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A NEW CONSTRUCTION OF COMPACT
8-MANIFOLDS
WITH HOLONOMY Spin(7)

DOMINIC JOYCE

1. Introduction

In Berger’s classification [1] of holonomy groups of Riemannian man-
ifolds there are two special cases, the exceptional holonomy groups Go
in 7 dimensions and Spin(7) in 8 dimensions. Bryant [2] and Bryant and
Salamon [3] showed that such metrics exist locally, and wrote down ex-
plicit, complete metrics with holonomy G9 and Spin(7) on noncompact
manifolds.

The first examples of metrics with holonomy Go and Spin(7) on
compact 7- and 8-manifolds were constructed by the author in [10],
[11], [12]. The survey paper [13] provides a good introduction to these
constructions. Here is a brief description of the method used in [10]
to construct compact 8-manifolds with holonomy Spin(7), divided into
four steps.

(a) We start with a flat Spin(7)-structure (€29, go) on the 8-torus 7%,
and a finite group T' of isometries of T® preserving (g, go). Then
T8/T is an orbifold, a singular manifold with only quotient singu-
larities.

(b) For certain T one can resolve the singularities of 78 /T in a natural
way, using complex geometry. This gives a nonsingular, compact
8-manifold M, and a projection 7 : M — T%/T.
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(c) We write down a 1-parameter family of Spin(7)-structures (£, g;)
on M for t € (0,€), such that (¢, g;) has small torsion when ¢ is
small, and converges to the singular Spin(7)-structure 7*(£g, go)
ast — 0.

(d) Using analysis we prove that for small ¢, the Spin(7)-structure
(4, g) can be deformed to a nearby Spin(7)-structure (£2¢, g:) on
M, with zero torsion. Then g has holonomy Spin(7).

In this paper we will describe a new method for constructing com-
pact 8-manifolds with holonomy Spin(7), in which one starts not with
a torus T® but with a Calabi-Yau 4-orbifold Y with isolated singular
points p1,... ,pr. We use algebraic geometry to find a number of suit-
able complex orbifolds Y, which in the simplest cases are hypersurfaces
in wetghted projective spaces (CIP’ZO

Then, instead of a finite group I', we suppose we have an antiholo-
morphic, isometric involution ¢ : ¥ — Y, whose only fixed points are
P1, ... ,pg. This involution does not preserve the SU(4)-structure on Y,
but it does preserve the induced Spin(7)-structure. We think of o as
breaking the structure group of Y from SU(4) down to Spin(7). De-
fine Z = Y/{o). Then Z is an orbifold with isolated singular points
P1,...,p;, and the Calabi-Yau structure on Y induces a torsion-free
Spin(7)-structure on Z.

geee 5050

If the singularities of Z are of a suitable kind, we can resolve them
to get a compact 8-manifold M with holonomy Spin(7), as in steps (b)—
(d) above. To perform the resolution we need to find Asymptotically
Locally Euclidean Spin(7)-manifolds corresponding to the singularities
of Z, which are a special class of noncompact Spin(7)-manifolds asymp-
totic to quotient singularities R® /G.

Our construction then yields new examples of compact 8-manifolds
M with holonomy Spin(7). We calculate the Betti numbers b*(M) in
each case. They turn out to be rather different to the Betti numbers
arising from the previous construction in [10]. In particular, in this new
construction the middle Betti number b* tends to be rather large, as big
as 11662 in one example, whereas the manifolds of [10] all satisfied b* <
162.

Sections 2 and 3 introduce the holonomy group Spin(7) and Calabi-
Yau orbifolds, and §4 defines the idea of ALE Spin(7)-manifold, and
gives a number of examples. Section 5 then proves our main result,
that given a Calabi—Yau 4-orbifold Y and an antiholomorphic involution
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o Y — Y satisfying certain conditions, we can construct a compact
8-manifold M with holonomy Spin(7).

We explain in §6 how to use the construction in practice, and ways of
computing the Betti numbers of the resulting 8-manifolds M. Sections
7-10 apply the construction to generate new examples of compact 8-
manifolds with holonomy Spin(7), and we finish in §11 with a discussion
of our results.

The material in this paper will be discussed in the author’s book
[14], which pays much attention to the exceptional holonomy groups,
and also gives a more sophisticated version of the original construction
[10] of compact 8-manifolds with holonomy Spin(7).

2. Background on the holonomy group Spin(7)

We now collect together some facts we will need about the holonomy
group Spin(7), taken from the books by Salamon [18, Ch. 12] and the
author [14, Ch. 10]. First we define Spin(7) as a subgroup of GL(8, R).

Definition 2.1. Let R® have coordinates (z1,...,ss). Write dx;jx
for the 4-form dx; Adx; Adxy Adz; on R®. Define a 4-form Qy on R® by

Qp =dx1234 + dx1256 + dx1278 + dx1357 — dX1363
(1) —dx1458 — dx1467 — dxo358 — dx2367 — dx2457
+dx9468 + dx3456 + dx3478 + dX567s.

The subgroup of GL(8, R) preserving €2 is Spin(7). It is a compact, con-
nected, simply-connected, semisimple, 21-dimensional Lie group, which
is isomorphic as a Lie group to the double cover of SO(7). This group
also preserves the orientation on R® and the Euclidean metric gg =
dz? + -+ + dz? on RE.

Let M be an 8-manifold. For each p € M, define A4,M to be the
subset of 4-forms Q € A4T];‘ M for which there exists an isomorphism
between T, M and R® identifying Q and the 4-form Qg of (1). Let AM
be the bundle with fibre 4, M at each p € M. Then AM is a subbundle
of A*T*M with fibre GL(8,R)/Spin(7). Tt is not a vector subbundle,
and has codimension 27 in A*T*M. We say that a 4-form Q on M is
admissible if |, € A,M for each p € M.

Now the conventional definition of a Spin(7)-structure on an 8-
manifold M (which we will not use) is a principal subbundle @ of the
frame bundle F with structure group Spin(7). There is a 1-1 corre-
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spondence between Spin(7)-structures @ in this sense, and admissible
4-forms Q € C®°(AM) on M. Each Spin(7)-structure @ induces a 4-
form €2, a metric ¢ and an orientation on M, corresponding to g, go
and the orientation on R8.

Definition 2.2. Let M be an 8manifold, 2 an admissible 4-form
on M, and g the associated metric. We shall abuse notation by referring
to the pair (€2, g) as a Spin(7)-structure on M. Let V be the Levi-Civita
connection of g. We call VQ the torsion of (€, g), and we say that (£2, g)
is torsion-free it VQ = 0. A triple (M, €, g) is called a Spin(7)-manifold
if M is an 8-manifold, and (€, g) a torsion-free Spin(7)-structure on M.

Let (€2, g) be a Spin(7)-structure on an 8-manifold M. Then (€2, g)
is torsion-free if and only if A2 = 0. If (Q,g) is torsion-free then g is
Ricci-flat, and M is spin and has a constant positive spinor. If M is
compact and Hol(g) = Spin(7) then the positive Dirac operator

Dyt C®(84) — C(S_)

has kernel R and cokernel 0. Thus D. has index 1.
But the index of Dy is the A-genus A(M), and is given by

(2) 24A(M) = —1+b (M) — b*(M) + b3 (M) + b2 (M) — 2b2 (M),

where ¥ = bv¥(M) are the Betti numbers of M. Thus a compact 8-
manifold M with holonomy Spin(7) must satisfy &% + b3 = b* + b2 +25.
As in [10, Th. C], one can use this to show:

Theorem 2.3. Let (M, 2, g) be a compact Spin(7)-manifold. Then
Hol(g) = Spin(7) if and only if M is simply-connected, and b® + bt =
b2 + bt + 25.

The following result [10, Th. D] describes the moduli space of holon-
omy Spin(7) metrics.

Theorem 2.4. Let M be o compact 8-manifold admitting metrics
with holonomy Spin(7). Then the moduli space of metrics with holon-
omy Spin(7) on M, up to diffeomorphisms isotopic to the identity, is a
smooth manifold of dimension 1+ b* (M).

Our next proposition follows from the ideas of [14, §10.6].

Proposition 2.5. Let M be an 8-manifold. Then there exists a
tubular open neighbourhood TM of AM in A*T*M which is a fibration
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over M, a smooth map of fibre bundles © : TM — AM, and positive
constants p,C, such that

(i) If (Q,g) is a Spin(7)-structure and & a 4-form on M with | —
Qg < p, then £ € C*(TM).

(ii) Suppose (Q,g) is a Spin(7)-structure on M, and & a 4-form on
M with [€ —Q|y < p. Write Q' = ©(£), and let (¥, 9") be the
associated Spin(7)-structure. Then | — |y <& —Qly. If (2,9)
is also torsion-free, then ‘V’(f — ) g S C|\V({ - Q)‘

5
Here V,V' are the Levi-Civita connections of g and ¢, and |. |y, | .|y
the norms defined using g and g'.

This is an entirely local result, involving calculations at a point, and
p, C are independent of M. The inequality |{ — |y < |€ — Q| in part
(ii) should be understood as saying that Q' = ©(£) is the Spin(7)-form
closest to £&. That is, TM is a small open neighbourhood of AM in
AYT* M, and O is the projection from 7 M to the nearest point in AM.
But as we have not fixed a metric on M, we do not have a way to
measure distance in A*T* M, and so we use the metrics ¢, ¢ associated
to the Spin(7)-forms Q,Q to do this.

Our final result is proved in [10, Th. A & Th. B], and also in
[14, Ch. 13].

Theorem 2.6. Let A, u,v be positive constants. Then there exist
positive constants x, K such that whenever 0 < t < k, the following is
true.

Let M be a compact 8-manifold, and (Q,g) a Spin(7)-structure on
M. Suppose that ¢ is a smooth 4-form on M with dQ+ d¢ =0, and

(i) g2 < A2 and ||dgl| 0 < A,
(ii) the injectivity radius 6(g) satisfies 6(g) > ut, and
(iii) the Riemann curvature R(g) satisfies HR(g)HCo < vt

Then there exists a smooth, torsion-free Spin(7)-structure ($2,g) on M
with || — Q| co < Kt1/2.

Here is how to interpret this result. As VQ =0 if and only if d2 =0
and d¢ + dQ2 = 0, the torsion V! is determined by d¢. Thus we can
think of ¢ as a first integral of the torsion of (2,g9). So ||¢|;2 and
|ld|| ;10 are both measures of the torsion of (£2,g). As ¢ is small, part
(i) of the theorem says that (2, g) has small torsion in a certain sense.
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Parts (ii) and (iii) say that the injectivity radius of ¢ should not
be too small, and its curvature not too large. When a metric becomes
singular, in general its injectivity radius goes to zero and its curvature
becomes infinite. So we can interpret (ii) and (iii) as saying that ¢ is
not too close to being singular.

Thus, the theorem as a whole says that if the torsion of (€2, g) is small
enough, and g is not too singular, then we can deform (€2, g) to a nearby,
torsion-free Spin(7)-structure (€2, §) on M. We can hence use Theorem
2.3 to show that if M is simply-connected and b® + bi = b2 +b* 425,
then ¢ has holonomy Spin(7).

We prove Theorem 2.6 using analysis: we write the condition that
(Q, g) be torsion-free as a nonlinear elliptic p.d.e., which can be approx-
imated by a linear elliptic p.d.e. when Q) — Q is small. Then we use
tools such as Sobolev spaces, the Sobolev Embedding Theorem and el-
liptic regularity to show that this nonlinear elliptic p.d.e. has a smooth
solution.

3. Calabi—Yau manifolds and orbifolds

We now give a brief introduction to Calabi—Yau geometry, and the
relation between Calabi-Yau 4-folds and Spin(7)-manifolds. Some suit-
able references are Salamon [18, Ch. 8] and the author [14, Ch. 6].

Definition 3.1. A Calabi—Yau manifold or orbifold is a compact
Kéahler manifold or orbifold (Y,.J,g) of dimension m, with Hol(g) =
SU(m).

Now Calabi—Yau manifolds and orbifolds are nearly the same thing
as Ricci-flat Kahler manifolds and orbifolds, as we see in the next propo-
sition. It follows from elementary properties of holonomy groups and
Kahler geometry.

Proposition 3.2. Any Calabi-Yau orbifold (Y, J,g) is Ricci-flat.
Conwversely, let (Y,J,g) be a compact Ricci-flat Kihler orbifold of di-
mension m, with singular set S. Suppose that Y\ 'S is simply-connected
and WP2(Y) = 0 for 0 < p < m. Then Hol(g) = SU(m), so Y is a
Calabi—Yau orbifold.

But using Yau’s proof of the Calabi conjecture [20], one can show
that suitable complex orbifolds admit Ricci-flat Kahler metrics.

Theorem 3.3. Let (Y,J) be a compact complex orbifold admit-
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ting Kdhler metrics, with ¢1(Y) = 0. Then there is a unique Ricci-flat
Kahler metric in each Kahler class on Y.

Now the action of SU(m) on C™ fixes the complex m-form
dzy A -+ Adzy,. Tt follows by general principles of Riemannian holon-
omy that any Riemannian manifold or orbifold with holonomy SU(m)
admits a complex m-form 6 corresponding to dz; A --- A dz,, which is
constant under the Levi-Civita connection V. So we get:

Proposition 3.4. Let (Y, J,g) be a Calabi-Yau manifold or orbifold
of dimension m, with Kdhler form w. Then there exists a constant
(m,0)-form 6 onY, such that near every point p € Y we can choose
complex coordinates (21,... ,zm) in which

g=l|dz > + -+ |dzp|%
(1) w:%(dzl/\d§1+---+dzm/\d2m),
and @ =dz A---ANdzy,

at p. This form 0 is unique up to multiplication by €% for some
¢ € [0,27).

We call 8 the holomorphic volume form of Y. Now we restrict our
attention to complex dimension 4. Here is a criterion for a complex
4-orbifold to be Calabi—Yau.

Proposition 3.5. Let (Y,J) be a compact complex 4-orbifold with
c1(Y) = 0, admitting Kdahler metrics. Suppose Y'\S is simply-connected,
where S is the singular set of Y, and h*>%(Y) = 0. Then each Kdihler
class on'Y contains a unique metric g such that (Y, J, g) is a Calabi-Yau
4-orbifold.

Proof. As m1(Y \ §) = 0 we have b'(Y) = 0, so that h1%(Y) = 0.
Since 71 (Y \ S) = 0 and ¢;(Y) = 0 the canonical bundle Ky of Y is
trivial, and this implies that AP?(Y) = h1=P0(Y). Thus A*°(Y) = 0.
But we are given that h%°(Y) = 0. Hence h?"°(Y) = 0for 0 < p < 4, and
the proposition follows from Proposition 3.2 and Theorem 3.3. q.e.d.

A Calabi-Yau 4-fold Y has holonomy SU(4), and so carries a natu-
ral torsion-free SU(4)-structure. Since SU(4) C Spin(7) C SO(8), this
SU(4)-structure induces a Spin(7)-structure on Y, which is also torsion-
free.

Proposition 3.6. Suppose (Y, J, g) is a Calabi-Yau 4-orbifold, with
Kahler form w and holomorphic volume form 0. Define a 4-form Q on
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Y by Q = JwAw+Re(0). Then (2, g) is a torsion-free Spin(7)-structure
onY.

Proof. Let p be a point in Y. Then by Proposition 3.4 we can choose

complex coordinates (z1,... ,24) near p such that g,w and @ are given
by (1) at p, with m = 4. Define real coordinates (x1,... ,2g) on Y near
p such that (z1,...,24) = (1 + iz9, 23 + 124, x5 + P26, 27 + ixg). Then

from (1) we see that g, w and Re(#) are given at p by
g= dx% 4+ -+ dw%, w = dxq2 + dx34 + dxse + dx7g

and

Re(0) =dx1357 — dx1368 — dX1458 — dX1467

— dx2358 — dxX9367 — dX2457 + dXo468,

where dx;;. ;= dx; Adzj A--- Aday.

It follows from this equation that © = 2w A w + Re(f) coincides
with the 4-form Qg defined in (1). As this holds for all p € Y, we see
that (Q,g) is a Spin(7)-structure on Y, in the sense of Definition 2.2.
Now Vw = V8 = 0, where V is the Levi-Civita connection of g, and so
VQ = 0. But VQ is the torsion of (€2,g), so that (€, g) is torsion-free,
as we want. q.e.d.

Thus Calabi-Yau 4-folds are also Spin(7)-manifolds.

4. ALE Spin(7)-manifolds

ALE manifolds, or Asymptotically Locally Euclidean manifolds, are
a class of noncompact Riemannian manifolds with one end modelled
asymptotically on a quotient singularity R /G.

Definition 4.1. Tet G be a finite subgroup of SO(n) which acts
freely on R™ \ {0}. Let X be a noncompact n-manifold and = : X —
R" /G a continuous, surjective map, such that 7=1(0) is a compact sub-
set of X, and 7 : X \ 7~1(0) — (R*/G)\ {0} is a diffeomorphism. Then
we call (X, 7) a real resolution of R"/G.

A metric g on X is called Asymptotically Locally Fuclidean, or ALE,
if

Vim(g) —g0) = O™ on {z € R*/G : r(z) > R}, for all [ > 0.
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Here gg is the Euclidean metric on R” /G, r is the radius function on
R8/G, and R > 0 is a constant. We say that (X,g) is asymptotic
to R"/@G.

One reason ALE manifolds are interesting is that if you have an
ALE manifold (X, gx) asymptotic to R" /G, and a compact Riemannian
orbifold (Y, gy ) with isolated singularities modelled on R" /G, then you
can glue X and Y together to get a nonsingular, compact Riemannian
manifold (M, g, ). We think of this as resolving the singularities of Y
using X.

This technique is particularly valuable when X and Y both have
special holonomy, so that Hol(gx) and Hol(g,) both lie in some holon-
omy group H C SO(n), as then we can hope to construct a metric g,, on
M with Hol(g, ) € H. So ALE manifolds (X, gx) with Hol(gy) C H are
ingredients in a construction for compact manifolds with holonomy H.

In fact the only interesting candidates for the holonomy group H
are U(m) and SU(m) for m > 2, and Spin(7). Kronheimer [16], [17]
constructed and classified all ALE 4-manifolds with holonomy SU(2).
Calabi [4, p. 285] found an explicit family of ALE manifolds with holon-
omy SU(m) asymptotic to C"™/Z,,, and more generally the author [15],
[14, Ch. 8] gave existence theorems for ALE manifolds with holonomy
SU(m). No examples of ALE 8-manifolds with holonomy Spin(7) are
known, at the time of writing.

However, we can construct compact 8-manifolds with holonomy
Spin(7) using only ALE 8-manifolds whose holonomy is a proper sub-
group of Spin(7) such as SU(4) or Zs x SU(4), and many examples of
these can be found using the results of [15]. To discuss these, it is useful
to define the idea of ALE Spin(7)-manifold, as in [14, Ch. 13].

Definition 4.2. Let G be a finite subgroup of Spin(7) which acts
freely on R® \ {0}, let (X, 7) be a real resolution of R® /G, and (Q,g) a
torsion-free Spin(7)-structure on X. We call (X, €, g) an ALE Spin(7)-
manifold if

Vi () — Q) = 0~ on {z € R®/G :r(z) > R}, for all | > 0.
Here Qg is the Spin(7) 4-form on R® /G given in (1), r the radius function
on R®/G, and R > 0 a constant.

In the rest of the section we give some examples of ALE Spin(7)-
manifolds.
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4.1 An example of an ALE Spin(7)-manifold

We define a finite group G C Spin(7), such that R® /G has an isolated
singularity at 0, and construct two topologically distinct ALE Spin(7)-
manifolds (X1,81,91) and (X2, 8, g2) asymptotic to R® /G. These will
be used in §5 as part of a construction of compact 8-manifolds with
holonomy Spin(7).

Let R® have coordinates (x1,... ,2g) and Spin(7)-structure (Qq, go),
as in Definition 2.1. Use the complex coordinates

(21,29, 23, 24) = (x1 + 129, X3 + T4, T5 + 126, 27 + 123)

to identify R® with C*. Then go = |d21[? + - + |dz4|?, and Qp = Swy A
wo + Re(fy), where wy is the Kahler form of gy and 6y = dz; A--- Adzy
the complex volume form on C*.

Define o, 5 : C* — C* by

o (Zl,. .. ,2’4) — (izl,izz,iz3,iZ4),

(4 B:(z1y...y24) = (Zo,—Z1, 24, —Z3).

Then o € SU(4) C Spin(7) and 8 € Spin(7), and «, 3 satisfy o* =
B*=1,a? = 52 and aff = Ba’. Let G = (o, ). Then G is a finite
nonabelian subgroup of Spin(7) of order 8 which acts freely on R®\ {0}.

Now C*/{a) is a complex singularity, as « € SU(4). Let (Y1,m) be
the blow-up of C'/{«a) at 0. Then Y; is the unique crepant resolution
of C'/{a). The action of 8 on C*/{c) lifts to a free antiholomorphic
map 3 : Yy — Yy with 82 = 1. Define X; = Y¥1/(3). Then X; is a
nonsingular 8-manifold, and the projection 71 : ¥; — C*/(a) pushes
down to 71 : X1 — R /G.

By [15, Th. 3.3, Th. 3.4] there exist ALE Ké&hler metrics g; on Y3
with holonomy SU(4), which were in fact written down explicitly by
Calabi [4, p. 285]. Each such g¢; is invariant under the action of § on
Y1. Let w; be the Kahler form of g1, and 6; = 7} (6y) the holomorphic
volume form on Y. Then Proposition 3.6 defines a torsion-free Spin(7)-
structure (21, ¢1) on Yy with Qy = %wl A wy + Re(61).

As f*(w1) = —w; and B*(01) = 0y, we see that 3 preserves (€, g1 ).
Thus (21, ¢91) pushes down to a torsion-free Spin(7)-structure (Q1,g1)
on Xi. Then (X1,Q4,91) is an ALE Spin(7)-manifold asymptotic to
R8/G. The Betti numbers of X are b = v = b3 = 0 and b! = 1,
and 7T1(X1) = ZQ.
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4.2 A second ALE Spin(7)-manifold asymptotic to R®/G
Define new complex coordinates (w1, ... ,w,) on R® by
(w1, wa, w3, ws) = (—21 + 073, T2 + iTa, —T5 + 77, Te + i3).

Then go = |[dwr|? + -+ + |dws|? and Qy = $w)) A wh + Re(6)), where w))
is the Kahler form of gy with respect to the complex structure induced
by the w;, and 6) = dw; A--- Adw, is the complex volume form on Cc*.
As the action of SU(4) on R® = C* induced by the w; preserves
go,wph and 0}, it preserves (Qp,go). Thus the action of SU(4) on R®
compatible with the coordinates wj; is a subgroup of Spin(7). Note that
this is a different SU(4) subgroup of Spin(7) to that considered above,
induced by the z;. In the coordinates w;, we find that «, 8 act by

(5) «: (wl,. .. ,w4) — (11_)2,—11_)1,11_)4, —11_)3),
ﬁ: (wl,. .. ,w4) — (iwl,in,iwg,iw4).

Observe that (4) and (5) are the same, except that the rdles of «, 5 are
reversed. Therefore we can use the ideas above again.

Let Y> be the crepant resolution of C*/(3). The action of a on
C* /{B) lifts to a free antiholomorphic involution of 5. Let Xy = Y /{a).
Then X5 is nonsingular, and as above there exists a torsion-free Spin(7)-
structure (Qo,g2) on Xo, making (X2,$s,g2) into an ALE Spin(7)-
manifold asymptotic to R® /G.

Now (X1,Q1,91), (X2,Q9, g2) are clearly isomorphic as Spin(7)-mani-
folds, but they should be regarded as fopologically distinet ALE mani-
folds, because the isomorphism between them acts nontrivially on R® /G.
Thus, we have found two topologically distinct ALE Spin(7)-manifolds
(X1,91,91), (X2,92,g2) asymptotic to the same singularity R® /G.

4.3 Other examples of ALE Spin(7)-manifolds

We can use the ideas above to construct other ALE Spin(7)-manifolds
too. Here we very briefly describe two infinite families of ALE Spin(7)-
manifolds X7", X3 for n = 1,3,5,.... For simplicity they will not be
used in the rest of the paper, although they easily could be.

Identify R® and C* as in §4.1. Let n > 1 be an odd integer, and
define o, 8,7 : C* — C* by

(21,0 ,24) = (egm/"zl,e_gm/"zQ,e2”/”z;g,e_2”/”z4),
ﬁ: (2:1, ces ,Z4) — (izl,izQ,iZ3,iz4),

v (2:1,... ,24) — (22,—51,54,—23).
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Then «,3 € SU(4) and v € Spin(7), and G" = («,3,7) is a finite
nonabelian subgroup of Spin(7) of order 8n which acts freely on R®\ {0}.
Note that G coincides with the group G of §4.1-§4.2.

We can construct a family of ALE Spin(7)-manifolds asymptotic
to R®/G™ as follows. The complex singularity C*/(c, 3) has a unique
crepant resolution Y*, which can be described explicitly using toric
geometry. The action of v on C'/{«, 8) lifts to a free antiholomorphic
involution v : Y* — Y{*, so that X7 = Y"/(v) is a nonsingular 8-
manifold with a projection 77 : X7 — R®/G™.

By the results of [15], there exist ALE Kéahler metrics ¢ on Y/
with holonomy SU(4). We can choose g} to be ~y-invariant, and then
the induced Spin(7)-structure (27,g7) on Y{" is also v-invariant, and
pushes down to X7, making (X7, Q7, ¢}) into an ALE Spin(7)-manifold
asymptotic to R®/G". Using the idea of §4.2, we can also construct a
second ALE Spin(7)-manifold (X5, Q3, ¢g%) asymptotic to R® /G™.

5. Proof of the construction

Starting with a Calabi-Yau 4-orbifold Y with isolated singularities
of a certain kind, and an antiholomorphic involution ¢ on Y, we will
now construct a compact 8-manifold M by resolving Z = Y/(o), and
prove that there exist torsion-free Spin(7)-structures (€2, §) on M, which
have holonomy Spin(7) if M is simply-connected.

5.1 A class of Spin(7)-orbifolds 7

We set out below the ingredients in our construction, and the assump-
tions they must satisfy.

Condition 5.1. Let (Y, J) be a compact complex 4-orbifold with
c1(Y) = 0, admitting Kéhler metrics. Let o be an antiholomorphic

involution on Y. That is, 0 : ¥ — Y is a diffeomorphism satisfying
0?2 =id and ¢*(J) = —J. Define o : C* — C* by

(6) « (2’1,22,23,24) — (iZl,iZQ,’iZg,iZ4)-

Then o = 1, so that (o) = Z4, and C*/{c) has an isolated singular
point at 0. We require that the singular set of Y should be & isolated
points p1,... ,py for some k > 1, each modelled on C!/(c), and that
the fixed set of o in Y is exactly {pi,...,px}. We also suppose that
Y\ {p1,... ,px} is simply-connected, and h%?(Y) = 0.
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In the rest of the section we assume that Condition 5.1 holds.

Proposition 5.2. There is a o-invariant metric gy on Y making
(Y, J,gy) into a Calabi-Yau orbifold. We can choose the holomorphic
volume form 0y on (Y, J,gy) such that o*(0y) = 0y. Let (Qy,gy) be the
torsion-free Spin(7)-structure on'Y from Proposition 3.6. Then (Qy, gy)
18 o-invariant.

Proof. Let ¢’ be a Kahler metric on Y. Then o*(¢’) is also a Kéhler
metric on Y, and so ¢ = ¢’ + 0*(¢') is a o-invariant Kéhler metric on
Y. Let s be the Kéahler class of ¢”. Then « is o-invariant, regarded as
an equivalence class of metrics on Y. By Condition 5.1 we know that
c1(Y) =0 and h?%(Y) = 0, and that Y \ S is simply-connected, where
S = {p1,...,pi} is the singular set of Y. Thus by Proposition 3.5,
the Kéhler class k contains a unique metric gy such that (Y, J,gy) is a
Calabi-Yau orbifold. As k is o-invariant we see that g, is o-invariant,
by uniqueness of gy.

Proposition 3.4 shows that there exists a holomorphic volume form 6
on Y. Since ¢ is antiholomorphic, it is easy to show that o*(#) = %0,
for some ¢ € [0,2x). Define 0y = e"?/20. Then 6y is a holomorphic
volume form for (Y, J, gy ), and o*(y) = 0y, as we want.

Let (©2y, gy ) be as in Proposition 3.6. Then Q, = %wy Awy +Re(by ),
where wy is the Kahler form of gy. As 0*(gy) = gy and o*(J) = —J we
have 0*(wy) = —wy, and o*(Re(fy)) = Re(fy) as o*(0y) = Oy. Thus
Qy and gy are both o-invariant.  q.e.d.

In our next result, if Y is an orbifold and p € Y an orbifold point
modelled on R /G, then we say that the tangent space T,Y to Y at p is
R™ /G, in the obvious way. The proof looks complicated, but it is really
only linear algebra.

Proposition 5.3. Foreach j = 1,... ,k we can identify the tangent
space Ty, Y toY at p; with C* /(@) so that gy is identified with |dz|* +
oo+ |dz4|? at pj, Oy is identified with dzy A -+ Adzy at pj, and do :
T, Y — T,,Y is identified with the map 3 : C*/{a) — C*/{a) given by

(7) 0 (Zl,. .. ,Z4)<Oé> — (52, —21,54,—53)(04).

Proof. Since J, gy and 0y form a Calabi—Yau structure on Y, there
certainly exists an isomorphism ¢ : T, Y — C*/{a) which identifies gy
with |dz1|? + - -+ + |dz4|? and 6y with dz; A --- Adz. This ¢ is unique
up to the action of SU(4) on C'/{«). That is, if B € SU(4), then
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Bo.:T,Y — C"/{a) also identifies gy with |dzi[* 4 --- + [dz|* and
0y with dzg A -+« Adzy.

Now do : T}, Y — T},,Y is complex antilinear, and so ¢ identifies do
with the map v : C*/{a) — C*/{a) given by

z1 z21

8) ~4:<{iF|2|:k=0,1,23% — {iFA| 2| :k=0,1,2,3},
23 <3
Z4 Z4

for some 4 x 4 complex matrix A. In fact A is only defined up to
multiplication by a power of i.

As do preserves gy and takes 6y to 6y on Tp,Y, it follows that -
preserves |dz1|2+4- - - +|dz|? and takes dzy A+ -Adzy to dZi A---AdZs on
C' /(). These imply that AA* =T and det(A) = 1, and so 4 € SU(4).
Also, 42 =TI as 02 = id, and this implies that AA = i*I for k = 0,1,2
or 3. And because o fixes only py,... ,pg in Y, the only fixed point of
v in C*/{a) is 0.

So A lies in SU(4) and satisfies AA = i*I. When we replace ¢ by
Bo for B € SU(4), the matrix A is replaced by BAB!. We wish to
show that we can choose B € SU(4) such that the maps 3 of (7) and ~
of (8) coincide. That is, we must show that there exists B € SU(4) and
[=0,1,2 or 3 such that

0O 1 0 0

y) t _|-1 0 0 0O

(9) 1'BAB" = 0 0 o0 1
0O 0 -1 0

___Now AA = i*T shows that A and A commute, and so AA = AA =
AA. Thus I is a real matrix, which implies that &k = 0 or 2, and
AA = +1I. By studying the eigenvectors of A, one can prove that there
exists B € SU(4) such that BAB! is one of

10 0 O 0 1 0 O 0 1 0 0

I 7 01 0 0 -1 0 0 0 i -1 0 0 O
’ 100 -1 0 [’ 0o 0 o0 1) 0 0 0 1
00 0 -1 0 0 -1 0 0 0 -1 0

We exclude the first three possibilities because v fixes (1,0,0,0){x) in
C'/{a), contradicting the fact that the only fixed point of v in C*/{«)
is 0. Putting [ = 0 in the fourth case and [ = 3 in the fifth, we see that
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(9) holds. Thus B o identifies 7)Y with C! /() and satisfies all the
conditions of the proposition, and the proof is complete.  g.e.d.

Now §4.1 defined a finite group G = (a, ) acting on R®, and the
definitions (6) and (7) of @ and 8 above coincide with (4) in §4.1. Thus
the singularities of Z = Y/(o) are all modelled on R® /G, and we easily
prove:

Corollary 5.4. Define Z = Y/{o). Then Z is a compact, real 8-
dimensional orbifold. The Spin(7)-structure (y, gy ) on'Y pushes down
to give a torsion-free Spin(7)-structure (25, 95) on Z. The singularities
of Z are k points p1,... ,px. For each j =1,...  k there is an tsomor-
phism vj : R® /G — Ty, Z which identifies the Spin(7)-structures (Q, go)
onR® /G and (Qz,97) on 1y, Z. Here G and (o, go) are defined in §4.1.

5.2 Desingularizing 7 to get a compact 8-manifold M

So far we have constructed a Spin(7)-orbifold (Z,9,,¢g,) with finitely
many singular points p1,. .. , pg, each modelled on the singularity R® /G
of §4.1. But in §4.1 and §4.2 we wrote down two ALE Spin(7)-manifolds
X1 and X5 asymptotic to RS /G. We shall now resolve each singular
point p; in Z using either X; or Xy to get a compact 8-manifold M.
We include a parameter ¢ € (0,1] in the construction.

Deﬁnition 5.5. Tor each j let ¢; be as in Corollary 5.4, and let
expy, p;Z — Z be the ezponential map, which is well-defined as 7 is
Complete Then €Xp,; 0 Lj maps R /G to Z. Choose ¢ > 0 small, and
let By (R¥/G) be the open ball of radius 2¢ about 0 in R®/G. Define
Uj C Z by Uj = exp,, oL, (Bac(R®/@)), and v; : Bor(R¥/G) — U, by
1/)J = expy, O Lj. Let ¢ > 0 be chosen small enough that U; is open in Z
and t; : BQC(RS/G) — Uj is a diffeomorphism for 1 < j <k, and that
U;NU; =0 when i # j.

Proposition 5.6. There is a smooth 3-form oj on Bo:(R®/G) for
1<j <k and a constant C1 > 0, such that ¢;(Qz) — Qo = do; and
[Vio;| < Cir®=! on By (R®/G), for | = 0,1,2. Here |.| and V are
defined using the metric gy on Bo¢(R®/G), and r : By (RE/G) — [0,2()
is the radius function.

Proof. The derivative of eXPy, at 0 is the identity map on T, Z.
Thus the derivative of 1; at 0 is v : R® /G — T), Z, and so ¢} (QZ)]() =

13 (822) = Qolo, since ¢; identifies 2y and €. Therefore Pr (€ ) Qg at
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0 in By (R®/G). As P;(2y) — Qo is a 4-form on a subset of RS /G, we
can pull it back to R®, and regard 1/);(92) — Qg as a 4-form on the ball
By (R®) of radius 2¢ in RE.

Then 47 (€27) — Q is a smooth G-invariant 4-form on B¢ (R®) which
vanishes at 0. But G contains —1: R® — R® and any 4-form invariant
under this map —1 has zero first derivative at 0. Hence 97 (€2,) — Qo van-
ishes to first order at 0 in ng(Rs), and so by Taylor’s Theorem we can
show that ‘1/)3‘(92) - QO‘ = O(r?) and ‘VQ/);(QZ)‘ = O(r) on By (R®).

Now Q, and € are closed, so that 1/);(92) — Qy is closed, and as
By (R /@) is contractible we can write Pi(Q2y) — Qo = doj for some
smooth 3-form o; on By (R¥/G). Since $7(Qz) — Qo vanishes to first
order at 0 we can easily arrange that o; vanishes to second order at 0,
and therefore |Vio;| = O(r*7!) for I = 0,1,2, using Taylor’s Theorem
as above. Thus there exists C; > 0 such that \Vlaj] < 173t on
By (R /@), for 1 =0,1,2and j =1,... ,k. qed.

Definition 5.7. Let the ALE Spin(7)-manifolds (X,,,€,,¢,) and
projections 7, : X, — R /G be as in §4.1 and §4.2 for n = 1,2. For each
t€(0,1] and n = 1,2 let X! = X,,, define a Spin(7)-structure (2%, g*)
on X! by Qf = t1Q,, and ¢!, = 2g,, and define 7!, : X! — R8/G by
7t = tm,. Then (X!, Q¢ g!) is an ALE Spin(7)-manifold asymptotic
to R®/@.

Using the ideas of [15] or the explicit formula of Calabi [4, p. 285]

we can show that there exist Co > 0 and a smooth 3-form 7} on

R® /G\ By (R® /@), satisfying
(10) (m}).(Qh) =Q +dr) and |Vi7i| < Cot®r™ ™! for1=0,1,2

on R® /G\ By (R® /@), where | .| and V are defined using the metric go.

For y = 1,... ,k, choose n; to be 1 or 2. There are 2F ways of
defining the n;. We shall resolve each singular point p; in Z using Xflj
to get a 1-parameter family of resolutions (M?, ) of Z.

Definition 5.8. For each j = 1,... ,k, define open subsets M{ in
ZandMJt- ianzj for 1 <j<kby

k
M= 7\ U i Bsc(R/@) and M = (xt ) (Bypuss (R /G)).
j=1
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That is, M is the complement in Z of the closed balls of radius $/5¢
about p; for 1 < j < k, and M is the inverse image of B2t4/5C(R8 /G)
in Xflj.

Define an equivalence relation ‘~’ on the disjoint union H?:o M ]t by
x ~ y if either (a) z =y,

b) z € M!andy € U;NM{ and op;or! (x) =y, forsomej=1,...,k,
J J 0 J - ny
or

(c) y€e M]t and z € U;NM{ and wjomtzj(y) =z, forsomej=1,... k.

Define the resolution M® of Z to be ]_[?:0 M}/ ~. Tt is easy to see
that M is a compact 8-manifold. Define a projection =% : M? —
Z by 7'([z]) = = when z € M{, and #'([z]) = ¢; o wfzj(w) when
x € th for some j = 1,... ,k, where [z] is the equivalence class of

2 under ~. Then 7t is well-defined, continuous and surjective, and
7t Mt\ U?Zl(ﬂt)_l(pj) — Z\{pl, ..., Pk} is a diffeomorphism.

Since the resolutions (M*, 7t) of Z form a smooth connected family,
they are all diffeomorphic to the same compact 8-manifold M. We can
regard M]t as an open subset of M? for j = 0,... ,k, and then the M]t
form an open cover of M. If 1 <4, <k and i # j then M} DM; = 0.
The overlap M{ N M; is naturally isomorphic to an annulus in R® /G,
with inner radius t*/°¢ and outer radius 2¢*/°¢. The reason for including
the factors ¢*/5 will be explained shortly.

We now calculate the fundamental group of M*.

Proposition 5.9. If n; =1 for j = 1,... ,k then m(M") = Zo.
Otherwise, M! is simply-connected.

Proof. Since Y \ {p1,...,px} is simply-connected by Condition 5.1
and o acts freely on Y\ {p1,... ,pi}, we see that the fundamental group
of Z\ {p1,...,px} is Zy. The natural inclusion of Z \ {pi,...,px}
in M* induces a homomorphism from 7 (Z \ {p1,-.. ,pk}) to my (M),
which is easily shown to be surjective. Also, as X,tzj is X7 or X9 we
have m (X}, ) = Zs.

Therefore, w1 (M) is Zo if the generator of m (Z \ {p1,-.. ,pk})
projects to the nonzero element of Wl(X,tz].) for all 1 < j < k, and
w1 (M?) is trivial otherwise. But calculation shows that the generator of
T (Z\ {p1,... ,pk}) is nonzero in Wl(X,tzj) ifand only ifn; = 1. q.e.d.

This shows that of the 2 possible ways of choosing the nj, one
possibility gives 71 (M?) = Zs, and the remaining 2% — 1 possibilities all
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give simply-connected M°.

5.3 A Spin(7)-structure (2, ¢') on M' with small torsion

Each open subset M]t in M! carries a torsion-free Spin(7)-structure,
(Qz,97) for 5 = 0 and (Qflj,gfzj) for 1 < j < k. We shall join these
Spin(7)-structures together with a partition of unity to get a Spin(7)-
structure (Qf, g*) on M and estimate its torsion.

Definition 5.10. Let 7 : [0,00) — [0, 1] be a smooth function with
n(z) = 0 for z < ¢ and n(x) = 1 for x > 2(. Define a 4-form &' on M?
by & = Qg in M{\U)_, M!, and &' = Q! in M!\ M{ for 1 < j <k,
and
(11) & = Qo +d(nt™*r)o;) +d((1 —n(t™Pr))7t ) in MiN M}

nj

for 1 < j <k, where we identify M{ N M ]t with an annulus in R® /G in
the natural way. Since Q, = Qg +do; and Qflj =Qp+ dT;;], in M{N th-,
it follows that &' is smooth, and as Q, Qf]j and Qg are closed, ¢! is
closed.

Lemma 5.11. There exists Cs > 0 such that for each 5 =1,... |k
and t € (0,1], this 4-form &' satisfies
(12) € — Qo] < C5t%° and V(€8 - Q)| < C3t*®

in M N th-, where | .| and V are defined using the metric go.
Proof. Expanding (11) we find that

¢ — Qo =n(t™*Pr)do; + (1 — n(t=°r))dr,,
+ 70 () dr A (o5 — 7))

j

in M§ N M}. Since t4/5¢ < r < 2*/5¢, Proposition 5.6 and (10) show
that

|oj| < 8C1C3 /5, |doy| < 4015, |Vdo;| < 201¢t*5,
|ri | < Co¢TTHP, |dr | < Co¢THYP and  |Vd7 | < Co¢ TS,
Combining these with the previous equation and using the facts that

|dr| =1 and 7/ is bounded independently of ¢, we soon prove (12).
q.e.d.
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We can now explain why we chose the power t*/5 in Definition 5.8.
Suppose we had defined M? and &' using t* in place of t*/5, for some
a € [0,1]. Then in the calculation above the o; and 7';;]. terms would
contribute O(#2*) and O(t378%) to &' — Qp respectively, and so &' — Qg
would be O(t?®) + O(t378%). This is smallest when 2a: = 8 — 8c, that
is, when o = 4/5. So the power t*/5 minimizes the size of £& — Q.

Now we can define the Spin(7)-structures (¢, g*) on M?.

Definition 5.12. Let p be as in Proposition 2.5, and choose
e € (0,1] such that C3¢%/5 < p. Suppose t € (0,¢]. Then

et — | < C5t*5 < p

in M{n th for 1 < j <k by (12), and so &' lies in TM* on M} N M]t
by part (i) of Proposition 2.5. But &% is Q or Qf]j outside the overlaps
MSDM;, and thus & € C°(TM?). For each t € (0, €] define QF = O(¢Y),
where © is given in Proposition 2.5. Then Qf € C®(AM?), and so Q!
extends to a Spin(7)-structure (Qf, ¢g*) on M?!. Define a 4-form ¢! on
Mt by ¢t = £ — QF. Then dQf + d¢! = 0, as dé? = 0 on M?.

Here ¢! is a 4-form which does not lie in AM?, but is close to AM?
for small ¢, and QF is the section of AM? closest to £!. What is really
happening is that the Spin(7)-structure (2, gt) is equal to (Qflj,gfzj) in
M;\MS and to (Q, g) outside th forj =1,... ,k,and (2, ¢') interpo-
lates smoothly between these two possibilities on the annulus M ]t N M{.

5.4 Existence of torsion-free Spin(7)-structures on M

Next we shall show that (Qf, ¢') can be deformed to a torsion-free
Spin(7)-structure on M when ¢ is small.

Theorem 5.13. In the situation above, there exist constants A, p, v >
0 such that for all t € (0,¢] we have

(i) [1¢'llL2 < A5 and ||dgt (|0 < AL3/25;
(i) the injectivity radius 5(g') satisfies 6(gt) > ut; and
(ii) the Riemann curvature R(g%) satisfies HR(gt)Hco < vt 2.

Here all norms are calculated using the metric gt on M?.

Proof. Outside the overlaps Mg N th for 1 < j < k we either have
=0 =Q,0r & =Qf = Qflj. In both cases ¢' = 8 — Qf = 0, and



108 DOMINIC JOYCE

so ¢! is zero outside the M¢ N Mt In M{ N Mt we apply part (ii) of
Proposition 2.5 with Q = QO and f £ to get

‘¢t‘gf S ‘gt o 90’90 and ‘Vg gbt‘gt < C‘Vgo(gt o Q0)‘570
Combining this with (12) gives
|#],0 < C5t™® and |dgf|, <|V'¢!| . < CCsMP.

Now each M}{ N M ]t is an annulus in R® /G with inner radius #%/5¢
and outer radius 2754/5C, and the metric g* on M{ N M]t is close to the

flat metric gy on R® /G. Therefore we can find Cy > 0 independent of ¢
such that 2?21 vol(M{ N M}) < C4t3%/5. Hence

/ |17 dV < (C5t%°)2Cyt¥/®  and

Mt

/ t \d¢t\10dV S (CCgt4/5)1004t32/5.
M

Taking roots gives part (i) of the theorem, with A = C3 max(Ci/Q, CCi/m).
Parts (ii) and (iii) are elementary. The metric g/ is made by
scaling g, by a factor 2. Thus (5(gn ) = t6(gn;) and ||R(gn Mo =
t_2||R(gnJ)||Co We make g' by glulng together the gn on the patches
M for y = .k and g, on M{. Tt is clear that "for small t, the
domlnant Contrlbutlons to 6(g") and |R(g")||co come from (5(gn ) and
||R(gn }|co for some j, and these are proportional to ¢ and ¢~%. This
proves (ii) and (iii) for some p,v > 0, and the theorem is complete.
q.e.d.

Finally we can prove our main result.

Theorem 5.14. Suppose Condition 5.1 holds, and let M be the
compact 8-manifold defined in Definition 5.8. Then there exist torsion-
Jree Spin(7)-structures (€,§) on M. If m (M) = {1} then Hol(g) =
Spin(7), and if 7 (M) = Zo then Hol(g) = Zs x SU(4).

Proof. Let A, u,v be as in Theorem 5.13. Then Theorem 2.6 gives a
constant £ > 0. Choose t > 0 with t < e <1 and ¢ < k. Let (2, g) be
the Spin(7)-structure (Q*,¢*) on M = M?, and ¢ the 4-form ¢!. Then
dQ + d¢ = 0 by Definition 5.12, and parts (i)—(iii) of Theorem 5.13
imply (i)—(iii) of Theorem 2.6, as ¢ < 1.

Therefore all the hypotheses of Theorem 2.6 hold, and the theorem
shows that there exists a torsion-free Spin(7)-structure (Q,§) on M.
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It remains to identify the holonomy group Hol(g) of g. Now we can
regard the Spin(7)-orbifold (Z,9Q,,¢,) as the limit as ¢ — 0 of the
Spin(7)-manifolds (M, €2, §). Because of this, it is not difficult to show
that Hol(g,) C Hol(g).

Now Hol(g,) = Zo x SU(4), and thus

Zo x SU(4) C Hol(g) C Spin(7).

If 7y(M) = {1} then Hol(g) is connected. But the only connected
Lie subgroup of Spin(7) containing Zs x SU(4) is Spin(7), so Hol(g) =
Spin(7). If m (M) = Zs then Hol(g) # Spin(7) by Theorem 2.3.
This forces Hol’(§) = SU(4), and it is then easy to see that Hol(j)
=Zox SU4). q.e.d.

Since by Proposition 5.9 we can always choose the n; so that M
is simply-connected, we can always arrange for ¢ to have holonomy
Spin(7). When 71 (M) = Zs, the complex orbifold Y has a crepant
resolution ¥, which admits Kéhler metrics § with holonomy SU(4),
making it into a Calabi—Yau manifold. The action of ¢ on Y lifts to
a free action of o on Y, and so M = Y /{o) is a compact 8-manifold.
If we choose g to be o-invariant then it pushes down to M, and has
holonomy Zo x SU(4).

6. How to apply the construction

We now explain ways of finding orbifolds Y and involutions o : ¥ —
Y satisfying Condition 5.1, and how to calculate the Betti numbers of
the resulting 8-manifolds M with holonomy Spin(7).

6.1 Finding suitable Calabi—Yau 4-orbifolds Y

To apply the construction of §5 we need a source of compact Kahler 4-
orbifolds Y with ¢;(Y) = 0 and isolated singularities modelled on C* /Z4.
Fortunately, physicists and algebraic geometers have been studying Ca-
labi-Yau manifolds for many years, mainly in complex dimension 3.
Several powerful methods have been developed for constructing Calabi—
Yau manifolds, and we will adapt some of these to our problem.

The main idea we shall use is borrowed from Candelas, Lynker and
Schrimmrigk [5], who constructed a large number of Calabi-Yau 3-folds
as crepant resolutions of hypersurfaces in weighted projective spaces
mie,...,azy We shall explain their methods, beginning with weighted
projective spaces, which are an important class of complex orbifolds.
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Definition 6.1. Let m > 1 be an integer, and ag, ay, ... , Gy POs-
itive integers with highest common factor 1. Let C™t! have complex
coordinates on (zg, ... ,2n), and define an action of the complex Lie

group C* on C"*! by
(13) (20, 2m) — (U2, ... , U z), for u e C*.

Define the weighted projective space CPyr — to be (C™+1\ {0})/C*,
where C* acts on C™*! \ {0} with the action (13). Then CP}} . s
compact and Hausdorff, and has the structure of a complex orbifold.

Let [20,... , 2] be a point in CPg; . . and let & be the highest
common factor of the set of those a; for which z; # 0. If £ = 1 then
[#0,- -+ »2m] is a nonsingular point of CPg . and if & > 1 then
[20,. .. ,2m] is an orbifold point with orbifold group Zj.

We call a polynomial f(zo, ... ,zny) weighted homogeneous of degree
d if

Fu™z,. .., uzn) =ulf(20,... ,2m) forallu,z,... 2z, €C.

Let f be such a polynomial, and define a hypersurface ¥ in CPp; -
by

Y = {[zg,... s 2m] € CPoy o2 [(205-+ s 2m) = O}.

Then we call Y a hypersurface of degree d in CPp; .

We say that f is transverse if f(zo,... ,2m) =0and df(zg,... ,2m) =
0 have no common solutions in C™*1 \ {0}. If f is transverse then the
only singular points of Y are also singular points of CPp; -, and Y is
an orbifold, all of whose orbifold groups are cyclic. Note that for given
weights ag, ... ,a;,; and degree d, there may not exist any transverse
polynomials f.

So let Y be a hypersurface of degree d in CPy; . defined by
a transverse polynomial. Using the adjunction formula, we find that
c1(Y)=0ifand only if d = ag+- - - + a,,. In this case it is easy to show
that Y is a Calabi-Yau orbifold. Candelas et al. [5] considered the case
m = 4, and used a computer to search for Calabi—Yau 3-orbifolds of this
kind, finding some 6000 examples. They then resolved the singularities
of each to get a Calabi—Yau 3-manifold.

As we are interested in Calabi—Yau 4-orbifolds, we shall consider
hypersurfaces Y in CIP’ZO’.“’%. Here is a simple class of such Y.
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Example 6.2. Let ag, ... , a5 be positive integers with highest com-
mon factor 1, and let d = ag + --- 4+ a5. Usually we order the a; with
ap < a1 < --- < as. Suppose that a; divides d for 57 = 0,...,5, and
define k; = d/a;. Define a hypersurface Y in (C]P’go,“ by

Y ={[70,...,25) € CIPfLO,m

a5

:z§°+---—|—z§5:0}.

»a5

Since ajk; = d we see that Z(l]m + -+ z§5 is a weighted homogeneous
polynomial of degree d, and it is also transverse.

Therefore Y is a complex orbifold, with singularities only at the
intersection of Y with the singular set of (CPZO,...,%- Since the degree
d of Y satisfies d = ag + -+ + a5, we have ¢1(Y) = 0. Also Y admits
Kahler metrics, as (CPZO,...,% is Kahler. So Y is a compact complex
orbifold with ¢;(Y) = 0, admitting K&hler metrics.

Now to apply the construction of §5, the singular points of Y must
satisfy Condition 5.1. This is a strong restriction on ag,... , a5, which
admits only a few solutions. However, we can get many other suitable
orbifolds Y by generalizing our construction a bit. Here are four ways
to do this.

¢ Defining Y by a different polynomial. We could define ¥V
using some more general transverse weighted homogenous poly-
nomial of degree d in zg, ..., 25, instead of z(’]“O + -+ z§5. The
requirement that a; divides d for 7 = 0,... ,5 is then replaced by
some other condition on the a; and d.

¢ Dividing by a finite group. Let W be a Calabi-Yau hypersur-
face in (C]P)go,... .a5» and G a finite group acting on W preserving its
Calabi-Yau structure. Then Y = W/G is a Calabi-—Yau orbifold.

e Partial crepant resolutions. Let W be a Calabi—Yau hypersur-
face in (CIP’gO,m .a5 Which has some singularities of the kind we want,
together with other singularities that we don’t want. We let Y be
a partial crepant resolution of W, which resolves the singularities
that we don’t want, leaving those that we do.

e Complete intersections in CPy? . Rather than a hypersur-
face in (CIP’gO,m a5+ We take Y to be a complete intersection of m—4
hypersurfaces in CPgy for some m > 5.

R

We can also use combinations of these four techniques — for in-
stance, we can take Y to be a partial crepant resolution of W/G, where
W is a hypersurface in (CIP’gO and G a finite group acting on W.

goee 557
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6.2 Antiholomorphic maps ¢ :Y — VY

Suppose we have chosen an orbifold Y as above, with isolated singular
points p1, ... , pr. The next ingredient in our construction is an antiholo-
morphic involution ¢ : Y — Y, which should fix only py,... ,px. For
example, suppose Y is a hypersurface in (C]P)go,...,%- Then to find ¢ we
would look for an antiholomorphic involution o : (CIP’gO,m a5 C]P)Zo,... a5
with o(Y) =Y, and restrict o to Y.

The most obvious such o maps [z, ... ,25] — [Zo,... ,25]. But this
will not do, as its fixed points are not isolated in Y. To get isolated
fixed points we need to try something more subtle. Here is an example
of the kind of thing we mean.

Example 6.3. In the situation of Example 6.2, suppose that
aop, ... ,a3 are odd and a4, a5 even with ag = a1, as = a3 and a4 = as.
Define o : CPZO,...,% — CﬂDgO,m,% by

o [2’0,... ,2’5] — [51,—20,23,—52,55,54].

As o swaps the pairs zg, 21 and 29, 23 and z4, 25, we need ag = a1, as = a3
and a4 = a5 for o to be well-defined. Clearly ¢ is antiholomorphic,
and o(Y) =Y.

Now o2 acts by

2

g [Z(),... ,25] — [—2’0,—21,—2’2,—23,2’4,2’5].
But putting v = —1 in (13) gives [—zo, —21, —22, —23, 24, 25] = [20,--- , 25,
as ag,...,as are odd and a4,a5 even. Thus 02 =1, and 0 : Y — Y is

an antiholomorphic involution.

It is not difficult to show that the fixed points of ¢ in (CIP’gO,“ are

.05

{0,0,0,0,1,¢"] € CP3

seee A5

10 €[0,2m)}.

Now [0,0,0,0,1,e®] lies in Y if 1 + €% = 0. The solutions to this
equation are hcf(ky, ks) isolated points in Y.

Observe the trick we have used here: if a; = a;11 then we can choose
o to act on the coordinates z;, zj41 by (24, 2j41) = (Zj+1, —Z;). All the
fixed points of o will then satisfy z; = z;41 = 0. By doing this with two
pairs of coordinates, say zp,z1 and 29, 23, the fixed points of ¢ satisfy
2o = z1 = 29 = z3 = 0. Thus they will be of complex codimension 4 in
Y, and will be isolated, as we want.
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This trick can also be adapted to more general situations, in which
Y is a quotient by a finite group, or a partial crepant resolution, and
so on. Note that as o maps (zj,2j+1) = (—2j, —2j41), care must be
taken to ensure that o2 = 1.

6.3 Calculating the Euler characteristic of Y

To determine the Betti numbers of the 8-manifold M that we con-
struct, we will need to know the FEuler characteristic of Y. Now there
are two different notions of the Euler characteristic of an orbifold, de-
fined by Satake [19, §3.3]. The version we are interested in is the
ordinary Euler characteristic x(Y'), which is an integer and satisfies
x(Y) = ijo(—l)jbj(Y). There is also the orbifold Euler characteristic
xv (Y'), which is a rational number that crops up naturally in problems
involving characteristic classes.

In the next example we explain an elementary and fairly crude
method for finding x(Y') in the case that Y is a hypersurface in CPg? =,
of the kind considered in Example 6.2. It is also possible to calculate
xv (Y) using Chern classes and get x(Y) by adding on contributions
from the singular set (see for instance Hosono et al. [9, §2]), but we will
not discuss this.

Example 6.4. Let ag,... ,am, ko, - .. , kn and d be positive integers
with ajk; = d for j = 0,... ,m. For each j = 0,...,m, define ¥; C
0y DY

}/} = {[Z[), ,Z]] € CP“ZL()’...’&J. :ZOO + - +ZJJ == O},

and define 7; : Y; — (C]P{;(;.l“’aj_l by 7 : [20,... 2] = [20, ... s Zj—1]

Suppose for simplicity that a; divides a; for 0 <4 < j <m. Then
for each j, m; is a k;-fold branched cover of CPZL;}..,%_N branched over
Yj_1. Thatis, if p € (C]P’{L(;l ,a;_, then 7rj_1(p) is one point when p € Y;_;
and k; points when p ¢ Y;_;. It follows that

X(Y3) =k x(CP o, )+ (1= k)x(Yi-1)

(14)
= kjj + (1 = k)x(Yj-1),

since x(CPJ ! ) = j. This equation gives x(Y;) in terms of x(Y;_1).

Q... ,aj_l

Hence by induction we can write x(Y;;,) in terms of x(Yp). But ¥ =0
so that x(Yp) = 0, and thus we determine x(Y},).
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If a; does not divide a; for some 0 < ¢ < j < m, then m; is also
branched over other parts of C]P{m_,.l“,aj_l. Let p = [20,... ,%j—1] be in

(CIP’{lO,l ;1 \ Yj—1, and let I be the set of ¢ in {0,... ,j — 1} for which
zi # 0. Define | = hef(a; : ¢ € I) and m = hef(l, ;). Then it turns out
that 7rj_1(p) is kjm/l points in Y;. Clearly k;m/l = k; if | = m, that is,
if [ divides a;.

Thus 7; is also branched over subsets of CIP’{;;.I“’&J,_ .\ Y;_1 corre-
sponding to subsets I C {0,... ,j— 1} for which [ = hef(a; : i € T) does
not divide a;. To calculate x(Y;) in this case we must modify (14) by
adding in contributions from each such I. We will explain this when we

meet it in examples later.

6.4 How to find topological invariants of Y, 7 and M

To calculate the cohomology and fundamental group of our complex
orbifolds Y we will need the following result, a form of the Lefschetz
Hyperplane Theorem. It is proved in Griffiths and Harris [8, p. 156] and
Goresky and MacPherson [6, p. 153].

Theorem 6.5. Let M be a compact, m-dimensional complex man-
ifold, N a nonsingular hypersurface in M, and L the holomorphic line
bundle over M associated to the divisor N. Suppose L is posilive. Then:

(a) the map H*(M,C) — H*(N,C) induced by the inclusion N < M
is an isomorphism for 0 < k < m — 2 and injective for k =m —1,
and

(b) the map of homotopy groups w(N) — 7p(M) induced by the inclu-
ston N — M 1is an isomorphism for 0 < k < m —2 and surjective
fork=m—1.

The result also holds if M and N are orbifolds instead of manifolds,
and N s a nonsingular hypersurface in the orbifold sense.

Here is a procedure for calculating the fundamental group and Betti
numbers of Y, Z and M. The most difficult part is finding the Euler
characteristic x(Y), which we have already explained above.

(a) Calculate 71 (Y), H2(Y,C) and H?(Y,C) explicitly. This can usu-
ally be done using Theorem 6.5. If Y is a hypersurface in (C]P’
then m(Y) = {1}, H3(Y,C) = C and H3(Y,C) = 0. Verlfy that
T (Y \ {p1,... ,pk}) = {1} and h?%(Y) = 0, as in Condition 5.1.
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(b) Compute the Euler characteristic x(Y) of Y, as in §6.3.

(c) Calculate H?(Z,C) and H?*(Z,C) from H?(Y,C) and H3(Y,C).
Note that H7(Z,C) is the o-invariant part of H/(Y,C). Since o
swaps HP4(Y') and HYP(Y), it follows that b3(Z) = 163(Y).

(d) Compute the Euler characteristic x(Z) of Z. If o fixes k points in
Y, then this is given by x(Z) = 3(x(Y) + k).

(e) From (c) we know b?(Z) and b3(Z), and b'(Z) = 0 as m1(Z) is
finite. Thus we can calculate b*(Z) using the formula b*(Z) =
x(Z) — 2 = 20%(Z) + 2b3(2).

(f) Now M was constructed in §5 by gluing X, ,...,X,, into Z,
where n; = 1 or 2 and X7, X are defined in §4. It is easy to show
that the Betti numbers of X; and X, are b = b2 = ® = 0 and
b* = 1. Therefore the Betti numbers b/ (M) satisfy

(15) ¥ (M) =¥ (Z) for j =1,2,3, and b*(M) = b*(Z) + k.
Also, Proposition 5.9 gives 71 (M).

(g) As M has metrics with holonomy Spin(7) or Zs x SU(4) by The-
orem 5.14, we know that A(M) = 1. Thus (2) gives

V(M) — b*(M) — b5 (M) + 202 (M) + 25 = 0.
So we can calculate b (M) using the equations

(b*(M) — b*(M) + 26" (M) + 25),

(16) (=b*(M) + b* (M) + b* (M) — 25).

1
3
1
3

6.5 A way of checking the answers

If you make a mistake at some stage in these calculations, which is quite
easy to do, then you are likely not to notice unless your values for oL (M)
are not integers. Thus it is desirable to have some method for checking
the answers. Here is a way of doing this. All of our examples have been
checked for consistency in this way and others, but for brevity we will
leave out the calculations.

Suppose we can compute the Hodge number 4% (Y), using complex
geometry. Then we can compute b* (Z) using the formula

b (Z) = BPHY) +03(Y) - b3 (Z) - 1.
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But as X; and X3 have b% = 1, as in (15) we have b1 (M) = b1 (Z) + k.
This gives an independent way of finding b* (M), which can be compared
with your answer in part (g) above.

Now there is a complicated method for computing h3!(Y) involving
spectral sequences, and also a much simpler method called the ‘polyno-
mial deformation method” which does not always give the right answer.
Both are discussed by Green and Hiibsch [7]. Here is a sketch of the
polynomial deformation method.

For simplicity suppose that Y is a hypersurface of degree d in (CPZO,... a5-
As Y is a Calabi-Yau orbifold, h3'(Y) is the dimension of the moduli
space of complex structures on Y. We assume (this is not necessarily
true) that every small deformation of Y is also a hypersurface of degree
d in (CPZO,...,as? and that two nearby isomorphic hypersurfaces Y, Y’ of
degree d are related by an automorphism of (C]P)go,...,%-

If these assumptions hold, then h*!'(Y) = m — n, where m is the
dimension of the space of hypersurfaces of degree d in C]P)Zo,... ass and n
is the dimension of the automorphism group of (CPZO,... a5+ Both m and
n are readily computed from ag, ... ,a5 and d.

7. A simple example

Let Y be the hypersurface of degree 12 in CP?,LLIAA given by

Y = {[zo, .25 € OP)?,LI,IAA : zég + 22+ 242 4 z§2 + 23 + zg’ = 0}.
Then ¢;(Y) =0,as 12 =14+14+14+14+4+4, and Y is Kéhler as (CIED?,M,4
is Kahler. Calculation shows that Y has three singular points p; =
[0,0,0,0,1,—1], p» = [0,0,0,0,1,e™/3] and p3 = [0,0,0,0,1,e”"/3],
satisfying Condition 5.1.

We use the method of §6.3 to calculate the Euler characteristic x(Y).

Proposition 7.1. The orbifold Y defined above has x(Y) = 4887.

Proof. Define Y; and 7; as in §6.3, where Y5 = Y. Then Y7 is the
set of 12 points [29, z1] in CP with 2} + 2}? = 0, and so x(¥1) = 12.
Now 79 : Yo — CP! is a 12-fold branched cover branched over Y7, so by
(14) we have

x(Y2) = 12x(CPY) — 11x(Y1) =122 — 11 - 12 = —108.
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Similarly, 73 : Y3 — CP? is a 12-fold branched cover branched over Yo,
so that

x(V3) = 12%(CP?) — 11x(Ys) = 12-2 — 11 - (—108) = 1224.

And 74 : Yy — CP3 is a 3-fold branched cover of CP? branched over Ys,
giving

x(Y1) = 3x(CP3) — 2x(Y3) = 3 -4 — 2- 1224 = —2436.

Finally, 75 : ¥ — CPLII,I,LIA is a 3-fold branched cover of CPZII,I,LIA
branched over Yy, and so

X(Y) =3x(CPY, ) 14) — 2x(Ya) =35 — 2 (—2436) = 4887,

[k Rkt ]

as we want. q.e.d.

Proposition 7.2. The Betli numbers of Y are
Vy)=1, b'(Y)=0, B*(Y)=1, b*(Y) =0 and b*(Y) = 4883.
Also Y \ {p1,p2,p3} is simply-connected and h*°(Y) = 0.

Proof. Theorem 6.5 shows that H*(Y,C) = Hk(CIP’i“A,C) for 0 <
kE < 3. Since bk((CIP’i“A) is 1 for k even with 0 < k& < 10 and 0
otherwise, this shows that 6°(Y) = b*(Y) = 1 and b'(Y) = b3(Y) = 0,
and so b*(Y) = 4883 as x(Y) = 4887.

Theorem 6.5 also gives m1(Y') = m ((CIP’i“ 1), 80Y is simply-connected.
As the nonsingular set of (C]P’im .4 15 simply-connected, we can strengthen
this to show that Y\ {p1,p2, ps} is simply-connected. The isomorphism
H*(Y,C) = H¥(CP?, 4, C) above identifies HP(Y) with HPI(CP} ),
and so hP4(Y) = hp7q(CIP’i“,4) for p 4+ ¢ < 3. Hence h>%(Y) = 0.

q.e.d.

Now defineamapo:Y — Y by
o:[z0,... ,25] ¥ (21, — 20, 23, — 20, Z5, Z4)-

As in Example 6.3, we find that ¢ is an antiholomorphic involution of Y,
and that the fixed points of ¢ are exactly p1, p2, p3. Thus Condition 5.1
holds for Y and ¢. So we can apply the construction of §5, and resolve
the orbifold Z = Y/{o) to get a compact 8-manifold M. Choosing
n; = 2 for at least one j = 1,2,3, Proposition 5.9 shows that M is
simply-connected, and Theorem 5.14 shows that M admits metrics with
holonomy Spin(7).
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Theorem 7.3. This compact 8-manifold M has Betli numbers
=1, b' =p> =0 =0, b' =2446, b1 = 1639 and bL =807.

There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 808.

Proof. We first calculate the Betti numbers of Z. As ¢ fixes 3 points
in Y, by properties of the Euler characteristic we find that x(Z) =
$(x(Y) +3). But x(Y) = 4887 by Proposition 7.1, so x(Z) = 2445. As
H*(Z,C) is the o-invariant part of H*(Y, C) we see from Proposition 7.2
that 8%(Z) = 1 and b'(Z) = b3(Z) = 0. Also H?(Y,C) is generated by
[wy] and 0* (wy) = —wy, so o acts as —1 on H2(Y,C), and H2(Z,C) = 0.

Thus °(Z) = 1, b(Z) = b*(Z) = b3(Z) = 0 and x(Z) = 2445,
giving b1(Z) = 2443. Equation (15) then gives the Betti numbers of
M, and (16) gives bL. Theorem 5.14 shows that there exist torsion-free
Spin(7)-structures (€, §) on M, with Hol(§) = Spin(7) as M is simply-
connected. By Theorem 2.4 the moduli space of metrics on M with
holonomy Spin(7) is a smooth manifold of dimension 14 b* (M) = 808.

q.e.d.

7.1 A variation on this example

Here is a variation on the above, using the idea of partial crepant res-
olution mentioned in §6.1. Let Y be as above, but define ¢/ : ¥ — Y
by

o [2’0, ... ,2’5] — [51, —20,23, =22, 24, 25].

Then o' is an antiholomorphic involution of Y, which fixes the point
p1 =1[0,0,0,0,1,—1] in Y, and no other points. In particular, o' swaps
over the other two singular points ps, ps.

Thus Y and ¢’ do not satisfy Condition 5.1, because the fixed set of
o' is not the same as the singular set {p1,p2,p3} of Y. To rectify this
we resolve the singular points po, p3. Let Y’ be the blow-up of Y at psy
and p3. This is a crepant resolution of Y, and so is also a Calabi—Yau
orbifold.

Then Y’ has just the one singular point p;. The action of ¢/ on Y
lifts to Y’, with sole fixed point p;. Thus Condition 5.1 holds for Y’
and o’. Therefore we can apply the construction of §5 to Y’ and o,
so that Z' = Y'/{o’) is a compact Spin(7)-orbifold with one singular
point p; modelled on R® /G. Choosing n; = 2 we get a resolution M’ of
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7', which is a compact, simply-connected 8-manifold admitting metrics
with holonomy Spin(7).
We shall calculate the topological invariants of Y/ and M’.

Proposition 7.4. The Betti numbers of Y' are

=1, bt =0, =3, b®* =0 and b* = 4885, so that x(Y') = 4893.

Also, Y'\ {p1} is simply-connected and h*°(Y') = 0.

Proof. By definition Y’ is the blow-up of Y at ps, p3. Each blow-up
fixes b' and b and adds 1 to b* and b*. So the Betti numbers of Y’
follow from Proposition 7.2. As Y\ {p1, p2, p3} is simply-connected and
R20(Y) = 0, we see that Y'\ {p;} is simply-connected and h>°(Y”) = 0.

q.e.d.

Here is the analogue of Theorem 7.3:

Theorem 7.5. This compact 8-manifold M' has Betti numbers

=1, b' =0, b’=1, v’ =0, b'=2444, b’ = 1638 and b = 806.

There exist metrics with holonomy Spin(7) on M', which form a smooth
family of dimension 807.

Proof. As o fixes 1 point in Y’ we have x(Z') = (x(Y') + 1),
so x(Z') = 2447 by the previous proposition. Since H*(Z', C) is the o-
invariant part of H*(Y’, C) we have b%(Z’) = 1 and b'(Z') = b*(Z') = 0.
Now b%(Y') = 3, and H2(Y',C) is generated by [wy] and the cohomol-
ogy classes dual to the two exceptional divisors CP? introduced by blow-
ing up p2 and p3. But o’ swaps py and ps3, so o), swaps the correspond-
ing classes in H*(Y',C), and ¢, (wy/) = —wy by definition. Therefore
H2(Y'.C) 2 C® C?, where o) acts as 1 on C and —1 on C?. Hence
H?(Z',C) = C, and b*(Z') = 1.

Thus v°(Z') = b*(Z") = 1, b (Z") = b*(Z') = 0 and x(Z') = 2447,
giving b*(Z') = 2443. Equation (15) then gives the Betti numbers of
M, and (16) gives bL. Theorem 5.14 shows that there exist torsion-free
Spin(7)-structures (2, §) on M, with Hol(§) = Spin(7) as M is simply-
connected. By Theorem 2.4 the moduli space of metrics on M with
holonomy Spin(7) is a smooth manifold of dimension 1+ b (M) = 807.

q.e.d.
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Observe that the Betti numbers of M and M’ in Theorems 7.3 and
7.5 are very similar. It is an interesting question whether one can regard
M and M' as two different resolutions of some singular Spin(7)-manifold
Mjy, not necessarily an orbifold. We leave this as a research exercise for
the reader; the answer is not as simple as it looks.

8. Examples from hypersurfaces in (C]P’go,m,a5

Here are three more examples based on hypersurfaces in (CPZO,... a5-

8.1 A hypersurface of degree 16 in CP?,LLIA,EE

Let Y be the hypersurface of degree 16 in CP?,LI,IA,S given by

Y:{[Z[),...,Z5]6@]]??111478:Z66+Z%6+Z%6+Z§6—|—Zi+z§:O}.

Lt Rt Rkl

Then ¢ (V) = 0. We find that Y has two singular points p; = [0,0,0,0, 1,7
and ps = [0,0,0,0,1, —1], both satisfying Condition 5.1.
Following Propositions 7.1 and 7.2, we find that x(Y) = 9498, and

Proposition 8.1. The Betti numbers of Y are
W=1, =0, v¥»’=1, B>=0 and b* =9494.
Also Y \ {p1,p2} is simply-connected and h*°(Y) = 0.
Define an antiholomorphic involution o : Y — Y by
o [ZO, N ,Z5] — [21, —20, 23, —22, 24, —25].

The fixed points of ¢ are exactly the singular points py,ps of Y. Thus
Condition 5.1 holds for Y and o, and we can apply the construction of
§5. Resolving Z = Y/(o) gives a compact 8-manifold M. We choose at
least one of ny,n9 to be 2, so that M is simply-connected. Then as in
Theorem 7.3, we get:

Theorem 8.2. This compact 8-manifold M has Betli numbers

' =1, b' =bp> =0 =0, b* =4750, b} =3175 and b! = 1575.

There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 1576.
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8.2 A hypersurface of degree 24 in CP?,LLL&IQ

Let Y be the hypersurface of degree 24 in CP?,LLLS,H given by

[t Rkt ]

24 | 24 | 24 | 24 P
81220 T2 t+2z3 +23 + 25 + 25 =0},

Then ¢;(Y) = 0. We find that Y has one singular point p; = [0,0,0,0, —1, 1],
which satisfies Condition 5.1.

Following Proposition 7.1, we find that x(Y) = 23325. Care is
needed to get the right answer here. Define 75 : ¥ — CP%J:LLS by
Ty - [ZO, R ,2:5] — [Z(), R ,2’4], and Yy C CP%,LLLS by

Y, = {[zo, ..., 2] € CPLII,I,LI,S : z§4 + z%4 + z§4 + z§4 + zi’ = 0}.

Then 75 is a double cover of CPZI{LLLS branched over Yy and the point
[0,0,0,0,1] in CPLII,LLLS‘ Hence we get

x(Y) = 2x(CPT 1 18) — x(Ya) — x([0,0,0,0,1]) = 9 — x(V4).

Lt Rt Rkl

If we had not observed that 75 is also branched over [0,0,0,0,1], then
we would have got x(Y) = 23326, which is incorrect.
As in Proposition 7.2, we show:

Proposition 8.3. The Betii numbers of Y are
W=1, =0 =1 =0 and b*=23231.
Also Y \ {p1} is simply-connected and h*°(Y) = 0.
Define an antiholomorphic involution ¢ : ¥ — Y by
o [2’0, . ,Z5] — [21, —20, 23, — %29, 24, 55].

The fixed points of ¢ are exactly the singular point p; of Y. Thus
Condition 5.1 holds for Y and o, and choosing the simply-connected
resolution M of Z =Y /(0), in the usual way we get:

Theorem 8.4. This compact 8-manifold M has Betti numbers

=1, b =p2 =0 =0, b* =11662, bl = 7783 and bL = 3879.

There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 3880.

This is the example with the largest value of b* known to the author.
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8.3 A hypersurface of degree 40 in C]P’?,LE)@S,QO

Here is a more complicated example, in which the hypersurface in
(CPZO,...,% has other singularities which must first be resolved. Let W

be the hypersurface of degree 40 in C]P’il@&&% given by

4 4 2
W = {lz0,... ,25] € CP?,1,5,5,8,20 t200 + 200 + 25 + 25 + 25 + 75 = 0}.

Then ¢1(W) = 0. The singularities of W are the disjoint union of the
single point p; = [0,0,0,0,—1, 1] and the nonsingular curve ¥ of genus
3 given by

E — {[07 O’ Z27 Z3’ 0, Z5] € CP?71,5,5,8,20 : z; _|_ Zg + Zg — 0}

The singular point at py satisfies Condition 5.1. The singularity at
each point of ¥ is modelled on C x C? /Z5, where the generator 3 of Zs
acts on C* by

B : (20,21, 24) = (€202, 0275 1 074/ 2,).

Now the singularity C3/Zs normal to ¥ in W has a unique crepant
resolution X, which can be described using toric geometry. Let Y be
the partial crepant resolution of W which resolves the singularities at
> using X, but leaves the singular point p; unchanged.

Proposition 8.5. The Betti numbers of Y are
W=1, =0 =3 =12, and b*=T7453.
Also Y \ {p1} is simply-connected and h*°(Y) = 0.
Proof. Calculating the Betti numbers of W in the usual way gives
(17) W) =1, b*(W) =0, B*(W) =1, B3(W) =0, b*(W) = 7449.

As W is modelled on C x C?/Zj at each point of %, the resolution Y is
modelled on C x X. Since b*(X) = b*(X) = 2, the Betti numbers of Y
satisfy

V(Y) = P (W) 4+ 2052(2) 4+ 205 4(D).

But X has genus 3, and so its Betti numbers are °(X) = b%(X) = 1 and
b'(2) = 6. Combining this with (17) gives the Betti numbers of Y. The
last part follows as in Proposition 7.2.  q.e.d.
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Define o0 : W — W by
o:z0y-..,2) — |21, — 20, Z3, — 72, Z4, Z5].

The only fixed point of ¢ is p;. Moreover, o lifts to the resolution Y of
W, and ¢ : Y — Y is an antiholomorphic involution which fixes only
p1 in Y. Thus Condition 5.1 holds for Y and o, and we can apply the
construction of §5, and resolve Z = Y/(o) to get a simply-connected
8-manifold M. Proceeding in the usual way, the end result is

Theorem 8.6. This compact 8-manifold M has Betti numbers

=1, b' =0 =0, b® =6, b' =3730, bl = 2493 and b1 = 1237.
There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 1238.

Note that * > 0 in this example; this is because the resolution of
the singular curve ¥ contributes H(X,C) ® H?(X,C) = C @ C? = C'2
to H3(Y,C). Half of this C'? is o-invariant, and so pushes down to
H3(Z,C) and lifts to H*(M,C).

9. A hypersurface in CIPJ?J,LLQ’Q over 7o
Let W be the hypersurface of degree 8 in CP?,LI,LQQ given by

W:{[zo,...,Z5]6@]??111272:z§+zf+z§+z§+zi+z§:0}.

Lt Rt Rkl

Then ¢ (W) = 0. We find that W has four singular points py,... ,ps
modelled on C*/{+1}, given by

[0,0,0,0,1,e™/4],  [0,0,0,0,1,e>™/*],

[0,0,0,0,1,e”/4],  [0,0,0,0,1,e™™/4].
Define 5: W — W by

B:lz0,-.. 25| ¥ [izo, 121,122,123, 24, Z5).

Then 32 =1, as [0, ... , 23] = [~20, —21, —22, —23, 24, Z5] in CIP’?,LLLQ,Q.
The fixed set of 3 is the four points py, ... , ps together with the compact
complex surface S in W, given by

S= {[Z(),Zl,ZQ,Zg,,0,0] € (CP?,I,I,I,QQ : Zg + Z? + Z; + Zg = 0}
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Thus W/{f) is a compact complex orbifold. Its singular set is the dis-
joint union of p1,... ,ps and S. Each singular point p; is modelled on
C' /74, where the generator « of Z4 acts on C* by (6). Each singular
point in $' is locally modelled on C? x C2/{%1}.

Let Y be the blow-up of W/{f3) along S. Because the singularities
normal to S are modelled on C? /{#1}, this is a partial crepant resolu-
tion. So Y is a compact complex orbifold with isolated singular points
P1,... ,pq, modelled on C*/(a). Now ¢; (W) = 0, so c;(W/(B)) = 0,
and as Y is a partial crepant resolution of W/(3) we see that ¢;(Y) = 0.

Proposition 9.1. The Betti numbers of Y are
W=1, =0, v¥»’=2, B>=0 and b* =1806.

Also Y\ {p1,... ,ps} is simply-connected and h>°(Y) = 0.

Proof. As in Proposition 7.1, we find x (W) = 2708 and x(S) = 304.
Thus

X(W/(B)) =5 (x(W) + x(4 points) + x(5))
=1(2708 + 4 + 304) = 1508.

Using Theorem 6.5 we find that W has b = > = 1 and b! = b* = 0,
and it soon follows that W/{8) also has b = b? = 1 and b' = % = 0.
Since x(W/(B)) = 1508 we see that b*(W/(3)) = 1504.

Now Y is the blow-up of W/{53) along S, so that each point of S is
replaced by a copy of CPL. Tt can be shown that the Betti numbers of
Y satisfy

(18) YY) = b (W/(B)) + b (S).

But S can be thought of as an octic in CP?, and by the usual method
we find that the Betti numbers of S are ¥ = 1, b' = 0, * = 302,
b* = 0 and b* = 1. Combining these with (18) and the Betti numbers
of W/{53) above gives the Betti numbers of Y. The last part follows as
usual. q.e.d.

Define an antiholomorphic involution ¢ : W — W by
o [z0,.-. ,25] — [21, — 20, 23, — 70, Z5, Z4]-

The fixed points of ¢ are exactly the singular points py,... ,ps of W.
Also o commutes with 5, and acts freely on S. Hence ¢ pushes down to
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an antiholomorphic involution of W/(3), and lifts to the blow-up Y, to
give an antiholomorphic involution o : Y — Y with fixed points py, ... , p4.

Thus Condition 5.1 holds for Y and o, and in the usual way we
choose a simply-connected resolution M of Z =Y /(o) satisfying:

Theorem 9.2. This compact 8-manifold M has Betti numbers
=1, bl =p"=0>=0, b* =910, b} =615 and b = 295.

There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 296.

9.1 A variation on this example

We shall use the idea of §7.1 to make a second 8-manifold M’ from the
orbifold Y above. Let W and Y be as in §9.1, but define o/ : W — W
by

o : [2’0, . ,25] — [21, —20,%23, — 22, 54,’525].

Then o' pushes down to W/{(8) and lifts to Y as above. However,
this time o' fixes the singular points p; = [0,0,0,0, 1,e”/4] and py =
[0,0,0,0,1,e5™/4] in Y, but it swaps round p3 = [0,0,0,0,1,e37/4]
and pg = [0,0,0,0,1,e"™/4].

Thus, Condition 5.1 does not hold for Y and o', as the fixed set
{p1,p2} of o' does not coincide with the singular set {p1,... ,pa} of Y.
So let Y’ be the blow-up of Y at p3 and ps. Then Y is a partial crepant
resolution of Y, as the singularities at ps,ps are modelled on C*/Z,.
The singularities of Y’ are p1,po, and o' lifts to an antiholomorphic
involution of Y’ fixing only p; and ps.

We find the Betti numbers of Y’ by adding contributions to those
of Y, as in §7.1. Applying the construction of §5 to Y’ and o’ gives a
simply-connected 8-manifold M’, such that

Theorem 9.3. This compact 8-manifold M' has Betti numbers

=1, b'=0, b*=1, b°=0, b* =908, bL =614 and bL =294

There exist metrics with holonomy Spin(7) on M', which form a smooth
family of dimension 295.
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. . . 6
10. Complete intersections in CP, ..

We now try starting with the intersection of two hypersurfaces in
CPS

ag,... ,046°

10.1 The intersection of two octics in CP?,1,1,1,4,4,4

Let Y be the complete intersection of two octics in CP(IS,LI,IAAA given
by
Y ={[z0,... ,25] € CPS | | | 44426 + 7} + 2028 — 2i28 + 25 — 25 = 0,

2z — 2025 + 25 + 25 + 27 — 25 = 0}.
Then ¢;(Y) = 0. We find that Y has 4 singular points

P11 = [0507050715171]7 P2 = [0507050715_15_1]7
P3 = [050705071517_1] and pa = [0705070517_171]7
satisfying Condition 5.1.
By adapting the method of §6.3 we can show that x(Y) = 2580,

and applying Theorem 6.5 twice we find that b*(Y) = bk(CIP’?WA) for
0 < k < 3. Thus we prove:

Proposition 10.1. The Betti numbers of Y are
W=1, =0 =1 b =0 and b* = 2576,
Also Y\ {p1,... ,ps} is simply-connected and h*°(Y) = 0.
Define an antiholomorphic involution o : Y — Y by
o [Zo, cen ,Zﬁ] — [21, —20, 23, —22,24,25,26].

The fixed points of ¢ are exactly the singular points py,... ,ps of Y,
and Condition 5.1 holds for Y and ¢. Proceeding in the usual way, we
set Z =Y /(o) and resolve Z to get a simply-connected 8-manifold M,
which satisfies:

Theorem 10.2. This compact 8-manifold M has Betti numbers
=1, b'=p"=0"=0, b =1294, bL =871 and b =423

There exist metrics with holonomy Spin(7) on M, which form a smooth
family of dimension 424.



COMPACT 8-MANIFOLDS WITH HOLONOMY SPIN(7) 127

10.2 A variation on this example
Now let Y be as in §10.1, but define ¢’ : Y — Y by
UI : [Z(]) ‘e azﬁ] — [237 _225 215 _207 247 267 25]

Then ¢’ is an antiholomorphic involution, with fixed points p; and po,
which swaps round p3 and py. Following the method of §7.1, define Y’
to be the blow-up of Y at p3 and py. Then Y is a Calabi—Yau orbifold,
o' lifts to Y’, and Condition 5.1 holds for Y and o”.

As usual we set Z' = Y'/{o’) and resolve Z' to get a simply-
connected 8-manifold M’, such that we have

Theorem 10.3. This compact 8-manifold M’ has Betti numbers

=1, b'=0, =1, v’ =0, ' =1292, bL =870 and bl =422
There exist metrics with holonomy Spin(7) on M', which form a smooth
family of dimension 423.

Let P(24, 25, 26) and Q(z4, 25, 2¢) be generic homogeneous cubic polyno-
mials with real coeflicients, and define W to be the complete intersection
of two 12-tics in CIP’g,373,374,474 given by

W = {[zo, .25 € CPg73,373,474,4 : zé + 2425+ z;j + P(24,25,26) =0,
izg — izt + 2izy — 2i23 + Q(24, 25, 26) = 0}.

Then ¢1 (W) =0. As P and @ are generic, the singular set of W is the
disjoint union of the 9 points p1,... ,pg given by

{[0,0,0,0, 24, 25, 6] € CPg,373,374,474 : P(24, 25, 26) = Q(z4, 25, 26) = 0},
and the curve % of genus 33 given by
3= {[zo, 21,22, 23,0,0,0] € CIP’g73,373,474,4 g+ a2l s 425 =0,

izg —iz] + 2izy — 2123 = 0}.

Each point p; satisfies Condition 5.1, and each point of X is modelled
on C x C* /73, where the action of Z3 on C? is generated by

B (2’4,2’5,2’6) — (e27rz'/3z47e27ri/3z57e27ri/3z6).
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Define an antiholomorphic involution ¢ : W — W by
o [205... 5 26) ¥ 21, —Z0, 73, — 22, Z4, 75, Z6)-

Then the fixed points of ¢ are some subset of {p1,... ,pe}. Exactly
which subset depends on the choice of P and @), but ¢ must fix an odd
number of the p;, as the remaining p; are swapped in pairs.

So let o fix 2k 41 of the p;, for some k = 0, ... ,4, and number the p;
such that o fixes p1,... ,pogy1 and swaps pop19,... ,pg in pairs. Define
Y:r to be the blow-up of W along ¥ and at the points pogya,... ,p9.
Then Yy is a partial crepant resolution of W. Thus Y} is a Calabi—Yau
orbifold, with singular points py, ... ,pag+1. Also o lifts to Yy to give an
antiholomorphic involution o : Yy — Y}, with fixed points p1,... ,pog+1-

It can be shown that we can choose P and () so that & takes any
value in {0,1,2,3,4}. For example, if P = 2§ — 23 and Q = 2} — 23 then
o fixes only p; = [0,0,0,0,1,1,1], so that k = 0, but if P = 2225 — 23
and Q = 232 — 23 then o fixes the 9 points [0,0,0,0, 1, 25, 2] for 25, 25 €
{1,0,—1}, and k = 4.

Combining the methods used to prove Propositions 8.5 and 10.1, we
get

Proposition 10.4. The Betti numbers of Y, are b = 1, b' = 0,
b =10 — 2k, b® = 66, b* = 395 — 2k, by = 262 and b = 133 — 2k.
Also Y \ {p1,... ,poks1} is simply-connected, and h*°(Yy) = 0.

In the usual way we resolve Z;, = Yy /(o) to get M}, which satisfies

Theorem 10.5. For each k =0,... ,4 there is a compact 8-mani-
fold Mj, with Betti numbers b° = 1, b' = 0, b*> = 4 — k, b3 = 33,
b* = 200 + 2k, bﬁ_ =132+ k and b* = 68 + k. There exist metrics with
holonomy Spin(7) on My, which form a smooth family of dimension 69+
k.

These examples have the largest value of b3 and the smallest values
of b* that the author has found using this construction.

11. Conclusions

In Table 1 we give the Betti numbers (b?,53,b*) of the compact 8-
manifolds with holonomy Spin(7) that we constructed in §7-§10. There
are 14 sets of Betti numbers, none of which coincide with any in [10],
so we have found at least 14 topologically distinct new examples of
compact 8-manifolds with holonomy Spin(7).
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Table 1: Betti numbers (b2,5%,b?) of compact Spin(7)-manifolds
(4,33,200) (3,33,202) (2,33,204) (1,33,206) (0,33,208)
(1,0,908)  (0,0,910) (1,0,1292)  (0,0,1294)  (1,0,2444)
(0,0,2446)  (0,6,3730) (0,0,4750) (0,0, 11662)

The examples of §7-610 are by no means all the manifolds that
can be produced using the methods of this paper, but only a selection
chosen for their simplicity and to illustrate certain techniques. Readers
are invited to look for other examples themselves; the author would be
particularly interested in examples which have especially large or small
values of b*.

We have also chosen to restrict our attention in §5-§10 to orbifolds
Y all of whose singularities are modelled on C! /7,4, where the generator
« of Z4 acts as in (6). This is not a necessary restriction, and there
are other types of singularities for Y and Z for which the construction
would work, such as the R® /G™ considered in §4.3, and which occur in
suitable orbifolds Y. However, the author has not found many such Y
the C*/Z,4 singularities do seem to be the easiest to construct.
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