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DISCRIMINANT OF THETA DIVISORS AND
QUILLEN METRICS

KEN-ICHI YOSHIKAWA

Abstract

We show that analytic torsion of smooth theta divisor is represented by a
Siegel modular form characterizing the Andreotti-Mayer locus.

1. Introduction

In the theory of modular forms of one variable, the unique cusp form
of weight 12 called Jacobi’s A-function:

(1.1) A(r)=q [J(01 - ¢, q=exp(2mir)
n=1

is one of the most important objects. There are several view points to
see it. From an algebraic view point, it is the discriminant of elliptic
curves. To be precise, let E. := C/Z @ Z7 (7 € H) be an elliptic curve
and take its Weierstrass model: y? = 423 — go(7)x — g3(7). Jacobi
discovered the following formula:

(1.2) g2(7)3 — 27g5(1)% = (27) 2 A(7).

Namely A(7) is the discriminant of the polynomial 42° — go(7)x — g3(7).

From an analytic view point, A(7) is essentially the Ray-Singer an-
alytic torsion. Equipped with the Kihler metric g, = (Im7)~!|dz|?,
analytic torsion of (the trivial line bundle on) FE. is, by definition (Def-
inition 2.1), 7(E;) = exp((L(0)) where

(13) Gy = S

28
(o) ™7
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is the (-function of Laplacian. Then, Kronecker’s first limit formula
yields

(1.4) 7(E,) = 2m)*||A(r)]| 7.

Here, || f(7)||? := (Im7)*|f(7)|? is the Peteresson norm. A naive consid-
eration expects that analytic torsion of an Abelian variety might imply
a higher dimensional analogue of Jacobi’s A-function. Unfortunately, it
is not the case. In fact, Ray-Singer ([25]) showed that analytic torsion
of an Abelian variety of dimension > 2 equipped with any flat Kahler
metric is 1.

The purpose of this article is to show that analytic torsion of the
theta divisor is represented by a Siegel modular form analogous to Ja-
cobi’s A-function.

Let &, be the Siegel upper half space of genus g > 1. Let A, C (¥
be the lattice defined by

AN =Ze1® - DLe,OLTI @ DLy,
where 1, = (e1, -+ ,e4) and
T = (11, ,7g) € Syle;, 7; € CI).
Let A; = C9/A; be an Abelian variety, and
O,:={z€ A 0(z,7) =0}
its theta divisor where

(1.5) 0(z,7) := Z exp(mitm T m + 2mitm z)
meZ9

is the theta function. Let N, := {7 € &; Sing®, # 0} be the dis-
criminant locus of theta divisors called Andreotti-Mayer locus. Let
gr = 'd2(Im7)~'dz be the flat invariant Kihler metric of A, and
go, = gr|o. its induced Kahler metric on O;.

Main Theorem (Theorem 5.2). Suppose that g > 1 and O, is
smooth. Then, 7(©.), the analylic torsion of (0;,g0,), is represented

by

(—1)9+1s

)
7(0r) = [[Ag ()| TFDT,
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where Ay(T) is a Siegel cusp form of weight M with zero divisor N,
(and with character when g = 2) vanishing at the highest dimensional

cusp of order (gir21)!7 and

(g+3)-g!

1Ag(T)|I? = (det Tm7) ™2 [Ag(7)[?

its Petersson norm.

According to Debarre ([9]), N, consists of two irreducible com-
ponents 0y, , and Né considered as a divisor on the modular vari-
ety Sp(2¢;Z)\&4, which implies that x,(7), the product of all even
theta constants, is a divisor of Ay(7) as in the case of Jacobi’s A-
function. Namely, there exists J,(7), a Siegel modular form of weight

W —2973(29 + 1) with zero divisor N, such that

(1.6) Ag(1) = x4(7) Jg(T)Q.

Since Jy(7) = Cy is a constant for g = 2,3, and J4(7) is the Schot-
tky form which characterizes the Jacobian locus in &4, we know Agy(7)
explicitly (up to some universal constant) in terms of theta constants
for ¢ < 5. (For a formula for J4(7), see [16].) We remark that the
result in Main Theorem was essentially known in the case g = 2 ([6],
[27]). For any smooth ample divisor on a polarized Abelian variety, its
analytic torsion is treated in section 5 and 6 in terms of Quillen metrics
as a generalized version of Main Theorem. Roughly speaking, one can
compute the Quillen metric via the defining equation of the projective
dual variety of Abelian varieties relative to the given polarization (The-
orems 5.1, 6.1, 6.3). Although only the principally polarized case is
treated there, we remark that the same arguments works for arbitrarily
polarized case. As an example, we discuss the case of |20| for Abelian
surfaces in section 7 where the equation of Kummer’s quartic surface
appears.

A very interesting problem of finding the field of definition of A,(7)
was raised to the author by the referee and several other people. Un-
fortunately, he could not find any answer and leave it to the reader.
(See Conjecture 6.1.) A(1) and As(7) are eigenfunctions for the Hecke
operators. Thus, at least as a working hypothesis, it looks worth asking
if so is Ay(7) when g > 3.

After finishing the first version of this paper, he knew that Jorgenson
and Kramer treat related subjects by using Green currents ([17], [18]).
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2. Determinant bundles and Quillen metrics

In this section, we recall some properties of Quillen metrics which
will be used later. For the general treatment of Quillen metrics, see [2],
[26], [11].

Let 7 : X — § be a proper smooth morphism of Kahler manifolds.
The determinant bundle A(Ox) is defined by the following formula:

(2.1) MOx) = &) (det RTm,0x) "
q¢>0

Let gx/g be a Kahler metric on the relative tangent bundle. Namely, it
is a Hermitian metric on T'X/S := ker m. such that gx/s|x, is Kahler
for any fiber X; := 7~!(¢). By the Hodge theory, identify A\(Ox); with
the determinant of harmonic forms:

mazx (=11
w00 -@ A #rex.on)

(2.2) = (130
=@ (A wew)
q>0

where H%9(X;) stands for the harmonic (0, ¢)-forms. Since H%4(X})
carries the natural Hermitian structure by the integration of harmonic
forms, so does A(Ox); via the identification (2.2). This metric is called
the L2-metric of A\(Ox) relative to gx/s and is denoted by || - [|z2.

Let D?’q be the d-Laplacian acting on (0, ¢)-forms on X;, and C?’q(s)
its spectral zeta function. It is well known that Cto (s) extends to a

meromorphic function on the whole complex plane and is regular at
s=0.
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Definition 2.1. The Quillen metric of A(Ox) relative to gx/g is
defined by

- 15 () = 7(X) || - 172 (1),
where 7(X}) is the Ray-Singer analytic torsion:

d
7(Xy) == [ (det PV, det OP7 = exp (— -
q>0

(5.

s=0

It is known that || - ||g is a smooth Hermitian metric on A(Ox) if
the morphism is smooth. For smooth Kahler morphisms, the curvature

and anomaly formulas for the Quillen metrics are computed by Bismut-
Gillet-Soulé.

Theorem 2.1 ([3]). The curvature form of || - || is given by
c(MOx), |l - llg) = m(TATX/S, gx/5)) Y,

where PP stands for the (p,p)-part of the form a.

Theorem 2.2 ([3]). Let gx/s, g’X/S be Kdhler metrics of TX/S,
and ||+ ||, [+l be the Quillen metrics of A(Ox) relative to gx/s, g’X/S
respectively. Then,

2
I —
log <|| : IIE = m(Td(TX/S;gX/Sang/s))(O’O),

where T/de(TX/S; 9x/S5 g’X/S) is the Botl-Chern secondary class of TX/S
relative to the Todd form and gx/s, g’X/S.

Consider the case that the morphism is not smooth. Let S be the
unit disc and 7 : X — S be a proper surjective holomorphic function.
(m, X, S) is said to be a smoothing of THS if 7 is of maximal rank outside
of finite number of points in Xy. In particular, X has only isolated
hypersurface singularities (IHS) and X; is smooth for any ¢ # 0.

Theorem 2.3 ([28]). Let (7, X,S) be a smoothing of IHS which
is projective over S. Let gx be a Kdihler melric of X, and gx/g the
induced metric on TX/S. Then, ||- || is a singular Hermitian metric
whose curvalure current is
(-1t

' p(Sing Xo)do + 7. (Td(T X/ S, gX/S))(l’l)’

c1t(MOx ), - lg) = m
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where n = dimg¢ X/S, 6y the Dirac measure supported at 0, pu(Sing Xo)
the total Milnor number, and W*(Td(TX/S,gX/S))(Ll) e LY (S) for
some p > 1.

We also need Bismut-Lebeau’s theorem. (For the general setting,
see [4].)

Theorem 2.4 ([4]). Let X be a compact Kdihler manifold and
(Y,gv = gx|v) its smooth hypersurface with induced metric. Let L =
[Y] be the line bundle defined by Y and sy its canonical section, i.e.,
(sy)o =[Y]. Let hy, = - || be a Hermitian metric of L, and INy,x O
Hermitian metric of Ny x such that it holds on Y, HdSYH?V;/X(@Ly =1,
where Ly := Lly and dsy € HO(Y,N;‘//X ® L). Let Ax(L™1), \x
and Ay be the determinant of cohomologies equipped with the Quillen

meltrics relative to gx, gy and hy-1. Let o be the canonical element of
A=Ay @AY @ Ax(L7Y). Then,

log [lo]l%) = — /X TA(TX, gx)Td" (L, hy) log |52
4 /Y T~ (Ny x0 0vy ) TA(E)

—/ Td(TX)R(TX)—I—/ THTY)R(TY),

X Y

where R is the Gillet-Soulé genus, and 'ﬁ(é) is the Bott-Chern class
relative to the Todd genus and the exact sequence of the following Her-
mitian vector bundles

£:0—= (TY,gy) = (TX|y,9xly) = (Ny/x, 9Ny, 5 ) = 0.

Since we treat Abelian varieties later, let us summarize the analytic
torsion of certain line bundles over an Abelian variety. Let A be an
Abelian variety of dimension g, w a flat Kahler metric, and (L, h) an
ample Hermitian line bundle whose Chern form is w. We denote by
7(A, L™, w) the analytic torsion of (L™, h%™) relative to the metric w.

Proposition 2.1 ([5], [25]).

5o(1™) log ity (m>0),
log7(A, L™, w) =<0 (m =0),
(—1)9 L (L) log B (m < 0),
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where p(F) = c1(F)9/g! for a line bundle and p(w) = vol(A,w) =
fywi/gt.
Proof. The case m > 0 follows from [5, Proposition 4.2], and the

case m = 0 from [25]. Thus, it is enough to show the case m < 0. Put
m = —n and n > 0. To compute 7(A4,, L"), let

w1 APULTH) — A%974(T)

be the Hodge *-operator. Since x-operator commutes with the Lapla-
cian; *00%, ¢ = 099 "¢, (V¢ € A%(L7™)), 0%, and 077 have the
same spectrum. Thus, the spectral zeta functions ¢%9(s, L™") of DOL’gn
and (9979(s, L") of 09777 coincide. As the canonical bundle of A; is

trivial and is flat equipped with w, we find
(23) (s, LT1) = (970(s, L) = 074, I,

which, combined with [5, Proposition 4.2], yields

g
tog 7(A,, ") = S (~1)"¥ g | (P95, 1)
=0 S s=0
— (g — ) = 94, [7
(2.4) ;( )9 —a) ds s:oc (s, L")
= (=) (A, L, w)
1 p(L™
= (=1)9 = p(L") log ————
(171 500" log A,
where we have used Zq(—l)qc(]’q(s, L™) = 0 in the second equality.

q.e.d.

3. Theta functions

In this section, we collect fundamental facts about the theta function
and the Siegel modular group without proofs. Details are found in [15],
[23], [22] and [20].

Let &4 be the Siegel upper half space of genus g. Let A C T x G,
be a family of lattices in ¥ defined by

Ari=Ze1r® - DLe,DLT1 D+ DLy,
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where 1, = (e1, -+ ,eg) and 7 = (11, -+ ,74) € &y4. Let
p:A=C xG4/A =6,

be the universal family of principally polarized Abelian varieties over
S, whose fiber at 7 is A, = CI/A,.

For any m > 1, we define a line bundle on A denoted by L, (= L$™);
a function f on ¥ is a section of L, , if and only if, for any k,l € Z9,

(3.1) f(z+k+71) =exp(—nvV—1Imrl — 2nv/—-1m'l 2) f(2).

When m = 1, we write L := L;. Put B,, = m~17Z9/79. For a,b € RY,
let

Oup(z,m) = Y exp (mV/=1'(n+ a)7(n + a)
(3.2) nez9

+27v/—1H(n +a)(z + b))

be the theta function. For any a € By, put 0,(7) = 04 := 04,0(mz, m7).

Proposition 3.1 ([15, Chap.II], [20, Chap.5], [23, I, Chap.II]).
For any a € By, 0, € HO(Gg,p*Lm) and there exists a trivialization as
Og, -module:

PsLiy = @ OGg 0.

a€E By,

Put 0(z,7) :== 6y (2, 7). Let p: © :={(2,7) € A; §(2,7) =0} = &,
be the universal family of theta divisors. Then, L is the line bundle
defined by the divisor ©. Let T’y = Sp(2g;Z) be the integral symplectic
group acting on A as follows:

(3.3) v-(2,7) = ((CT+D) ‘2, (Ar+B)(CT+D)™Y), ~= (é g) .

It is known that not every element of 'y preserves L. Following Igusa,
define

(3.4) T,(1,2):= {(é g) €T,: (PAC)y = ((BD)y =0 mod 2} ,

where X = (2;;0;;) denotes the diagonal for X = (z;;) € M(g,7Z).
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Proposition 3.2 ([15, Chap.II], [20, Chap.8]). There ezxists an
unitary representation py, : Ty(1,2) — U(C™) = U(Vy,) such that, for
any v € Ty(1,2),

Oao(my-z,my-7)
. 1 _
= j(7,7)% exp(nv/=T'2(C7 + D)™'C2) > uap(7) Opo(mz,m7),
beBm,

where pr () = (Ues (7)) abeB, and j(1,7) = det(CT+ D). In particular,
I'y(1,2) preserves Ly, for any m.

Define a Hermitian metric hy, on L by

1017 (2, 7) = he(8,0)(2,7)

3.5
(3:5) = |0(z, 7)|* exp(—27 'Tmz(Im7) "' Tmz)
and also by hy, := hY™ on Ly,. Then, hy, is a natural metric in the
sense that
v—1
(3.6) ci(L,hr) = gr = Ttdz (Im7)~tdz,

where the Kéhler metric ¢, is identified with its Kahler form. With
respect to hy, and g,, the length of {0,}.cp,, is given by the following
formula ([15, Chap.IT Lemma 7], [20, §4.3, pp.35, §5.4])

(3.7) (0a(7), 0p(7)) 12 = {det(2mIm7)} 26,

Remark. Our 6, is different from Kempf’s 1.(d,)(z) ([20, pp.41
(*)]). To obtain the norm of 6,, we must replace 7 to m7 and choose
€ =ml, in [20, Theorem 5.9].

Concerning the structure of Iy, the following is known.

Proposition 3.3 ([22]).

12 (g=1),
s (Fg/[rgarg]) =42 (9=2),
1 (¢g>2).

Let T be a cofinite subgroup of T'y and A(k,x,I”) be the space of
all modular forms of weight k& with character x relative to the subgroup
T

(3.8) A(k,x,T") ={f € O(&y); f(v-1) =j(r, " x(7)f(r), ~€eT'}
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In particular, an element of Ay (T") := A(k,1,T',) is called a Siegel modu-
lar form. The following modular form is important for us. Let a,b € Bs.
The parity of 0, is defined by 4'a - b € Z/27. Set

(3.9) Xg(m) =[] 0an(0,7).

(a,b) even

It is known that x1(7)® = 28A(7) € Ap(Ty) ([12, pp.142)),
x2(7)? € A1p(T2), and x,(1) € Age-2(2041)(Tg) for g > 2 ([12, Chap.],
3.3 Satz]). Finally, we remark that the function det(Im7) has the fol-
lowing automorphic property:

(3.10) detTm(y - 7) = [§(7,v)|"? det Imr.

4. Ample divisors on Abelian varieties and determinant
bundles

Let V;, = C™ whose coordinates are denoted by (ug)een,,. Let
{0, }acB,, be the basis of theta functions as in Proposition 3.1. Associ-
ated to |L,,|, let ©, be the family of ample divisors on Abelian varieties
parametrised by P(V,,,) x &,

(4.1) O = {(u,2,7) € P(Viy) x A; Z Ug O 0(m z,m7) =0},
aE€EBy,

Set m = idp(y,,) X p: P(Vin) x A = P(Vy;,) x &,. Its restriction to O,
is also denoted by 7. The fiber ©,, , -y = 771 (u, ) is a hypersurface
on A; and all ©,, (, ;) are members of the same complete linear system
| Ly -

Since ©1 = © and P(V7) is a point, we obtain the universal family of
theta divisors when m = 1. Furthermore, let N, be the Andreotti-Mayer
locus, i.e., the discriminant of theta divisors:

(4.2) N,y := {1 € &,; Sing(0,) # 0}.
By Andreotti-Mayer, Beauville, Mumford, Smith-Varley, and finally De-
barre, the following is known.

Proposition 4.1 ([9]). N, is a divisor of &4, consisting of two
components:
Ng = Hnull,g + QNQ,
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where Opyirg is the zero divisor of x4(7) (and Ny = 0 when g = 2,3).
There exist proper subvarieties Z1 C Oy, and Zo C Né such that

(1) For any 7 € Opyu,g — Z1, Sing O, consists of one Aq-singularity,
i.e., a singularity whose local defining equation is 22 + - + z; =0.

(2) For any T € Ny — Zs, Sing©, consists of two A;-singularilies
which are mutually interchanged by the involution x — —z.

In general, let
(4.3) Dym = {(u, 1) € P(Vi,) x &; Sing O, ¢y 7y 7# 0}

be the discriminant locus of 7 : ©,, — P(V},,) x &,. Note that Dy; =
Ny. Let Dy, be the fiber at 7 of the projection pro : Dy — G4
Let Hy, = Op(y,,)(1). Consider the morphism associated to the linear
system |py Ly, |:

(4.4) By =B g 2 A P(p, L) = P(V;) x 6.

By the Lefschetz theorem, we know the following. When m = 2, &5 is a
finite morphism. More precisely, ®o(A;) is isomorphic to the Kummer
variety A,/{£1} and ®, induces the projection map A, — A;/ £ 1 on
each fiber under this identification. When m > 3, ®,, is an embedding.
Since L,, = ®; H,,, the support of Dy, , coincides with that of the
discriminant locus of the linear system |H,,| over ®,,(A;). As Hy, is
the restriction of the hyperplane bundle, we get the following (when
m > 2) by the general theory of Lefschetz pencil ([19, Théoreme 2.5.2,
Proposition 3.2, 3.3]).

Proposition 4.2. Suppose m > 2. Then, Dy, is a divisor of
P(Vin) x &y. There exists a proper subvariety Zg;,m C Dy such that
Sing O, () consists of Ai-singularities for any (u,7) € Dgm — Zgm.
Moreover, Dy, - is the projective dual variety of (®y,(A;), Hy,) for any
(u,7) € Dgm — Zgm-

Let A(Qg,,) = ®¢>o0(det RIm,0g, )Y be the determinant bun-
dle. By Proposition 3.2, I'y(1,2) acts on P(V},,) via the representation
pm : Ty(1,2) = U(V,,) and thus on P(V,,) x A. Furthermore it preserves
O, and therefore A\(Og,,) is endowed with a I'4(1,2)-module structure.
Put w = pywy/e, -

Proposition 4.3. When g > 1 and m > 2, there exists an tsomor-
phism as Op(y,,)xe, -modules with T'y(1,2)-action:

AOe,, )TV =p 19y det muwase, (Om).
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Proof. Let q : P(p,Ly,) = &4 be the projection to the second factor.
Consider the following exact sequence of sheaves over P(V,,,) x A:

(4.5) 0 — Opv,)xa(=Om) — Opn;,)xa — Oo,, — 0,
which, together with the relative Kodaira vanishing theorem, yields
(4.6) R'm.0Oe,, =r,(1,2) RiW*OP(Vm)xA =r,(1,2) ¢ R'p.Os (i <g-1),
and

() 0— Rg_lmC')]p(vm)xA — R0,
. N RQW*OP(Vm)XA(_Gm) — Rgﬂ'*O]P(Vm)XA — 0.

Combining (4.5), (4.6) and the Serre duality

(4.8) RQW*OP(Vm)XA(_Gm) g1“5,(1,2) (W*wA/Gg (Gm))va

we get

(1.9)  MOe,,) Zr, (12 ¢ MOL) ® (det Twase, (Om)) V.
Let M : A R'p,Oy — RIp, 04 be the homomorphism induced by the

cup product of Dolbeaut cohomology groups. Comparing the dimen-
sion, we find that A? is an isomorphism of Og, -modules with 'y action.

Therefore,
q (—1)¢

(4.10) A0s) =1, @ (det /\Rlp*C’)A> :

q>0
Let e = {e1, -+ ,e4} be a local frame of R'p,O4. Fix an order in the
set of index {J;J = (j1 < --- < jg)}. Under this order, put
(4.11) oe(r) = QN )" € AOn)r,

920 |J|=¢
where e; = ej, A+ Aej, € ANMR'p, Oy for J = (j1, -+ ,jq). For

A € GL(C,g), put Ae := {Aei, -+ ,Aez}. Since A(Oy) is a line,
there exists f(A) € C* such that o4 = f(A)oe. As is easily verified,
[ GL(C,g) — C* is a character and thus there exists k € Z such that
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f(A) = (det A)*. Putting A = 21, we find k = 0. (Here, we use g > 1.)
In particular, o, does not depend on a choice of frames. Set
(4.12) 14(7) := oe(7).

Then, 14 is a T'y-invariant section of A(Oa). In particular, A(Oy) is
isomorphic to Og,, as a I'j-module, and by (4.9),

(4.13) /\(O@m)(_l)g =r,1,2) det mwye, (Om).

q.e.d.

To see the structure of det miwyys, (Om) as a T'y(1,2)-module, for
any ¢ € By, we denote by U, := {[u] € P(V,;); u. # 0} the open subset
of P(Vy,) which form a covering of P(Vy;,); P(Vy,) = U,cp,, Ue- Then,
for any (u,7) € U, x &g,

ZbEBm Ubeb

is a C-basis of H(A;, Q9 (log Oy, (4,-)). Put

6
(4.14) {Ldzl A A dzg}
aEB,,

ucty,

(4.15) Se(u, 7) ==
c p ZbEBm upl

dzy N+ Ndzg

for a generator of det HY(A,,Q9(log O (u,r))) When (u,7) € Ue x &y.
Then, s, generates det m.wy /s, (Om) over U xSy For u’ with |J| = m9,
define o; on each U, x G, by

J

u 9a
4.16) oslu, e, (U, T) := —=s =u’t. —Z dzi N+ Ndz,.
( ) ’ 8 9( ) ugzg ‘ ae/\Bm bEBm Ubeb !

Then, 0ly,xe, = 0slu;xs, over U NUg x &, for any ¢, d € By, and
o7 becomes a global section, i.e.,

oy € HY(P(V,,) x &, det Twp/e, (Om))-

Putting J. = (0,--- ,m¥,--- ,0) (the c-th factor is m? and all the other
factors vanish) in (4.16), we find that

sc € HY(P(Vin) X 6y, det mwys, (Om))-

As s has no zero on U, X G4, we get the following.
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Proposition 4.4. When g > 1 and m > 2, {0} 7j=ms generales
det mewy/e, (Om). Namely, the natural map

BaeB Or(Vin)xe,00 = det mwyss, (Om)

1§ surjective.
When m = 1, we get the following.

Proposition 4.5. When g > 1, there exists an isomorphism as
Os, -modules with T'y(1,2)-action:

AMOe) =r,1,2) MOa) ® W=D,
In particular, A\(Og) has the following canonical section:

0o :=1a®(dz1 A--- A dzg)(_l)g.

Proof. When m = 1, the exact sequence (4.7) splits and the iso-
morphism (4.6) also holds for # = g — 1 which implies the assertion.
q.e.d.

5. Ample divisors on Abelian varieties and Quillen metrics

Let p: A — &, be the universal family of p.p.a.v., p: © — &, the
universal family of theta divisors, and 7 : ©,,, = P(V};) x &, the family
of divisors associated to |Ly,| as before. Let

TA/&, := kerp,,

TO/S, := kerp.|reo

and
TO,,/P(Vin) x &y :=kerm,

be their relative tangent bundles. Clearly T©/&, and T, /P(V,,) x &,
are subbundles of TA/&,. Let

gr/e, A, = tdz(Im7)~tdz,

Jo/s, = Iu/s, |T0/6,)
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and
9O [P(Vim)x &y "= Ib/&, \T@m/P(Vm)xeg
be Hermitian metrics on TA/S,, TO/&, and TO,,/P(V,,) x &, which

are invariant under the action of I'y (resp. I'y(1,2)). Their restriction to
each fiber is denoted by g4, go. and go Let || - ||¢ be the Quillen

metric of A(Og, )=V’ relative to 9O, /P(Vi)x&, When m > 1 and to
go/s, when m = 1. By Propositions 4.4 and 4.5, it is enough to know
the Quillen norms for all o; (m > 2) and og (m = 1) to understand

I llo-
Theorem 5.1. Suppose g > 1 and m > 2. There exist

m,(u,7) "

ANgm(u,7) € O(8y)[talaeB,

a homogeneous polynomial in u-variables of degree m9 - (g + 1) with
coefficients in O(S,), and a character

Xgm : Tg(1,2) = U(C) = S
such thai:
(1) For any v € Ty(1,2) and (u,7) € P(Viy) x Gy,
g1 1,7 7) = Xgm() 3(7,) 24N Ay, 7),
(2) For any J (|J| =m9) and (u,7) € P(V},) x S,

(g=1)m9 J

HUJHQQ(UaT) = (det Im7) 20s+D u

b

1
Ag,m(“v T) (g+1)!

(3) In the sense of divisor on P(V,,) x &4, div(Agm) = Dgm-

Theorem 5.2. Let 7(©;) be the Ray-Singer analytic torsion of the
smooth theta divisor (©;,g90.) of dimension g — 1(> 1). Then, there

ezists a Siegel cusp form Ngy(1) of weight w with zero divisor Ny

which vanishes at the highest dimensional cusp of order W such that

(_1)9+12

7(O7) = [|Ag ()| Fr.

For the proof of Theorems 5.1 and 5.2, we need several propositions.
Assume g > 1 in the sequel.
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Let G € Hermy(g) be a positive definite Hermitian matrix of type
(9,9), and gg = *dz G dz a flat metric of W := 9 associated to G.
The identity matrix is denoted by 1,. Let P(WV) be the projective
space of hyperplanes of W, and E be the universal vector bundle of
rank g — 1 over P(W"). Namely, for [a] € P(W"), E}, is a hyperplane
on W corresponding to [a]. Consider the following exact sequence of
vector bundles over P(WV):

(5.1) 0—E—W'=C! —-N=W"Y/E —0.

Note that N = Op(v)(1). Let gr,¢ := gele be the induced metric on
E.

Proposition 5.1.

(=19 —1)

RS logdet G.

/ TA(E; gi1,,98,6) =
P(WV)

Proof. Put H = log G and gt := gexpm) for the one-parameter
family of metrics connecting g1, and g¢. Its restriction to F is denoted
by gri Let WY = E @, EtL be the orthogonal decomposition of WV
relative to g;. Let gy be the metric of N via the identification N with
Ej-. Corresponding to this splitting, H € End(W") can be written as
follows:

_ (Hu(t) Hi(t)
(5.2) H= (Hi(t) HZ(ﬂ)’

where Hy1(t) € End(E). Since gg ¢(vi,v2) = g1, (exp(tH)vi,vo) for any
v1, v € E, we get

4 d
(5.3) QE}t e = Hiy.

Let Rg 4 be the curvature of (E, gg+), and put ¢ (Ey) := #Tr Rg 4. By
the Bott-Chern formula ([7, Proposition 3.15]), we find

1
. d

(5.4) Td(E;9E0,98,1) :/ dtd—
0 €

7 d
Td|{ —R L= .
0 (271’ Et+ €9p dtQE,t)

Let A; be the second fundamental form of the exact sequence (5.1)
relative to g;. As (WV,g;) is flat, by the Gauss-Codazzi equation ([21,
Chap.I, (6.12)] and [28, (2.7)]), we obtain

(5.5) REJ} = A:; A Ay, RN,t =A; A A:, Tr R%,t = _Rﬁﬂ\/,tv
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where Ry is the curvature of (N,gny). Put ei(Ny) = #RNJ. Let
Tdg(-) be the homogeneous part of degree k of the Todd polynomial.
Then, there exists a polynomial F(z1,--- ,z4-1) € Q[z] such that, for
any X € M(g —1,0),

(5.6) Tdy(X) = F(TrX,--- ,Tr X971).

By (5.3-6), we have

(5.7)
[Td(E; 98,0,95,1)] 71971

1 (g—1,9-1)
1o aF L i -
= [ at | i Bo e e (B T (- R )
0 i=1 OCU] 27

1 9=l s N . (g—1,9-1)
=/ dt ——(—c1(Ve), -+, —c1 (N9~ 1) (=) ~ ' Te(H11 Rl 2R
/ gy (Cer (D), (N Gy T I B )
) =l o ; (g—1,g=1)
. -1 j—2 *
== [ | iV e (N el (N A S A A ,
0 i=1 OCU] 27
where
-1 -1
(58) TI“(HHRNJREJ) == _RN,t . AtHllA: == TI“HH

for 5 = 1 in the second and the third equality of (5.7). Since Hqy1(%) is
a Hermitian matrix, we can write, by an appropriate choice of a frame
at p,

£1
(5.9) Hy(t,p) =
Pg—1
with some p1,--- ,ps—1 € R Let A; = (a1, ,a9—1) be the second

fundamental form. Let ¢(g) be the constant which depends only on g
such that

1 oF
(510) ng(_xv 7_xg_1)x]_2 = c(g),
j=2

92

where h(x)|zs is the coefficient of 29 for h(x) € C[[z]]. Since Ry; =
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> a; Aa; by (5.5), we get

(5.11)

19—
-1 (g—1,9-1)

Z] —c1(Ny), -+, —cg—1(Ny))er (V)™ A Ay Hyp A

. g-1 92
? _
:c (%Za'/\%) /\Z pzaz/\aZ

g— 1
( aZ A az>
(9—1.9—-1)

TrH - F '
9— il Z 8_ —c1(Ny),--- a_Cg—l(Nt))cl(Nt)J_1
—2

Separating the summation of the third equality of (5.7) into that for
j =1 and for j > 2, and substituting (5.8) and (5.11) respectively, we
get

[’f&(E; 9E,0, 9E,1)](g_1’g_1)

1
= / Ty Hll( )SF (61 (Et) ,C1 (Et)g_l)dt
0 Z1

—1-9%1 OlTl“Hn Zjamj
(c1(Ey), ,Cl(Et)g De(B) 1t
(5.12) = —/ Tr Hft d
P+ (g~ 1 o+ 0, e @ Ty
1 1

= F TrHH(t)Td'(REJ)(g_l’g_l)dt
- 0

1 1
-Tr H / Td' (R )99 Vi
- 0

1 1
- HQQ(t)Td,(RE7t)(g_1’g_1)dt,
g—1Jo

where Td'(Rp) := 4| _ Td(ely_1 + 5=Rpy).
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Put f(z) =2 ' —e (1 —e®)". AsTd () = (1 —e %)z, we
get

(—1)*"g(g = 1)
2(g + 1)t

(5.13) Td~ (2){g - f(0) = [(2)}| o1 =

Using (5.5), we can show that Td(g:zRp)Td(ci(Ny)) = 1 (cf. [28,
(2.8)]) which, together with [5, Proposition 4.4] and (5.13), yields

Td (Rp,) = Td (iRE t) Tr f (lRE t)
’ 2 2 7

(5.14) = Td™ (c1 (N)){g - F(0) — fler(N))}
_ +1 _
= ( 1;9 —i(lg)' D cr (V)L

Comparing (5.12) and (5.14) leads to

/ T\a(E§9E,O>9E,1)
B(WV)

_ (=1)9tg v H — ' ¢ -1
C2(g+ 1) (T " /0 dt/mwv) Heelt)er () )

Let us compute Hys(t). In the sequel, identify W = WY = C9. For
z e,

(5.15)

g
(5.16) E, ={ue Zuzzz = 0}.
i=1

Since g¢(u,v) = tu exp(tH) 7, we find E} = C exp(—tH)z. By a suit-
able choice of coordinates, we may assume

Gz=(Mz1, ", AgZg)s
(517) HZ:(Mlzlv"' a,ugzg)a
Ai = exp(pi).

In above coordinates,

d g u~e‘t’“]z-\2
5.18 Hoo(t) = g3t - — = &=l L
19 2 = O N = T
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Put w; := exp(—3pit)z and wpg-1 = 5=001og Y- |wi|?. From (5.15)
and (5.18), it follows that

/ Tvd(l*j;gE,o,gE,l)
B(VY)

1)9+1g
(5.19) U7 (T H - / dt Licymtwil” 1”1’%’ Wp- 1)
(g+1 Pg—1 Z llwl‘
19t (g —
IR .
2(g + 1)!

which, combined with Tr H = log det G, yields the assertion. q.e.d.

Let gc.0,, /B(vi)xe, De the induced metric on 70, /P(V;,) x &4 by
the constant metric go = 'd2 G dz on TA/S, where G € Herm+( ).
Let ||-||g,c be the Quillen metric of A(Og,, ) relatlve t0 GG,0m /P (Vin) xS
its restriction to each fiber is denoted by 9GO (u.ry- Remember that
| - [lo is the Quillen metric of A(Og,,) relative to the invariant metric
gr = 'dz(Im7)~'dZ of A, (see the beginning of this section).

Proposition 5.2.

lo H ) ||2Q (7_) — (_1)g(g — 1)mg
-1, 209+ 1)

log det Im7.

Proof. Let v : O, ( 7) = P(Vy;,) be the Gauss map:
(5.20) v:On ) 22— (TOh (ur): € P(Vin),
which is a finite covering with mapping degree m9g!. By definition,
(5.21) (IO, (u,r), 96,0, (ury) = V' (B, 9B,G),

which, together with Theorem 2.2 and Proposition 5.2, implies

|| || G £
OC (4 1) = / VT g1, 95.6)
BT R, o

(5.22) = degv / TA(E; gz,1,, 95.6)
P(Vin)

_ (=D — )m?
= 20+ 1) logdet G.

m,(u,T)

The assertion follows from (5.22) by putting G = (Im7)~!.  q.e.d.
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Let
Y =11 € Op; x € Sing Oy 1y,  7(z) = (u,7)}
be the singular locus of
w1 O = P(Vin) x 64.

Thus, Dy, = 7(E).

Proposition 5.3 ([28, Proposition 2.1]). Outside of ¥, the
following holds:

[TA(T O /P(Vin) X By, 01, .0, /P(Vin) x5, )] 99 = 0.
In particular, one has

[ TATOR/P(Vin) X 491,00/ (v)xe, )] =0

over P(Vin) xS\ Dy and its trivial extension to P(Vy,) xS, is smooth.

Proof of Theorem 5.1. Let
o7 € HYP(Vy) x 64, MOe,,) ™"
be the same as in (4.16). As is easily verified,

ol A
u

is a function on V,;, x &4 independent of a choice of index J. (Note
that (—1)¢ does not enter into (5.23) because we consider A(Qg, )=’
rather than A(Qg,,).) For any v € T'y(1,2), we get

. o J
(5.24) W'UJ:detpm-(pm(,y?] u ) o
U
where
pm : Ty(1,2) = End(Sym" (V;,))
and

det pp, : Ty(1,2) — U(det V) = U(C)
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are the induced representation from that of Proposition 3.2. Since |- ||¢
is invariant under the action of I'y(1,2), it follows from (3.7), (5.23) and
(5.24) that

_tg=om? |y - oyl
Fo(v -ty -7) = (detTm(y - 7)) 20+) ———%_
(5.25) " 1m (7) - 1 2

_g+3
= i, )| ™ Fy(u, 7).

Let
c:S={teClt| <1} 3t— (ul®),7(t) € P(V,,) x &,

be an arbitrary holomorphic curve which intersects Dy, transversally
at ¢ = 0, and (u(0),7(0)) is a generic point of D, ,, in the sense of
Proposition 4.2, i.e., (4(0),7(0)) € Dy — Zgm- Applying Theorems
2.1, 2.3 and Proposition 5.3 to the family S Xp(v,,)xs, Om, We get

Fr(u(t), 7(t)) = multy(0) 7(0)) Dy - l0g [t]* + 1 (2),

(5.26)
P(t) € C(S)

which, combined with Proposition 5.3 and the argument in [2, Proposi-
tion 10.2], yields the following equation of currents over V,, x &:

i = 1 1
5.27 —00dlog F, =——0I"§ = —n~
( ) 97 0g m(U,T) (g + 1)| Dy,m (g + 1)' 1*Dg,m»
where IT : (V,, — {0}) x &, — P(V};,) x &, is the natural projection, and
dp,.,, 18 the current corresponding to the integration along Dy ,,. Since
Vin X G, is a Stein manifold diffeomorphic to the Euclidean space, there
exists a holomorphic function Ay ., (u, 7) € O(V,,, x &,) such that

(5.28) 1Ay, T)|? = Frp(u, 7)1,

As Dy is a projective hypersurface, Ay, (-,7) must be its defining
homogeneous polynomial because F,(u,7) is a homogeneous function
in u-variable. Put
Agm(y-u,7-7)
(529) Xg,m(')’auvT) = . ‘(qg_Tg).g!.mg
jry) 2

gam(u’ T)

By (5.25) and (5.28), |xgm(7,u,7)| = 1 for any (u,7) € V;;, x &4 and

thus xg.m (v, u, 7) = xg,m(7) for some xg.,(v) € U(C). Since j(r,7) is
an automorphic factor, xg.m : T'g(1,2) = U(C) is a character, which
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together with (5.29) implies Theorem 5.1 (1). Theorem 5.1 (3) follows
from (5.27) and (5.28). Since

u?

1
Ag,m(“v T) (g+1)!

(g=1)ym9

(5.30) losllg = (det Tmr) 2+

by (5.23) and (5.28), we obtain Theorem 5.1 (2). q.e.d.

Proof of Theorem 5.2. In the same way as the proof of Theorem
5.1, there exists a modular form Ay(7) € A(%M,X, I'y(1,2)) such
that

(=1)9(g=1) 2(-1)9+1

(5.31) loellb(r) = (det Im7) 26+ |Ay(7)| GO .

At first, let us verify that Ay(7) is a modular form with respect to the
full Siegel modular group I'y. For v € T'y, put

2
(5.32) bo(r) o= |—2T D)
Jmy) 2 Ag(r)

As is easily verified, ¢~(7) depends only on [y] € T'y/T'4(1,2). Further-
more, for any g € T'4(1,2), ¢4(g - 7) = pyg(7). Since Ny is invariant
under the action of I'y, ¢, is a plurisubharmonic function over &, with-
out any zero and pole. Therefore, if A(x[,) is an elementary symmet-
ric polynomial of {z}pyjer, (120r,s A(P(T) is a Ty(1,2)-invariant
plurisubharmonic function on &, and thus descends to a plurisubhar-
monic function on &,/Ty(1,2). As g > 1, A(¢},(7)) extends to the
Satake compactification ([13]) and should be a constant. In particular,
any ¢,(7) is a constant. Put

Ag(W : T)
. (g+3)4! :
3(ry) 2 Ag(r)

(5.33) X(y) =

As before, x : T'y — C* is a character which coincides with x restricted
to I'y(1,2). It is a U(C)-character, because I'y/T';(1,2) is finite. From
Proposition 3.3, it follows that ¥ = 1 when ¢ > 2 and ¥ = £1 when
g = 2 which shows that Ay(7) is a Siegel modular form relative to I'y
(with character when g = 2). By Mumford’s formula ([24, Theorem
2.10]), it is immediate that Ag(7) vanishes at the highest dimensional

0!
cusp of order S%L.
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Let us compute the L2-norm of og. Let H%'(A,) be the space of
harmonic (0, 1)-forms on A,. Identify H'(A4,) = H'(A,,04_) and let
wi, - ,wy be a basis of HOY1(A,) such that fAT dzi N+ Ndzg ANwi A

Awg =1, Le.,

iNYdz A ANdZ
34 () ==~
(5:34) Wi A (2) det Im7

For I = (iy,--- ,ip) put wr := wj; A--- Aw;, and w4 /\|I| wr €
det H%9(A,). Since 15 ® (dz1 A -+ Adz) "V (1) = ®Z:1( (Q))(_l)q
and ¢1(L;) is cohomologous to dg,, we get the assertion by combining
Definition 2.1, (5.31) and the following:

log [|loe ||L2 ) (7)

(—1)?log |det (/ wr AN@yg /\Cl(Lr)g_q_1>
o j11=11=q

(—1)?log |det (/ wj/\J)JAcl(LT)g_q>
q Ar 1|=T1=¢
= (—1)Ylog(det 2Im7). q.e.d.

‘Q
,_.

(5.35)

Il
- o

Il
=)

Remark. [t is worth noting that Theorem 2.4 yields the following
integral representation fromula for A4 (7):

log |Ag(T

j 2

Tz—l—j =g—1

—I—/ log ||9||%T c1(Ly)? — g! log det Im7 + C(g),
A

where ¢1(H,) = 5-001og'z(Im7)z is the Fubini-Study form of P9~
C(g) a constant dependlng only on ¢ and v, : ©, — P91 ig the Gauss
map. Note that the formula (5.36) for g = 1 implies Faltings’s formula

([10]):

(5.37) / log [[0(2, 7)1}, ¢1(L-) = log|A(r)| =

-

where A(7) is the Jacobi’s A-function.
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6. Projective duality and structure of Ay, (u,7)

Throughout this section, let us assume ¢ > 1. By Theorem 5.1,
there exists a holomorphic function f;(r) € O(&,) for any J (|J| =
m? - (g + 1)!) such that

(6.1) ANgm(u,7) =Y fr(r)u’.
J

Among all the elements of B,,, there exists a special one 0. We write
u = (ug,u’) where u' = (ugy), a € B, \{0}. Under this notation, Jy :=
(m9- (g +1)1,0,---,0) satisfies u’o = ugng'(gﬂ)!. Since both Ay(7) and
Ag.m(u, ) have an ambiguity of complex numbers of modulus one, we
impose them the condition that Agy(rp) > 0 and fy,(79) > 0 at some
0 € Gg.

Theorem 6.1. For any 7 € G,

g-g!mg
fJo(T) = f(mg-(g+1)!,0,~~~,0)(7—) =m 2 Ag(mT)mg‘

Proof. To relate A, and A, let u,, be the isogeny of Abelian
varieties defined by pn, : A; 2 [2] — [mz] € Anr whose kernel is iso-
morphic to (Z/mZ)9. Thus, p, : Ar — A,y is an unramified covering
of mapping degree m?. Let ©,, (1)) be the divisor on A defined
by ©,, (1,07 = 1z € A7; 0(mz,m7) = 0}. By definition, it is clear
that ©,, (1,0),7) = POy and piy, Opn,((1,0),r) = Omr s an unrami-
fied covering of degree m9 where ©,,, is the theta divisor of A,,,. By
Proposition 3.1, 60 (1) := 8(mz,m7) is a global section of L™ := L™
which is equipped with the Hermitian metric defined by (3.5). It is easy
to verify the following:

(-, mT) = 00 (1),
(6-2) M:n(LmTﬂhLmr) = (L?m,hL;n),

P Gmr = M g7,

where g, = ‘dz(Im7)~'dz is the Kihler metric of 4,. Put N' :=

No,, (0y.my A and N := Ng_ /4, which are equipped with the Her-
mitian metrics g and gn such that

2 — 2 —
(6.3) 1400 ()1 p=m = 1 O M) or gy =1
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on Oy, ((1,0),r) and Oy, respectively. Let
gl’r :0— T(H)m,((l,()),’r) — TAT — Nl 50

and B
Emr 1010, >TA,;, = N —=0

be the exact sequences of Hermitian vector bundles whose metrics are
(9710,n.(1.0y.0) 97> GN7) A0 (g7 |, s G g ) TESPectively. Since dG% (1)
= u},dO(-,m7), it follows from (6.2), (6.3) and also the formula of Bott-
Chern classes ([3, I, Theorem 1.29]) that

(64)  wi(Nmrsgn) = (N1 gng), TAE') = i, Td(Emr)-
Similarly, it follows from (6.2) and (6.4) that

Td_l(L;mahL;m) = :u;kan_l(L_l hL;ﬁ_)a

mT?
(6.5 log 100 (1) = sty o 10, mr) 2,
Td™ (N, gn') = pfp, TA™H (N, g ).

According to the embeddings ¢ : O ((1,0),r) = Ar and 11 Opyr = Apyr,
let

A= e ®A;! @ A4, (L7™)

m,((1,0),7)
and

L -1 -1

>\m7 T Aemr ® >\Am7- ® >\Am7— (LT )

be the determinant lines. Let o’ € X and o € A, be their canonical
elements. By Theorem 2.4 together with (6.4) and (6.5), we get

(6.6) log [lo”[13, . = deg(um) log lloI%,,, o = m? log o]IX,, o-

Put
1 e

el Im7\ 2 a,0(mz, m7)

(6.7) Oa(r) = (det Zm) exp 2rmtImz(Im7) = Tmz
: g
: (1) Az A A dZg.
2

Since

92(7’) = 07,97 *(Qadzl A--- A ng),

where C 4 is a constant, * the Hodge *-operator, and

{Hadzl VANCRIIVAY dzg}aeBm
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a basis of H'(A,, K4, ® L™), we find that {0%(7)}ecn,, are harmonic
representatives of H9(A;, L;L}T). By (3.7), we get

<9a,0dz1 JANRERIVA dzga 9;; (T)> = Oab,
(6.8)

(00,0512 = (et Z1uur )

=

where (-,-) is the natural paring between H°(A, K4 ® L™) and
HY(A-, L), Since H°(A7,Q9(log ©,, ((1,0),))) and HY (A, K4 @ L)
are identified via the map ®#0o , i.e.,

0

®9% : 04

dzi N+ Ndzg — Ogdzy N+ Ndz

(note that 6o is the defining section of O((; g),7)), it follows from (4.15)

and Proposi‘?ion 4.5 that ¢’ and o are represented as follows:

mT

(6.9) ()Y =513 @0,-m, oV =05 @13 ®0; 1,
where og is the section as in Proposition 4.5 and

0
so(T) = /\ H—Gdzl/\---/\dzg,
aEB,, 0

(6.10) op-m = N\ 0i(7),

aEB,,

o1 :9’9 (mT),

which, together with (6.8), yields
md

2 2 g g
(6.11) loy=nll?s = (det EImT) =mI"™ (o |75

By Proposition 2.1 we obtain

g g
log 7(A, L;™) =(—1)7*! 2= log =",
(6.12) 2 (2m)9
) _ 1 1
log 7(Amr, L) :(—1)g+1§ log @y’
which, together with (6.11), implies
)9 (=19gm¥ 2md(—=1)9

2(—1
(6.13) lop-mlg " =m =" Jlo,1 15
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Since |14, HQ 1 by Proposition 2.1, it follows from (6.6) and (6.9)
that

2(—1)9 2(—1)9 2(—1)9
log |0’ |3 " =1og [lslly " +loglloy—m 55"
2(—1)¢
= m?(log |06, [} +1ogllo, -1 5 "")
(19

2
= m9 log |} |21)

which, together with (6.13), gives

—1)9 2(—1)9
 flogllogmln "

_1)9

2
m?1og|loe,,. I3 = log |soll%s

2
(6.15) —m9loglo; -1 |l

(=1)9gm9

= log||50||2Q(_1)g +logm™ 2

So

(=1)9gm9
2

(6.16)

2(—1)9
Isoly ™ = lloe (mn)IIE"

and by Theorems 5.1 and 5.2 we get

- (=D g=1)md (—1gtla
(6 17) ||$0||22( b = (det In’l’]’) 2(g+1) ‘fJO(T)’ g+ 1)1 ,

2 EDIg-1) (ngtls
loe(m7)llg = (det Im(m7)) 2o+ |Ay(m7)| D!

which, combined with (6.16), yields

( 1)ggm9 (=19 (g=1ym¥ (—1)9t12

(det ImT)W |7, (7)] @FOT

(—1)g<g (—pstiy ) 7
{ det Im(mr) e \A (mr)| G+ }
(6.18)
(=1D¥g(g=1)m¥ (=19 (g=1ym9
=m 26+D  (detIm(mr7)) 206+D
(_1)9+12m9
[Ag(mT)| @

Eliminating the power +g1) from (6.18), we obtain
m9 ( ymd
619) O () = m A () P

and therefore

g(g+1)m¥ gl— glg=1m9
3 : 3

(6.20) FE (7—)‘2 =m g!‘Ag(mT)ng

= m9 | Ay (mr) P,
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which, together with the normalization condition, yields the assertion.
q.e.d.

Let M(&,) be the field of meromorphic functions over &,. Define a

polynomial Agym(u, 7) € M(Sy)[talaen,, and a meromorphic function
Fj(1) € M(6,) by the following formulas:

Ay m(u,T) = Li%m(“”) =uf” + > Fy(r)v’,
(6.21) me e B (mr)m I o
. fa(7)
FJ(T) = fJO(T).

Although f;(7) is determined up to complex numbers of modulus one,
Fj(7) is uniquely determined. To study the structure of Agym(u, T), we
need the following theorem due to Mumford.

In the sequel, we always assume that m is even and > 4. Let

Dy, Ar 2 2 = (0,(mz, mT))ecn,, € P(Viy)

be the embedding associated to the complete linear system |Ly, ;| as
in (4.4). Let X, (a € By,) be the homogeneous coordinates of P(V,,)
corresponding to 6,.

Theorem 6.2 ([23, III, Cor.10.13]). The homogeneous ideal
defining @y, (A7) in P(Vy,) is generated by the following equations: For
any a,b,a’' b € %ZQ/ZQ with a+b=a' +b mod Z9 and any d € %Zg,
c € 379/77,

(Z s(€,1) Oas +d-+0,0(0, mT) Oy 14,0 (0, mT))

n
: (Z s(e,n) Xatn Xb+n>

n

= (Z s(€,1m) Oa+d+n,0(0, mT) Opra1,0(0, mT))

n

: (Z S(Ca 77) Xa’-l—n Xb’-l—?]) 5

n

(=1)" @) gnd n runs over $79/79.

where s(c,n) :



102 KEN-ICHI YOSHIKAWA

Let k := Q(04,0(0,m7)050(0,m7))apen, be the field of fractions
of the ring Z[0,,0(0,m7)00(0,m7)]qpep, which is a proper subfield
of M(B,). Consider the variety A,, in P7* defined by the equations
of Theorem 6.2. Let AY, be the projective dual variety of A,, in ]P’zlg.
Then, AY, is a hypersurface on (P7")V. Let (uq)qeen,, be the coordinates
of (P™)Y dual to (Xg)aeh,, -

Theorem 6.3. Agym(u,T) € k[uglaen,, is the unique defining equa-
tion of A, which is monic in the variable ug.

Proof. Let U(u,7) € kl[ug)acn,, be the unique defining equation of
Ay which is monic in the variable ug. Let Z be a proper subvariety of
&, such that both ¥(u,7) and A, (m7) are regular over C™ x (G,\ 7).
By definition, for 7 € &,\Z, ¥(u,7) is the unique defining equation of
the projective dual variety of ®,,(A;) which is monic in the variable
ug. Since Dy p - in §4 is the projective dual variety of ®,,(A,), it
follows from Theorem 5.1 (3) and Theorem 6.1 that Agym(u, 7) is also a
defining equation of this variety which is monic in the variable uy. By
the uniqueness of such polynomials, we find ¥(u,7) = Agym(u,T) for
any 7 € &,\Z. This prove the assertion. qg.e.d.

Since the ideal of relations among {6,.0(0, m7)00(0, m7) }q pen,, are
known when m is even and m > 6 ([23, ITI, Theorem 10.14 b)]), it is, in
principle, possible to write down the explicit formula for Ag,,(u,7) in
these cases, though it is quite hard in general. In this sense, we know
the structure of Ay, (u,7) up to that of Ay(7). In view of the cases of
small genus (g < 5), we conjecture the following. (A related question is
also raised by Mumford ([24, pp.349]).)

Conjecture 6.1. There ezists a constant Cy such that C; 1 Ay(T)
belongs to the ring Z[0, (0, 7)0.4(0,T)]q b.c.ac B, » and all the Fourier co-
efficients of Cg_lAg(T) belong to Q.

As Oy € Q(mr, e’ =) (see Theorem 7.2) and e~ comes from the
Gillet-Soulé genus ([26, Chap.VIII, 1.2]), it does not seem to be very
strange to expect Cy € Q(m, e (=1 Lo e (1-9)) for general g > 1.

Remark. By Igusa’s theorem [15, Chap.V, Theorem 9 and Corol-
lary], considering the case m = 4, we know that A,(7) belongs to the
normalization of the ring R := C [04,0(0,47)0p0(0,47)]apen,. As R is
not integrally closed in general, it is not clear even if Ay(7) € R. (Note
that 0,,0(0,47) (a € By) is a Q-linear combination of {044(0,7)}4.beB,
by [23, I, Chap.II, Proposition 1.3].)
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7. An explicit formula for Ajs(u, 1)

Let p : A — G5 be the universal family of Abelian surfaces and
10y = P3 X Gy the family of curves associated to the complete linear

system |Ly| = |20] over A as in section 5. Let A, be the Abelian surface
and
(I)|2@| A2z
(7.1) — (0190(22,27) : 9%%00(22',27) : 90%00(227 27)
5 ‘ ‘

: Bo000 (22, 27)) € P

be the morphism associated to the linear system |20|. Let w = (z,y, 2, 1)
be the coordinates of C* and u = (ug, u1,us,u3) its dual. (As we refer
to Hudson’s book ([14]), the order of coordinates is different from that
in the previous section.) We often identify C* and its dual. Put

F(w,7): = A(7)(z* + y* + 2" + 1Y)
(7.2) + B(r) (2% + y?2%) + O (1) (y*? + 2%2?)
+ D(1) (2%t + 2%y%) + 2E(7)zy2t.
Then, K, = {w € P F(w,7) = 0} is a Kummer’s quartic surface
with 16 nodes as its singular set, and @29 : A; — K coincides with

the double covering map A, — A;/ £ 1 (cf. [14, §53, §103]) where
A(r), B(1),C(1), D(7), E(1) are modular forms defined by

(7.3)  A(7): (04252 ﬁ2 2)(5252 o?)(v?8% — o* ),

(74)  B(r):=@'++4" —a' - )(ﬁ252 — ) (y*6 - 257,

(75)  Clr):=@'+a' ﬁ4 — 60?0 = B2 (v*0* — o2 57),

(7.6)  D(7):=(a" + 8" — 4" = ") (?8* — B*4*) (876" — 7*?),
E(r) : = afyd(8® + o = 52 = 4*)(0* + 07 =7 — &?)

(7.7) X (02 +7% —a® = F)(a® + 7 =7 = 0?),

7.8 afr) 1 = 9%000(0, 27), B(r):= 9%% 0(0,27),

(7.9) V(1) 1 = 04100(0,27),  6(7) := bo000(0, 27).

We remark that our definition of A(r), B(7),C(7), D(7), E(T) is
slightly different from that of Hudson [14, §53] because we use a homo-
geneous polynomial to write the defining equation of Kummer’s surface
though Hudson uses an inhomogeneous one.
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On K, acts the Heisenberg group Ho o = (7/27)* generated by the
following projective transformations:

02 :
03 :

[/
For o € Hs 3, put

(ug,ud,ug,us) := o - (ug, u1, ug, us).

Since Hp 2 acts transitively on Sing K, we get

Sing Kr = {(a(7)” : B(7)7 : v(1)7 : 6(7) ) }oc s -
Put

(7.14)  Gu,7) =[] (a(r)uo + B(7)7ur +7(7) us + 6(r)" us).

o€Ha 2

Theorem 7.1. There ezists a constant Cao independent of (u,T)
such that
Ao (u,7) = Coo F(u,7)? G(u,T).

Proof. Put
Hy = {w € P*;upz + w1y + upz + ugt = 0},

Cur:=K,NH, and O, , := <I>|_2®|(C 7). By Theorem 5.1, Ago(u, 1) =
0 if and only if ©,, , is singular, and thus C, ; is singular. Let D; and
Dy be the hypersurface of P? x G5 such that (u,7) € Dy iff SingC,, ; €
K \Sing K; and (u, 1) € Dy iff C, ; passes through Sing K. If (u, 7) is
a generic point of Dy, since C; has only one node (which is different from
SingK,), Sing ©,, » consists of two nodes because P 1 Oy — Cr is
an unramified double cover of C, . If (u,7) is a generic point of Ds,
Cy, has only one node at one of 16 nodes of K, and ©,,; has only one
node at some 2-torsion point of A;. Thus we get the following equation
of divisors:

(715) (A272)0 = 2D1 + DQ,
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where Dy and Dy are the closures of Dy and Ds. Clearly, Dy = (G)g by
definition. Suppose that (u,7) is a generic point of D;. Then, C,, . has
only one node, say o ¢ Sing K. Let (x,y,z) be the local coordinates
of P* around o, ¢(z,y,z) = 0 be the local defining equation of K, at
o, and ¢ (x,y, z) that of H,. Since o is a smooth point of K., we may
assume that ¢(z,y,z) = z. Then, the local equation of C, ; at 0 € K
is of the form 9(0,y, 2) = ay® + byz + cz? + O(3) = 0 because (Cy, +, 0)
is a node. (Here O(3) means the terms of order > 3.) As H, is also
smooth at o, 9¢/0z(0) # 0. Thus, there exists some A # 0 such that
d(z,y, 2)—Mp(x,y, z) = O(2) which implies that H, is the tangent plane
of K, at o. Therefore, u belongs to the projective dual of K,. As K,
is self-dual ([14, §96]), it follows that D; D (F)y which, together with
(7.15), yields the theorem because both Ag o and F? - G have degree 24
in u-variables and weight 20. q.e.d.

Proposition 7.1.

F((l,O),T)2 G((l,O),T) = X2(2T)4'

Proof. For simplicity, put I(7) := F((0,1), £)* G((0,1), Z). By The-
orem 6.1 and the fact that Ay(7) = C5 x2(7), there exists a constant ¢

such that I(7) = cx2(7)*. Consider the family 7(¢) = (; i) where

7 € H and ¢ € C is a small number. Put
Oup(T) := 9%%(0, 7).
Then,
x1(7) = Oo0(7)010(7)001 (7)
by definition. Since

a?’t:O{Q%%OO(T(t))HOOOO (7(t)) — 9%000(7(75))90%00(7'@))}
(7.16) = —mxi(3)"
x1(57)” = 20 ()%, Ooo(r)" = Oro(r)* + (1),
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we get
o IG)
=0 ¢4
= {000(7)?010(7)001 (1)}
- x {2000(7)%010(7)*}*{000 (1) 010(T)*}*
' X {%8?]tZO{H%%OO(T(t))Hoooo(T(t))
N 9%000(T(t))eogoo(T(t))}}Q
= 167ty (1)%2
Similarly,
4
aasy 2 @ (et 0.00)
=167ty (7).

(See Appendix for the proofs of (7.16), (7.17), and (7.18).) Comparing
(7.17) and (7.18) yields the assertion. q.e.d.

Theorem 7.2. Let ((s) be the Riemann zeta function. Then,
Ap(r) = 272 12D yo (1),

Proof. Let 7(t) be the same as in the proof of Proposition 7.1. Let
A; be the Abelian surface with period (12, 7(t)) and Oy its theta divisor.
When ¢t =0, Ay = E; x E; and g = E; x {147} + {147} x E; in the
sense of divisor on Ay where F. is the elliptic curve with period (1, 7).
Put By := E; x {37} and E; := {37} x E,. Let S be the small disc
centered at 0. Let 7 : A — 5 be the family of Abelian surfaces such that
771 (t) = Ay, and 7 : © — S the degenerating family of curves of genus
2 such that 771(t) = ©;. Let og be the same section of A\(Og) over S
as in Proposition 4.5. Let og,_ := 1 ® dz be an element of A(E;) under
the identification HY(E,,Og, )V = HO(ET,Q}ET). Then, there exists a
natural identification 0g (0) = 0g, ®0g,. Let g-() = tdz(Im7(t))~'dz be
the metric of TA/S and gg,s the induced metric on TO/S. Let || - [|q
be the Quillen metric relative to these Kahler metrics. By Bismut’s
theorem ([1, Théoréme 3]), we get

. 1
lim{log loe(t)[13 + ¢ log 11 = 1og(llos, 13 - loz.12)}
= —4¢'(~1),

(7.19)
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where

o [t
(7.20) 4P = f

(If z; denotes the coordinate of Fy centered at H'TT, then we know

t
7'('(2'172'2) =2zZ129 + — + O(tg)
271

around X := Sing & and
9-0) = (Im7) " (|dz1|* + |dza]?).

Thus, Bismut’s condition that

2
ANNZ, ) @ pis = 7 (0]

is an isometry is equivalent to (7.20) and ||d?7|s|| = 1.) Since

1 1
log ||a@(t)||é = —logdet Im7(t) — = log ]CQXQ(T(t))\Q,
6 6
(7.21) ¢
log oz 15 = —5 o8 |CLA(T)],

and xi(7) = 2A(T)§, it follows from (7.18-21) that

1
loe ()13 114]]2
=0 [lom G llom?

wl=

-|CLA(7)]

(7.22) =—  im

278x1(7)®

As C1 = (2r)712 by (1.4), we get Cy = 278(2n) M X' (=D, qed.
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Corollary 7.1. 02,2 = 2_8071'_566484/(_1)_

Proof. Theorems 6.1, 7.1, 7.2 and Proposition 7.1 lead to

Ao 5((1,0),7) 844 _ 5—80_—56 48¢'(—1)
(7.23) Ca0 o) 2°C5 =271

Appendix. Proofs of (7.16), (7.17) and (7.18)

Proof of (7.16). The third formula of (7.16) follows from [8, Chap.4,
pp.104, (31)]. Since

(A1) Ou(z)? = 200(M00(r),  boo()001(3) = b1 ()?

by [8, Chap.4, p.104, (24)], we get the second formula. (Note that our
notation of theta functions and of [8, Chap.4] are related by 0yy = 03,
010 = 09, and 6y = 6,.) Let us prove the first formula. For simplicity, we
w b (ai, by € {0,1}). Put (1) = (; j)
2

as in the proof of Proposition 7.1. It follows from definition (cf. (3.2))
that

write 04, 000,5, instead of Oa; oy by b
2 2

22
2

(A2)
Ooo00 (0, 7(£)) = Y expmi[r(n] + n3) + 2tniny],

n1,n2€ZL

61000(0, 7(£)) = Z exp wi[r{(m1 + l)2 +n3}+ 2t(my + %)nQ],

2
ml,nQEZ
. 1 1
Boioo(0,7(1)) = Y expmilr{n} + (mz + 5)*} + 2t (ma + 3)],
nl,mQEZ
. 1 1
01100(0, 7(1)) = Z exp mi[T{(m1 + 5)2 + (o + 5)2}
ml,mQEZ

+ 24(m + %)(m2 + %)].



DISCRIMINANT OF THETA DIVISORS AND QUILLEN METRICS 109

Therefore, we get

. 1 1
6110000000 = Y _ expwi[r{(m1 + =)* + n} + (ma2 + =)* + n3}

2 2
m m 1
(A.3) + 2t(mymg 4+ ning + 71 + 72 + Z)]’
. 1 1
Oroo0foi00 = D exprilr{(my + 5)° +ni + (m2 + 3)? 4 n)
non
(A-4) + 2t(ming + nims + 71 + 72)]
and
97 1=00110000000
_ 2 mi mo 1.4
= A4x Z(mlmQ +ning + b3 + 5 + Z)
1 1
(A.5) cexprilr{(m1 + 5)* +ni + (m2 + 5)* +n3}],
97 1=00100000100
= —47? Z(mlnz +nimg + % + %)2
. 1 1
(A.6) 'eXPm[T{(ml+§)2+n%+(m2+§)2+n%}].
Since
1
(m1ma +ning + % + % + 1)2
— (mang +nimsa + L2 E)2
2 2
(A7) 1 1
= (m1 +n1 + 5)(m2 + n9 + 5)

1 1
‘(ml—n1+§)(m2—n2+§),
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it follows from (A.5) and (A.6) that

97 [1=0(0110000000 — #100000100)

1 1
= —4n? Z(Tm +n1+5)(me +na+ 3)

2 2
(ma — i+ 5)(ms — s + )
ma il 5 mo o 5
1 1
-expmi[T{(m1 + 5)2 +ni+ (mo + 5)2 +n3}]
1 1
= —4n? Z(Tm +mn1+ 5)(m2 +n2 + 5)
1 1
- (my —n1+§)(mg —n2+§)
LT 1 2 1 2
cexpmi[={(m1+ = +n1)"+ (m1 + < —ny)
A8) 2 2 2
( 1 2 1 2
+(ma 4 5 +n2)” 4 (m2 + 5 —n2)"}]
1 1
:—47r2[ Z (m—i—n—|—§)(m—n+§)
m,neZ
T 1.4
1,512
s L]
1 1
:—47T2|: Z (k+§)(l+§)
k€7, k=1(2)
1 1 2
cexprit{(k+=)*+ (I + —)2}] .
2 2
Since
1 1 . 1 1
(k+5) (A + 5) expmir{(k + 5)2 +(+ 5)2}
k€7, k=1(2)
1 1 1 . 1, 1o
=3 Z (k+2)(l+2)exme{(k‘—|—2) +(l—|—2) }

k€7, k=1(2)
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5 X ko145t

2
k€7, k=1(2)

cexpmit{(—k —1+ %)2 + (1 + %)2}
:_Z DF k= )(l+;)
(Ag) kleZ
. 1o Lo
~expmiT{(k + 5) +({+ 5) }
2
- % {Z(—l)"“(n + %) exp miT(n + %)2}
nez

_ 1.1 / 2 _ 1 2
- 2{27_(_ 11(077—)} - 2X1(T) ’

where we have used [23, I, Chap.I, Prop.13.1] to get the last equality, it
follows from (A.8) that

(A.10) 97 [1=0(0110000000 — B100000100) = —72X1(

Proof of (7.17). TFor simplicity, put «(t) := oz(i;)) = 01900, B(t) :=
)

ﬁ(@) = f1100, (1) = 7(@) = o100, and 46(t) = (%) = Bo000-
Then by (A.2) we obtain that

(A.11) a(0) = 0po(7)010(7), B(0) = O10(7)*,
(A.12) Y(0) = Opo(7)010(7), 8(0) = Bgo(7),
which yield

(0)6%(0) — %(0)y*(0) = Goo(7)%010

(A.13)
= 000(7)%010(7)%601 (1)
= x1(7)%001(7)?,
where we have used the third formula of (7.16) to get the third equality,

and similarly

(A.14) 72(0)6°(0) — 82(0)e*(0) = x1(7)*001 (1),
(A.15) B(0)5(0) + 7(0)ex(0) = 2000(7)*010(7)?,
(A.16) (0)B(0)7(0)8(0) = boo(7)*610(7)*.
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Since I(1) = C Ao(7)* by Theorem 6.1 and Ay (7) vanishes of order one
along No = {7 € S&9; 119 = 791 = 0} by Theorem 5.2, we find that
B)6(t) — y(t)a(t) = O(t?) as t — 0. Since F((1,0),7) = A(r) by (7.2)
and

7(0)

(4.17) G((1,0), =7) = (@(0)8(0)7(0)4(0))*

by (7.14), it follows from (7.3) and (A.11-16) that
I
1)

t—0  t?

= {(0)?5(0)* — B(0)*7(0)*}?
{7(0)%5(0)* — 2(0)*8(0)*}?
{B(0)5(0) +7(0)ex(0)}* - Tim
- a(0)*8(0)*(0)*6(0)"

= {x1(1)?001 (7)*}*{x1(7) %001 (1)} {2000 (7)* 010 (1)}

(A.18) . {%af\tzo(enooeoooo - 9100090100)}2

{000 () 0r0()*}*

= (1 (7)?001(1)%)* (2000 (7)*610(7)?)*

{B)S(t) —r(t)ex(t)}”

t4

T

where we have used the first formula of (7.16) to get the third equality,
and the second of (7.16) to get the last one. q.e.d.

Proof of (7.18). As is easily verified, even theta constants of genus
2 consist of the following:

(A.19) 00000, 91000, Po100, B0010, Pooo1, G1100, o011 G001, Bot10, O1111-

Since

(A'QO) 9a1a2b1b2 (Oa T(O)) = 9a1b1 (07 T)gazbz (07 T)a
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by (A.19) and the definition of x; (i = 1,2) we obtain that

(A.21) lim w = x1(1)® - Dl1=001111 (0, 7(1)).

As
61111 (0, 7(¢))
1

(A.22) = Z (=D exp il {(k + %)2 T+ 5)2}
kIEZ

+ 2t(k + %)(l + %)]

by definition (cf. (3.2)), it follows from (A.9) that
9=001111(0,7(1))
1

= —2mi Y (-D)F(E+ S+ %)
(A.23) ki€,

cexpmitT[{(k + %)2 +(1+2)%

= —2m’x1(7)2,

which, together with (A.21), yields

i
(A.24) lim xe(r®) _ —2mix1(7)%.
—0 t
q.e.d.
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