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C O L L A P S E D M A N I F O L D S W I T H P I N C H E D 
P O S I T I V E S E C T I O N A L C U R V A T U R E 

XIAOCHUN RONG 

Abstract 
Let Mn be a manifold of sectional curvature, 0 < ö < KM™ < 1, let X be 
an Alexandrov space of curvature > —1. Suppose the Gromov-Hausdorff 
distance of Mn and X is less than e(n,ö) > 0. Our main results are: 
(A) If X has the lowest possible dimension, ^p-, then a covering space 
of Mn of order < ^ ^ ì is diffeomorphic to a lens space, Sn/Zq, such that 
0 < c ( n , ö ) [ u o l ( M n ) ] 1 < q < vol{S%)[t>o«(Mn)]1, where S$ is the sphere 
of constant curvature <5. (B) If X has nonempty boundary, then a covering 
space of Mn of order < ?^p- is diffeomorphic to a lens space, provided e 
depends also on the Hausdorff measure of X. 

0. Introduction 

Let don denote the Gromov-Hausdorff distance between two metric 
spaces, cf. [20]. Gromov's theory of almost flat manifolds asserts that 
a compact manifold, Mn, whose finite normal covering of order < i(n) 
(the Margulis constant) is diffeomorphic to a compact nilpotent mani­
fold, N/F, if and only if Mn admits a metric with sectional curvature 
I-KM™ | < 1 and d,GH(Mn,pt) < e(n), a small constant depending only 
on n, see [6], [19] and [36]. 

In this paper, one of the problems we shall be concerned with is 
to characterize a compact manifold, Mn, which admits a metric with 
0 < ö < KM" < 1 such that d,GH(Mn,X) is sufficiently small depending 
only on n and ö, where X is an Alexandrov space of the lowest dimension 
with n and S fixed, cf. [4] (see Theorem 0.4). Since the diameter of Mn 
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is bounded above by 7r/vo and since if n is even, the volume of Mn is 
bounded below by a half of the volume of the round sphere of radius 
one ([25]), we can assume that n is odd, cf. [7], [20]. The classification 
of space form in [38] implies dim(X) < n. Consequently, Mn has small 
volume, i.e., Mn is collapsed. 

In general, let X be an Alexandrov space of dimension < n. Suppose 
that dcH(Mn,X) is sufficiently small depending only on n and 6. We 
shall study problems concerning interactions between the geometry and 
topology of Mn and that of X. Let S(X) denote the set of singular 
points of X; see Section 1, cf. [4]. A specific problem is determining 

How the geometry and topology of Mn are reflected by dim(X) or 
codim{S{X)) ? 

Note that in order for the above problem to make sense, it must be 
assumed that X is not collapsed, i.e., the s-Hausdorff measure, mniX), 
of X has a definite lower bound, where s is equal to the dimension of 
X; cf. [30], [37]. 

We now begin to state the main results of this paper. 
Recall that the singular set of an Alexandrov space is of at most 

codimension 1, and is of codimension 1 if and only if the boundary is 
not empty. A boundary point is one at which the space of directions has 
non-empty boundary (note that a 1-dimensional compact Alexandrov 
space with boundary is a closed interval); cf. [4]. 

T h e o r e m 0.1 . Let Mn be a compact manifold of ö < KMU < 1, and 
let X be an Alexandrov space of cur(X) > —1 and m # ( X ) > mo > 0. 
Suppose dcH(Mn,X) < e(n,ô,mo). If X has non-empty boundary, then 
a covering space of Mn with order < ^^ is diffeomorphic to a lens 
space, Snj7Lq. 

For examples of lens spaces and non-lens spaces in Theorem 0.1, see 
Examples 5.1 and 6.3 respectively. 

Let M?l be the set of compact n-manifolds with ö < K < 1. Then, 
M.r£ has a compact closure with respect to dcjH ([20]), and each limit is 
an Alexandrov space of curvature > 8 ([4]). 

Theorem 0.1 has the following interesting consequence. 

Corollary 0.2. Let M f =^4 X be a sequence in M.n^ of simply 
connected and diffeomorphically distinct. Then X has empty boundary. 

Examples of Corollary 0.2 have been known in dimensions 7 and 13 
with ô < -jy ([1], [2], [13], [33]). Corollary 0.2 provides a constraint for 
any possible similar examples of higher dimensions. 



COLLAPSED MANIFOLDS 337 

The point of departure is the equivariant and parameterized fibration 
theorem adapting to collapsed manifolds of pinched sectional curvature. 
It asserts that there is a small constant, v(n, 6) > 0, such that if Mn G 
M.'Æ has volume < v(n, ô), then the universal covering space, M n , admits 
an almost isometric ir\-invariant Tk-action without fixed points ([9], 
[15], [16]), and a nearby invariant metric of positive curvature ([34]); 
see Theorem 3.1. In terms of the terminology of [12], this 7Ti-invariant 
Tfc-action is called collapsible. 

A 7Ti-invariant Traction is a usual Traction on Mn and a homo-
morphism, p : iri(Mn) —> Aut(Tk), such that the Traction extends 
to a 7Ti(Mn) Xp Traction. In particular, the Traction is the lift of a 
Tfc-action on M if p is the identity map. In this case, we also say that 
the 7Ti-invariant Tfc-action descends to M. Note that the notion of a Tri-
invariant Tfc-action is an alternative formulation for a pure F-structure 
on a manifold of finite fundamental group (see [10], [11]). 

Let Mn = Mn/[m(Mn) t<pTk]. We will call Mn the orbit space of 
the 7Ti-invariant Traction. 

By employing the above fibration theorem, together with Cheeger-
Gromov's compactness theorem ([7], [20]), Perel'man's stability theorem 
([30]) and a theorem of Grove-Sear le ([22]), we get 

Theorem 0.3. Let Mn be a compact manifold of 8 < Kun < 1, and 
let X be an Alexandrov space of cur(X) > —1. Suppose dGn(Mn,X) < 
e(n,S). Then, dim(X) > n^-. Suppose, in addition, dGii(Mn,X) < 
e(n,<5, mo) with m,H(X) > mo > 0. / / dim(X) < n, then Mn admits a 
collapsible ni-invariant torus action such that Mn is homeomorphic to 
X, and otherwise Mn is homeomorphic to X. 

In view of Theorem 0.3, the following theorem will characterize a 
compact n-manifold which admits a ^-pinched metric such that it is 
close to an Alexandrov space of the lowest possible dimension. 

Theorem 0.4. Let Mn and X be as in Theorem 0.3 such that 
dGH{Mn,X) < e(n,S). Suppose dim{X) = s=l . Then a covering space 
of Mn with order < ïk^- is diff'eomorphic to a lens space, S^^/I^q, such 
that 

0 , c(n,S) vol(Æ ^) 
vol{Mn) - vol(MnY 

where the constant c(n, 8) bounds from, below the volume of the pullback 
metric on Sn, and Æ denotes the sphere of constant curvature 6. 
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Note that from the proof, X in Theorem 0.4 has nonempty boundary 
(see Theorem 0.1). Also, c(n, 6) —> 0 as ö —> 0. 

Corollary 0.5. Let M™ =^4 X be a sequence in M.'g of simply 
connected manifolds. Then dim(X) > lk^--

A conjecture of Fukaya ([18]) asserts that X in Corollary 0.5 has 
dimension > n — 1. This conjecture is false by a recent example in [32] 
of a sequence of Eschenburg 7-manifolds of positively pinched curvature 
that converges to a bi-quotient space, T2 \ SU(3)/T2. This example 
shows that the lower bound in Corollary 0.5 is sharp for n = 7. 

For the completeness, we shall give the following result which will 
yield examples of lens spaces in Theorems 0.1 and 0.4 (see Example 
5.1), compare [38]. 

Theorem 0.6. Let M be a compact manifold which admits an 
isometric Tk-action. Suppose, in addition, that the fixed point set is 
empty. Then, there is a sequence of cyclic subgroups, {Tj}, ofTk freely 

acting on Mn such that, equipped with the quotient metrics, Mn/Tj -^4 
Mn/Tk. 

Before proceeding further, we would like to make some comments. 

Remark 0.7. For a given M n , it is possible that there are X, X' 
of different dimensions in Theorem 0.1 (see Example 5.1). Roughly, the 
choice of X depends an observer's scale of collapsing. At the end of the 
proof, we will show the existence of a constant, m(n,ô), such that for 
(Mn,X) in Theorem 0.1 with m#(X) > mo, if mo < < m(n,8), then 
there exists another X' satisfying Theorem 0.1 with mniX') > m(n, ô), 
see Lemma 3.4 and the discussion following it. 

Remark 0.8. In the proof of Theorem 0.1 (resp. Theorem 0.4), we 
will show that X admits a metric with curvature > ô in the Alexandrov 
sense (resp. and X has nonempty boundary). According to [30], X 
is contractible (compare [22]). This should explain why the diffeomor-
phism type of Mn does not rely on a particular X, compare Remark 
0.7. 

Remark 0.9. Theorem 0.1 is quite optimal in certain sense. First, 
the order estimate cannot be improved, see Example 6.3. If one removes 
either of the (normalized) condition, cur(X) > —1, or the dependence of 
e(n, ö, mo) on mo, without imposing further restriction, then counterex­
amples will occur, see Example 6.1. Note that by scaling, the pinching 
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condition becomes 1 < KMU < A, where A = 8 . Then, Theorem 0.1 
will be false if one removes the dependence on A without imposing any 
further restriction. For instance, following the construction of Example 
2.4 in [21], a complex projective space admits a sequence of metrics of 
curvature > 1 converging to a closed interval. 

R e m a r k 0.10. The Klingenberg-Sakai conjecture asserts that on a 
manifold which supports a ^-pinched metric, the infimum of the volumes 
of all possible ^-pinched metrics is positive (cf. [26]). This conjecture 
implies that the estimate as in Theorem 0.4 should also hold for Theorem 
0.1. 

Note that the conjecture is true in dimension three (see [5]) and a 
closed 2n-dimensional manifold of 0 < K < 1 has volume > vol(Sfn)/2 
(see [25]). 

R e m a r k 0.11. In view of Theorem 0.1, the following problem nat­
urally arises: In each dimension, is there a universal pinching constant 
ô(n) > 0. Namely, a positively curved metric on compact Mn implies 
a metric of 6(n) < K < 1; compare [34]. Note that Hamilton's work 
provides an affirmative answer for n = 3 ([23]). 

We now give an indication for the proofs of Theorems 0.1, 0.4. 
Recall that Mn is, equipped with the quotient metric, an Alexandrov 

space and the property that Mn has non-empty boundary is topological 
(see p. 16, p.54, [4]; compare Section 1, b . ) . 

Given Theorem 0.3, the following result will imply Theorem 0.1. 

T h e o r e m 0.12. Let M be a compact manifold of positive sectional 
curvature. If M admits a v:\-invariant isometric Tk-action such that the 
orbit space, M, has non-empty boundary, then a covering space of M 
with order < k is diffeomorphic to a lens space or a complex projective 
space. 

Note that the order estimate in Theorem 0.12 cannot be improved; 
see Example 6.3. 

Theorem 0.12 generalizes a theorem of Grove-Searle ([22]) which 
asserts that a compact manifold, M n , is diffeomorphic to a lens space or 
a complex projective space if and only if it admits a metric of KMK > 0 
and an isometric circle action with fixed point set codimension 2 (see 
Theorem 2.1). A homeomorphic classification for compact 4-manifolds 
of K > 0 which admit isometric circle actions was obtained by [24]. 

We will first show that a 7ri-invariant torus-action has a circle sub­
group with fixed point set codimension 2 if and only if the orbit space 

file://v:/-invariant


340 XIAOCHUN RONG 

has non-empty boundary (Corollary 1.5). Let S1 denote any circle sub­
group with fixed point set, FQ, of codimension 2. The difference here 
is that the S^-action is not necessarily descendible when n is odd (see 
Example 6.3). If not, Mn is not necessarily diffeomorphic to a lens 
space. 

Let H be the subgroup of ni(Mn) consisting of 7 such that ^(7) = id 
when restricting to S1. A priori, H could be trivial (see Example 6.2). 
Nevertheless, since S^-action descends to Mn/_ff, Mn/H is diffeomor­
phic to a lens space by [22]. 

The problem is to estimate the index, [7ri(Mn), H]. It turns out that 
the index is bounded above by the number of circle subgroups of Tk with 
fixed point set codimension 2 which is less or equal to k. Since this is 
completely false without either of the assumptions on codimension 2 
or positive curvature, these conditions have to be essential, and that is 
where theorems of Synge type on compact manifolds of positive sectional 
curvature are being used (see Lemmas 2.5, 2.6). 

In Theorem 0.4, a half of the inequality is from the standard volume 
comparison in Riemannian geometry. The other half inequality is a 
special case of the Klingenberg-Sakai conjecture (see Remark 0.10). If 
not true, as seen earlier, then Mn admits a second collapsible T s-action. 
If there is a Ts -invariant totally geodesic submanifold of Mn which 
is diffeomorphic to a three sphere, then the three sphere necessarily 
has small volume, a contradiction to the solution of Klingenberg-Sakai 
conjecture in dimension 3 by Burago-Toponogov (Theorem 3.1). 

The maximal symmetry implies a T 2 -invariant totally geodesic 

submanifold of Mn which is diffeomorphic to a three-sphere (note that 

the T 2 -action on Mn is not collapsible). We then get a contradiction 

by observing, from the construction of [9], that the T s-action can be 

viewed as a subtorus-action of the T 2 -action and therefore the three-

sphere is also T s-invariant. 

The rest of the paper is divided as follows: 

In Section 1, we will provide the necessary material required in this 
paper and establish some preliminary results. In Section 2, we will 
prove Theorems 0.12. In Section 3, we will prove Theorem 0.3, thereby 
completing a proof of Theorem 0.1. In Section 4, we will prove Theorem 
0.4. In Section 5, we will prove Theorem 0.6. In Section 6, we will supply 
examples mentioned in the introduction. 

A c k n o w l e d g m e n t . The author would like to thank J. Cheeger 
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for a helpful comment on this work and thank T. Yamaguchi and the 
referee for pointing out an error in the early version. 

1. Pre l iminar ies 

In this section, we will provide a necessary background and establish 
some preliminary results required in the sequel. Note that Lemmas 1.4, 
1.8 will be used in the proof of Theorem 0.12 in the next section. For 
the convenience of readers, we will also recall some basic facts about 
a 7Ti-invariant T r a c t i o n which can be found in [35] in terms of a pure 
F-structure. 

a. 7Ti-invariant torus act ions 

Let M be a manifold, and let n : M —> M denote the universal 
covering space. A 7ri-invariant T r a c t i o n on M is a Tk- action on M and 
a homomorphism, p : IÏ\(M) —> Aut(Tk), the group of automorphisms 
of Tfe, such that 

(1.1) 7(*£) = p(7)(*)(7(â0), 

for all x G M , 7 G iri(M) and t G Tk. Equivalenti^ the T r a c t i o n 
extends to the action of the semi-direct product, TTI(M) KpT

k. We will 
call p the holonomy representation of iri(M). A metric on M is called 
invariant if the TTI(M) iKpT

k-action on M preserves the pullback metric. 
It is clear that a 7ri-invariant Tfc-action descends to a T r a c t i o n on 

M if and only if p is the identity map. In particular, on a simply 
connected manifold, a 7ri-invariant Tfc-action is the usual Tfc-action. 

Note that the 7ri-invariance implies that the orbit structure on M 
descends to an orbit structure on M. We call the quotient space, 
M = M/[iri(M) \XpTk], the orbit space of M (by the 7ri-invariant torus 
action). 

It is easy to see that the notion of iri-invariant T r a c t i o n is equivalent 
to that of pure F-structure on a manifold of finite fundamental group; 
cf. [10], [11]. We refer to [10], [11] for examples. 

b. Singular se ts on M, M and M 

Given an effective Tfc-action on M, recall that an orbit is principal if 
the isotropy group is trivial. A non-principal orbit is either exceptional 
or singular if its dimension is equal to or less than that of a principal or­
bit. The set of non-principal orbits has a stratification by submanifolds; 
cf. [34], [35]. 
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Let S denote the union of all singular orbits. When restricting the 
stratified structure of non-principal orbits to S, one obtains a stratifi­
cation of S, S = (Jj Si, which satisfies the following conditions: 

(1.2.1) The closure, cl(Si) = [Jj^Sj and each component, Sij, oî Si is 

a submanifold. In particular, max.i{dim(Sji)} < raax^dim^ik)}. 

(1.2.2) On each stratum, Sij, the orbit projection is a fibration map 
(and the orbit projection is not a fibration map on any two adjacent 
strata) 
(1.2.3) Each point in Sij has the same isotropy group, and cl(Sij) is a 
component of the fixed point set of the isotropy group. 

The dimension of S is defined to be ma,Xk{dim(Sik)}. Since each 
cl(Sij) is the fixed point set of the isotropy group of Sij, S has at most 
codimension 2; cf. [3]. 

Now let 7T : M —> M be the universal covering space, and let the Tr ­
action on M be 7ri-invariant. An orbit on M is called regular if it has an 
invariant neighborhood in which the orbits form a fibration. Similarly, 
we call a non-regular orbit exceptional or singular if its dimension is 
equal to or less than that of a regular orbit. Let S be the union of all 
singular orbits on M. It is clear that ir(S) = S and n~l(S) = S. We 
define dim (S) = dim(S'). 

Note that unlike the singular set, the projection of non-principal 
orbits in M may be a proper subset of the non-regular set of M; see 
Examples 4.9, 4.10 in [35]. This is a part of the reason why we choose 
to work with a singular set. 

Let p : M —> M be the orbit projection. Pu t S = p(S). We will call 
x £ S & singular point. This will be justified as follows. 

Recall that the quotient space equipped with the quotient metric of 
an Alexandrov space by compact any group of isometries is an Alexan-
drov space with the same curvature lower bound; cf. [4]. In particular, 
given any invariant metric on M, M is an Alexandrov space. For each 
x G M, the space of directions at x is given by S~r /(Tx \XPT£), where 
x G M such that x = p(n(x)), Tx is the subgroup of deck transforma­
tions which preserve the Tfc-orbit at x, T~? is the isotropy group at x, 
and S~r the normal sphere to the orbit at x. 

In view of the notion of a singular point in an Alexandrov space 
([4]), we immediately see: 

L e m m a 1.3. Let M admit a T:\-invariant Tk-action. The orbit at 
x G M is non-regular if and only if x G M is singular in the Alexandrov 
sense, with respect to the quotient metric of any invariant metric on 

file://T:/-invariant
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M. 

Recall that at each point, x, in an Alexandrov space, X, the space of 
directions, Sx, is a compact Alexandrov space of dimension = dim(X) — 
1. If a 1-dimensional Alexandrov space is a closed interval, we call each 
end point a boundary point. In general, a point in X is called a boundary 
point if the space of directions has non-empty boundary. 

We call x G M a boundary point if X IS 9J boundary point in the 
Alexandrov sense. Clearly, whether or not x G M is a boundary point 
is independent of a particular invariant metric involved. Note that if x 
is a boundary point, then the orbit at x with p(x) = x is singular since 
the quotient space of a sphere by a finite group has empty boundary. 

We now give equivalent conditions for a singular set with the maxi­
mal possible dimension. 

L e m m a 1.4. Let Mn be a Tk-manifold. The following conditions 
are equivalent: 
(1.4.1) There is a circle subgroup with fixed point set codimension 2. 
(1.4.2) The singular set S has codimension 2. 
(1-4-3) The orbit space, M/Tk, has singular set of codimension 1. 
(1-4-4) The orbit space, M/Tk, has non-empty boundary. 

Proof. (1.4.1) <^=^ (1.4.2). One direction is obvious. Assume 

dim(S) = n — 2. By definition, there is a Sij such that dim(S\j) = 

n — 2. Let Tf- be the isotropy group of Sij (see (1.2.3)). Then, T-f-

has rank > 1. By (1.2.3), cl(Sij) is a component of the fixed point set 

F(M,Tk-). Now given any invariant metric on M, cl(Sij) is a totally 

geodesic submanifold and Tk- acts effectively on the normal space to 

cl(Sij). Since d im(d(Si j ) ) = n — 2, Tk- is a circle. 

(1.4.1) => (1.4.3). Let F0 denote a component of ^ ( M , ^ 1 ) with 
codimension 2. First, M/S1 has non-empty boundary FQ. Consider the 
effective T fe/5'1-action on M/S1. Note that the restriction of Tk/Sl on 
Fa is also effective. Let x G -Po such that the T fc/S'1-orbit at x is princi­
pal. Since principal orbits form an open dense subset, there is an invari­
ant neighborhood, U, of x in which all T f c/5'1-orbits are principal. It 
then follows that (F0nU)/(Tk/S1) is a boundary of U/{Tk/Sl). Conse­
quently M/Tk has non-empty boundary since M/Tk = (M/Sl)/{Tk/Sl). 

(1.4.3) =• (1.4.1). Put p : M -> M/Tk and dM = p~l{d{M/Tk)). 
By the early discussion each point in dM is singular. From the stratified 
structure for S (see (1.2.1)—(1.2.3)), there is a singular s tratum, Sij Ç 
dM, such that dim (S'y) = dim(dM) and the isotropy group of Si j acts 
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freely on the normal space of S\j. The isotropy group has to be a circle 
since a torus of rank > 2 cannot freely act on a sphere; see Theorem 8.5, 
[3]. Consequently, S\j has codimension 2, since Sij is in the boundary of 
M/Tk. Now (1.4.1) follows from the equivalence of (1.4.1) and (1.4.2). 

We leave the proof of (4.1.1) -<=^ (4.1.4) to the reader. q.e.d. 

Corollary 1.5. Let M admit a n\-invariant Tk- action. Then, the 
following are equivalent conditions: 
(1.5.1) There is a circle subgroup with fixed point set codimension 2. 
(1.5.2) M has singular set codimension 2. 
(1.5.3) M has singular set codimension 1. 
(1.5-4) M has non-empty boundary. 

Proof. Note that M has singular set codimension 1 or non-empty 
boundary if and only if M/Tk does. q.e.d. 

2. P r o o f of T h e o r e m 0.12. 

As seen in the introduction, the following theorem of Grove-Searle 
will play a crucial role in the proof. 

T h e o r e m 2.1 ([22]). Let Mn be a compact manifold of Kun > 0. 
Suppose Mn admits an isometric Tk-action. Then k < | (resp. < lk^-) 
if n is even (resp. odd). Moreover, we have: 
(2.1.1) If k = 1 and the circle action has fixed point set codimension 
2, then Mn is diffeomorphic to Sn, Sn/Zq or CPm. 
(2.1.2) If k = I (resp. k = lk^-) when n is even (resp. n is odd), 
then Tk has a circle subgroup of fixed point set codimension 2. 

Let Mn be as in Theorem 0.12. Note that one can assume n is 
odd. Otherwise Theorem 0.12 will follow from Theorem 2.1 since the 
fundamental group is, if not trivial, Z2. 

First, by Corollary 1.5 the 7Ti-invariant isometric T r a c t i o n has a 
circle subgroup, S1, with fixed point set, Fo, of codimension 2. Let 
p : 7Ti(M") —> Aut{Tk) be the holonomy representation, and let p(7)|5i 
denote the restriction on S1. 

L e m m a 2.2. Let the assumptions be as in Theorem 0.12. Let H be 
the subgroup of7 such that p(^)\s^ = id. Then, Mn/H is diffeomorphic 
to a lens space, Sn/Zq. 
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Proof. Observe that the isometric S l l-action descends to Mn/H with 
fixed point set of codimension 2. Then, Lemma 2.2 follows from (2.1.1). 

q.e.d. 

Next, we will give two standard results on compact manifolds of 
positive curvature that will be used in an estimate for [ni(Mn),H]; cf. 
[27]. 

L e m m a 2.3 . Let Mn be a compact manifold with KM^ > 0. 
(2.3.1) If n is even and Mn is orientable, then any orientation pre­
serving isometry has a fixed point. In particular, Mn is simply connected 
(Synge). 
(2.3.2) If n is odd, then Mn is orientable and any orientation revers­
ing isometry has a fixed point. 

L e m m a 2.4. Let Mn be a manifold with KMU > 0, and let N\ 
and N2 be two closed totally geodesic submanifolds. If dim (N\)+ dim 
(N2) > n, then N\ and N2 have nonempty intersection. 

By definition, for 71,72 G 717 (M") , 717^ G H if and only if ^(-yi) |^i 

= P(72)|sfi-

L e m m a 2.5. Let the assumptions be as in Lemma 2.2. Then, 

7i72~ G H if and only i /p(7i)(S'1) = p(72)(S'1) (as subgroups). 

Proof. We only need to check that if p(j)(S1) = Sl (i.e., p(j)\s^ = 
±id), then p(^y)\s^ = id. We shall show that it p(^y)\si = —id, then 7 is 
an orientation reversing isometry of M n , a contraction to (2.3.2). 

We shall use two properties (see Lemma 1.1, [22]): 1) FQ is con­
nected (actually diffeomorphic to Sn~2). 2) The S^-action is free when 
restricting to Te(Fo) \ FQ, where Te(Fo) is the e-neighborhood of FQ. 

Since p('j)(S1) = S1, from (1.1) we have J(FQ) = FQ. We claim that 
FQ is orientable and when restricting to FQ, 7 is orientation preserving. 
First, FQ, being the fixed point set of an isometric S^-action, is a closed 
totally geodesic submanifold. Since the induced metric satisfies Kp, > 0 
and dim(FQ) is odd, by (2.3.2) _Fo is orientable. Since 7 is a free isometry 
on FQ, by the same reasons 7 preserves the orientation of FQ. 

For any x G FQ, consider the differential dj : Tx(Mn) ->• T 7 ( ä ) (M n ) 
of 7. To see that ^(7) = —id implies that d'y is orientation reversing, 
we take a coordinate as follows: identify Te(Fo) with the normal e-disk 
bundle of FQ, and let U denote the (product) normal e-disk bundle over 
V, where V C FQ is a small tubular neighborhood of a simple curve 
from x to 7(2;) (by 1) FQ is connected). The coordinates on U consists 
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of a polar coordinate in the normal disk, and a coordinate, (yi , . . , yn-2)-, 
on V. Let dr, 80, d\,..., 9„_2 be the oriented frame. Note that by 2) the 
induced S^-action on U can be viewed as the rotation on the disk and 
thus 80 is the invariant field. 

Since p(-y) = —id, from (1.1) it is clear that d'j(dr) = dr and 
0^(80) = —80. Since d-y preserves the oriented subspace spanned by 
di,..., dn-2, dy reverses the orientation of Mn. q.e.d. 

By Lemma 2.5, [m(Mn),H} = #{p(7)(S
1)\y G 7 n ( M n ) } . From 

(1.1) it follows that p('j)(S1) has fixed point set, j(Fo), of codimension 
2. 

L e m m a 2.6. Let the assumptions be as in Lemma 2.2. Then, 

[in(Mn),H] = #{p(l)(Sl) | 7 G 7Ti(M")} < k. 

Proof. Let S\,..., Sy denote all circle subgroups of Tk such that each 
Sj has a fixed point component, i^j, of dimension = n — 2. By Lemma 
2.5, [7Ti(M"),if] < r . It suÆces to prove that S\,...,S} generate a 
subtorus, T, of dimension r (< k). We verify this by induction on (odd) 
n starting with a trivial case n = 3. For a T2-action on 5"3, the orbit 
space is a closed interval and thus two circle orbits at endpoints are all 
nonprinciple orbits. The two 5'1-isotropy groups generate T2 and any 
other circle subgroup has empty fixed point set. 

We claim d i m ^ n Fi) = n - 4 (2 < i) and S} n S{ = 1. First, 
Fi n Fi ^ 0 since dim(.Fj) + dim(Fi) = n + (n - 4) > n + 1 (Lemma 2.4) 
and thus dim(_Fj n F\) > n — 4. Since the torus generated by S] and S\ 
acts effectively on the normal space of Fi n -Fj, dim(_Fj n F\) < n — 2. 
By now the first part of claim follows since F n -Pi is fixed by S]\F\ 
(the restriction of S1* on F\). If 5^ fi 51} = Z ? / 1, then Z g has a fixed 
point component containing F^VJ F\, a contradiction to Property 2) in 
the proof of Lemma 2.5. 

Consider (Fi ~ Sn-2,Tk/S\). The above implies that each S}\Fi 
acts (effectively) isometrically on F\ (a totally geodesic submanifold) 
with fixed point set codimension 2 (2 < i). If dim(T) < r, then »S^l-Fi, 
...,Sj.\Fi generate a subtorus of Tk\F\ of dimension < r — 1. Note 
that this contradicts to the inductive assumption if S\\Fi,..., S}.\F\ are 
pairwisely distinct. 

Note that S\\Fi ^ SJ\Ft follows if (i) Fi nFt ^ FJ^Fl (2<ijLj). 

If (i) is an equality, then Fi n Fj (~)Fi = FÌCÌFI is fixed by the torus, Ts, 
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generated by Sj, »S1 and S\ and since dim(_Fj n Fj n F\) = n — 4, s = 2. 
Fix a point a; G i^ fl Fj fl -Pi. The T2-action in a neighborhood of a; is 
equivalent (via the isotropy representation) to a linear T2-action on a 
normal small disk bundle of Fi n i^ fl i7! around a;. Since an orthogonal 
T2-action on the normal unit 4-ball (or unit 3-sphere) has only two circle 
subgroups of fixed point set of dimension = 2 (or dimension = 1 ) , the 
T2-action in a neighborhood of x has only two circle subgroups of fixed 
point set dimension = n — 2, a contradiction to our situation. q.e.d. 

Proof of Theorem 0.12. By Theorem 2.1, k < ^-- Then Theorem 
0.12 follows from Lemmas 2.2 and 2.6. q.e.d. 

3. P r o o f of T h e o r e m 0.3 

As seen in the introduction, the equivariant and parameterized fi-
bration theorem in [9] will play a crucial role in the proof of Theorem 
0.3. The following strong version in [34] is required for our purpose. 

T h e o r e m 3 .1 . For each e > 0, there is a constant, v(n,ö,e) > 0, 
such that if Mn G Mg has volume < v(n,ö,e), then Mn admits a 
iïi-invariant Tk-action without fixed points and an invariant metric ge 

satisfying 

e-fg < ft < efg, |V 9 - V9E | < e, | ( V * ) % J < c(n,i,e), 

0 < Ô - c{n)e < Ke < 1. 

Moreover, each orbit on Mn has diameter less than e. 

R e m a r k 3.2 . Note that if e < „ ! , , then the invariant metric has 

sectional curvature > 6/2. 

Proof of Theorem 0.3. We shall first show dim(X) > I ^ p by a 
contradiction argument. Assume a sequence of pairs, M™ and JQ, such 
that d,GH{M™,Xì) < i~l, which are counterexamples. By passing to a 
subsequence we can assume that M™ —> Y and JQ —>• Y ([20]). Note 
that Y is an Alexandrov space (of curvature > ö). Since all JQ have 
curvature > - 1 , dim(Y) < dim(Xi) < 2=± ( s e e p.32, [4]). 

According to the equivariant and parameterized fibration theorem in 
[9] (also [15], [16]), there is a map, pi : M™ —> Y and an 0(n)-invariant 
fibration map, pi : F{M™) —> Y such that the following diagram com-
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mutes, 

F(M?) — ^ Y 

f [f 

Mp —^ Y 

where F(Mjl) is the frame bundle equipped with a canonical metric via 
the Riemannian connection, and y is a Riemannian manifold such that 
Y/0(n) = Y. Note that in general, a fiber of pi is a nilpotent manifold. 
Since iri{F{M™)) is finite, the fiber is actually a torus (see Lemma 
1.4, [34]). This implies that pi actually coincides with the projection 
map to the orbit space of a collapsible 7ri-invariant Tfc-action (Theorem 
3.1), i.e., Y = M™ and Y = -F(Mf); see Section 1, c. According to 

^±i, and thus dim(Y) = n - k > n - **±i = 2=J Theorem 2.1, k < ^ , and thus d im(y) = n - k > n - **±ì = 2=1, a 

contradiction. 

We will now prove the second part of Theorem 0.3 by contradic­
tion. Assume there exists a sequence of pairs, M " and JQ, such that 
dGH{Mn,Xi) < i _ 1 , which are counterexamples. As in the above, we 
assume M™ —> Y and JQ —>Y. 

As in the above, dim(Y) < d impQ) . Since mniXj) > mo > 0, we 
can assume that X;b and Y have the same dimension. Then, by the 
stability theorem of Perel 'man ([30]) JQ is homeomorphic to Y when i 
is large. 

Case 1. Assume dim(Y) = n. This implies that vol(M") has a uni­
form positive lower bound. By Cheeger-Gromov's compactness theorem 
([7], [20]), we can assume that M " is diffeomorphic to Y for large i, a 
contradiction. 

Case 2. Assume dim(Y) < n. From the above we see that JQ is 
homeomorphic to M " for i large, a contradiction. q.e.d. 

R e m a r k 3.3. Using the equivariant and parameterized fibration 
theorem in [9], in a straightforward manner one can check that the above 
argument will yield an extension of the second part of Theorem 0.3 to 
the class of n-manifolds with \K\ < 1 and diam < d. 

Proof of Theorem 0.1. Since X has a nonempty boundary, by 
Theorem 0.3 one concludes that Mn has non-empty boundary (see p.54, 
[4]). Now Theorem 0.1 follows from Theorem 0.12. q.e.d. 

We will explain the comments in Remark 0.7. A glance of Example 
5.1 may help for a motivation. 



COLLAPSED MANIFOLDS 349 

Let Mn satisfy Theorem 3.1 with respect to e = 2(ira-,, and let 
v(n,ô) = v(n,ö,e) denote the corresponding small constant. In the 
rest of the discussion, we shall use Mn to denote the orbit space of this 
7Ti-invariant isometric torus action on Mn. 

Let F(Mn) denote the frame bundle equipped with a canonical met­
ric via the Riemannian connection. As seen in the above proof, F(Mn) 
admits a free isometric 7ri-invariant torus action which coincides with 
the nilpotent Killing structure. According to [9], the quotient metric 
on the orbit space, F(Mn), has injectivity radius bounded below by a 
constant depending only on n and ö. This property has the following 
consequence. 

L e m m a 3.4. m(n,S) = inf {i7iH{Mn); 

Mn e Mn
5ì vol{Mn) < v(n,S)} > 0. 

Let Mn be as in Theorem 0.1 for some X\. By Theorem 0.3, Mn 

admits a 7ri-invariant isometric T r a c t i o n such that the orbit space has 
nonempty boundary. Without loss of generality, we can assume that 
vol(M n) < v(n,ö). We claim that Mn also has nonempty boundary. A 
consequence is that ( M ™ , ^ ) will satisfy Theorem 0.1 for mo = TO|QQ ' 
and X2=Mn. 

First, without loss of generality, we can assume that the 7ri-invariant 
isometric T s-action on Mn as given in Theorem 0.3 is a sub-7ri-invariant 
isometric T r a c t i o n in the above. This is because sufficiently small mo 
implies that the (collapsing) scale used in the construction for the -K\-
invariant isometric T s-action is smaller than the fixed scale, e = 2 f •., 
cf. [9]. In view of Lemma 1.4, our claim then follows (if a subtorus 
has a circle subgroup with fixed point set of codimension 2, so does the 
torus.). 

4. P r o o f of T h e o r e m 0.4 

Let Mn be as in Theorem 0.4. We can assume, without loss of 
n + l 

generality, that Mn admits a collapsible 7ri-invariant T 2 -action, i.e., 
n + l 

a 7Ti-invariant isometric T 2 -action (Theorem 3.1). By (2.1.2), Lemma 
1.4 and Theorem 0.12, a covering space of Mn with order < ^ - is 
diffeomorphic to a lens space, Sn/Zq. Let g denote the pullback metric 
on Sn. 

Propos i t i on 4 .1 . Let the assumptions be as in Theorem 0.4- Then, 
vol{Sn,g) >c(n,S) > 0. 
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We will first prove Theorem 0.4 by assuming Proposition 4.1. 

Proof of Theorem 0.4- First, q = v°0[(Mn\ • By the standard volume 
comparison in Riemannian geometry ([8]), vol(Sn,g) < vol{S™). By 
Proposition 4.1, vol(Sn,g) > c(n,ö). q.e.d. 

One of the main ingredients in Proposition 4.1 is 

Theorem 4.2 ([5]). Let M 3 be a compact simply connected 3-
manifold of ö < KMs < 1. Then, vol (M3) > v (ö) > 0, where v(ö) is a 
constant depending on ö. 

Note that by [23], M 3 is diffeomorphic to a 3-sphere. 
We first observe a simple fact. 

Lemma 4.3. Let Mn be a compact simply connected manifold of 
KM^ > 0. Suppose that Mn admits an isometric T^~ -action (n odd 
and > h). Then, there is an invariant totally geodesic submanifold 
diffeomorphic to a 3-sphere. 

Proof. By (2.1.2) and (2.1.3), Mn is diffeomorphic to Sn, and there 
is a circle subgroup, S1, with fixed point set, F, of codimension 2. Note 
that F is T 2 -invariant. From the proof of Theorem 2.1 in [22] one 
also sees that F is connected and diffeomorphic to Sn~2. Note that F 
is totally geodesic, and T - ^ - ~ T^~ /Sl acts on F by isometries. By 
an obvious inductive argument, one then completes the proof. q.e.d. 

Proof of Proposition 4-1- We argue by contradiction. Assume that 
vol(Sn,g) can be arbitrarily small. By Theorem 3.1, we can assume 
that Sn admits a collapsible Ts-action. 

We first suppose that the Ts-action is a subtorus action of the Tr­
action on Sn. Let S3 denote a Tfc-invariant totally geodesic 3-sphere as 
in Lemma 4.3. Using Theorem 4.2, we shall derive a contradiction by 
showing that the volume of S13 can be arbitrarily small. By Theorem 3.1, 
the diameters of the orbits of any collapsible 7ri-invariant torus action 
are uniformly small. Thus, it suffices to show that <S3 is preserved by 
the Ts-action. This follows from 5"3 is T 2 -invariant (Lemma 4.3) and 

n + l 

Ts is a subtorus-action of the T -^-act ion. 
We now explain why the additional assumption can be satisfied. 

Recall that the equivariant and parameterized fibration theorem in [9] 
asserts that if a manifold M of \K\ < 1 and diam< d has volume 
< e(n,d), then M admits a pure nilpotent Killing structure whose orbit 
at each point contains all short geodesic loops; cf. [9]. 
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As already seen in the proof of Theorem 0.3, in the case that -KI(M) is 
finite, the nilpotent Killing structure is equivalent to a 7Ti-invariant Tr­
action. Therefore, an orbit of any collapsible 7ri-invariant torus action 
contains all short geodesic loops at a point. 

Let 7 be any short geodesic loop at x G Sn. Then, the projection 
of 7 on Mn is also a geodesic loop with length < the length of 7. This 
means that the projection of each T s-orbit on Mn is contained in a 
Tfc-orbit, and therefore the T s-action can be realized (possibly by small 
deformation, see [9]) as a subtorus-action of the Tfc-action. Finally, any 
Tfc-invariant metric is also Ts-invariant. q.e.d. 

5. P r o o f of T h e o r e m 0.6 

First, we will prove Theorem 0.6. Then, we will use Theorem 0.6 
to construct an example concerning Theorem 0.1 (see the introduction, 
the discussion following Theorem 0.1) 

Recall that , for a compact G-manifold (G a compact Lie group), 
there are only finitely many conjugacy classes of isotropy groups ([3]). 
In particular, if G = T , then there are only finitely many isotropy 
groups. 

Suppose, in addition, that the fixed point set of Tk is empty. Then, 
it follows from the fmiteness of isotropy groups that there is a circle 
subgroup without any fixed point. To find one such circle subgroup, 
let H denote any dense one-parameter subgroup of Tk (i.e., H = Tk) 
and take a circle subgroup approximating to H. Precisely, given an 
invariant metric on Tk, one can assume that the angle between V and 
W is sufficiently small, where V and W are invariant vectors tangent to 
H and Sl respectively. 

Since H is dense in Tfe, and since the fixed point set of Tk is empty, 
V is transversal to any subspace tangent to an isotropy group. Since 
there are only finitely many such subspaces, it is clear that one can 
choose W with the same property. Consequently, the circle subgroup 
has no fixed point. 

Proof of Theorem 0.6. First, fix a dense one-parameter sub­
group H of Tk. Then, take a sequence of circle subgroups, Sj, of Tk 

which approximates H, so that dcH{Tk/Sj,pt) —> 0. Consequently, 
dGH(M/SlM/Tk)^0. 

Since Tk has no fixed points, by the above discussion we can assume 
that Sj has an empty set of fixed points. For each i, since Sl has 
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only finitely many (finite) isotropy groups, we can assume there is a 
subgroup, Zqi, of Sj that acts freely on M. Moreover, we can choose 
q-l sufficiently large so that <ÌGiy(M/5'1 ,M/Zg i) can be arbitrarily small. 
Finally, 

dGH(M/Zqi,M/Tk
iM)<2[dGH(M/Sl,M/Tk) 

+ dGH(M/Zqi,M/Sl)}^0. 

q.e.d. 

E x a m p l e 5 .1 . We will construct a lens space, Mn = Sn/Zq, of 
constant curvature one, and two Alexandrov spaces, Xi,X2, of cur > 1 
and nonempty boundaries, and dim(X2) > dim(Xi). Moreover, Mn 

can be chosen so that dGH(Mn,Xi) and dGH(Mn,X2) can be made 
arbitrarily small. In particular, both (Mn,Xi) and (Mn,X2) satisfy 
Theorem 0.1. 

Given two torus subgroups, Ts C Tk (s < k), of 0(n + 1) (n odd). 
Suppose that the T s-action on Sn has empty fixed point set and the 
quotient space, Sn/Ts, has nonempty boundary. Put X\ = Sn/Tk. 

Note that the Tfc-action also has empty fixed point set. Applying 
Theorem 0.6 to (Sn,Tk), one obtains a sequence of cyclic subgroup, 
{Ti}, oîTk acting freely on Sn such that dGH{Sn/Vu Xt) ->• 0 a s i —> oo, 
where X\ = Sn/Tk, equipped with the limit metric, is an Alexandrov 
space of cur(Xi) > 1 (see [4]) and has nonempty boundary. Put mi = 
mniXi) and choose io sufficiently large so that 

dGH(Sn/Tt0,X1)<e(n,l,m1) 

as in Theorem 0.1. Put M f = Sn/Tio. 
Note that the torus, Ts/Ti0, acts isometrically on M " with empty 

fixed point set. Again by Theorem 0.6, there is a sequence of cyclic 
subgroups, { r ' } , of Ts/Ti0 acting freely on M f such that 

dGH(M^/r'J,x2)^o 

as j —> oo, where X2 = M™/Ts, equipped with the limit metric, is an 
Alexandrov space with cur(X2) > 1 and has nonempty boundary. 

Pu t mi = m^Xi). Fix a jo sufficiently large so that 

dGH(M?/T'JO,X2)<e(n,l,m2) 

as in Theorem 0.1. Put Mn = M " / r , where T denotes the subgroup 
generated by Tj0 and V- . 
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We claim the following properties: 
(i) r is a cyclic. 

(ii) dGH(Mn,X1) < dcjHiM^X,) < e ( n , l , m i ) . 
Property (i) is a consequence of the following lemma. 

L e m m a 5.2. Let M be a compact manifold with positive sectional 
curvature. Suppose that M admits an isometric Tk-action. If a subgroup 
acts freely on M, then it is either a circle or a finite cyclic group. 

Proof. If M is even-dimensional, then Z2 is the only group which 
could freely and isometrically act on M. Thus, we can assume M is 
odd-dimensional. 

Suppose that there is a subgroup of Tk acting freely on M. First, 
the subgroup also freely acts on each Tfe-orbit. According to Theorem 
4.1 in [34], the T r a c t i o n always has a circle orbit. By now the desired 
result follows. q.e.d. 

Property (ii) can be seen as follows. First, from the construction 
it is clear that dGn(M™, X\) (resp. dGH(Mn,Xi)) can be realized by 
the largest diameter of Tfc-orbits (resp. of T s-orbits) . Note that the 
quotient of any Tfc-orbit by T'- is a union of T s-orbits. 

6. E x a m p l e s 

In this section, we will construct examples mentioned in the intro­
duction. 

E x a m p l e 6 .1 . We shall construct two collapsing sequences. These 
will show that Theorem 0.1 will be false if either of the normalized 
condition, cur > —1 or the dependence of e(n, Æ, mo) on mo is removed 
with imposing further restriction; see Remark 0.9. 

For 0 < Æ < -jy, take a sequence, {Mj}, in [1] of simply connected 
and Æ < KM7 < 1 such that dGH(Mj, SU(3)/T2) -+ 0 as i ->• 00 ([33]); 
compare [2]. Note that none of Mj is homeomorphic to S7. 

Given any {e,} —> 0, let JQ denote SU(3)/T2 with an open ball of 
small radius (say Cj/10) deleted such that dGH(SU(3)/T2,X,i) < Cj/4. 
One can slightly modify the metric near the boundary so that cur(X,{) > 
—Aj in the Alexandrov sense for some number Aj > 0. For i sufficiently 
large, 

dGH(Mj,Xi) < 2[dGH(MjiSU(3)lT2) + dGH(SU(3)lT2,Xi)} < €i. 

Clearly, (Mj^Xj) satisfies Theorem 0.1 except Aj —> 00 as i —> 00. 
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For all i, put Y{ = (577(3)/T2) x £>2(i), where D2(r) denotes a ball 
of radius r in a plane. Then, CIGH(MJ, YJ) —> 0 as i —> oo. Clearly, 
(Mj,Yi) satisfies Theorem 0.1 except mniXi) —> 0 as i —> oo. 

Example 6.2. We will construct spherical space form, 5"n/r (odd 
n > 3), such that the action by the maximal torus, T 2 , of 0 (n + 1) 
on Sn is T-invariant and there is no circle subgroup of fixed point set 
codimension 2 which descends to Sn/T. 

Let r denote the subgroup generated by 7, 

0 
0 

0 
-I 

I 
0 

0 
0 

0 
I 

0 
0 

GO(n + l) 

Since 7 is a permutation on the complex coordinates, 

Sn {(zi,...,Zn±l) N 2 + 

1 0 
0 1 

+ Zn+l 
2 

1}, 

r acts freely on Sn. Let p : T —> Aut(T 2 )5 which maps 7 to the 

conjugation by 7. Then, the T 2 -action on Sn is T-invariant. Since no 
n-\-l n-\-l 

circle subgroup of T 2 commutes with 7, no circle subgroup of T 2 
can descend to the circle action on Sn/T. 

Note that if one can find a finite cyclic subgroup, T', of T 2 such 
that r and r" generate a finite subgroup acting freely on Sn, then one 
obtains examples of non-lens spaces in Theorem 0.12, as is done in the 
next example. 

Example 6.3. We will construct spherical space forms in Theorem 
0.4 which are not lens space. For simplicity, we will present the construc­
tion only in dimensions 3,5. Note that these examples will also confirm 
that the order estimate in Theorems 0.1, 0.4 cannot be improved. 

1) For each prime number p, choose 71,72 G 0(4), 

7 i 
R( 2p+l 

p(pH 

0 
1) ' 

R( 

0 
1 N ,72 

0 / 
- / 0 

R(9) 
cos 2n0 sin 2n0 

— sin27TÖ COS2-7TÖ 
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From [38, p.224], one sees that the finite group, Fp, generated by 71,72, 
acts freely on S3. Since Fp converges to a maximal torus of 0(4) as 
p —> 00, S3/Fp converges to S3 /T2 which is a closed interval. 

Clearly, S3/Fp is not a lens space since Fp is not cyclic. However, 
S3/(T2 n Fp) is a lens space which is a double covering of S3/Fp. 

2) For each prime number p > 9, choose 71,72 G 0(6), 

7 i 0 

0 

R( 
0 

>3 I 

R{ 

0 

0 
(P-2) 2 

72 

0 / 0 " 
0 0 1 

- 1 0 0 

From [38, p.224], one verifies that the group, Fp, generated by 71,72 
acts freely on S5. Since Fp converges to a maximal torus, T3, of 0(6) 
as p —> 00, S5/Fp converges to <S5/T3 which is a closed disk. 

Similar as in 1), Sò/Fp is not a lens space and <S5/(T3 n Fp) is a 
lens space which is a triple covering space of S5/Fp. Note that S5/Fp 

cannot have a double covering lens space since Fp has no normal cyclic 
subgroup of index 2. 

Example 6.4. Let Mn be a compact manifold of positive sectional 
curvature. Suppose that Mn admits an isometric Tk- action. We shall 
construct a sequence of invariant metrics ge, on Mn of positive sectional 
curvature, such that 

\imdGH((Mn 

<E->0 
9e (Mn/Tk)) = 0, 

where Mn/Tk is equipped with the quotient metric. Moreover, from 
the construction for qf. one will see that lini min K„ = 0. 

. e^° . 
Let QMn denote the metric on Mn. Take any invariant metric g 

on Tk and put ge = e2g, 0 < e < 1. Let Mn x Tk be equipped with 
the product metric, gun <8> g£. Consider the diagonal action of Tk on 
Mn x Tk. First, the orbit space of Mn x Tk by Tk is diffeomorphic 
to Mn. Since for all e, the diagonal action is free and isometric, the 
quotient metric, g€, of gun ® 9e is well-defined, and the projection, 
Mn x Tk -)• (Mn x Tk)/Tk ~ Mn is a Riemann submersion. Since 
K9Mn®ge > °> by O'Neill's formula, we get K9e > 0. Since K9Mn > 0, 
and since a two-plane tangent to M n x Tk has curvature zero if and 
only if the plane contains a factor, we conclude that K9e > 0. 

To see that minify —> 0 as e —> 0, we examine a neighborhood of a 
principal orbit. In this case, one can think of the sequence as formed by 
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rescaling the metric along orbits by e while the metric on the orthogonal 

direction remains unchanged. Thus, locally, the metric looks more and 

more like a product and therefore, min Kge —> 0 as e —> 0. 

Note that in the above, if the Tfc-action has non-empty fixed point 

set, then maxif9 e is not bounded above. This may suggests that our 

construction of collapsing sequences is not the same as that constructed 

using a pure polarization by [10] for which maxifS e is bounded above. 

The later is essentially the same as the well-known Berger's sphere. 

A d d e n d u m . The recent progress in [31] and [14] (independently 

in [32]) shows that a <5-pinched simply connected n-manifold of finite 

second homotopy group has injectivity radius > i(n,ö) > 0; compare 

Remark 0.8. 
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