spin(7) that we constructed in §7—§10. There 
are 14 sets of Betti numbers, none of which coincide with any in [10], 
so we have found at least 14 topologically distinct new examples of 
compact 8-manifolds with holonomy Spin(7). 
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Table 1: Betti numbers (b2,b3,b4) of compact Spin(7)-manifolds 

(4,33,200) (3,33,202) (2,33,204) (1,33,206) (0,33,208) 
(1,0,908) (0,0,910) (1,0,1292) (0,0,1294) (1,0,2444) 
(0,0,2446) (0,6,3730) (0,0,4750) (0,0,11662) 

The examples of §7—§10 are by no means all the manifolds that 
can be produced using the methods of this paper, but only a selection 
chosen for their simplicity and to illustrate certain techniques. Readers 
are invited to look for other examples themselves; the author would be 
particularly interested in examples which have especially large or small 
values of b4. 

We have also chosen to restrict our attention in §5—§10 to orbifolds 
Y all of whose singularities are modelled on C4/Z4, where the generator 
a of Z4 acts as in (6). This is not a necessary restriction, and there 
are other types of singularities for Y and Z for which the construction 
would work, such as the R 8 /G" considered in §4.3, and which occur in 
suitable orbifolds Y. However, the author has not found many such Y; 
the C4/Z4 singularities do seem to be the easiest to construct. 
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