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ON THE GENUS OF TRIPLY PERIODIC MINIMAL

SURFACES

Martin Traizet

Abstract

We prove the existence of embedded minimal surfaces of ar-
bitrary genus g ≥ 3 in any flat 3-torus. In fact, we construct a
sequence of such surfaces converging to a planar foliation of the
3-torus. In particular, the area of the surface can be chosen arbi-
trarily large.

1. Introduction

Triply periodic minimal surfaces in euclidean space are invariant by
three independant translations. In the nineteenth century, five embed-
ded triply periodic minimal surfaces were known to H.A. Schwarz and
his school. In 1970, Alan Schoen described 12 further families of exam-
ples. The arguments were completed by H. Karcher, who also proved
the existence of many further examples.

IfM is a triply periodic minimal surface and Λ is the lattice generated
by its three periods, then M projects to a minimal surface in the flat
3-torus R3/Λ. Conversely, a (non-flat) minimal surface in R3/Λ lifts to
a triply periodic minimal surface in R3.

A natural question is whether there exist non-flat minimal surfaces
in any flat 3-torus. The examples constructed by H.A. Schwarz, A.
Schoen and H. Karcher are very symmetric by construction, so they
only construct examples in very particular 3-tori. In 1990, W. Meeks
made the following conjecture ([6], Conjecture 3.2):

Conjecture 1 (Meeks). For any flat 3-torus R3/Λ and any integer
g ≥ 3 there exist an embedded, orientable minimal surface of genus g
in R3/Λ.

A related question asked by H. Karcher is the following ([4], question
4):

Can triply periodic embedded minimal surfaces of arbitrary large genus
exist in a nontrivial way – or does the genus stay bounded if one divides
out by all translational symmetries?
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In this paper we prove that the conjecture is true and answer this
question:

Theorem 1. For any flat 3-torus R3/Λ, and for any integer g ≥
3, there exists a sequence of orientable, compact, embedded minimal
surfaces (Mn)n∈N in R3/Λ which have genus g. The area of Mn goes
to infinity when n → ∞. Moreover, if g ≥ 4, the only translation of
R3/Λ which leaves Mn invariant is the identity (so Mn lifts to a triply
periodic minimal surface in R3, whose lattice of periods is precisely Λ).

Here is what is known about this conjecture. It is known that a
minimal surface of genus one in a flat 3-torus must be flat (a plane) and
minimal surfaces of genus two in flat 3-tori do not exist ([6], Corollary
3.1). W. Meeks has proved ([6], Corollary 10.1) that the conjecture is
true in the genus 3 case by using a min-max argument. Then, by taking
covers, he concluded that the conjecture holds for arbitrary odd genus
g ≥ 3. In other words, if Λ′ is a sub-lattice of Λ, a genus 3 minimal
surface in R3/Λ lifts to an odd genus minimal surface in R3/Λ′. The
case of even genus remained open. Also, these examples do not answer
the question of H. Karcher.

Let us now explain the idea of the construction, which was suggested
to the author by Antonio Ros. Consider a plane in space and its projec-
tion in the flat 3-torus R3/Λ. Depending on the plane, the area of the
projection may be finite or infinite. Choose the plane so that the area
is very large. In the quotient, the plane will wrap around many times,
and what we see locally is many parallel sheets very close to each other.
Take another plane parallel to the first one. Our main result, Theo-
rem 4, allows us to open small catenoidal necks between the two planes
(on both sides), producing an embedded minimal surface in R3/Λ (see
Figure 1). Its genus is equal to the number of necks plus one.

Figure 1. A minimal surface of genus 4 in the cubic 3-
torus. One of the two planes is represented with dots for
clarity.

It turns out that the placement of the necks is not arbitrary: they
must satisfy a balancing condition which we will explain. One of our
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tasks in this paper is to give examples of balanced configurations of
necks with an arbitrary number of points.

The proof of the main theorem is in the spirit of recent gluing con-
structions [8], [9]. We use the Weierstrass Representation of minimal
surfaces in its simplest form: consider a Riemann surface Σ and three
holomorphic 1-forms φ1, φ2, φ3 on Σ. Then

X(z) = Re

∫ z

z0

(φ1, φ2, φ3) mod Λ

defines a conformal minimal immersion X : Σ → R3/Λ provided the
following conditions are satisfied:

∀γ ∈ H1(Σ), Re

∫

γ

(φ1, φ2, φ3) ∈ Λ

φ2
1 + φ2

2 + φ2
3 = 0

|φ1|
2 + |φ2|

2 + |φ3|
2 > 0.

The first equation says that X is well defined and the second that it is
conformal, hence minimal since it is harmonic. The third one says that
X is a regular immersion.

We define Σ by opening the nodes of a (singular) Riemann surface
with nodes. We define φ1, φ2, φ3 by prescribing their periods. We solve
the above equations using the implicit function theorem.

The main difference with previous constructions is that in [8] we used
the Weierstrass representation in its classical form

X(z) = Re

∫ z

z0

(
1

2
(g−1 − g)dh,

i

2
(g−1 + g)dh, dh

)
,

where dh is a holomorphic 1-form and g is a meromorphic function on
Σ (the Gauss map). Now on a high genus Riemann surface it is more
natural to define holomorphic 1-forms (by prescribing periods) than
meromorphic functions (where we have to face Abel’s theorem). In fact,
in [8] the Riemann surface Σ and the Gauss map g were defined at the
same time, but that made the construction a little bit artificial. Also,
the construction had some technical complications in the case where the
Gauss map had multiple zeros or poles. It seems more natural to use
φ1, φ2 and φ3 and avoid meromorphic functions completely.

The paper is organized as follows. In Section 2 we explain the bal-
ancing condition and state our main theorem. In Section 3 we prove
the conjecture of Meeks. In Section 4 we give examples of balanced
configurations. In particular we prove the existence of triply periodic
minimal surfaces with no symmetries beside translations. In Section 5
we prove our main theorem.
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2. Main result

2.1. Simply periodic surfaces. Our main theorem in this paper is
an adaptation, to the triply periodic case, of a construction of simply
periodic minimal surfaces with ends asymptotic to horizontal planes [8].
This construction may be described as follows.

Consider an infinite number of copies of the plane R2, labeled Pk,
k ∈ Z. In each plane Pk, choose a finite number nk of points pk,i,
1 ≤ i ≤ nk. Identify, for each (k, i), the point pk,i in Pk with the same
point in Pk+1. This creates an abstract singular 2-manifold with double
points (or nodes) which we call M0. Consider the map X0 : M0 → R3

which sends each point (x, y) ∈ Pk to the point (x, y, 0). We may think
of X0 as a minimal, isometric immersion of the singular 2-manifold
M0 into R3. We want to desingularise this singular minimal surface,
namely: perturbM0 into a regular 2-manifoldMε andX0 into a minimal
immersion Xε : Mε → R3. Intuitively, we do this by slightly pushing
the planes away from each other and replacing each double point by a
small catenoid.

We assume the following periodicity: there exists an even integer
N ≥ 2 and a vector T ∈ R2 such that for all (k, i), pk+N,i = pk,i + T .
We construct a family of minimal surfaces Mε which are periodic with
period (T, ε), and have N ends asymptotic to horizontal planes in the
quotient. (Here N must be even so that the quotient is orientable.) We
call the collection {pk,i} a simply periodic configuration. We call pk,i a
point at level k of the configuration. Note however that all points pk,i

are in R2. It will be convenient to identify R2 with C and see each point
pk,i as a complex number.

For the construction to work, the configuration must satisfy a bal-
ancing condition which we now explain. Let ck = 1/nk. Let ω̃k be
the unique meromorphic 1-form on C ∪ {∞} with nk−1 simple poles at
pk−1,i with residue ck−1 and nk simple poles at pk,i with residue −ck.
(We assume that for each k, the points pk,i, pk−1,j are distinct). Let

F̃k,i =
1

2
Respk,i

(
(ω̃k)

2

dz
+

(ω̃k+1)
2

dz

)
.
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Explicitly,

ω̃k =

nk−1∑

i=1

ck−1

z − pk−1,i
dz −

nk∑

i=1

ck
z − pk,i

dz,

which gives after a straightforward computation

F̃k,i = 2

nk∑

j=1

j 6=i

(ck)
2

pk,i − pk,j
−

nk+1∑

j=1

ckck+1

pk,i − pk+1,j
−

nk−1∑

j=1

ckck−1

pk,i − pk−1,j
.

The analogy with 2-dimensional electrostatic forces suggests that we

call F̃k,i a force. Each point pk,i interacts with the points pk,j at the
same level and with points pk±1,j at the levels below and above it.

Definition 1. A simply periodic configuration is balanced if all forces

F̃k,i are zero. It is non-degenerate if the differential of the map p → F̃

has real co-rank 2, where p and F̃ stand for the collection of pk,i and

F̃k,i for 1 ≤ k ≤ N and 1 ≤ i ≤ nk.

The forces are clearly invariant by translation of all points, so vectors
of the form (v, v, . . . , v), where v ∈ R2, are in the kernel of the differen-
tial. The non-degeneracy condition asks that these are the only ones.
The following theorem is proven in [8]:

Theorem 2. Given a balanced, non-degenerate, simply periodic con-
figuration, there exists a smooth family of embedded simply periodic min-
imal surfaces Mε, for ε > 0 small enough, which have period (T, ε). The
quotient has genus n− 1, where n = n1 + · · · + nN is the total number
of necks, and has N horizontal planar ends. Moreover, Mε converges to
the singular minimal surface M0 when ε→ 0.

•

⋆ ⋆⋆ ⋆

◦

Figure 2. A simply periodic configuration with N = 2,
n1 = 4 and n2 = 1. Points at level 0, 1 and 2 are
represented respectively by a black dot, a star, and a
white dot. The configuration extends periodically.

The last statement of the theorem should be understood as follows:
if we see Mε as an abstract 2-manifold isometrically embedded in R3

by the canonical injection Xε : Mε → R3, then the abstract manifold
Mε converges to M0 and Xε converges to X0 on compact subsets of M0

minus the double points.
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Figure 3. An element in the corresponding family of
minimal surfaces. Computer image made by the author
using J. Hoffman MESH software.

Remark 1. In the sense of laminations, Mε converges to the lam-
ination of R3 by horizontal planes, with singular set {(pk,i, 0)}. Note
however that this limit object does not contain enough information to
reconstruct Mε. This is why we prefer to see the limit object M0 as a
minimal immersion of a singular 2-manifold.

Section 2.1 of [8] provides us with an explicit family of balanced
configurations, depending on an integer parameter m ≥ 1.

Theorem 3. The following simply periodic configuration is balanced

and non-degenerate: N = 2, n1 = m, n2 = 1, p1,j = cotan

(
jπ

m+ 1

)
,

p2,1 = i and T = 2i (so p0,1 = −i ).

For example, in the case m = 1, we have pk,1 = (k − 1)i . The
associated minimal surfaces Mε are the Riemann examples.

The case m = 4 is represented on Figure 2. In the particular case
of the configuration given by Theorem 3, the corresponding minimal
surfaces are hyper-elliptic, so it is not too hard to write explicitly their
Weierstrass representation and produce computer images, see Figure 3.

2.2. Triply periodic surfaces. A natural and interesting question is
whether we can carry a similar construction when there is an infinite
number of points at each level, namely nk = ∞ for all k. It is not clear
in general what the balancing condition should be, because if there is
an infinite number of points, each force might be a diverging series.

In this paper we answer this question in the case where the points
at each level are arranged in a doubly periodic way, namely they are
invariant by two independant translations with vectors T1 and T2. We
assume that modulo T1 and T2, there is a finite number nk of points at
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level k and we call them pk,i, 1 ≤ i ≤ nk. We see each point pk,i as
an element of the torus T = R2/Γ, where Γ is the 2-dimensional lattice
generated by T1 and T2. We assume the following periodicity: there
exists again an even integer N ≥ 2 and a vector T3 ∈ R2 (which replaces
the vector T in the simply periodic case) so that pk+N,i = pk,i + T3.
We call the collection {pk,i} a triply periodic configuration. We want
to construct a family of triply periodic minimal surfaces with periods
(T1, 0), (T2, 0) and (T3, ε).

Forces are defined as in the simply periodic case. Again let ck =
1/nk. Consider T as the genus one compact Riemann surface C/Γ. Let
ωk be the meromorphic 1-form on T with nk−1 simple poles at pk−1,i

with residue ck−1, nk simple poles at pk,i with residue −ck, and pure
imaginary periods. In other words,

Re

∫ T1

0
ωk = Re

∫ T2

0
ωk = 0.

The meromorphic 1-form ωk exists because the sum of the residues is
zero, and the period condition makes it unique. Define forces as in the
simply periodic case by

Fk,i =
1

2
Respk,i

(
(ωk)

2

dz
+

(ωk+1)
2

dz

)
.

The main difference with the simply periodic case is that forces cannot
be computed as explicitly. They may be written in various ways in term
of elliptic functions. We will do this in Section 4.

Definition 2. A triply periodic configuration is balanced if all forces
Fk,i are zero. It is non-degenerate if the differential of the map p → F

has real co-rank 2, where p and F are as in Definition 1.

The main result of the paper is the following:

Theorem 4. Given a balanced, non-degenerate triply periodic config-
uration, there exists a smooth family of embedded triply periodic minimal
surfaces Mε, for ε > 0 small enough, which have period (T1, 0), (T2, 0)
and (T3, ε). The quotient has genus n+ 1, where n = n1 + · · ·+nN . Its
area is close to N times the area of T. Moreover, Mε converges to M0

when ε → 0, where M0 is a singular minimal surface defined as in the
beginning of section 2.1.

In fact, we construct a family of surfaces depending smoothly on ε,
T1, T2 and T3 (in a neighborhood of the given values). This gives

Corollary 1. Under the same hypothesis, there exists η > 0 such
that the following is true: if V1, V2 and V3 are three independant vectors
in space such that |Vi − (Ti, 0)| < η for i = 1, 2, 3, then there exists a
triply periodic minimal surface with periods V1, V2, V3, which satisfies
the same conclusion as the theorem.
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Hence up to isometries, we construct a 6-dimensional family of sur-
faces. This is also the dimension of the space of flat 3-tori.

Proof. Simply consider the rotation with the smallest angle which
sends V1 and V2 to the horizontal plane. q.e.d.

3. Proof of the conjecture of Meeks

In Section 4 we will prove

Theorem 5. For any g ≥ 3, there exists T1, T2, T3, and a triply
periodic, balanced, non-degenerate configuration with periods T1, T2, T3

which has g − 1 points, so the associated minimal surfaces have genus
g.

By Corollary 1, if V1, V2 and V3 are three independant vectors in
space close to the horizontal vectors (T1, 0), (T2, 0), (T3, 0), there exists
an embedded minimal surfaces of genus g with periods V1, V2, V3. It
turns out that this already gives minimal surfaces of genus g in arbitrary
flat 3-tori, up to scale ! To understand why, let us first consider an
example.

Assume that T1 = (1, 0), T2 = (0, 1) and T3 = (0, 0). How can we
recover minimal surfaces of genus g in the cubic torus, namely with
periods V1 = (1, 0, 0), V2 = (0, 1, 0), V3 = (0, 0, 1)?

Consider the following sequence of matrices

An =



n 0 1
1 n 0
0 1 0


 .

Since this matrix has determinant 1, its columns form a basis of the
cubic lattice. On the other hand, when n→ ∞, n−1An converges to the
matrix with columns (T1, 0), (T2, 0) and (T3, 0). By Corollary 1, for n
large enough, there exists a minimal surface of genus g and periods the
columns of n−1An. Scaling by n gives a sequence of minimal surfaces
Mn in the cubic torus.

In the general case, we need a result which we will prove in the
next section. Let SL(3,Z) be the group of 3 × 3 matrices with integer
coefficients and determinant one.

Proposition 1. Consider a matrix M ∈ M3(R) such that det(M) =
0. Then there exists a sequence of matrices An ∈ SL(3,Z) and a se-
quence of reals λn such that λnAn →M (so λn → 0).

Using this proposition, we prove Theorem 1. Let Λ be an arbitrary
lattice in R3. Let V1, V2, V3 be a basis of Λ. We write [V1 V2 V3] for
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the matrix whose columns are V1, V2, V3. Recall that SL(3,Z) acts on
bases of Λ as follows: if A ∈ SL(3,Z), define V ′

1 , V
′
2 , V

′
3 by

[V ′
1 V

′
2 V

′
3 ] = [V1 V2 V3]A.

In other words, V ′
j =

∑
i aijVi. Then V ′

1 , V
′
2 , V

′
3 is again a basis of Λ.

Indeed, because A has integer coefficients, the lattice generated by V ′
1 ,

V ′
2 and V ′

3 is included in Λ. The converse is true because A is invertible.
Let M ∈ M3(R) be the rank 2 matrix defined by

[
T1 T2 T3

0 0 0

]
= [V1 V2 V3]M.

By Proposition 1 there exists a sequence An ∈ SL(3,Z) and λn ∈ R

such that λn → 0 and λnAn →M . Define V n
1 , V

n
2 , V

n
3 by

[V n
1 , V

n
2 , V

n
3 ] = λn[V1, V2, V3]An.

Then V n
1 , V

n
2 , V

n
3 is a basis of the lattice λnΛ and V n

i → (Ti, 0) when
n → ∞, for i = 1, 2, 3. By Corollary 1, for n large enough, there exists
an embedded triply periodic minimal surface of genus g with periods
V n

1 , V
n
2 , V

n
3 . Scaling by 1/λn, we have a sequence of embedded minimal

surfaces of genus g in R3/Λ whose area goes to ∞. This proves Theorem
1. q.e.d.

3.1. On singular matrices. We state a general result which we only
use in the case of dimension d = 3. We use the following notations. Let
Md(A) be the set of d×d matrices with coefficients in A, where A is Z,
Q or R. Let Nd(A) be the set of matrices in Md(A) whose determinant
is zero. Let Ad be the set of matrices M ∈ Md(R) such that there exists
a sequence of matrices An ∈ SL(d,Z) and a sequence of reals λn such
that λn → 0 and λnAn →M .

Proposition 2.

Ad = Nd(R).

Proof. The inclusion ⊂ is clear. For the reverse inclusion, first observe
the following facts.

(i) If M ∈ Ad and P ∈ SL(d,Z) then PM ∈ Ad and MP ∈ Ad.
(ii) If M ∈ Ad and λ ∈ R then λM ∈ Ad.
(iii) Ad is closed.
(iv) Nd(Q) is dense in Nd(R).

By points (iii) and (iv), it suffices to prove that Nd(Q) ⊂ Ad. By point
(ii) it suffices to prove that Nd(Z) ⊂ Ad.

Let M ∈ Md(Z). By standard theory of matrices with integer coef-
ficients, M may be put into reduced form, namely

M = P



a1

0
. . . 0

ad


Q
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where P,Q ∈ SL(d,Z) and a1, . . . , ad ∈ Z. Moreover, if r is the rank of
M , then ai = 0 for i > r. Now assume that detM = 0 so ad = 0. By
point (i) we only need to prove that the above diagonal matrix is in Ad.
When d = 3, which is the case we are interested in, simply write



a1 0 0
0 a2 0
0 0 0


 = lim

n→∞

1

n



a1n 1 0
0 a2n 1
1 0 0


 .

The matrix on the right has determinant 1. In the general case, write




a1

. . . 0
0 ad−1

0


 = lim

n→∞

1

n




a1n 1 0

0
. . .

. . .
. . . ad−1n 1

(−1)d+1 0 0



.

q.e.d.

4. Examples

4.1. Preliminary observations. First observe that

Fk,i =
1

2
Respk,i

N∑

ℓ=1

(ωℓ)
2

dz

because ωℓ has no pole at pk,i if ℓ 6= k, k + 1. Hence by the residue
theorem, the forces sum up to zero:

N∑

k=1

nk∑

i=1

Fk,i = 0.

Also, we have

Fk,i =
1

4
Respk,i

(ωk − ωk+1)
2

dz
.

To see this, observe that

(ωk + ωk+1)
2 + (ωk − ωk+1)

2 = 2((ωk)
2 + (ωk+1)

2)

and ωk + ωk+1 has no pole at pk,i as the residues cancel.

4.2. Simplest configurations.

Proposition 3. Take N = 2, n1 = n2 = 1. Consider a 2-dimensional
lattice Γ = ZT1 + ZT2 and let T = C/Γ. Consider some a ∈ T such
that 0, a and −a are distinct points in T. The following triply periodic
configuration is balanced: p1,1 = 0, p2,1 = a, T3 = 2a (so p0,1 = −a).
The corresponding minimal surfaces have genus 3.
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We will study non-degeneracy of this configuration in section 4.3.3.
Observe that if we replace a by a+T/2 where T ∈ {T1, T2, T1 +T2}, we
get three other balanced configurations which have the same period T3

modulo Γ.

Proof. The configuration is balanced by symmetry. Indeed, the mero-
morphic 1-form ω1 −ω2 has three simple poles at 0, ±a, with respective
residues −2 and 1. Let σ(z) = −z. Then σ∗(ω1 − ω2) has the same
poles as ω1−ω2 with the same residues, so their difference is a holomor-
phic 1-form on C/Γ with imaginary periods, so they are equal. In other
words, the function (ω1 − ω2)/dz is an odd function. Hence its square
is an even function, so it has no residue at zero, and so F1,1 = 0. Since
the forces sum up to zero, F2,1 = 0, so the configuration is balanced.

q.e.d.

4.3. Balanced configurations using Weierstrass ζ function. In
this section we compute explicitly the forces in term of Weierstrass ζ
function. This has several applications: first it may be used to compute
the forces numerically and find numerical examples of balanced configu-
rations. It will also give us an electrostatic interpretation of the forces.
Finally, we use it to prove the existence of balanced, non-degenerate
triply periodic configurations, as perturbations of simply periodic con-
figurations.

4.3.1. Forces in term of Weierstrass ζ function. Given a lattice
Γ = ZT1 + ZT2 in the complex plane, the Weierstrass ζ and ℘ functions
are defined by

ζ(z) =
1

z
+
∑

w∈Γ

w 6=0

(
1

z − w
+

1

w
+

z

w2

)
,

℘(z) =
1

z2
+
∑

w∈Γ

w 6=0

(
1

(z − w)2
−

1

w2

)
.

We refer the reader to Ahlfors [1] for standard properties of these func-
tions. The function ζ is odd, its derivative is −℘ and it is quasi-periodic,
namely for i = 1, 2

ζ(z + Ti) = ζ(z) + ηi with ηi = 2ζ(Ti/2).

It has a simple pole at each point of the lattice Γ with residue 1. Hence
we may write

ωk =




nk−1∑

j=1

ck−1ζ(z − pk−1,j) −

nk∑

j=1

ckζ(z − pk,j) + λk


 dz,
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where λk is some constant. Indeed, the right term is well defined
on T = C/Γ because the sum of the residues is zero, so the quasi-
periodicities of ζ cancel, and two meromorphic 1-forms which have the
same principal part differ by a holomorphic 1-form, so a constant times
dz. The constant λk is determined by the condition that the periods of
ωk are imaginary. A straightforward computation gives

Fk,i =

nk∑

j=1

j 6=i

2(ck)
2ζ(pk,i − pk,j)

−
∑

±

nk±1∑

j=1

ckck±1ζ(pk,i − pk±1,j) + (λk+1 − λk)ck.

Here the sum on ± means that there are two terms, one for the + sign
and one for the − sign. Let us now compute λk. First observe that in
our formula for ωk, we have chosen a representative in C for each point
pk,i. The constant λk depends on the choice of representatives. Let γ1

and γ2 be the standard generators of the homology of T (in other words,
the homology class of the path from 0 to T1 and 0 to T2). Given two
points a, b in C, I claim that for i = 1, 2,∫

γi

ζ(z − a)dz − ζ(z − b)dz ≡ −ηi(a− b) [2πi ].

Indeed, the integrant is a well defined meromorphic 1-form on T with
two simple poles of residue ±1, so its periods are well defined mod 2πi .
The formula clearly holds when a = b, and using the quasi-periodicity
of the function ζ, both sides have the same derivative with respect to
a, so the claim is true. Using this formula with a = pk−1,j or a = pk,j ,
and b = z0 where z0 is some fixed point, we obtain for i = 1, 2 (the z0
terms cancel because the sum of the residues is zero)

Re

∫

γi

ωk = Re


−ηi




nk−1∑

j=1

ck−1pk−1,j −

nk∑

j=1

ckpk,j


+ λkTi


 .

Let us define the center of mass µk of the points at level k by

µk =

nk∑

j=1

ckpk,j .

Let (xk, yk) ∈ R2 be the coordinates of µk in the basis T1, T2. Recall
that η1 and η2 satisfy the Legendre relation ([1], p. 274)

η1T2 − η2T1 = 2πi .

This gives for i = 1, 2

Re

∫

γi

ωk = Re ((−η1(xk−1 − xk) − η2(yk−1 − yk) + λk)Ti) .



ON THE GENUS OF TRIPLY PERIODIC MINIMAL SURFACES 255

Hence
λk = η1(xk−1 − xk) + η2(yk−1 − yk).

4.3.2. Electrostatic interpretation of the forces. Assume that 2µk

= µk−1 + µk+1 for all k. This means that µk+1 − µk is constant, so the
centers of mass µk are regularly spaced. Then λk+1 = λk. Using the
definition of the ζ function as a series, and after a tedious computation,
we obtain the following formula for the force:

Fk,i =

nk∑

j=1

j 6=i

2(ck)
2

pk,i − pk,j
−
∑

±

nk±1∑

j=1

ckck±1

pk,i − pk±1,j

+
∑

w∈Γ

w 6=0




nk∑

j=1

2(ck)
2

pk,i − pk,j − w
−
∑

±

nk±1∑

j=1

ckck±1

pk,i − pk±1,j − w


 .

This formula may be interpreted as follows: this is the same formula as

the force F̃k,i in the simply periodic case, except that there is an infinite
number of terms: pk,i interacts with all the other points pℓ,j +w, except
itself, namely for (ℓ, j, w) = (k, i, 0). This provides an electrostatic
interpretation of the force.

Remark 2. It is not hard to see that the sum in the last formula
converges, as written, if and only if the configuration satisfies 2µk =
µk−1 + µk+1. This makes our hypothesis natural if we are to give an
electrostatic interpretation of the forces.

4.3.3. The genus 3 case. We now return to the case N = 2, n1 =
n2 = 1 which gives genus 3 surfaces. We may assume by translating the
configuration that p0,1 + p2,1 = 0. Writing p1,1 = xT1 + yT2 we obtain

F1,1 = −ζ(xT1 + yT2 − T3/2) − ζ(xT1 + yT2 + T3/2) + 2xη1 + 2yη2.

When x = y = 0, which is the configuration we considered in section
4.2, we have F1,1 = 0 so the configuration is balanced, and using that
the derivative of ζ is −℘,

∂F1,1

∂x
= 2℘(T3/2)T1 + 2η1,

∂F1,1

∂y
= 2℘(T3/2)T2 + 2η2.

Given T1 and T2, for generic values of T3, the differential of F1,1 with
respect to (x, y) has real rank 2 so the configuration is non-degenerate.
But there is a real one dimensional family of values of T3 for which the
differential has rank one so the configuration is degenerate.

Remark 3. Using the above formula, we find numerically that there
are other balanced configurations which are not as symmetric as the one
we discussed in Section 4.2. This confirms the already suspected fact
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that the space of genus 3 minimal surfaces in a 3-torus is quite intricate.
We will not discuss the subject any further, as we are mainly interested
in higher genus surfaces.

4.3.4. Triply periodic perturbation of a simply periodic con-

figuration. In this section we start with a balanced, non-degenerate
simply periodic configuration {pk,i} with period T (which cannot be
zero, see Proposition 2.4 in [8]). Consider two independant vectors T1

and T2, let Γ be the lattice generated by T1, T2, and let T3 = T . Given
a real t 6= 0, we may consider the triply periodic configuration with
periods T1/t, T2/t and T3, whose points are pk,i mod Γ/t. This configu-
ration is of course not balanced anymore, so our goal is to perturb it into
a balanced triply periodic configuration for t small enough. We write
Fk,i(t) for the forces of the configuration pk,i mod Γ/t and ζ(z,Γ/t) for
the ζ function associated to the lattice Γ/t. Using the definition of the
function ζ we have

ζ(z,Γ/t) = tζ(tz,Γ)

lim
t→0

ζ(z,Γ/t) =
1

z
and the limit is uniform with respect to z in compact subsets of C. Also
ηi(Γ/t) = tηi(Γ), which gives λk(t) = O(t2). It follows from our formula
in Section 4.3.1 that

lim
t→0

Fk,i(t) = F̃k,i

where F̃k,i is the force associated to the simply periodic configuration
pk,i. Moreover, Fk,i(t) extends real analytically to t = 0. The intuitive
idea behind this formula, from the point of view of our electrostatic
interpretation in Section 4.3.2, is that when t → 0, T1/t and T2/t go
to infinity, so pk,i does not interact anymore with the points pℓ,j +w/t,
w 6= 0.

Theorem 6. Let {p0
k,i} be a balanced, non-degenerate, simply peri-

odic configuration with period T3. Fix some lattice Γ = ZT1+ZT2. Then
for t close to 0, there exist analytic functions pk,i(t), such that pk,i(0) =
p0

k,i and for t 6= 0, the triply periodic configuration {pk,i(t) mod Γ/t} is
balanced and non-degenerate.

Theorem 5 follows as a corollary of this theorem and Theorem 3.

Proof. This is a quite straightforward application of the implicit func-
tion theorem. We fix p1,1 = p0

1,1: this normalizes the translation invari-
ance of the balancing condition. Let p be the collection of all variables
pk,i, 1 ≤ k ≤ N , 1 ≤ i ≤ nk except p1,1, and let F(t,p) be the collection
of the forces Fk,i(t) for 1 ≤ k ≤ N , 1 ≤ i ≤ nk except F1,1(t). Then
F is a real analytic map, F(0,p0) = 0 and the partial differential of F

with respect to p at (0,p0) is an isomorphism. By the implicit function
theorem, for t close to 0, there exists p(t) such that F(t,p(t)) = 0. If
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t 6= 0, the associated triply periodic configuration pk,i(t) mod Γ/t has
all its forces zero except maybe F1,1(t). Since the sum of the forces
is zero, F1,1(t) is also zero. Hence the configuration pk,i(t) mod Γ/t is
balanced. It is also non-degenerate for t small enough by continuity.

q.e.d.

Remark 4. In the simply periodic case, the force F̃k,i is a complex
analytic function of the variables pℓ,j , so non-degeneracy is equivalent

to the fact that the complex matrix of partial derivatives ∂F̃k,i/∂pℓ,j has
complex co-rank 1, which can be checked by computing a determinant.

In the triply periodic case, the force Fk,i is only real analytic be-
cause of the period normalization. For this reason, non-degeneracy is
much harder to deal with in this case. This makes the above theorem
particularly valuable since non-degeneracy comes for free.

•

•

•

•

⋆⋆⋆ ⋆

⋆⋆⋆ ⋆

⋆⋆⋆ ⋆

⋆⋆⋆ ⋆

◦

◦

◦

◦

Figure 4. A numerically computed triply periodic con-
figuration with N = 2, n1 = 4 and n2 = 1, obtained
by perturbation of the simply periodic configuration of
Figure 2.

4.4. Surfaces with no symmetries. In the introduction of [3], D.
Hoffman asked the following question (question 2):

Does there exist a triply periodic embedded minimal surface with no
symmetries other than translations?

We give a positive answer to this question. First observe that for
generic lattices Λ, the only symmetries of the torus R3/Λ are transla-
tions: x 7→ x + v and symmetries about a point: x 7→ −x + v. This
means that in a generic flat 3-torus, we do not have to worry about pla-
nar symmetries since they are just impossible. Now consider the simply
periodic configuration represented in Figure 5. This configuration is ob-
tained by combining two configurations of Theorem 3, one with m = 2
and one with m = 3 scaled by 8/9 (the scale is chosen so that the forces
at the points with nk = 1 cancel). It is proven in [8], Proposition 2.3,
that configurations obtained this way are balanced and non-degenerate.
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The only symmetry of this configuration is the symmetry about the
Ox2 axis. Using Theorem 5 to perturb this configuration into a triply
periodic configuration, and arguing as in Section 3, we have proven the
existence, in any 3-torus R3/Λ, of a minimal surface whose only possible
symmetry, if any, is a planar symmetry. Hence in a generic 3-torus, the
surface will have no symmetry.

•

⋆⋆

◦

∗∗∗

⋄

Figure 5. A simply periodic configuration with N = 4,
n1 = 2, n2 = 1, n3 = 3 and n4 = 1.

4.5. Balanced configurations using Weierstrass ℘ function. In
this section we briefly explain how balanced configurations may be com-
puted by solving purely algebraic (i.e., polynomial) equations. However,
it does not seem possible to study non-degeneracy along these lines, so
we won’t go into very much detail.

Consider, for example, the case where N = 2, n1 = 2m is even and
n2 = 1 (which gives genus 2m + 2). We assume that the configuration
is symmetric about the origin, namely p1,i+m = −p1,i for 1 ≤ i ≤ m,
p2,1 = T3/2 so p0,1 = −T3/2. Then we can compute the forces in term
of the Weierstrass ℘ function as follows: to simplify the notations let us
write pi = p1,i. Then

ω1 − ω2 =
−2

n1

m∑

i=1

℘′dz

℘− ℘(pi)
+

℘′dz

℘− ℘(T3/2)
.

Indeed, the right side has the right poles and residues and has imaginary
periods. An easy computation gives

Respi

(
℘′

℘− ℘(pi)

)2

=
℘′′(pi)

℘′(pi)
.

Recalling that (℘′)2 = 4℘3 − g2℘− g3, where g2 and g3 are the modular
invariants of C/Γ ([1] p. 276), we obtain after elementary computations

F1,i =
℘′(pi)

n2
1

(
6℘2(pi) − g2/2

4℘3(pi) − g2℘(pi) − g3

+
∑

j 6=i

2

℘(pi) − ℘(pj)
−

n1

℘(pi) − ℘(T3/2)

)
.
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By symmetry we have F1,i+m = −F1,i and F2,1 = 0, so we have to solve
the m equations F1,1 = 0, . . . , F1,m = 0. These are purely algebraic
equations in the unknowns Xi = ℘(pi). For example, in the case m = 1,
T3 = 0, g2 = 4 and g3 = 0 (this is a square torus), we obtain the
equation ℘2(p1) = 1/3. For modest values of m, the above system is
easy to solve using, for example, Maple. This is how the configuration
in Figure 4 was computed.

5. Proof of Theorem 4

5.1. The initial Riemann surface with nodes Σ0. For each k =
1, . . . , N , consider some complex parameter τk such that Im(τk) 6= 0.
Let Tk be the genus one compact Riemann surface C/(Z + Zτk).

For each k = 1, . . . , N and each i = 1, . . . , nk, consider a pair of points
(ak,i, bk,i) such that (ak,i, bk,i) ∈ Tk × Tk+1 if k < N , and (aN,i, bN,i) ∈
TN × T1. (Here we assume that in each Tk, the points ak,i, bk−1,j are
distinct.)

Consider the disjoint union T1 ∪ · · · ∪ TN . Identify, for each pair of
points, ak,i with bk,i to create a node (or double point). This creates a
singular Riemann surface with nodes which we call Σ0. It depends on
the complex parameters τk, ak,i, bk,i.

5.2. Opening nodes. Following Fay [2] and Masur [5] we define a
(regular) Riemann surface Σ by “opening nodes”.

Consider the local complex coordinates vk,i = z − ak,i in a neighbor-
hood of ak,i in Tk, and wk,i = z− bk,i in a neighborhood of bk,i in Tk+1.
Here, and in what follows, TN+1 should always be understood as T1.

Consider, for each k = 1, . . . , N and each i = 1, . . . , nk, some complex
parameter tk,i close to 0. Let t ∈ Cn be the collection of these param-

eters. Remove the disks |vk,i| <
√
|tk,i| and |wk,i| <

√
|tk,i|. Identify

pairs of points on the boundary of these disks with the rule

vk,iwk,i = tk,i.

This identifies the two circles, with a Dehn twist of angle equal to the
argument of tk,i, and defines a (possibly noded) Riemann surface Σt

which depends holomorphically on t (as well as on the other parameters
τk, ak,i, bk,i).

When all the tk,i are nonzero, Σt is a genuine compact Riemann
surface (without nodes). From the topological point of view, its genus g
is easily seen to be equal to n+1, where n is the total number of nodes.

When tk,i = 0, this construction identifies the point ak,i with bk,i and
Σt has a node. In particular when t = 0, Σt is the noded Riemann
surface we started from.

5.3. Regular differentials. In this section, we explain all the tools we
need to solve our problem. Following Masur [5], we extend the notions
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b2,1

a2,1

1,1b b1,2 b1,3

a1,1 a1,2 a1,3

T

T1

2

Figure 6. Left: definition of Σt in the case N = 2,
n1 = 3, n2 = 1. Right: topological model of Σt. The top
circle is identified with the bottom one.

of the holomorphic 1-form and the holomorphic quadratic differential to
the case of Riemann surfaces with nodes. Consider a Riemann surface
with nodes Σ where we see each node as a pair of points (a, b) which
have been identified.

Definition 3 ([5]). A regular q-differential ω on Σ is a form of type
(q, 0) which is holomorphic outside the nodes and which, for each pair
of points (a, b) which are identified to create a node, has two poles of
order ≤ q at a and b. Moreover, the residues of ω at a and b must be
opposite if q is odd and equal if q is even.

Here the residue of ω at some point p is the coefficient of dzq/zq in
the expression of ω in term of a local coordinate z such that z(p) = 0.

When Σ has no nodes, a regular q-differential is just a holomorphic
q-differential. We are only interested in the cases q = 1 and q = 2,
which correspond respectively to holomorphic 1-forms and holomorphic
quadratic differentials.

We write Ωq(Σ) for the space of regular q-differentials on Σ. The
space Ω1(Σ) has dimension g and Ω2(Σ) has dimension 3g− 3, where g
is the genus of Σ (provided g ≥ 2).

Moreover, these spaces depend holomorphically on parameters, in
the following sense: Proposition 4.1 of Masur [5] says that there exists
a basis ω1,t, . . . , ωg,t of Ω1(Σt), which “depends holomorphically” on t in
a neighborhood of 0. This is fundamental for the construction we have
in mind, since we will apply the implicit function theorem at t = 0.

For our purpose, it will be enough to know that for any δ > 0, the
restriction of ωj,t to the domain Ωδ defined by ∀k, ∀i, |vk,i| > δ, |wk,i| >
δ, depends holomorphically on (z, t), z ∈ Ωδ and t in a neighborhood
of 0. This makes sense because the domain Ωδ is independent of t
provided t < δ2. There is a deeper way of expressing that ωt depends
holomorphically on t [5], but we will not need it.
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The isomorphism between Ω1(Σt) and Cg can be made explicit by
computing periods as follows. Let Ak, Bk be the standard generators
of the homology of the torus Tk, namely Ak is the straight path from
0 to 1 and Bk from 0 to τk. (Here we assume that Ak and Bk stay
away from the nodes, taking different representatives of their homology
class if necessary.) We write C(ak,i) for the circle |z − ak,i| = ǫ in Tk,
where ǫ is some fixed small positive number, and C(bk,i) for the circle
|z − bk,i| = ǫ in Tk+1. The circle C(ak,i) is homologous in Σt to the
circle −C(bk,i).

Again, when k = N , TN+1 should be understood as T1. More gener-
ally, we adopt the following cyclic convention: Tk+N = Tk, and in the
same way, ak+N,i = ak,i, bk+N,i = bk,i.

Lemma 1. The map ω →
( ∫

Ak

ω

︸ ︷︷ ︸
1≤k≤N

,

∫

C(ak,i)
ω

︸ ︷︷ ︸
1≤k≤N

2−δk,1≤i≤nk

)
is an isomorphism

from Ω1(Σt) to Cg.

In other words, we may define a regular 1-differential on Σt by pre-
scribing its periods on all indicated cycles. The condition 2 − δk,1 ≤ i
reads as i ≥ 2 if k 6= 1 and i ≥ 1 if k = 1. The total number of cycles is
equal to the genus of Σt.

Proof. One way to prove the lemma is to observe that the indicated
set of cycles is the set of A-curves of a canonical homology basis. Here
is another argument, which illustrates the use of Riemann surfaces with
nodes, and will also work for the next lemma. We check that the state-
ment is true in the case of the noded Riemann surface Σ0. By continuity,
the statement will be true provided t is small enough, which is a weaker
statement but enough for our needs.

We prove that the map is injective. Let ω be a regular 1-form on
Σ0. In Tk, ω has simple poles at ak,i and bk−1,i, and the residue of ω at
bk−1,i is minus its residue at ak−1,i. By the residue theorem in Tk

nk∑

i=1

Resak,i
ω = −

nk−1∑

i=1

Resbk−1,i
ω =

nk−1∑

i=1

Resak−1,i
ω,

so this sum is independant of k. When ω is in the kernel of the map of
the lemma, this implies that all residues of ω are zero, so ω is in fact
holomorphic on each Tk, and has vanishing Ak-period, so ω = 0. q.e.d.

Concerning regular quadratic differentials, Proposition 5.1 of Masur
[5] says that there exists a basis ψ1,t, . . . , ψ3g−3,t of Ω2(Σt), which de-
pends holomorphically on t.
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Lemma 2. For t close to 0, the map

ψ → L(ψ) =
(∫

Ak

ψ

dz︸ ︷︷ ︸
1≤k≤N

,

∫

C(ak,i)

(z − ak,i)ψ

dz
︸ ︷︷ ︸

1≤k≤N
1≤i≤nk

,

∫

C(ak,i)

ψ

dz
︸ ︷︷ ︸

1≤k≤N
2−δk,1≤i≤nk

,

∫

C(bk,i)

ψ

dz
︸ ︷︷ ︸

1≤k≤N
1+δk,N≤i≤nk

)

is an isomorphism from Ω2(Σt) to C3g−3.

In this lemma, dz stands for the standard holomorphic 1-form on each
Tk, so dz is not globally defined on Σt, which is why integrating ψ/dz
on C(ak,i) and C(bk,i) gives independant results.

Proof. As in the previous lemma, it suffices to prove that the map is
injective when t = 0. Consider an element ψ in the kernel. Recall that
a regular quadratic differential on the noded Riemann surface Σ0 has at
most double poles at the nodes. The second summand of the map tells
us that ψ has at most simple poles at all ak,i, hence at all bk,i (recall
the definition of a regular quadratic differential). The third and fourth
summands tell us that the only points where ψ might have poles are ak,1

for 2 ≤ k ≤ N and bN,1. This means that ψ has at most one simple pole
in each Tk. Applying the residue theorem to the holomorphic 1-form
ψ/dz in Tk, we conclude that ψ has no poles at all so ψ is holomorphic
in each Tk. The first summand gives ψ = 0. q.e.d.

Let us now return to regular 1-forms. Let ωt be a regular 1-form
on Σt defined by prescribing periods (independant of t) on cycles as in
Lemma 1. We need to compute the derivative of ωt with respect to the
parameters tk,i at t = 0.

Lemma 3. The derivative ∂ωt/∂tk,i at t = 0 is a meromorphic 1-
form on Σ0 which has double poles at ak,i and bk,i, is otherwise holomor-
phic, and has vanishing periods on all cycles of Lemma 1. The principal
part at the poles are

dz

(z − ak,i)2
−1

2πi

∫

C(bk,i)

ω0

z − bk,i
at ak,i

dz

(z − bk,i)2
−1

2πi

∫

C(ak,i)

ω0

z − ak,i
at bk,i.

Note that these conditions (principal parts + periods) determine a
unique meromorphic 1-form.

Proof. First recall that when we say that ωt depends holomorphically
on t, we only mean that its restriction to Ωδ depends holomorphically
on (z, t). So the statement of the lemma is that the restriction to Ωδ of
the derivative of ωt agrees with the indicated meromorphic 1-form.
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To simplify the notations, write t = tk,i, v = vk,i and w = wk,i. Let
us write the Laurent series of ωt in the annular region δ < |v| < ǫ

ωt =
∑

n∈Z

cn(t)vndv

where

cn(t) =
1

2πi

∫

|v|=ǫ

ωt

vn+1
.

Hence
∂ωt

∂t
=
∑

n∈Z

∂cn(t)

∂t
vndv.

The above series converges uniformly in the region δ < |v| < ǫ, so the
series for n ≥ 0 converges uniformly in the disk |v| < ǫ and defines a
holomorphic function. To compute the derivative of the coefficient cn
for n < 0, first observe that c−1 is constant so its derivative is zero, and
for n ≤ −2 and t 6= 0

cn(t) =
−1

2πi

∫

|w|=ǫ

ωt
wn+1

tn+1

∂cn(t)

∂t
=
n+ 1

2πi

∫

|w|=ǫ

ωt
wn+1

tn+2
−

1

2πi

∫

|w|=ǫ

(
∂ωt

∂t

)
wn+1

tn+1
.

Now ωt and its derivative are both uniformly bounded on the circle
|w| = ǫ, so if we let t → 0, we see that for n ≤ −3, the derivative of
cn(t) at t = 0 is zero, and for n = −2,

∂c−2

∂t
(0) =

−1

2πi

∫

|w|=ǫ

ω0w
−1.

This proves that the derivative of ωt with respect to tk,i has a double pole
at ak,i with the indicated principal part. Entirely similar computations
give that the derivative of ωt has a double pole at bk,i and no poles at
the other nodes. q.e.d.

We need one more result to compute the integral of ωt on a path from
the point ak,i + ǫ to the point bk,i + ǫ, which goes through the neck.

Lemma 4. The difference
∫ bk,i+ǫ

ak,i+ǫ

ωt − (log tk,i)
1

2πi

∫

C(ak,i)
ωt

is a well defined analytic function of tk,i which extends analytically to
tk,i = 0.

This lemma is proven in [9], Section 3.6, Lemma 1, using a Laurent
series to estimate ωt on the neck as in the proof of the previous lemma.
Observe that the logarithm is not well defined because tk,i is a complex
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number, nor is the left integral because there is no canonical way to
choose the integration path, but the multi-valuations cancel.

5.4. The Weierstrass data.

5.4.1. Homology basis. Let Ak,i be the homology class of the circle
C(ak,i) (positively oriented) in Tk. For 1 ≤ k ≤ N and 2 ≤ i ≤ nk,
let Bk,i be a cycle as on Figure 7, which intersects only Ak,1 and Ak,i,
with respective intersection numbers −1 and +1. Let B be a cycle as on
Figure 7, which intersects all circles Ak,1 with intersection numbers +1.
Then the following set of cycles forms a homology basis of Σt : A1,1,
B, Ak,i, Bk,i for 1 ≤ k ≤ N , 2 ≤ i ≤ nk, and Ak, Bk for 1 ≤ k ≤ N .
(Observe that if we replace B1,i by B1,i + B, then we have a canonical
homology basis; namely, each A-cycle intersects precisely one B-cycle
with intersection number 1, and all other intersection numbers are zero.)

B1

B2

B1,3

A1,1

B1,2

A1

A2

A1,2 A1,3

B

Figure 7. Homology basis (genus 5).

5.4.2. The period problem. Without loss of generality we may as-
sume that T1 = (1, 0). We need to define three regular 1-forms φ1, φ2, φ3

on Σt such that Re
∫

(φ1, φ2, φ3) on each cycle of the homology basis be-
longs to the lattice Λ generated by (T1, 0), (T2, 0) and (T3, ε). From the
geometric picture of the surface we want to construct, we know in fact
exactly what each period should be, namely

Re

∫

Ak,i

(φ1, φ2, φ3) = 0

Re

∫

Bk,i

(φ1, φ2, φ3) = 0

Re

∫

Ak

(φ1, φ2, φ3) = (T1, 0) = (1, 0, 0)

Re

∫

Bk

(φ1, φ2, φ3) = (T2, 0)
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Re

∫

B

(φ1, φ2, φ3) = (T3, ε).

The period problem for the A-curves will be automatically solved by
definition of φ1, φ2, φ3. The period problem for the B-curves is a
system of equations we will have to solve. It is not necessary to solve
the last equation Re

∫
B
φ3 = ε; we will use it to define ε.

5.4.3. Definition of φ1, φ2, φ3. Using Lemma 1, we define three reg-

ular 1-forms φ1, φ2 and φ̃3 by prescribing the following periods:
∫

C(ak,i)
(φ1, φ2, φ̃3) = 2πi (αk,i;1, αk,i;2, αk,i;3)

(1 ≤ k ≤ N, 2 − δk,1 ≤ i ≤ nk),∫

Ak

(φ1, φ2, φ̃3) = (1 + iαk;1, iαk;2, i αk;3) (1 ≤ k ≤ N).

All the α numbers in the right hand side are real parameters. The rea-
son for the 2πi factor is that we will interpret the parameters αk,i;ℓ as

residues. We define φ3 = xφ̃3, where x is a real number in a neigh-
borhood of 0. When x = 0, φ3 = 0 so the surface will be locally a
flat horizontal plane: this is the limit case. When x 6= 0, we want to
adjust the other parameters, so that the period problem is solved and
φ2

1 + φ2
2 + φ2

3 = 0. We will do this using the implicit function theorem
at x = 0. We will prove regularity and embeddedness in Section 5.8.

Note that we do not prescribe the periods of φ1, φ2, φ̃3 on the circles
C(a2,1), . . . , C(aN,1). It will be convenient to define

(αk,1;1 , αk,1;2 , αk,1;3) =
1

2πi

∫

C(ak,1)
(φ1, φ2, φ̃3) (2 ≤ k ≤ N).

These can be expressed as functions of the other parameters:

(1) αk,1;ℓ =

n1∑

i=1

α1,i;ℓ −

nk∑

i=2

αk,i;ℓ.

To see this, let ω be a holomorphic 1-form on Σt. Using Cauchy theorem
in the domain of Tk bounded by the circles C(ak,i) and C(bk−1,i), we
have
(2)

nk∑

i=1

∫

C(ak,i)
ω = −

nk−1∑

i=1

∫

C(bk−1,i)
ω =

nk−1∑

i=1

∫

C(ak−1,i)
ω =

n1∑

i=1

∫

C(a1,i)
ω.

5.4.4. Parameters count. Let us count the number of parameters
we have. Let n = n1 + · · · + nN be the number of necks. We have the
conformal parameters ak,i, bk,i, tk,i and τk, for a total of 3n+N complex
parameters. We have the period parameters αk,i;ℓ, αk;ℓ, for a total of
3(n−N +1)+3N = 3(n+1) real parameters. Finally we have the real
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parameter x. If we see each complex parameter as two real parameters,
this gives us a total of 9n+ 2N + 4 real parameters.

Let us now count the number of equations we have to solve. We
have the conformality equation φ2

1 + φ2
2 + φ2

3 = 0, which amounts to
3g − 3 = 3n complex equations. We have the period conditions on the
cycles Bk,i, Bk and B, for a total of 3(n −N) + 3N + 2 = 3n + 2 real
equations. This gives us a total of 9n+ 2 real equations.

So we see that we have 2N + 2 too many parameters, a lot more
than expected. This is because the parameters are not independent and
we can normalize the value of some of them. Indeed, if we multiply
all parameters αk,i;3 and αk;3 by some λ and divide x by λ, we do not
change the Weierstrass data, so we may impose one condition on these
parameters. Also, if we translate all points ak,i and bk−1,j in Tk by some
fixed amount, we get an isomorphic Riemann surface Σt, so we may fix
the value of one point in each Tk. So we have one real and N complex
normalizations, for a total of 2N + 1 real normalizations.

Taking this into account, we have one more parameter than equations,
so we expect to construct a one parameter family of minimal surfaces.

5.5. The conformality equations. Let Q = φ2
1 + φ2

2 + φ2
3. This is a

regular quadratic differential on Σt. To ensure that Q = 0 we will solve
the system L(Q) = 0, where L is the linear operator defined in Lemma
2. We start with the first three equations. We will solve the last one in
Section 5.7.

Proposition 4. For x close to 0, there exist (locally unique) values
of the parameters αk;1, αk;2, αk,i;1, αk,i;2, tk,i (for all possible values of
the indices k, i) such that the following equations are satisfied:

∫

Ak

Q

dz
= 0 (1 ≤ k ≤ N)

∫

C(ak,i)

(z − ak,i)Q

dz
= 0 (1 ≤ k ≤ N, 1 ≤ i ≤ nk)

∫

C(ak,i)

Q

dz
= 0 (1 ≤ k ≤ N, 2 − δk,1 ≤ i ≤ nk).

These values depend real analytically on X = x2 (and on all other pa-
rameters ak,i, bk,i, τk, αk,i;3 and αk;3 as well ). Moreover, at the point
x = 0, we have

tk,i = 0,
∂tk,i

∂X
=

(αk,i;3)
2

4
αk;1 = 0, αk;2 = (−1)k, αk,i;1 = αk,i;2 = 0

and for i ≥ 2 − δk,1,

∂

∂X
(αk,i;1 + (−1)kiαk,i;2) =

−1

2
Resak,i

(φ̃3)
2

dz
.
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Note that when the parameters have these values, x 6= 0 implies
tk,i(x) 6= 0 (for x small enough, provided αk,i;3 6= 0) so Σt(x) is a Rie-
mann surface without nodes.

Proof. We use the implicit function theorem. First assume that x =
0, tk,i = 0, αk,i;1 = αk,i;2 = 0 (all indices k, i). Then φ3 = 0 and φ1,
φ2 are holomorphic 1-forms on Tk, so they are entirely determined by
their period on Ak, namely

φ1 = (1 + iαk;1)dz , φ2 = iαk;2dz

φ2
1 + φ2

2 + φ2
3 = (1 + 2iαk;1 − α2

k;1 − α2
k;2)dz

2.

Hence, we need αk;1 = 0 and αk;2 = ±1. The choice ±1 is determined
by the orientation of the surface: φ1 = dz, φ2 = i dz gives the Weier-
strass representation of a horizontal plane with normal (0, 0,−1) while
φ1 = dz, φ2 = −i dz gives a horizontal plane with the opposite nor-
mal. Hence from the geometry of the surface we want to construct, the
sign should alternate between consecutive Tk. We choose αk;2 = (−1)k,
which means that in Tk, the normal will point down for k even and
up for k odd. Then φ1 = dz, φ2 = (−1)ki dz in Tk and Q = 0 so all
equations are satisfied. We now compute the derivatives with respect to
all parameters, except x, at this point. Let p be any of the parameters
and γ be any cycle; then

∂

∂p

∫

γ

Q

dz
=

∫

γ

2φ1

dz

∂φ1

∂p
+

2φ2

dz

∂φ2

∂p

=

∫

γ

2
∂φ1

∂p
+ 2(−1)ki

∂φ2

∂p

= 2
∂

∂p

∫

γ

φ1 + (−1)kiφ2.

This gives (recall the definition of these forms)

∂

∂αk,i;1

∫

C(ak,i)

Q

dz
= 4πi ,

∂

∂αk,i;2

∫

C(ak,i)

Q

dz
= −4π(−1)k

∂

∂αk;1

∫

Ak

Q

dz
= 2i ,

∂

∂αk;2

∫

Ak

Q

dz
= −2(−1)k

and all other partial derivatives of these functions are zero. By Lemma
3, the derivatives of φ1 and φ2 with respect to the parameter tk,i have a

double pole at ak,i. Since φ1 = dz and φ2 = (−1)k+1i dz in Tk+1, their

principal parts at ak,i are respectively −dz/(z−ak,i)
2 and (−1)ki dz/(z−

ak,i)
2. This gives

∂

∂tk,i

∫

C(ak,i)

(z − ak,i)Q

dz
=

∫

C(ak,i)
(z−ak,i)

(
2φ1

dz

∂φ1

∂tk,i

+
2φ2

dz

∂φ2

∂tk,i

)
=−8πi .
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The derivative of this function with respect to any of the other param-
eters is zero (because the derivatives of φ1 and φ2 have at most simple
poles).

The first statement of the proposition now follows from the implicit
function theorem. Note that the map is only real analytic because all

the α parameters are real. Since (φ3)
2 = X(φ̃3)

2, with X = x2, we have

∂

∂X

∫

C(ak,i)

Q

dz
=

∫

C(ak,i)

(φ̃3)
2

dz
= 2πi Resak,i

(φ̃3)
2

dz

∂

∂X

∫

C(ak,i)

(z − ak,i)Q

dz
=

∫

C(ak,i)

(z − ak,i)(φ̃3)
2

dz
= 2πi (αk,i;3)

2.

This gives the indicated derivatives of αk,i;1, αk,i;2 and tk,i with respect
to X. q.e.d.

5.6. The period problem.

5.6.1. Solution of the Period problem for φ3.

Proposition 5. Assume the parameters tk,i are given as functions
of x by Proposition 4. Then for x close to 0, there exist (locally unique)
values of the parameters αk;3, αk,i;3 (all indices) such that the following
equations are satisfied:

Re

∫

Bk

φ̃3 = 0 (1 ≤ k ≤ N)

Re

∫

Bk,i

φ̃3 = 0 (1 ≤ k ≤ N, 2 ≤ i ≤ nk)

n1∑

i=1

α1,i;3 = −1.

Moreover, when x = 0, we have αk,i;3 = −ck where ck = 1/nk. Finally,
for x 6= 0 close to 0, we have

(3) Re

∫

B

φ̃3 ∼ − log(x2)(c1 + · · · + cN ).

The third equation is a normalization, see Section 5.4.4. The reason
for the minus sign is that given the geometric picture of the surface we
want to construct and the orientation of Ak,i, we expect that the flux
of each cycle Ak,i points downward, so the imaginary part of the period
of φ3 is negative.

Proof. First observe that φ̃3 depends linearly on the parameters αk,i;3

and αk;3, so we have to solve linear equations: no need to use the im-

plicit function theorem here! The period of φ̃3 on the cycle Bk depends
analytically on x because we can choose a representative of Bk which
stays away from the nodes. We represent Bk,i by the composition of the
following paths:
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1) a path from ak,1 + ǫ to ak,i + ǫ in Tk, (depending continuously on
parameters and avoiding nodes),

2) a path from vk,i = ǫ to wk,i = ǫ (going through the neck),
3) a path from bk,i + ǫ to bk,1 + ǫ in Tk+1,
4) a path from wk,1 = ǫ to vk,1 = ǫ.

The integral of φ̃3 on the first and third paths depends analytically on
x. We use Lemma 4 to estimate the integral on the second and fourth
paths. This gives

Re

∫

Bk,i

φ̃3 = Re(αk,i;3 log tk,i − αk,1;3 log tk,1) + analytic

and in the same way,

Re

∫

B

φ̃3 =
N∑

k=1

Re(αk,1;3 log tk,i) + analytic.

By Proposition 4, tk,i ≃
1
4(xαk,i;3)

2. We assume that all the numbers
αk,i;3 are non zero. This gives

Re

∫

Bk,i

φ̃3 = (αk,i;3 − αk,1;3) log(x2) + analytic.

Hence the function (log(x2))−1Re
∫
Bk,i

φ̃3 extends continuously to x =

0 with value αk,i;3 − αk,1;3. Proposition 5 boils down to the following
statement:

Claim 1. When x = 0, the following linear map is an isomorphism

(
αk,i;3︸ ︷︷ ︸
1≤k≤N

2−δk,1≤i≤nk

, αk;3︸︷︷︸
1≤k≤N

) 7→ (αk,i;3 − αk,1;3︸ ︷︷ ︸
1≤k≤N
2≤i≤nk

, Re

∫

Bk

φ̃3

︸ ︷︷ ︸
1≤k≤N

,

n1∑

i=1

α1,i;3

)
.

Proof. The domain and target spaces have the same dimension. Using
equation (1), it is straightforward to check that the kernel is zero. q.e.d.

Remark 5. The function 1/ log(x2) does not extend to a smooth
function at 0, so the solutions to our equations are not smooth functions
of x. To deal with this problem, we write x = exp(−1/ξ2), which
extends to a smooth function at ξ = 0. Then 1/ log(x2) = −1

2ξ
2, so our

equations and their solutions depend smoothly on the auxiliary variable
ξ in a neighborhood of 0. Note, however, that we (sadly) leave the realm
of analytic functions, but there seems to be no way to avoid this!

5.6.2. Solution of the period problem for φ1 and φ2. For ℓ =
1, 2, 3, write Tℓ = (Tℓ;1, Tℓ,2, 0).



270 M. TRAIZET

Proposition 6. Assume the parameters tk,i, αk;ℓ and αk,i;ℓ (ℓ =
1, 2, 3) are given as functions of x by Propositions 4 and 5. For x close
to 0, there exist (locally unique) values of the parameters τk and bk,i (all
indices) such that the following equations are satisfied:

Re

∫

Bk

φℓ = T2;ℓ (1 ≤ k ≤ N, ℓ = 1, 2)

Re

∫

Bk,i

φℓ = 0 (1 ≤ k ≤ N, 2 ≤ i ≤ nk, ℓ = 1, 2)

Re

∫

B

φℓ = T3;ℓ (ℓ = 1, 2).

Moreover, when x = 0, we have τk = T2 if k is odd and τk = T2 if k is
even, bk,i = ak,i if 1 ≤ k ≤ N − 1, and bN,i = aN,i − T3.

Proof. We first solve the equations when x = 0 and then conclude
using the implicit function theorem. When x = 0, we have φ1 = dz and
φ2 = (−1)ki dz in Tk. Hence

T2;1 = Re

∫

Bk

φ1 = Re

∫ τk

0
dz = Re(τk)

T2;2 = Re

∫

Bk

φ2 = Re

∫ τk

0
(−1)ki dz = (−1)k+1Im(τk).

This determines τk. Then

0 = Re

∫

Bk,i

φ1 = Re

(∫ ak,i

ak,1

dz +

∫ bk,1

bk,i

dz

)

= Re(ak,i − ak,1 + bk,1 − bk,i),

0 = Re

∫

Bk,i

φ2 = Re

(∫ ak,i

ak,1

(−1)ki dz +

∫ bk,1

bk,i

(−1)k+1i dz

)

= (−1)k+1Im(ak,i − ak,1 − bk,1 + bk,i).

This gives

(4) ak,i − ak,1 = bk,i − bk,1 (1 ≤ k ≤ N, 2 ≤ i ≤ nk).

As explained in Section 5.4.4, we may normalize translation by fixing one
point in each Tk. For k = 1, . . . , N−1, we fix the value of bk,1 in Tk+1 by
asking that bk,1 = ak,1. This normalizes translation in T2, . . . , TN . (We
will normalize translation in T1 later). Equation (4) gives bk,i = ak,i for
1 ≤ k ≤ N − 1. Computations entirely similar to the previous ones give

T3;1 = Re

∫

B

φ1 = Re

(∫ a1,1

bN,1

dz +

N−1∑

k=1

∫ ak+1,1

bk,1

dz

)
= Re(aN,1 − bN,1)

T3;2 = Re

∫

B

φ2 = Im(−aN,1 − bN,1).
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This gives bN,1 = aN,1 − T3. Equation (4) gives bN,i = aN,i − T3.
To apply the implicit function theorem, we need to study the smooth-

ness of the above functions. The integrals on the cycles Bk are clearly
analytic functions of x. By Proposition 4, the periods of φ1 and φ2 on
the circles C(ak,i), namely the parameters αk,i;1 and αk,i;2, are of order
x2. By Lemma 4, their periods on the cycles Bk,i are analytic functions
plus terms of order x2 log tk,i = O(x2 log(x2)). This extends to a smooth
function of the auxiliary parameter ξ at ξ = 0, see Remark 5. Hence the
periods are smooth functions of ξ and the other parameters. The par-
tial differential with respect to the parameters bk,i and τk is clearly an
isomorphism. The proposition then follows from the implicit function
theorem at ξ = 0. q.e.d.

5.7. The balancing condition. It remains to solve the last equation
in Lemma 2.

Proposition 7. Assume the parameters tk,i, αk;1, αk;2, αk,i;1 and
αk,i;2 are given as analytic functions of X = x2 by Proposition 4. Let

fk,i =
1

2πi

∫

C(bk,i)

Q

dz
(1 ≤ k ≤ N , 1 + δk,N ≤ i ≤ nk).

Then f̃k,i = x−2fk,i extends analytically to x = 0 and its value at x = 0
is

f̃k,i(0) = Rk,i if 1 ≤ k ≤ N, 2 − δk,1 ≤ i ≤ nk

f̃k,1(0) = Rk,1 +

k−1∑

ℓ=1

nℓ∑

i=1

ϕk−ℓ(Rℓ,i) if 2 ≤ k ≤ N − 1

where ϕ(z) = z denotes conjugation in C and

Rk,i = ϕ

(
Resak,i

(φ̃3)
2

dz

)
+ Resbk,i

(φ̃3)
2

dz
.

Proof. If f(z) is an analytical function of z such that f(0) = 0, then
f(z)/z extends analytically to z = 0 with value f ′(0). So all we have to
do is to compute the derivative of fk,i with respect to X at X = 0. We
have

∂fk,i

∂αk,i;1
= −2,

∂fk,i

∂αk,i;2
= 2(−1)ki ,

and the derivatives of fk,i with respect to the other parameters (except
X) are zero. Hence, by the chain rule,

∂fk,i

∂X
= −2

∂αk,i;1

∂X
+ 2(−1)ki

∂αk,i;2

∂X
+ Resbk,i

(φ̃3)
2

dz
.
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When 2−δk,1 ≤ i ≤ nk, using the last formula in Proposition 4, this gives
∂fk,i/∂X = Rk,i. To compute the derivative of fk,1 for 2 ≤ k ≤ N − 1,
we use equation (1) to obtain (the α terms cancel)

nk∑

i=1

∂fk,i

∂X
−

nk−1∑

i=1

ϕ

(
∂fk−1,i

∂X

)

=

nk∑

i=1

Resbk,i

(φ̃3)
2

dz
−

nk−1∑

i=1

ϕ

(
Resbk−1,i

(φ̃3)
2

dz

)

=

nk∑

i=1

Resbk,i

(φ̃3)
2

dz
+

nk∑

i=1

ϕ

(
Resak,i

(φ̃3)
2

dz

)

=

nk∑

i=1

Rk,i.

In the second line, we have used the residue theorem in Tk. The result
follows by induction on k. q.e.d.

Assume the parameters tk,i, αk;ℓ, αk,i;ℓ (ℓ = 1, 2, 3) and bk,i are given
as functions of x and the remaining parameters (namely ak,i) by Propo-
sition 4, 5 and 6.

Proposition 8. For x small enough, there exist (locally unique)

values of the parameters ak,i such that f̃k,i = 0 for 1 ≤ k ≤ N ,
1 + δk,N ≤ i ≤ nk.

This determines the value of all parameters as functions of x so that
the period problem is solved and φ2

1+φ2
2+φ2

3 = 0. The solution depends
smoothly on the auxiliary parameter ξ (see Remark 5). We also still
have T1, T2 and T3 as free parameters. The solution depends smoothly
on these parameters.

Proof. First assume that x = 0. Given the value of τk found in
Proposition 6, we have Tk = ϕk+1(T) where T = C/Γ and ϕ(z) = z.
Let

ak,i = ϕk+1(pk,i)

where pk,i is the given configuration. Then from Proposition 6, bk,i =

ϕk(pk,i) for 1 ≤ k ≤ N − 1 and bN,i = pN,i − T3 = p0,i. It follows that

φ̃3 =




ωk in Tk if k odd,

ϕ∗ωk in Tk if k even,

where ωk is the meromorphic 1-form on T defined in Section 2.2. (In-
deed, these forms are holomorphic and have the same poles and residues,
and both have imaginary periods.) This implies that

Rk,i = 2ϕk(Fk,i)
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where Fk,i is the force defined in the Section 2.2. Hence, since the con-

figuration is balanced, we have f̃k,i = 0. We may normalize translation
in T1 by fixing the position of p1,1. Then, since the configuration is
non-degenerate, it follows from elementary linear algebra that the par-

tial differential of (f̃k,i : 1 ≤ k ≤ N, 1 + δk,N ≤ i ≤ nk) with respect
to (pℓ,j : 1 ≤ k ≤ N, 1 + δk,1 ≤ i ≤ nk) at x = 0 is an (R linear)
isomorphism. The conclusion follows by the implicit function theorem
again. q.e.d.

5.8. Embeddedness. At this point, we have constructed a one param-
eter family of conformal, minimal immersions from Σt(x) to R3/Λx, x in
a neighborhood of 0, where Λx is the lattice generated by the periods
(T1, 0), (T2, 0), (T3, ε(x)) and by equation (3) in Proposition 5,

ε(x) ≃ −x2 log(x2)(c1 + · · · + cN ).

Here we assume that x > 0, as changing x into −x only changes the
sign of the third coordinate. We need to prove that the immersion is
regular (free of branch points) and an embedding. Given a small δ > 0,
let Ωk,δ be the set of points in Tk which are at distance greater than δ
from the points ak,i and bk−1,i (all indices i), and Ωδ = Ω1,δ ∪· · ·∪ΩN,δ.

The immersion is regular if |φ1|
2 + |φ2|

2 + |φ3|
2 > 0. It is straight-

forward to check that this is true on Ωδ because we know explicitly the
limits of these forms on this domain. The problem is to prove that this
holds on the necks. We prove that φ3 has no zeroes on the necks. The

zeros of φ3 are the same as the zeros of φ̃3. When x = 0, φ̃3 has nk+nk−1

poles in Tk, so it has nk + nk−1 zeros, which lie in Ωk,δ provided δ is

small enough. By continuity, for x close to 0, φ̃3 has nk + nk−1 zeros in
Ωk,δ. This gives a total of 2n zeros in Ωδ, where n = n1 + · · ·+nN . But

if x 6= 0, φ̃3 is a holomorphic 1-form on a compact Riemann surface of

genus g = n + 1, so it has 2g − 2 = 2n zeros. This means that φ̃3 has
no further zeros and proves that the surface is regular.

We now prove embeddedness. Let Xx = (X1
x, X

2
x, X

3
x) be the im-

mersion given by the Weierstrass representation we have constructed,

and let X̃x = (X1
x, X

2
x, x

−1X3
x). We will prove that the image of X̃x

is embedded, and compute explicitly its limit (after suitable vertical
translation) when x→ 0.

First observe that on each domain Ωk,δ, the Gauss map converges to
(0, 0,−1) if k is even and (0, 0, 1) if k is odd, hence its image is locally
a graph. Then for z ∈ Ωk,δ we have, up to translation,

lim
x→0

X1
x(z) + iX2

x(z) = Re

∫ z

dz + i Re

∫ z

(−1)ki dz = ϕk+1(z)



274 M. TRAIZET

where as before ϕ(z) = z, and

lim
x→0

X̃3
x(z) = Re

∫ z

(ϕk+1)∗ωk = fk(ϕ
k+1(z))

where fk(z) = Re

∫ z

ωk. This is a well defined function of z ∈ T be-

cause the residues of ωk are real. It has logarithmic singularities at

the poles of ωk. Hence the image X̃x(Ωδ) converges (up to translation)
when x→ 0 to the graph of fk on T minus disks of radius δ around the
singularities. So it is included in a slab whose width is bounded by some
constant C(δ). By our computation in Section 5.6.1, the distance be-
tween consecutive slabs has order O(log(x2)), so these slabs are disjoint
for x small enough.

It remains to understand the behavior of X̃x on the necks. There
exists c > 0 such that for each k, the horizontal sections x3 = c (resp.
x3 = −c) of the graph of fk consist of nk (resp. nk−1) disjoint convex
curves. Hence, for x small enough, we may find numbers δ+k and δ−k
(depending on x), with δ−k < δ+k < δ−k+1, such that the intersection of

the surface with the slab δ−k < x3 < δ+k is bounded by convex horizontal

curves, and is a graph, and the intersection with the slab δ+k < x3 < δ−k+1
consists of nk annuli, each bounded by two horizontal convex curves. By
a theorem of Schiffman [7], a minimal annulus bounded by two horizon-
tal convex curves is fibered by horizontal convex curves. It follows that
the surface is embedded. This concludes the proof of Theorem 4.
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