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REFINED ANALYTIC TORSION

Maxim Braverman & Thomas Kappeler

Abstract

Given an acyclic representation α of the fundamental group
of a compact oriented odd-dimensional manifold, which is close
enough to an acyclic unitary representation, we define a refine-
ment Tα of the Ray-Singer torsion associated to α, which can be
viewed as the analytic counterpart of the refined combinatorial
torsion introduced by Turaev. Tα is equal to the graded determi-
nant of the odd signature operator up to a correction term, the
metric anomaly, needed to make it independent of the choice of
the Riemannian metric.
Tα is a holomorphic function on the space of such representa-

tions of the fundamental group. When α is a unitary representa-
tion, the absolute value of Tα is equal to the Ray-Singer torsion
and the phase of Tα is proportional to the η-invariant of the odd
signature operator. The fact that the Ray-Singer torsion and the
η-invariant can be combined into one holomorphic function allows
one to use methods of complex analysis to study both invariants.
In particular, using these methods we compute the quotient of the
refined analytic torsion and Turaev’s refinement of the combina-
torial torsion generalizing in this way the classical Cheeger-Müller
theorem. As an application, we extend and improve a result of
Farber about the relationship between the Farber-Turaev abso-
lute torsion and the η-invariant.

As part of our construction of Tα we prove several new results
about determinants and η-invariants of non self-adjoint elliptic
operators.

1. Introduction

In this paper we refine the analytic torsion which has been introduced
by Ray and Singer [35]. In our set-up we are given a complex flat vector
bundle E →M over a closed oriented odd-dimensional manifold M and
we denote by ∇ the flat connection on M . Whereas the Ray-Singer
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torsion TRS(∇) is a positive real number, the proposed refined analytic
torsion T = T (∇) will be, in general, a complex number, and hence will
have a nontrivial phase. The refined analytic torsion can be viewed as
an analytic analogue of the refined combinatorial torsion, introduced by
Turaev [42, 43] and further developed by Farber and Turaev [19, 20].
Though T is not equal to the Turaev torsion in general, the two torsions
are very closely related, as described in Section 14.

Definition. In this paper the refined analytic torsion is defined as a non-
zero complex number which is canonically associated to any acyclic flat
connection lying in an open set of acyclic connections, which contains all
acyclic Hermitian connections, see [7, 8], where we extend this definition
to arbitrary flat connections.

Relation to the η-invariant and the Ray-Singer torsion. If the
connection ∇ is Hermitian, i.e., if there exists a Hermitian metric on
E which is preserved by ∇, then the refined analytic torsion T is a
complex number whose absolute value is equal to the Ray-Singer torsion
and whose phase is determined by the η-invariant of the odd signature
operator. When ∇ is not Hermitian, the relationship between the refined
analytic torsion, the Ray-Singer torsion, and the η-invariant is slightly
more complicated, cf. Section 12.

Analytic property. One of the most important properties of the re-
fined analytic torsion is that it depends, in an appropriate sense, holo-
morphically on the connection ∇. The fact that the Ray-Singer torsion
and the η-invariant can be combined into one holomorphic function al-
lows us to use methods of complex analysis to study both invariants.
In particular, using these methods we establish a relationship between
the refined analytic torsion and Turaev’s refinement of the combina-
torial torsion which generalizes the classical Cheeger-Müller theorem
about the equality between the Ray-Singer and the combinatorial tor-
sion [15, 33]. As an application, we generalize and improve a result of
Farber about the comparison between the sign of the Farber-Turaev ab-
solute torsion and the η-invariant, [17]. In fact, we compare the phase
of the Turaev torsion and the η-invariant in a more general set-up.

Regularized determinant. Our construction of the refined analytic
torsion uses determinants of non self-adjoint elliptic differential opera-
tors. In Section 4 and Appendix A we prove several new results about
these determinants which generalize well known facts about determi-
nants of self-adjoint differential operators. In particular, we express the
determinant of a (not necessarily self-adjoint) operator D in terms of
the determinant of D2, the value at 0 of the ζ-function of D2, and the
η-invariant of D. Note that the η-invariant of a non-self-adjoint opera-
tor was defined and studied by Gilkey [21]. In this paper we use a sign
refined version of Gilkey’s construction, cf. Definition 4.2.
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Related works. In [42, 43], Turaev constructed a refined version of the
combinatorial torsion for an arbitrary acyclic connection. This notion
was later extended by Farber and Turaev [19, 20]. In [43] Turaev posed
the problem of constructing an analytic analogue of his torsion. In [20,
§10.3], Farber and Turaev suggested that such an analogue should be
related to the η-invariant. More precisely, one can ask if it can be defined
in terms of regularized determinants of elliptic differential operators and,
if so, whether the phase is related to the η-invariant of these differential
operators. In the present paper we show that on the open neighborhood
of the set of acyclic Hermitian connections, where the proposed refined
analytic torsion T (∇) is defined, T (∇) solves this problem.

In [7] we extend the notion of refined analytic torsion to the set of
all flat connections and in [8] we discuss properties and applications of
the refined analytic torsion.

In addition to the works of Turaev [42, 43] and Farber-Turaev [19,
20] on their refined combinatorial torsion and the relation of its absolute
value to the Ray-Singer torsion [43, 20] as well as the study of its phase
[17], we would like to mention a recent paper of Burghelea and Haller,
[13]. In that paper, among many other topics, the authors address the
question of whether the Ray-Singer torsion TRS(∇) can be viewed as
the absolute value of a (in an appropriate sense) holomorphic function
f(∇) on the space of acyclic connection ∇. Burghelea and Haller gave
an affirmative answer to this question and showed that

(1.1) TRS(∇) = |f1(∇) · f2(∇)|,

where f1(∇) is Turaev’s refinement of the combinatorial torsion and
f2(∇) is an explicitly calculated holomorphic function.1 The result
of Burghelea and Haller is valid for manifolds of arbitrary dimension.
If the dimension of the manifold is odd, the refined analytic torsion
proposed in this paper allows to obtain an identity of the type (1.1).
In contrast to [13], the holomorphic function on the right hand side
of equality (1.1) is constructed in this paper in purely analytic terms,
cf. Theorem 12.8. The quotient between the Ray-Singer torsion and
the absolute value of Turaev’s refinement of the combinatorial torsion
is discussed in Section 14.

In response to a first version of our paper, Dan Burghelea kindly
brought to our attention his ongoing project with Stefan Haller [14]
where they consider, among other things, Laplace-type operators act-
ing on forms obtained by replacing a Hermitian scalar product on a
given complex vector bundle by a non-degenerate symmetric bilinear
form. These operators are non self-adjoint and have complex-valued
zeta-regularized determinants. Burghelea and Haller then express the

1Note that, in the case when the dimension of the manifold is odd, (1.1) is similar
to our Theorem 14.3.
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square of the Turaev torsion in terms of these determinants and some
additional ingredients. 2

The results of this paper were announced in [6].

2. Summary of the Main Results

Throughout this section M is a closed oriented manifold of odd di-
mension dimM = d = 2r− 1 and E is a complex vector bundle over M
endowed with a flat connection ∇.

2.1. The odd signature operator. The refined analytic torsion is
defined in terms of the odd signature operator, hence, let us begin by
recalling the definition of this operator.

Let Ω•(M,E) denote the space of smooth differential forms on M
with values in E and set

Ωeven(M,E) =

r−1⊕

p=0

Ω2p(M,E),

where r = dim M+1
2 . Fix a Riemannian metric gM on M and let ∗ :

Ω•(M,E) → Ωd−•(M,E) denote the Hodge ∗-operator. The chirality
operator

Γ : Ω•(M,E) → Ωd−•(M,E)

is then given by the formula, cf. [4, §3.2],

Γω := ir (−1)k(k+1)/2 ∗ ω, ω ∈ Ωk(M,E).

The odd signature operator B = B(∇, gM ) : Ω•(M,E) → Ω•(M,E) is
defined by

B := Γ∇ + ∇Γ.

It leaves Ωeven(M,E) invariant. Denote its restriction to Ωeven(M,E)
by Beven. Then, for ω ∈ Ω2p(M,E), one has

B ω = ir (−1)p+1
(
∗ ∇−∇ ∗

)
ω ∈ Ωd−2p−1(M,E) ⊕ Ωd−2p+1(M,E).

The odd signature operator was introduced by Atiyah, Patodi, and
Singer, [2, p. 44], [3, p. 405], and, in the more general setting used here,
by Gilkey, [21, p. 64–65].

The operator Beven is an elliptic differential operator of order one,
whose leading symbol is symmetric with respect to any Hermitian metric
hE on E.

In this paper we define the refined analytic torsion in the case when
the pair (∇, gM ) satisfies the following simplifying assumptions. The
general case will be addressed in [7, 8].

2Added in proof: D. Burghelea & S. Haller, Complex valued Ray-singer torsion,
math.DG/0604484; M. Braverman & T. Kappeler, Comparison of the refined analytic

and the Burghelea-Haller torsions, math.DG/0606398.
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Assumption I. The connection ∇ is acyclic, i.e.,

Im
(
∇|Ωk−1(M,E)

)
= Ker

(
∇|Ωk(M,E)

)
, for every k = 0, . . . , d.

Assumption II. Beven = Beven(∇, g
M ) is bijective.

Note that if ∇ is a Hermitian connection then Assumption I implies
Assumption II, cf. Subsection 6.6. Hence, all acyclic Hermitian connec-
tions satisfy Assumptions I and II. By a simple continuity argument, cf.
Proposition 6.8, these two assumptions are then satisfied for all flat con-
nections in an open neighborhood (in C0-topology, cf. Subsection 6.7)
of the set of acyclic Hermitian connections.

2.2. Graded determinant. Set

(2.2)
Ωk

+(M,E) := Ker (∇Γ) ∩ Ωk(M,E),

Ωk
−(M,E) := Ker (Γ∇) ∩ Ωk(M,E).

Assumption II implies that Ωk(M,E) = Ωk
+(M,E) ⊕ Ωk

−(M,E), cf.

Subsection 6.9. Hence, (2.2) defines a grading on Ωk(M,E).

Define Ωeven
± (M,E) =

⊕r−1
p=0 Ω2p

± (M,E) and let B±
even denote the re-

striction of Beven to Ωeven
± (M,E). It is easy to see that Beven leaves the

subspaces Ωeven
± (M,E) invariant and it follows from Assumption II that

the operators B±
even : Ωeven

± (M,E) → Ωeven
± (M,E) are bijective.

One of the central objects of this paper is the graded determinant of
the operator Beven. To construct it we need to choose a spectral cut
along a ray Rθ =

{
ρeiθ : 0 ≤ ρ < ∞

}
, where θ ∈ [−π, π) is an Agmon

angle for Beven, cf. Definition 3.4. Since the leading symbol of Beven

is symmetric, Beven admits an Agmon angle θ ∈ (−π, 0). Given such
an angle θ, observe that it is an Agmon angle for B±

even as well. The
graded determinant of Beven is the non-zero complex number defined by
the formula

(2.3) Detgr,θ(Beven) :=
Detθ(B

+
even)

Detθ(−B
−
even)

.

By standard arguments, cf. Subsection 3.10, Detgr,θ(Beven) is indepen-
dent of the choice of the Agmon angle θ ∈ (−π, 0).

2.3. A convenient choice of the Agmon angle. For I ⊂ R we
denote by LI the solid angle

LI =
{
ρeiθ : 0 < ρ <∞, θ ∈ I

}
.

Though many of our results are valid for any Agmon angle θ ∈
(−π, 0), some of them are more easily formulated if the following con-
ditions are satisfied:

(AG1) θ ∈ (−π/2, 0), and
(AG2) there are no eigenvalues of the operator Beven in the solid angles

L(−π/2,θ] and L(π/2,θ+π].
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For the sake of simplicity of exposition, we will assume that θ is chosen
so that these conditions are satisfied throughout the Introduction. Since
the leading symbol of Beven is symmetric (with respect to an arbitrary
Hermitian metric on E), such a choice of θ is always possible.

2.4. Relationship with the Ray-Singer torsion and the η-inva-
riant. For a pair (∇, gM ) satisfying Assumptions I and II set

(2.4) ξ = ξ(∇, gM , θ) :=
1

2

d−1∑

k=0

(−1)k ζ ′2θ

(
0, (Γ∇)2

∣∣
Ωk

+(M,E)

)
,

where ζ ′2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
is the derivative with respect to s of the

ζ-function of the operator (Γ∇)2
∣∣
Ωk

+(M,E)
corresponding to the spectral

cut along the ray R2θ, cf. Subsection 3.5, and θ is an Agmon angle
satisfying (AG1)-(AG2).

Let η = η(∇, gM ) denote the (sign refined) η-invariant of the operator
Beven(∇, g

M ), cf. Definition 4.2. Theorem 7.2 implies that,

(2.5) Detgr,θ(Beven) = eξ(∇,gM ,θ) · e−iπη(∇,gM ).

This representation of the graded determinant turns out to be very
useful, e.g., in computing the metric anomaly of Detgr,θ(Beven).

If the connection ∇ is Hermitian, then (2.4) coincides with the well
known expression for the logarithm of the Ray-Singer torsion TRS =
TRS(∇). Hence, for a Hermitian connection ∇ we have

ξ(∇, gM , θ) = log TRS(∇).

If ∇ is not Hermitian but is sufficiently close (in C0-topology) to an
acyclic Hermitian connection, then Theorem 8.2 states that

(2.6) log TRS(∇) = Re ξ(∇, gM , θ).

Combining (2.6) and (2.5), we get

(2.7)
∣∣ Detgr,θ(Beven)

∣∣ = TRS(∇) · eπ Im η(∇,gM ).

If ∇ is Hermitian, then the operator Beven is self-adjoint (cf. Subsec-
tion 6.6) and η = η(∇, gM ) is real. Hence, cf. Corollary 8.3, for the case
of an acyclic Hermitian connection we obtain from (2.7)

∣∣ Detgr,θ(Beven)
∣∣ = TRS(∇).

2.5. Metric anomaly of the graded determinant. The graded de-
terminant of the odd signature operator is not a differential invariant
of the connection ∇ since, in general, it depends on the choice of the
Riemannian metric gM . Hence, we first investigate the metric anomaly
of the graded determinant and then use it to “correct” the graded de-
terminant and construct a differential invariant – the refined analytic
torsion.
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Suppose an acyclic connection ∇ is given. We call a Riemannian
metric gM on M admissible for ∇ if the operator Beven = Beven(∇, g

M )
satisfies Assumption II of Subsection 2.1. We denote the set of ad-
missible metrics by M(∇). The set M(∇) might be empty. However,
Proposition 6.8 implies that admissible metrics exist for all flat connec-
tions in an open neighborhood (in C0-topology) of the set of acyclic
Hermitian connections.

For each admissible metric gM ∈ M(∇) choose an Agmon angle θ
satisfying (AG1)-(AG2). Then the reduction of ξ(∇, gM , θ) modulo πZ

depends neither on the choice of θ nor on the choice of gM ∈ M(∇), cf.
Proposition 9.7.

The dependence of η = η(∇, gM ) on gM has been analyzed in [3] and
[21]. In particular, it follows from the results in these papers that (cf.
Proposition 9.5)

• If dimM ≡ 1 (mod 4) then the reduction of η(∇, gM ) modulo Z is
independent of the choice of the admissible metric gM ;

• Suppose dimM ≡ 3 (mod 4) and let η trivial(g
M ) denote the η-

invariant of the odd signature operator associated to the trivial
connection on the trivial line bundle over M . Then, modulo Z,

η(∇, gM ) − η trivial(g
M ) · rankE

is independent of the choice of the metric gM .

2.6. Definition of the refined analytic torsion. The refined ana-
lytic torsion T (∇) corresponding to an acyclic connection ∇, satisfying
M(∇) 6= ∅, is defined as follows: fix an admissible Riemannian metric
gM ∈ M(∇) and let θ ∈ (−π, 0) be an Agmon angle for Beven(∇, g

M ).
Then

T (∇) = T (M,E,∇)

: = Detgr,θ(Beven) · exp
(
iπ ηtrivial(g

M ) · rankE
)
∈ C\0.

Note that if dimM ≡ 1 (mod 4) then ηtrivial(g
M ) = 0 and, hence,

T (∇) = Detgr,θ
(
Beven(∇, g

M )
)
.

If ∇ is close enough to an acyclic Hermitian connection, then M(∇) 6=
∅ and, it follows from the discussion of the metric anomaly of the graded
determinant of Beven in Subsection 2.5, that T (∇) is independent of
the choice of the admissible metric gM . Moreover, as Detgr,θ(Beven) is
independent of the choice of the Agmon angle θ ∈ (−π, 0), so is T (∇).

A simple example in Subsection 10.2 shows that even when the con-
nection ∇ is Hermitian, the refined analytic torsion can have an arbi-
trary phase.

In Section 11 we also suggest an alternative definition of the refined
analytic torsion, which is more convenient for some applications.
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2.7. Comparison with the Ray-Singer torsion. The equality (2.7)
implies that, if ∇ is C0-close to an acyclic Hermitian connection, then

(2.8) log
|T (∇)|

TRS(∇)
= π Im η(∇, gM ).

In particular, if ∇ is an acyclic Hermitian connection, then
∣∣T (∇)

∣∣ = TRS(∇).

Theorem 12.8 provides a local expression for the right hand side of
(2.8). Following Farber, [17], we denote by Arg∇ the unique cohomol-
ogy class Arg∇ ∈ H1(M,C/Z) such that for every closed curve γ ∈M
we have

det
(

Mon∇(γ)
)

= exp
(
2πi〈Arg∇, [γ]〉

)
,

where Mon∇(γ) denotes the monodromy of the flat connection ∇ along
the curve γ and 〈·, ·〉 denotes the natural pairing

H1(M,C/Z) × H1(M,Z) → C/Z.

Theorem 12.8 states that, if ∇ is C0-close to an acyclic Hermitian con-
nection, then

(2.9) log
|T (∇)|

TRS(∇)
= π

〈
[L(p)] ∪ ImArg∇, [M ]

〉
,

where L(p) = LM (p) denotes the Hirzebruch L-polynomial in the Pon-
trjagin forms of the Riemannian metric on M . If dimM ≡ 3 (mod 4),
then L(p) has no component of degree dimM − 1 and, hence, |T (∇)| =
TRS(∇).

2.8. The refined analytic torsion as a holomorphic function on
the space of representations. One of the main properties of the re-
fined analytic torsion T (∇) is that, in an appropriate sense, it depends
holomorphically on the connection. Note, however, that the space of
connections is infinite dimensional and one needs to choose an appro-
priate notion of a holomorphic function on such a space. A possible
choice is explained in Subsection 13.1. As an alternative one can view
the refined analytic torsion as a holomorphic function on a finite dimen-
sional space, which we shall now explain.

The set Rep(π1(M),Cn) of all n-dimensional complex representations
of π1(M) has a natural structure of a complex algebraic variety, cf.
Subsection 13.6. Each representation α ∈ Rep(π1(M),Cn) gives rise to
a vector bundle Eα with a flat connection ∇α, whose monodromy is
isomorphic to α, cf. Subsection 13.6. Let

Rep0(π1(M),Cn) ⊂ Rep(π1(M),Cn)

denote the set of all representations α ∈ Rep(π1(M),Cn) such that the
connection ∇α is acyclic. We also denote by

Repu(π1(M),Cn) ⊂ Rep(π1(M),Cn)
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the set of all unitary representations and set

Repu
0(π1(M),Cn) = Repu(π1(M),Cn) ∩ Rep0(π1(M),Cn).

Denote by V ⊂ Rep0(π1(M),Cn) the set of representations α for
which there exists a metric gM so that the odd signature operator
Beven(∇, g

M ) is bijective (i.e., Assumption II of Subsection 2.1 is satis-
fied). It is not difficult to show, cf. Subsection 13.7, that V is an open
neighborhood of the set Repu

0(π1(M),Cn) of acyclic unitary representa-
tions.

For every α ∈ V one defines the refined analytic torsion Tα := T (∇α).
Corollary 13.11 states that the function α 7→ Tα is holomorphic on the
open set of all non-singular points of V .

2.9. Comparison with Turaev’s torsion. In [42, 43], Turaev intro-
duced a refinement T comb

α (ε, o) of the combinatorial torsion associated
to an acyclic representation α of π1(M). This refinement depends on
an additional combinatorial data, denoted by ε and called the Euler
structure as well as on the cohomological orientation of M , i.e., on the
orientation o of the determinant line of the cohomology H•(M,R) of M .
There are two versions of the Turaev torsion – the homological and the
cohomological one. In this paper it turns out to be more convenient to
use the cohomological Turaev torsion as it is defined by Farber and Tu-
raev in Section 9.2 of [20]. For α ∈ Rep0(π1(M),Cn), the cohomological
Turaev torsion T comb

α (ε, o) is a non-vanishing complex number.
Theorem 10.2 of [20] computes the quotient of the Turaev and the

Ray-Singer torsions. Combined with (2.9) this result leads to the fol-
lowing equality (cf. Subsection 14.7):

Let c(ε) ∈ H1(M,Z) be the characteristic class of the Euler struc-
ture ε, cf. [43] or Section 5.2 of [20]. Let Ld−1(p) denote the compo-
nent of L(p) in dimension d − 1. It represents a class in Hd−1(M,Q),
which can be lifted to a class in the integer cohomology Hd−1(M,Z),

cf. Lemma 14.5. We fix such a lift and we denote by L̂1 ∈ H1(M,Z)
its Poincaré dual homology class. By Corollary 14.6 there exists a ho-

mology class βε ∈ H1(M,Z) such that −2βε = L̂1(p)+ c(ε). Then there
exists an open neighborhood V ′ ⊂ V of Repu

0(π1(M),Cn) such that for
every α ∈ V ′

(2.10)

∣∣∣∣
Tα

T comb
α (ε, o)

∣∣∣∣ =
∣∣∣ e2πi〈Argα,βε〉

∣∣∣ ,

where Argα := Arg∇α
∈ H1(M,C/Z) is as in Subsection 2.7 and 〈·, ·〉

denotes the natural pairing H1(M,C/Z) ×H1(M,Z) → C/Z.
Let Σ denote the set of singular points of the complex analytic set

Rep(π1(M),Cn). By Corollary 13.11, the refined analytic torsion Tα is
a non-vanishing holomorphic function of α ∈ V \Σ. By the very con-
struction [42, 43, 20] the Turaev torsion is a non-vanishing holomorphic
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function of α ∈ Rep0(π1(M),Cn). Hence, Tα/T
comb
α is a holomorphic

function on V ′\Σ. By construction of the cohomology class Argα, for

every homology class z ∈ H1(M,Z), the expression e2π i 〈Argα,z〉 is a
holomorphic function on Rep(π1(M),Cn).

If the absolute values of two non-vanishing holomorphic functions are
equal on a connected open set then the functions must be equal up to a
factor µ ∈ C with |µ| = 1. This observation and (2.10) lead to the fol-
lowing generalization of the Cheeger-Müller theorem, cf. Theorem 14.8:

Theorem 2.10. For each connected component C of V ′, there exists
a constant φC = φC(ε, o) ∈ R, depending on ε and o, such that

(2.11)
Tα

T comb
α (ε, o)

= eiφC e2πi〈Argα,βε〉.

In the case when dimM ≡ 3(mod 4) and c(ε) = 0 formula (2.11)
simplifies, cf. Corollary 14.6.

2.11. Application: Phase of the Turaev torsion of a unitary
representation. We denote the phase of a complex number z by

Ph(z) ∈ [0, 2π)

so that z = |z|eiPh(z). Set ηα := η(∇α, g
M ).

Suppose α1, α2 ∈ Repu
0(π1(M),Cn) are unitary representations which

lie in the same connected component of V ′, where V ′ ⊂ V is the open
neighborhood of Repu

0(π1(M),Cn) defined in Subsection 2.9. As an
application of (2.11) one obtains, cf. Theorem 14.13, that, modulo
2π Z,

(2.12) Ph(T comb
α1

(ε, o)) + π ηα1 + 2π
〈
Argα1

, βε

〉

≡ Ph(T comb
α2

(ε, o)) + π ηα2 + 2π
〈
Argα2

, βε

〉
.

2.12. Sign of the absolute torsion and a theorem of Farber.
Suppose that the Stiefel-Whitney class wd−1(M) ∈ Hd−1(M,Z2) van-
ishes (which is always the case when dimM ≡ 3 (mod 4), cf. [32]).
Then one can choose an Euler structure ε such that c(ε) = 0, cf. [19,
§3.2]. Assume, in addition, that the first Stiefel-Whitney class w1(Eα),
viewed as a homomorphism H1(M,Z) → Z2, vanishes on the 2-torsion
subgroup of H1(M,Z). In this case there is also a canonical choice of the
cohomological orientation o, cf. [19, §3.3]. Then the Turaev torsions
T comb

α (ε, o) corresponding to different choices of ε with c(ε) = 0 and the
canonically chosen o will be the same.

If the above assumptions on wd−1(M) and w1(Eα) are satisfied, then
the number

T abs
α := T comb

α (ε, o) ∈ C\{0}, (c(ε) = 0),
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is canonically defined, i.e., is independent of any choices. It was intro-
duced by Farber and Turaev, [19], who called it the absolute torsion3 .
If α ∈ Repu

0(π1(M),Cn), then T abs
α is a real number, cf. Theorem 3.8 of

[19]. In Subsection 14.14 we show that, under the above assumptions,
(2.12) implies that if α1, α2 ∈ Repu

0(π1(M),Cn) are unitary representa-
tions which lie in the same connected component of V ′ then the following
statements hold:

1) in the case dimM ≡ 3 (mod 4)

sign
(
T abs

α1
) · eiπηα1 = sign

(
T abs

α2
) · eiπηα2 ,

2) in the case dimM ≡ 1 (mod 4)

sign
(
T abs

α1
) · eiπ

(
ηα1−〈[L(p)]∪Argα1

,[M ]〉
)

= sign
(
T abs

α2
) · eiπ

(
ηα2−〈[L(p)]∪Argα2

,[M ]〉
)
.

For the special case when there is a real analytic path αt of uni-
tary representations connecting α1 and α2 such that the twisted deR-
ham complex (6.63) is acyclic for all but finitely many values of t,
Theorem 14.15 was established by Farber, using a completely different
method,4 see [17], Theorems 2.1 and 3.1.

3. Preliminaries on Determinants of Elliptic Operators

In this section we briefly review the main facts about the ζ-regularized
determinants of elliptic operators. At the end of the section (cf. Sub-
section 3.11) we define a sign-refined version of the graded determinant
– a notion, which plays a central role in this paper.

3.1. Setting. Throughout this paper let E be a complex vector bun-
dle over a smooth compact manifold M and let D : C∞(M,E) →
C∞(M,E) be an elliptic differential operator of order m ≥ 1. Denote
by σ(D) the leading symbol of D.

3.2. Choice of an angle. Our aim is to define the ζ-function and the
determinant of D. For this we will need to define the complex powers of
D. As usual, to define complex powers we need to choose a spectral cut
in the complex plane. We will restrict ourselves to the simplest spectral
cuts given by a ray

(3.13) Rθ =
{
ρeiθ : 0 ≤ ρ <∞

}
, 0 ≤ θ < 2π.

Consequently, we have to choose an angle θ ∈ [0, 2π).

3In [19], Farber and Turaev defined the absolute torsion also in the case when the
representation α is not necessarily acyclic.

4Note that Farber’s definition of the η-invariant differs from ours by a factor of 2
and also that the sign in front of 〈[L(p)]∪Argα1

, [M ]〉 in [17] has to be replaced by

the opposite one.
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Definition 3.3. The angle θ is a principal angle for an elliptic oper-
ator D if

spec
(
σ(D)(x, ξ)

)
∩ Rθ = ∅, for all x ∈M, ξ ∈ T ∗

xM\{0}.

If I ⊂ R we denote by LI the solid angle

LI =
{
ρeiθ : 0 < ρ <∞, θ ∈ I

}
.

Definition 3.4. The angle θ is an Agmon angle for an elliptic op-
erator D if it is a principal angle for D and there exists ε > 0 such
that

spec (D) ∩ L[θ−ε,θ+ε] = ∅.

3.5. ζ-function and determinant. Let θ be an Agmon angle5 for
D. Assume, in addition, that D is injective. In this case, the ζ-function
ζθ(s,D) of D is defined as follows.

Since D is invertible, there exists a small number ρ0 > 0 such that

spec (D) ∩
{
z ∈ C; |z| < 2ρ0

}
= ∅.

Define the contour Γ = Γθ,ρ0 ⊂ C consisting of three curves

Γ = Γ1 ∪ Γ2 ∪ Γ3,

where

Γ1 =
{
ρeiθ : ∞ > ρ ≥ ρ0

}
, Γ2 =

{
ρ0e

iα : θ < α < θ + 2π
}
,(3.14)

Γ3 =
{
ρei(θ+2π) : ρ0 ≤ ρ <∞

}
.

For Re s > dim M
m , the operator

(3.15) D−s
θ =

i

2π

∫

Γθ,ρ0

λ−s(D − λ)−1 dλ

is a pseudo-differential operator with continuous kernel D−s
θ (x, y), cf.

[39, 40]. When the angle θ is fixed we will often write D−s for D−s
θ .

We define

(3.16) ζθ(s,D) = TrD−s
θ =

∫

M
trD−s

θ (x, x) dx, Re s >
dimM

m
.

It was shown by Seeley [39] (see also [40]) that ζθ(s,D) has a meromor-
phic extension to the whole complex plane and that 0 is a regular value
of ζθ(s,D).

More generally, let Q be a pseudo-differential operator of order q. We
set

(3.17) ζθ(s,Q,D) = Tr QD−s
θ , Re s > (q + dimM)/m.

5The existence of an Agmon angle is an additional assumption on D, though a
very mild one. In particular, if D possesses a principal angle it also possesses an
Agmon angle, cf. the discussion in Subsection 3.10.
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This function also has a meromorphic extension to the whole complex
plane, cf. [47, §3.22], [24, Th. 2.7], and [25]. Moreover, if Q is a 0-th
order pseudo-differential projection, i.e., a 0-th order pseudo-differential
operator satisfying Q2 = Q, then by [46, §7], [47] (see also [9, 34]),
ζθ(s,Q,D) is regular at 0.

Definition 3.6. The ζ-regularized determinant of D is defined by
the formula

(3.18) Detθ(D) := exp

(
−
d

ds

∣∣
s=0

ζθ(s,D)

)
.

Roughly speaking, (3.18) says that the logarithm log Detθ(D) of the
determinant of D is equal to −ζ ′θ(0, D). However, the logarithm is a
multivalued function. Hence, log Detθ(D) is defined only up to a multi-
ple of 2πi, while −ζ ′θ(0, D) is a well defined complex number. We denote
by LDetθ(D) the particular value of the logarithm of the determinant
such that

(3.19) LDetθ(D) = −ζ ′θ(0, D).

Let us emphasize that the equality (3.19) is the definition of the number
LDetθ(D).

We will need the following generalization of Definition 3.6.

Definition 3.7. Suppose Q is a 0-th order pseudo-differential pro-
jection commuting with D. Then V := ImQ is a D invariant subspace
of C∞(M,E). The ζ-regularized determinant of the restriction D|V of
D to V is defined by the formula

(3.20) Detθ(D|V ) := eLDetθ(D|V ),

where

(3.21) LDetθ(D|V ) = −
d

ds

∣∣
s=0

ζθ(s,Q,D).

Remark 3.8. From the representation of ζθ(s,Q,D) for Re s > dim M
m

by the eigenvalues ofD|V , cf. (3.26) below, it follows that the right hand
side of (3.21) is independent of Q except through Im(Q). This justifies
the notation LDetθ(D|V ). However, we need to know that V is the
image of a 0-th order pseudo-differential projection Q to ensure that
ζθ(s,D) has a meromorphic extension to the whole s-plane with s = 0
being a regular point.

3.9. Case of a self-adjoint leading symbol. Let us assume now that

(3.22) σ(D)∗(x, ξ) = σ(D)(x, ξ), (x, ξ) ∈ T ∗M,

where σ(D)∗(x, ξ) denotes the adjoint of the linear operator σ(D)(x, ξ)
with respect to some fixed scalar product on the fibers on E. This
assumption implies that D can be written as a sum D = D′ +A where
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D′ is a self-adjoint differential operator of order m and A is a differential
operator of order smaller than m.

Though the operator D is not self-adjoint in general, the assumption
(3.22) guarantees that it has nice spectral properties. More precisely,
cf. [31, §I.6], the space L2(M,E) of square integrable sections of E is
the closure of the algebraic direct sum of finite dimensional D-invariant
subspaces

(3.23) L2(M,E) =
⊕

k≥1

Λk

such that the restriction of D to Λk has a unique eigenvalue λk and
limk→∞ |λk| = ∞. In general, the sum (3.23) is not a sum of mutually
orthogonal subspaces.

The space Λk are called the space of root vectors of D with eigenvalue
λk. We call the dimension of the space Λk the (algebraic) multiplicity
of the eigenvalue λk and we denote it by mk.

Assume now that θ is an Agmon angle for D. As, for Re s > dim M
m ,

the operatorD−s
θ is of trace class, we conclude by Lidskii’s theorem, [30],

[36, Ch. XI], that the ζ-function (3.16) is equal to the sum (including
the algebraic multiplicities) of the eigenvalues of D−s

θ . Hence,

(3.24) ζθ(s,D) =
∞∑

k=1

mk (λk)
−s
θ =

∞∑

k=1

mk e
−s logθ λk ,

where logθ(λ) denotes the branch of the logarithm in C\Rθ with

θ < Im logθ(λ) < θ + 2π.

3.10. Dependence of the determinant on the angle. Assume now
that θ is only a principal angle forD. Then, cf. [39, 40], there exists ε >
0 such that spec (D)∩L[θ−ε,θ+ε] is finite and spec (σ(D))∩L[θ−ε,θ+ε] = ∅.
Thus we can choose an Agmon angle θ′ ∈ (θ − ε, θ + ε) for D. In this
subsection we show that Detθ′(D) is independent of the choice of this
angle θ′. For simplicity, we will restrict ourselves to the case when D
has a self-adjoint leading symbol.

Let θ′′ > θ′ be another Agmon angle for D in (θ − ε, θ + ε). Then
there are only finitely many eigenvalues λr1 , . . . , λrl

of D in the solid
angle L[θ′,θ′′]. We have

(3.25) logθ′′ λk =

{
logθ′ λk, if k 6∈ {r1, . . . , rl};

logθ′ λk + 2πi, if k ∈ {r1, . . . , rl}.
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Hence

(3.26) ζ ′θ′(0, D) − ζ ′θ′′(0, D)

=
d

ds

∣∣
s=0

l∑

i=1

mri
e−s logθ′ (λri

)(1 − e−2πis) = 2πi
l∑

i=1

mri

and, by Definition 3.6,

(3.27) Detθ′′(D) = Detθ′(D).

Note that the equality (3.27) holds only because both angles θ′ and θ′′

are close to a given principal angle θ so that the intersection spec (D)∩
L[θ′,θ′′] is finite. If there are infinitely many eigenvalues of D in the solid
angle L[θ′,θ′′] then Detθ′′(D) and Detθ′(D) might be different.

3.11. Graded determinant. Let D : C∞(M,E) → C∞(M,E) be a
differential operator with a self-adjoint leading symbol. Suppose that
Qj : C∞(M,E) → C∞(M,E) (j = 0, . . . , d) are 0-th order pseudo-
differential projections commuting with D. Set Vj := ImQj and assume
that

C∞(M,E) =
d⊕

j=0

Vj .

Definition 3.12. Assume that D is injective and that θ ∈ [0, 2π) is
an Agmon angle for the operator (−1)jD|Vj

, for every j = 0, . . . , d. The
graded determinant Detgr,θ(D) of D (with respect to the grading defined
by the pseudo-differential projections Qj) is defined by the formula

(3.28) Detgr,θ(D) := eLDetgr,θ(D),

where

(3.29) LDetgr,θ(D) :=
d∑

j=0

(−1)j LDetθ

(
(−1)jD|Vj

)
.

The following is an important example of the above situation: Let

E =
⊕d

j=0Ej be a graded vector bundle over M . Suppose that for each
j = 0, . . . , d, there is an injective elliptic differential operator

Dj : C∞(M,Ej) −→ C∞(M,Ej),

such that θ ∈ [0, 2π) is an Agmon angle for (−1)jDj for all j = 0, . . . , d.
We denote by

(3.30) D =
d⊕

j=0

Dj : C∞(M,E) −→ C∞(M,E)
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the direct sum of the operators Dj . Then (3.29) reduces to

(3.31) LDetgr,θ(D) :=
d∑

j=0

(−1)j LDetθ

(
(−1)jDj

)
.

4. The η-invariant of a non Self-Adjoint Operator and the
Determinant

It is well known, cf. [41, 48], that the phase of the determinant of a
self-adjoint elliptic differential operator D can be expressed in terms of
the η-invariant of D and the ζ-function of D2. In this section we extend
this result to non self-adjoint operators.

Throughout this section we use the notation introduced in Section 3
and assume that D : C∞(M,E) → C∞(M,E) is an elliptic differential
operator of order m with self-adjoint leading symbol, cf. Subsection 3.9.
We also assume that 0 is not in the spectrum of D.

4.1. η-invariant. First, we recall the definition of the η-function of D
for a non-self-adjoint operator, cf. [21].

Definition 4.2. Let θ be an Agmon angle for D, cf. Definition 3.4.
Using the spectral decomposition of D defined in Subsection 3.9, we
define the η-function of D by the formula

(4.32) ηθ(s,D) =
∑

Re λk>0

mk (λk)
−s
θ −

∑

Re λk<0

mk (−λk)
−s
θ .

Note that, by definition, the purely imaginary eigenvalues of D do
not contribute to ηθ(s,D).

It was shown by Gilkey, [21], that ηθ(s,D) has a meromorphic exten-
sion to the whole complex plane C with isolated simple poles, and that
it is regular at 0. Moreover, the number ηθ(0, D) is independent of the
Agmon angle θ.

Since the leading symbol of D is self-adjoint, the angles ±π/2 are
principal angles for D, cf. Definition 3.3. In particular, there are at
most finitely many eigenvalues of D on the imaginary axis.

Let m+ (respectively, m−) denote the number of eigenvalues (counted
with their algebraic multiplicities, cf. Subsection 3.9) of D on the posi-
tive (respectively, negative) part of the imaginary axis.

Definition 4.3. The η-invariant η(D) of D is defined by the formula

(4.33) η(D) =
ηθ(0, D) +m+ −m−

2
.

In view of (3.25), η(D) is independent of the angle θ.

Let D(t) be a smooth 1-parameter family of operators. Then η(D(t))
is not smooth but may have integer jumps when eigenvalues cross the
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imaginary axis. Because of this, the η-invariant is usually considered
modulo integers. However, in this paper we will be interested in the
number eiπη(D), which changes its sign when η(D) is changed by an odd
integer. Hence, we will consider the η-invariant as a complex number.

Remark 4.4. Note that our definition of η(D) is slightly different
from the one suggested by Gilkey in [21]. In fact, in our notation,
Gilkey’s definition is η(D) + m−. Hence, reduced modulo integers the

two definitions coincide. However, the number eiπη(D) will be multiplied
by (−1)m− if we replace one definition by the other. In this sense,
Definition 4.3 can be viewed as a sign refinement of the definition given
in [21].

4.5. Relationship between the η-invariant and the determi-
nant. Since the leading symbol of D is self-adjoint, the angles ±π/2
are principal for D. Hence, cf. Subsection 3.10, there exists an Ag-
mon angle θ ∈ (−π/2, 0) such that there are no eigenvalues of D in the
solid angles L(−π/2,θ] and L(π/2,θ+π]. Then 2θ is an Agmon angle for the

operator D2.

Theorem 4.6. Let D : C∞(M,E) → C∞(M,E) be a bijective elliptic
differential operator of order m with self-adjoint leading symbol. Let θ ∈
(−π/2, 0) be an Agmon angle for D such that there are no eigenvalues
of D in the solid angles L(−π/2,θ] and L(π/2,θ+π] (hence, there are no

eigenvalues of D2 in the solid angle L(−π,2θ]). Then 6

(4.34) LDetθ(D) =
1

2
LDet2θ(D

2) − iπ

(
η(D) −

1

2
ζ2θ(0, D

2)

)
.

In particular,

(4.35) Detθ(D) = e−
1
2

ζ′2θ
(0,D2) · e−iπ (η(D)− 1

2
ζ2θ(0,D2)).

Remark 4.7.

a. Let θ be as in Theorem 4.6 and suppose that θ′ ∈ (−π, 0) is another
angle such that both θ′ and θ′ +π are Agmon angles for D. Then,
by (3.26) and (3.27),

(4.36)
Detθ′(D) = Detθ(D),

ζ ′2θ(0, D
2) ≡ ζ ′2θ′(0, D

2) mod 2πi.

In particular,

(4.37) e−
1
2

ζ′
2θ′

(0,D2) = ± e−
1
2

ζ′2θ
(0,D2).

6Recall that we denote by LDetθ(D) the particular branch of the logarithm of the
determinant of D defined by formula (3.19).
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Clearly, ζθ1(0, D
2) = ζθ2(0, D

2) if there are finitely many eigen-
values of D2 in the solid angle L[θ1, θ2]. Hence, ζ2 θ (0, D2) =

ζ2θ′(0, D
2). We then conclude from (4.35), (4.36), and (4.37) that

(4.38) Detθ′(D) = ± e−
1
2

ζ′
2θ′

(0,D2) · e−iπ (η(D)−
ζ2θ′

(0,D2)

2
).

In other words, for (4.35) to hold we need the precise assumptions
on θ which are specified in Theorem 4.6. But “up to a sign” it
holds for every spectral cut in the lower half plane.

b. If instead of the spectral cut Rθ in the lower half-plane we use
the spectral cut Rθ+π in the upper half-plane we will get a similar
formula

(4.39) LDetθ+π(D) =
1

2
LDet2θ(D

2) + iπ

(
η(D) −

1

2
ζ2θ(0, D

2)

)
,

whose proof is a verbatim repetition of the proof of (4.34), cf.
below.

c. If the dimension of M is odd, then the ζ-function of an elliptic
differential operator of even order vanishes at 0, cf. [39]. In par-
ticular, ζ2θ(0, D

2) = 0. Hence, (4.34) simplifies to

(4.40) LDetθ(D) =
1

2
LDet2θ(D

2) − iπ η(D).

Proof. Let Π+ and Π− denote the spectral projections of D corre-
sponding to the solid angles L(−π/2,π/2) and L(π/2,3π/2) respectively. Let
P+ and P− denote the spectral projections of D corresponding to the
rays Rπ/2 and R−π/2 respectively (here we use the notation introduced

in (3.13)). Set Π̃± = Π± + P±. Since D is injective Id = Π̃+ + Π̃−.
Clearly

ζθ(s,D) = Tr
[
Π̃+D

−s
θ

]
+ e−iπs Tr

[
Π̃− (−D)−s

θ

]
;

ζ2θ(s/2, D
2) = Tr

[
Π̃+D

−s
θ

]
+ Tr

[
Π̃− (−D)−s

θ

]
.

Hence, using the notation introduced in (3.17), we obtain

(4.41)
ζθ(s,D) = ζθ(s, Π̃+, D) + e−iπs ζθ(s, Π̃−,−D);

ζ2θ(s/2, D
2) =ζθ(s, Π̃+, D) + ζθ(s, Π̃−,−D).

As, by assumption, the solid angles L(−π/2,θ] and L(π/2,θ+π] do not con-
tain eigenvalues of D, it follows that

η(s,D) = Tr
[
Π+D

−s
θ

]
− Tr

[
Π−(−D)−s

θ

]
(4.42)

= ζθ(s,Π+, D) − ζθ(s,Π−,−D).

Recall that the projectors P± have finite rank, which we denoted by
m±, cf. Subsection 4.1. Hence,

ζθ(0, P±,±D) = rankP± = m±.
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Combining this equality with (4.42), and using (4.33), we obtain

(4.43) η(D) =
ζθ(0, Π̃+, D) − ζθ(0, Π̃−,−D)

2
.

From (4.41) and (4.43), we get

ζ ′θ(0, D) = ζ ′θ(0, Π̃+, D)(4.44)

+ ζ ′θ(0, Π̃−,−D) − iπ ζθ(0, Π̃−,−D)

=
1

2
ζ ′2θ(0, D

2) − iπ
(ζθ(0, Π̃+, D) + ζθ(0, Π̃−,−D)

2

−
ζθ(0, Π̃+, D) − ζθ(0, Π̃−,−D)

2

)

=
1

2
ζ ′2θ(0, D

2) − iπ
( 1

2
ζ2θ(0, D

2) − η(D)
)
.

Since, by definition (3.19) of the logarithm of the determinant

LDetθ(D) = − ζ ′θ(0, D),

equality (4.34) follows from (4.44). q.e.d.

4.8. Determinant of a self-adjoint operator and the η-invariant.
If the operator D is, in addition, self-adjoint, then η(D) and ζ2θ(0, D

2)
are real and the number Det2θ(D

2) is positive, cf. Corollary A.3 in
Section A. Hence, formula (4.35) leads to

|Detθ(D)| =
√

Det2θ(D2),(4.45)

Ph
(
Detθ(D)

)
≡ −π

(
η(D) −

1

2
ζ2θ(0, D

2)
)
, mod 2π,(4.46)

where Ph
(
Detθ(D)

)
denotes the phase of the complex number Detθ(D).

If D is not self-adjoint, (4.45) is not true in general, because the
numbers LDet2θ(D

2), η(D), and ζ2θ(0, D
2) need not be real. However,

they are real and a version of (4.45) and (4.46) holds for a class of
injective elliptic differential operators whose spectrum is symmetric with
respect to the real axis. Though we will not use this result we present it
in the Appendix A for the sake of completeness.

4.9. η-invariant and graded determinant. Suppose now that D =⊕d
j=0Dj as in (3.30). Choose θ ∈ (−π/2, 0) such that there are no

eigenvalues of Dj in the solid angles L(−π/2,θ] and L(π/2,θ+π] for every
0 ≤ j ≤ d. From the definition of the η-invariant it follows that

η
(
±Dj

)
= ± η(Dj).



212 M. BRAVERMAN & T. KAPPELER

Combining this equality with (3.29) and (4.34) we obtain

LDetgr,θ(D) =
1

2

d∑

j=0

(−1)j LDet2θ(D
2
j )(4.47)

− iπ


η(D) −

1

2

d∑

j=0

(−1)jζ2θ(0, D
2
j )


 ,

where

η(D) =
d∑

j=0

η(Dj)

is the η-invariant of the operator D =
⊕d

j=0Dj .
Finally, note that, as in Remark 4.7.c, if the dimension of M is odd,

then ζ2θ(0, D
2
j ) = 0, and (4.47) takes the form

(4.48) LDetgr,θ(D) =
1

2

d∑

j=0

(−1)j LDet2θ(D
2) − iπ η(D).

4.10. Generalization. All the constructions and theorems of this sec-
tion easily generalize to operators acting on a subspace of the space
C∞(M,E) of sections of E.

Let D : C∞(M,E) → C∞(M,E) be an injective elliptic differential
operator with a self-adjoint leading symbol. Let Q : C∞(M,E) →
C∞(M,E) be a 0-th order pseudo-differential projection commuting
with D. Then V := ImQ ⊂ C∞(M,E) is a D-invariant subspace.
Hence, the decomposition (3.23) implies that

V =
⊕

k≥1

(
Λk ∩ V

)

and the restriction D|V of D to V has the same eigenvalues λ1, λ2, . . .
as D but with new multiplicities mV

1 ,m
V
2 , . . .. Note, that now mV

i ≥ 0
might vanish for certain i’s. Let mV

+ (respectively, mV
−) denote the

number of eigenvalues (counted with their algebraic multiplicities) of
D|V on the positive (respectively, negative) part of the imaginary axis.
Set

ηθ(s,D|V ) =
∑

Re λk>0

mV
k (λk)

−s
θ −

∑

Re λk<0

mV
k (−λk)

−s
θ ,(4.49)

η(D|V ) =
ηθ(0, D|V ) +mV

+ −mV
−

2
.
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A verbatim repetition of the proof of Theorem 4.6 implies

LDetθ(D|V ) =
1

2
LDet2θ(D

2|V )(4.50)

− iπ

(
η(D|V ) −

1

2
ζ2θ(0, D

2|V )

)
,

where we used the notation

(4.51) ζ2θ(s,D
2|V ) = ζ2θ(s,Q,D

2),

cf. (3.17).

Finally, suppose that V =
⊕d

j=0 Vj is given as in Definition 3.12.
Then

LDetgr,θ(D) =
1

2

d∑

j=0

(−1)j LDet2θ(D
2|Vj

)(4.52)

− iπ


η(D) −

1

2

d∑

j=0

(−1)jζ2θ(0, D
2|Vj

)


 .

Note, however, that an analogue of (4.48) does not necessarily hold in
this case even if dimM is odd, because ζ2θ(s,D

2|Vj
), defined by (4.51),

is not a ζ-function of a differential operator and does not necessarily
vanish at 0.

5. Determinant as a Holomorphic Function

In this section we explain that the determinant can be viewed as
a holomorphic function on the space of elliptic differential operators.
We also discuss some applications of this result, which will be used in
Section 13 to show that the refined analytic torsion is a holomorphic
function and in Section 9 for studying the dependence of the graded
determinant on the Riemannian metric.

5.1. Holomorphic curves in a Fréchet space. Let E be a complex
Fréchet space and let O ⊂ C be an open set. Recall (cf., e.g., [37,
Def. 3.30]) that a map γ : O → E is called holomorphic if for every
λ ∈ O the following limit exists,

lim
µ→λ

γ(µ) − γ(λ)

µ− λ
.

We will refer to a holomorphic map γ : O → E as a holomorphic curve
in E .

Let Z ⊂ E be a subset of a complex Fréchet space. By a holomorphic
curve in Z we understand a holomorphic map γ : O → E such that
γ(λ) ∈ Z for all λ ∈ O.

Suppose now that V ⊂ Cn is an open set. We call a map f : V → Z
holomorphic if for each holomorphic curve γ : O → V the composition
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f ◦ γ : O → Z is a holomorphic curve in Z. Note that if Z = C then,
by Hartogs’ theorem (cf., e.g., [26, Th. 2.2.8]), the above definition is
equivalent to the standard definition of a holomorphic map.

5.2. The space of smooth functions as a Fréchet space. The
space C∞

b (Rd) of bounded smooth complex-valued functions on Rd with
bounded derivatives has a natural structure of a Fréchet space (cf., e.g.,
[49, Ch. I]) with topology defined by the semi-norms

(5.53) ‖f‖α := sup
x∈Rd

| ∂α
x f(x) | ,

where α = (α1, . . . , αd) ∈ (Z≥0)
d and ∂α

x :=
(

∂
∂x1

)α1 · · ·
(

∂
∂xd

)αd .

5.3. A Fréchet space structure on the space of differential op-
erators. Let M be a closed d-dimensional manifold and let E be a
complex vector bundle over M . Denote by Diffm(M,E) the set of dif-
ferential operators D : C∞(M,E) → C∞(M,E) of order ≤ m with
smooth coefficients. It has a natural structure of a Fréchet space defined
as follows. Consider a pair (φ,Φ) where φ : U → Rd is a diffeomorphism
(with U ⊂ M an open set), and Φ : E|U → Cl × U is a bundle map
which identifies the restriction E|U of E to U with the trivial bundle
Cl × U → U . We refer to (φ,Φ) as a coordinate pair.

Using the maps φ and Φ we can identify the restriction of an operator
D ∈ Diffm(M,E) to U with the operator

(5.54) D(φ,Φ) :=
∑

|β|≤m

aβ
(φ,Φ)(x) ∂

β
x ∈ Diffm(Rd,Cl × Rd),

where |β| =
∑d

j=1 βj and aβ
(φ,Φ)(x) =

{
aβ

(φ,Φ);i,j(x)
}l

i,j=1
are smooth

bounded matrix-valued functions on Rd, called the coefficients of D
with respect to the coordinate pair (φ,Φ).

We now define a structure of a Fréchet space on Diffm(M,E) using
the semi-norms

(5.55) ‖D‖α
(φ,Φ);β;i,j :=

∥∥ aβ
(φ,Φ);i,j

∥∥
α
,

where (φ,Φ) runs over all coordinate pairs, α, β ∈ (Z≥0)
d with |β| ≤ m,

1 ≤ i, j ≤ l, and the norm on the right hand side of (5.55) is defined by
(5.53).

5.4. Holomorphic curves in the space of differential operators.
Suppose O ⊂ C is an open set and consider a map γ : O → Diffm(M,E).

For every coordinate pair (φ,Φ) we denote by aβ
(φ,Φ)(x;λ) the coefficients

of γ(λ) with respect to the coordinate pair (φ,Φ).
Clearly, γ is a holomorphic curve in Diffm(M,E) with respect to the

Fréchet space structure introduced in Subsection 5.3 if and only if for
every coordinate pair (φ,Φ), every β ∈ (Z≥0)

d with |β| ≤ m, and every
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1 ≤ i, j ≤ l, the map λ 7→ aβ
(φ,Φ);i,j(x;λ) is a holomorphic curve in

C∞
b (Rd).
The following lemma follows immediately from the definitions.

Lemma 5.5. Let O ⊂ C be an open set and, for i = 1, 2, let γi : O →
Diffmi

(M,E) be a holomorphic curve. Then λ 7→ γ(λ) := γ1(λ) ◦ γ2(λ)
is a holomorphic curve in Diffm1+m2(M,E). Here γ1(λ) ◦ γ2(λ) is the
composition of the differential operators γ1(λ) and γ2(λ).

5.6. Determinant of a holomorphic curve of operators. Let

Ellm(M,E) ⊂ Diffm(M,E)

denote the open set of elliptic differential operators of order m and let
Ellm,θ(M,E) ⊂ Ellm(M,E) be the open subset of operators which have
θ as an Agmon angle. We denote by Ell′m,θ(M,E) the open subset of
invertible operators in Ellm,θ(M,E). According to Subsection 3.5, the
function

LDetθ : Ell′m,θ(M,E) −→ C

is well defined. For D ∈ Ellm,θ(M,E) we set

(5.56) Detθ(D) =

{
exp (LDetθ(D)) , if D is invertible;

0, otherwise.

Further, we denote by Ellm,(θ1,θ2)(M,E) ⊂ Ellm(M,E) the open sub-
set of operators for which all the angles θ ∈ (θ1, θ2) are principal, cf.
Subsection 3.2. Any operator D ∈ Ellm,(θ1,θ2)(M,E) has an Agmon an-
gle θ ∈ (θ1, θ2) and, by (3.27), the determinant Detθ(D) is independent
of the choice of θ in the interval (θ1, θ2). The following theorem is well
known, cf., for example, [29, Corollary 4.2],

Theorem 5.7. Let E be a complex vector bundle over a closed man-
ifold M and let O ⊂ C be an open set.

a. Suppose γ : O → Ell′m,θ(M,E) is a holomorphic curve in

Ell′m,θ(M,E) ⊂ Diffm(M,E).

Then the function O → C, λ 7→ LDetθ

(
γ(λ)

)
∈ C is holomorphic.

b. Given angles θ1 < θ2 and an operator D ∈ Ellm,(θ1,θ2)(M,E), de-
note by Det(θ1,θ2)(D) the determinant Detθ(D) defined using any
Agmon angle θ ∈ (θ1, θ2). Let γ : O → Ellm,(θ1,θ2)(M,E) be a
holomorphic curve in Ellm,(θ1,θ2) ⊂ Diffm(M,E). Then

(5.57) O −→ C, λ 7→ Det(θ1,θ2)

(
γ(λ)

)

is a holomorphic function.
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Remark 5.8. The theorem implies that the function Det(θ1,θ2)(D) is
Gâteaux holomorphic on Ellm,(θ1,θ2)(M,E), cf. [16, Def. 3.1]. Moreover,
since Det(θ1,θ2) is continuous on Ellm,(θ1,θ2)(M,E) it follows that this
function is holomorphic in the sense of Definition 3.6 of [16]. However,
since there seems to be no standard notion of a holomorphic function
on a Fréchet space, we prefer to avoid this terminology.

Corollary 5.9. Suppose E →M is a complex Hermitian vector bun-
dle over a closed manifold M . Let Ell′m,sa(M,E) denote the set of in-
vertible elliptic operators of order m with self-adjoint leading symbol
and let γ : O → Ell′m,sa(M,E) be a holomorphic curve in Ell′m,sa(M,E).
Then the function

(5.58) O −→ C, λ 7→ e2πiη(γ(λ))

is holomorphic.

Proof. By formula (4.35) of Theorem 4.6

(5.59) e2πiη(γ(λ)) =
Det(−π,0)

(
γ(λ)2

)
(

Det(−π/2,0)

(
γ(λ)

) )2 · eiπζ2θ

(
0,γ(λ)2

)
.

By Lemma 5.5, λ 7→ γ(λ)2 is a holomorphic curve in Ell′2m,sa(M,E).
Hence, by Theorem 5.7.b the quotient on the right hand side of (5.59)
is a holomorphic function in λ. It remains to show that ζ2θ

(
0, γ(λ)2

)

depends holomorphically on λ.
First, note that by (3.25), ζ2θ

(
0, γ(λ)2

)
is independent of θ. By a

result of Seeley [39] (see also [40]), the value ζ2θ

(
0, γ(λ)2

)
of the zeta-

function of γ(λ)2 is given by a local formula, i.e., by an integral over
M of a C-valued differential form φ whose value at a point x ∈ M is
a rational function of the symbol of γ(λ) and a finite number of its
derivatives. It follows that the function O → C, λ 7→ ζ2θ(0, γ(λ)2) is
holomorphic. q.e.d.

Another important consequence of Theorem 5.7 is the following

Corollary 5.10. Let V ⊂ Cn be an open set and let

f : V → Ellm,(θ1,θ2)(M,E)

be a holomorphic map in the sense of Subsection 5.1. Then the set

Σ :=
{
λ ∈ V : f(λ) is not invertible

}

is a complex analytic subset of V . In particular, if V is connected then
so is V \Σ.

Proof. In view of Hartogs’ theorem ([26, Th. 2.2.8]), Theorem 5.7.b
implies that the function V → C, λ 7→ Det(θ1,θ2)(f(λ)) is holomorphic

on V . By (5.56), Σ =
{
λ ∈ V : Det(θ1,θ2)(f(λ)) = 0

}
. q.e.d.
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6. Graded Determinant of the Odd Signature Operator

In this section we define the graded determinant of the Atiyah-Patodi-
Singer odd signature operator, [3, 21], of a flat vector bundle E over
a closed Riemannian manifold M . In Section 8 we show that, if E
admits an invariant Hermitian metric, then the absolute value of this
determinant is equal to the Ray-Singer analytic torsion [35]. There
is a similar, though slightly more complicated, relationship between
the graded determinant and the Ray-Singer torsion in the general case,
cf. Theorem 8.2. Thus, the graded determinant of the odd signature
operator can be viewed as a refinement of the Ray-Singer torsion.
6.1. Setting. Let M be a smooth closed oriented manifold of odd di-
mension d = 2r − 1 and let E → M be a complex vector bundle over
M endowed with a flat connection ∇. We denote by ∇ also the induced
differential

∇ : Ω•(M,E) −→ Ω•+1(M,E),

where Ωk(M,E) denotes the space of smooth differential forms of M
with values in E of degree k.
6.2. Odd signature operator. Fix a Riemannian metric gM on M
and let ∗ : Ω•(M,E) → Ωd−•(M,E) denote the Hodge ∗-operator. De-
fine the chirality operator Γ : Ω•(M,E) → Ω•(M,E) by the formula

(6.60) Γω := ir (−1)
k(k+1)

2 ∗ ω, ω ∈ Ωk(M,E),

with r given as above by r = d+1
2 . This operator is equal to the operator

defined in §3.2 of [4] as follows from applying Proposition 3.58 of [4] in
the case dimM is odd. Note that Γ2 = 1 and that Γ is self-adjoint with
respect to the scalar product on Ω•(M,E) induced by the Riemannian
metric gM and by an arbitrary Hermitian metric on E.

Definition 6.3. The odd signature operator is the operator

B = B(∇, gM ) : Ω•(M,E) → Ω•(M,E)

defined by

(6.61) B = Γ∇ + ∇Γ.

We denote by Bk the restriction of B to the space Ωk(M,E).

Explicitly, for ω ∈ Ωk(M,E) one has

(6.62) Bk ω := ir(−1)
k(k+1)

2
+1
(
(−1)k ∗ ∇ −∇ ∗

)
ω

∈ Ωd−k−1(M,E) ⊕ Ωd−k+1(M,E).

The odd signature operator was introduced by Atiyah, Patodi, and
Singer, [2, p. 44], [3, p. 405], in the case when E is endowed with
a Hermitian metric invariant with respect to ∇ (i.e., invariant under
parallel transport by ∇). The general case was studied by Gilkey, [21,
p. 64–65].
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Lemma 6.4. Suppose that E is endowed with a Hermitian metric
hE. Denote by 〈·, ·〉 the scalar product on Ω•(M,E) induced by hE and
the Riemannian metric gM on M .

1. B is elliptic and its leading symbol is symmetric with respect to
the Hermitian metric hE.

2. If, in addition, the metric hE is invariant with respect to the con-
nection ∇, then B is symmetric with respect to the scalar product
〈·, ·〉,

B∗ = B.

If the metric hE is not invariant, then, in general, B is not sym-
metric.

The proof of the lemma is a simple calculation. The first part is
already stated in [3, p. 405]. The second part is proven in the Remark
on page 65 of [21].

6.5. Assumptions. In this paper we study the odd signature operator
B and the analytic torsion under the following simplifying assumptions.
The general case is addressed in [7].

Assumption I. The connection ∇ is acyclic, i.e., the twisted deRham
complex

(6.63) 0 → Ω0(M,E)
∇

−−−−→ Ω1(M,E)
∇

−−−−→ · · ·

· · ·
∇

−−−−→ Ωd(M,E) → 0

is acyclic,

Im
(
∇|Ωk−1(M,E)

)
= Ker

(
∇|Ωk(M,E)

)
for every k = 1, . . . , d.

Assumption II. The odd signature operator

B : Ω•(M,E) → Ω•(M,E)

is bijective.

6.6. Hermitian connection. Suppose that there exists a Hermitian
metric hE on E invariant with respect to ∇ (in this case we say that
the connection ∇ is Hermitian). Then Assumption II follows from As-
sumption I. Indeed, in this case the operator B is symmetric with re-
spect to the scalar product 〈·, ·〉, defined by the metrics gM and hE , cf.
Lemma 6.4. Hence, we only need to show that KerB = {0}. Let ∇∗

denote the formal adjoint of the operator ∇ : Ω•(M,E) → Ω•+1(M,E)
with respect to the scalar product 〈·, ·〉. Since the metric hE is flat, we
obtain, cf. [45, §6.1],

(6.64) ∇∗ = Γ∇Γ.

Using this identity and the definition (6.61) of B we see that

(6.65) B2 = ∇∗∇ + ∇∇∗
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is the Laplacian. Thus KerB = KerB2 is isomorphic to the cohomology
of the complex (6.63), and, hence, is trivial by Assumption I. Conversely,
these arguments show at the same time that, in the case considered,
Assumption II implies Assumption I.

6.7. Connections which are close to a Hermitian connection.
In this paper we are interested in the study of connections which are
close to a Hermitian connection in the following sense:

Let Ω1(M,End (E)) denote the space of differential 1-forms on M
with values in the bundle End (E) of endomorphisms of E. A Hermitian
metric on E and a Riemannian metric on M define a natural norm | · |
on the bundle Λ1(T ∗M) ⊗ End (E) → M . Using this norm we define
the sup-norm

‖ω‖sup := max
x∈M

|ω(x)|, ω ∈ Ω1(M,End E)

on Ω1(M,End E). The topology defined by this norm is independent
of the metrics and is called the C0-topology on Ω1(M,End E).

Let C(E) denote the space of connections on the bundle E. By choos-
ing a connection ∇0 we can identify this space with Ω1(M,End E) asso-
ciating to a connection ∇ ∈ C(E) the 1-form ∇−∇0 ∈ Ω1(M,End E).
By this identification the C0-topology on Ω1(M,End E) provides a
topology on C(E) which is independent of the choice of ∇0 and is called
the C0-topology on the space of connections.

Finally, we denote by Flat(E) ⊂ C(E) the set of flat connections on
E and by Flat′(E, gM ) ⊂ Flat(E) the set of flat connections satisfying
Assumptions I and II of Subsection 6.5. The topology induced on these
sets by the C0-topology on C(E) is also called the C0-topology. The
discussion of the previous subsection implies that Flat′(E, gM ) contains
all the acyclic Hermitian connections.

Proposition 6.8. Flat′(E, gM ) is a C0-open subset of Flat(E),
which contains all acyclic Hermitian connections on E.

Proof. We already know that Flat′(E, gM ) contains all acyclic Her-
mitian connections on E. Hence it is enough to show that Flat′(E, gM )
is open in C0-topology.

Let ∇ ∈ Flat′(E, gM ) and suppose that ∇′ ∈ Flat(E) is sufficiently
close to ∇ in C0-topology. Let B = B(∇, gM ), B′ = B(∇′, gM ) de-
note the odd signature operators associated to the connections ∇ and
∇′, respectively. Then B − B′ is a 0’th order differential operator on
Ω•(M,E) and, hence, is bounded. Moreover, if ∇ is close to ∇′ in the
C0-topology, then B′ − B : Ω•(M,E) → Ω•(M,E) is small in the op-
erator norm, when Ω•(M,E) is endowed with the L2-norm induced by
the Riemannian metric on M and the Hermitian metric on E. We refer
to this operator norm as the standard operator norm and denote it by
‖ · ‖.
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Since the operator B satisfies Assumption II, its inverse B−1 can
be viewed as a bounded operator on the L2-completion L2Ω•(M,E) of
Ω•(M,E). If B−B′ is sufficiently small so that ‖(B′−B)B−1‖ < 1, then
B′, viewed as an unbounded operator on L2Ω•(M,E), has a bounded
inverse given by the formula

(B′)−1 = B−1
(

Id+(B′ −B)B−1
)−1

.

By elliptic theory, (B′)−1 maps the space of smooth forms Ω•(M,E) to
itself. Hence, B′ satisfies Assumption II. q.e.d.

6.9. Decomposition of the odd signature operator. Set

Ωeven(M,E) :=
r−1⊕

p=0

Ω2p(M,E), Ωodd(M,E) :=
r⊕

p=1

Ω2p−1(M,E),

Beven :=

r−1⊕

p=0

B2p : Ωeven(M,E) −→ Ωeven(M,E),

Bodd :=
r⊕

p=1

B2p−1 : Ωodd(M,E) −→ Ωodd(M,E).

Using that Γ2 = 1, we obtain

(6.66) Bodd = Γ ◦Beven ◦ Γ
∣∣
Ωodd(M,E)

.

Hence, the whole information about the odd signature operator is en-
coded in its even part Beven. The operator Beven can be expressed by
the following formula, which is slightly simpler than (6.62):

(6.67) Beven ω := ir(−1)p+1
(
∗ ∇ −∇ ∗

)
ω, for ω ∈ Ω2p(M,E).

Assume now that ∇ ∈ Flat′(E, gM ), i.e., that Assumptions I and II
of Subsection 6.5 are satisfied. From Assumption I we conclude that
the kernel and the image of the operator ∇ : Ω•(M,E) → Ω•(M,E)
coincide. Hence,

(6.68)
Ker (Γ∇) = Ker ∇ = Im ∇ = Im (∇Γ)

Ker (∇Γ) = Γ
(
Ker ∇

)
= Γ

(
Im ∇

)
= Im (Γ∇).

We set
(6.69)

Ωk
+(M,E) := Ker (∇Γ) ∩ Ωk(M,E) =

(
Γ Ker ∇

)
∩ Ωk(M,E);

Ωk
−(M,E) := Ker (Γ∇) ∩ Ωk(M,E) = Ker ∇ ∩ Ωk(M,E),

and refer to Ωk
+(M,E) and Ωk

−(M,E) as the positive and negative sub-

spaces of Ωk(M,E).7

7Note, that our grading is opposite to the one considered in [12, §2].
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Assumption II of Subsection 6.5 then implies that, for all k = 0, . . . , d,

(6.70) Ker
(
∇Γ

∣∣
Ωk(M,E)

)
∩ Ker

(
Γ∇

∣∣
Ωk(M,E)

)
= {0}

(as B is one-to-one) and

(6.71) Im
(
∇Γ

∣∣
Ωd−k+1(M,E)

)
+ Im

(
Γ∇

∣∣
Ωd−k−1(M,E)

)
= Ωk(M,E)

(as B is onto). Combining (6.70) and (6.71) with (6.68) and (6.69) we
conclude that

(6.72) Ωk(M,E) = Ωk
+(M,E) ⊕ Ωk

−(M,E).

Clearly,

(6.73) Γ : Ωk
±(M,E) −→ Ωd−k

∓ (M,E), k = 0, . . . , d.

Remark 6.10. Suppose that hE is a flat Hermitian metric on E.
Then, using (6.64) and (6.68), we obtain

(6.74) Ωk
+(M,E) = Ker ∇∗ ∩ Ωk(M,E),

where ∇∗ is the adjoint of ∇ with respect to the scalar product induced
by the metrics gM and hE .

Let B±
k denote the restriction of B to Ωk

±(M,E). By (6.61) and
(6.68),

(6.75)
B+

k = Γ∇ : Ωk
+(M,E) −→ Ωd−k−1

+ (M,E),

B−
k = ∇Γ : Ωk

−(M,E) −→ Ωd−k+1
− (M,E).

It follows from Assumption II of Subsection 6.5 that both B+
k and B−

k
are invertible.

6.11. Graded determinant of the odd signature operator. Set

Ωeven
± (M,E) =

r−1⊕

p=0

Ω2p
± (M,E)

and let B±
even denote the restriction of Beven to the space Ωeven

± (M,E).
Then

B±
even : Ωeven

± (M,E) −→ Ωeven
± (M,E).

We consider Ωeven(M,E) as a graded vector space

Ωeven(M,E) = Ωeven
+ (M,E) ⊕ Ωeven

− (M,E).

By Definition 3.12, the graded determinant of the odd signature opera-
tor is

(6.76) Detgr,θ(Beven) := eLDetgr,θ(Beven),

where θ ∈ (−π, 0) is an Agmon angle for the operator B = Beven⊕Bodd,
cf. Definition 3.4, and

(6.77) LDetgr,θ(Beven) := LDetθ

(
B+

even

)
− LDetθ

(
−B−

even

)
∈ C.
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According to (3.27), Detgr,θ(Beven) is independent of the choice of the
Agmon angle θ ∈ (−π, 0).

7. Relationship with the η-invariant

In this section we use the notations of the previous section and assume
that, for a given pair (∇, gM ), Assumptions I and II of Subsection 6.5
are satisfied. In particular the operator B = B(∇, gM ) is bijective. It

follows that the operators Beven and B+
k : Ωk

+(M,E) → Ωd−k−1
+ (M,E)

(0 ≤ k ≤ d− 1) are also invertible.

7.1. Graded determinant and η-invariant. To simplify the nota-
tion set

(7.78) η = η(∇, gM ) := η(Beven),

and

ξ = ξ(∇, gM , θ) :=
1

2

d−1∑

k=0

(−1)k LDet2θ

(
B+

d−k−1 ◦B
+
k

)
(7.79)

=
1

2

d−1∑

k=0

(−1)k LDet2θ

(
(Γ∇)2

∣∣
Ωk

+(M,E)

)
.

Theorem 7.2. Let ∇ ∈ Flat′(E, gM ) be a flat connection on a vector
bundle E over a closed oriented Riemannian manifold (M, gM ) of odd
dimension d = 2r − 1. Let θ ∈ (−π/2, 0) be an Agmon angle for B
such that there are no eigenvalues of the operator B in the solid angles
L(−π/2,θ] and L(π/2,θ+π]. Then

(7.80) LDetgr,θ(Beven) = ξ − iπ η.

The rest of this section is devoted to the proof of Theorem 7.2. By
(4.52), it is enough to show that

2 ξ = LDet2θ (B+
even)

2 − LDet2θ (B−
even)

2;(7.81)

ζ2θ

(
0, (B+

even)
2
)
− ζ2θ

(
0, (B−

even)
2
)

= 0.(7.82)

Note that though the value at 0 of the ζ-function of a second order
differential operator on an odd-dimensional manifold vanishes, [39], the
operators B±

even are pseudo-differential and, hence, the equality (7.82) is
not trivial. In particular, the individual terms ζ2θ

(
0, (B±

even)
2
)

need not
vanish.

7.3. Calculation of ζ2θ

(
s, (B+

even)
2
)
− ζ2θ

(
s, (B−

even)
2
)
. Set

A+
k := B+

k +B+
d−k−1 : Ωk

+(M,E) ⊕ Ωd−k−1
+ (M,E)

−→ Ωk
+(M,E) ⊕ Ωd−k−1

+ (M,E),
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for k = 0, . . . , r − 2, and

A+
r−1 := B+

r−1 : Ωr−1
+ (M,E) −→ Ωr−1

+ (M,E).

Similarly, set

A−
k := B−

k +B−
d−k+1 : Ωk

−(M,E) ⊕ Ωd−k+1
− (M,E)

−→ Ωk
−(M,E) ⊕ Ωd−k+1

− (M,E)

for k = 1, . . . , r − 1, and

(7.83) A−
r := B−

r : Ωr
−(M,E) −→ Ωr

−(M,E).

Then

(A+
k )2 = (Γ∇)2

∣∣
Ωk

+(M,E)⊕Ωd−k−1
+ (M,E)

,(7.84)

(A−
k )2 = (∇Γ)2

∣∣
Ωk

−
(M,E)⊕Ωd−k+1

−
(M,E)

.

Hence,

ζ2θ

(
s, (A+

k )2
)

= ζ2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
(7.85)

+ ζ2θ

(
s, (Γ∇)2

∣∣
Ωd−k−1

+ (M,E)

)
.

From (6.66) and (6.73) we get

(7.86) A+
k = Γ ◦A−

k−1 ◦ Γ.

Hence,

(7.87) ζ2θ

(
s, (A+

k )2
)

= ζ2θ

(
s, (A−

k−1)
2
)
.

Since B±
even is a direct sum of the operators A±

2p, we obtain from (7.87)
that

ζ2θ

(
s, (B+

even)
2
)
− ζ2θ

(
s, (B−

even)
2
)

=

[(r−1)/2]∑

p=0

ζ2θ

(
s, (A+

2p)
2
)
−

[r/2]∑

p=1

ζ2θ

(
s, (A−

2p)
2
)

=

[(r−1)/2]∑

p=0

ζ2θ

(
s, (A+

2p)
2
)
−

[r/2]∑

p=1

ζ2θ

(
s, (A+

2p−1)
2
)

=
r−1∑

k=0

(−1)k ζ2θ

(
s, (A+

k )2
)
.

Combining this equality with (7.85) we get

ζ2θ

(
s, (B+

even)
2
)
− ζ2θ

(
s, (B−

even)
2
)

(7.88)

=
d−1∑

k=0

(−1)k ζ2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
.
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Lemma 7.4. Let F1, F2 be vector bundles over M and let

P : C∞(M,F1) → C∞(M,F2) and Q : C∞(M,F2) → C∞(M,F2)

be invertible elliptic pseudo-differential operators such that φ is an Ag-
mon angle for PQ and QP . Then, every regular point s ∈ C of the
function s 7→ ζφ(s, PQ) is also a regular point of s 7→ ζφ(s,QP ) and

(7.89) ζφ(s, PQ) = ζφ(s,QP ).

In particular,

(7.90) ζφ(0, PQ) = ζφ(0, QP ).

Proof. For every elliptic operator D with Agmon angle φ

QD−s−1
φ Q−1 =

(
QDQ−1

)−s−1

φ
.

Hence,

(7.91) Q(PQ)−s−1
φ =

[
Q(PQ)−s−1

φ Q−1
]
Q = (QP )−s−1

φ Q.

Recall that if T and S are operators such that the composition TS is
of trace class, then ST is also of trace class and Tr(TS) = Tr(ST ), cf.
[22, Ch. III, Th. 8.2]. Using this equality and (7.91) we obtain

ζφ(s, PQ) = Tr (PQ)−s
φ = Tr

[
(PQ)−s−1

φ PQ
]

(7.92)

= Tr
[
Q(PQ)−s−1

φ P
]

= Tr (QP )−s
φ = ζφ(s,QP ).

Since both the left and the right hand sides of (7.92) are analytic in s,
this equality holds for all regular points of the function s 7→ ζφ(s, PQ).

q.e.d.

From (7.89), we conclude that for all regular points of the function
s 7→ ζ2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
the following equality holds

ζ2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
= ζ2θ

(
s, (Γ∇Γ)

∣∣
Ωk+1

−
(M,E)

∇
∣∣
Ωk

+(M,E)

)
(7.93)

= ζ2θ

(
s,∇

∣∣
Ωk

+(M,E)
(Γ∇Γ)

∣∣
Ωk+1

−
(M,E)

)

= ζ2θ

(
s, (∇Γ)2

∣∣
Ωk+1

−
(M,E)

)
.

From (7.84), (6.70), and (6.71), we get

ζ2θ

(
s,B2

∣∣
Ωk(M,E)

)
= ζ2θ

(
s,
(
(Γ∇)2 + (∇Γ)2

)∣∣
Ωk(M,E)

)

= ζ2θ

(
s, (Γ∇)2

∣∣
Ωk

+(M,E)

)
+ ζ2θ

(
s, (∇Γ)2

∣∣
Ωk

−
(M,E))

)
.

Using this equality, (7.88), and (7.93), we obtain

ζ2θ

(
s, (B+

even)
2
)
− ζ2θ

(
s, (B−

even)
2
)

(7.94)

=
d∑

k=0

(−1)k+1 k ζ2θ

(
s,B2

∣∣
Ωk(M,E)

)
.
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7.5. Proof of Theorem 7.2. From (7.79) and (7.88) we conclude that

(7.95) 2 ξ =
d

ds

∣∣
s=0

[
ζ2θ

(
s, (B+

even)
2
)
− ζ2θ

(
s, (B−

even)
2
)]
.

Hence (7.81) is established.
Since the dimension of M is odd, the ζ-function of every elliptic

differential operator of even order vanishes at 0, cf. [39]. Hence, by
Lemma 6.4.1, the equality (7.94) implies (7.82). q.e.d.

8. Comparison with the Ray-Singer Torsion

8.1. Ray-Singer torsion. Let E → M be a complex vector bundle
over a closed oriented manifold M of odd dimension d = 2r − 1 and
let ∇ be an acyclic flat connection on E. Fix a Riemannian metric gM

on M and a Hermitian metric hE on E. Let ∇∗ denote the adjoint of
∇ with respect to the scalar product 〈·, ·〉 on Ω•(M,E) defined by hE

and the Riemannian metric gM . If ∇ is acyclic (i.e., Assumption I of
Subsection 6.5 is satisfied) the Ray-Singer torsion TRS of E, [35, 5, 12],
is defined by

(8.96) TRS = TRS(∇)

:= exp
(1

2

d∑

k=0

(−1)k+1 k LDet−π

(
(∇∗∇ + ∇∇∗)

∣∣
Ωk(M,E)

))
,

where ∇∗ denotes the adjoint of ∇ with respect to the scalar prod-
uct 〈·, ·〉 induced by gM and hE . Note that, as ∇ is assumed to be
acyclic, (∇∗∇ + ∇∇∗)|

Ωk(M,E)
is a strictly positive operator and, there-

fore, LDet−π

(
(∇∗∇ + ∇∇∗)

∣∣
Ωk(M,E)

)
is well defined.

The Ray-Singer torsion is a positive number, which, in the case con-
sidered, is independent of the the Hermitian metric hE and the Rie-
mannian metric gM , cf. [35, 5]. We denote by log TRS the value at TRS

of the principal branch of the logarithm.
The determinants in (8.96) are defined using the spectral cut R−π

along the negative real axis. Since the spectrum of the operator ∇∗∇+
∇∇∗ lies on the positive real axis, we can replace it with a spectral cut
Rφ for any φ 6= 0 without changing the formula. In particular, we can
take the spectral cut along R2θ, where θ ∈ (−π/2, 0) is an Agmon angle
for the odd signature operator B.

Using the decomposition (6.72), we have

log TRS =
1

2

d∑

k=0

(−1)k LDet2θ

(
∇∗∇

∣∣
Ωk

+(M,E)

)
(8.97)

=
1

2

d∑

k=0

(−1)k+1 LDet2θ

(
∇∇∗

∣∣
Ωk

−
(M,E)

)
.
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This formula is proven, for example, on page 340 of [12].
Suppose now that the Hermitian metric hE on E is invariant with

respect to ∇. From (6.64), we obtain

∇∗∇
∣∣
Ωk

+(M,E)
= (Γ∇)2

∣∣
Ωk

+(M,E)
.

Hence, we can rewrite (8.97) as

log TRS(8.98)

=
1

2

d∑

k=0

(−1)k LDet2θ

(
(Γ∇)2

∣∣
Ωk

+(M,E)

)
= ξ(∇, gM , θ),

where the number ξ = ξ(∇, gM , θ) is defined in (7.79).
The next theorem generalizes this result to the case where hE is not

necessarily invariant. Recall that the set Flat′(M, gM ) is defined in
Subsection 6.7.

Theorem 8.2. Assume that M is a closed oriented manifold and
gM is a Riemannian metric on M . Then there exists an C0-open (cf.
Subsection 6.7) neighborhood U ⊂ Flat(E) of the set of acyclic Hermit-
ian connections on E, such that for every connection ∇ ∈ U we have
∇ ∈ Flat′(M, gM ) and

log TRS(∇)(8.99)

=
1

2
Re

d∑

k=0

(−1)k LDet2θ

(
(Γ∇)2

∣∣
Ωk

+(M,E)

)
= Re ξ(∇, gM , θ).

Hence, in view of (7.80), for every ∇ ∈ U , we obtain

(8.100)
∣∣∣ Detgr,θ(Beven)

∣∣∣ = TRS(∇) · eπ Im η(∇,gM ).

If ∇ is an acyclic Hermitian connection, then the operator Beven is
self-adjoint with respect to the inner product given by gM and the in-
variant Hermitian metric hE on E. Thus, the η-invariant η = η(∇, gM )
is real. Hence, Theorem 8.2 implies the following

Corollary 8.3. If ∇ is an acyclic Hermitian connection then

(8.101)
∣∣ Detgr,θ(Beven)

∣∣ = TRS(∇).

In particular, Corollary 8.3 implies that, under the given assumptions,
Detgr,θ(Beven) contains all the information about the Ray-Singer torsion,
and, hence, “refines” it by having a phase.

The rest of this section is occupied with the proof of Theorem 8.2.
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8.4. Alternative formula for ξ. From (7.95) and (7.94) we obtain
the following analogue of (8.96):

ξ(∇, gM , θ)(8.102)

=
1

2

d∑

k=0

(−1)k+1 k LDet2θ

[(
(Γ∇)2 + (∇Γ)2

)∣∣∣
Ωk(M,E)

]
,

where θ ∈ (−π/2, 0) is an Agmon angle for B so that there are no
eigenvalues of B in the solid angles L(−π/2,θ] and L(π/2,θ+π]. Note that
this condition implies that for all k = 0, . . . , d, 2θ is an Agmon angle for
B2
∣∣
Ωk(M,E)

.

8.5. Choice of the spectral cut. It follows from (3.27) that
Detgr,θ(Beven) does not depend on the choice of the Agmon angle θ ∈
(−π, 0). It is convenient for us to work with an angle θ ∈ (−π/2, 0)
such that there are no eigenvalues of the operator B in the solid angles
L(−π/2,θ], L[−θ,π/2), L(π/2,θ+π] and L[−θ−π,−π/2). We will fix such an
angle till the end of this section.

8.6. The dual connection. Fix a Hermitian metric hE on E. Denote
by ∇′ the connection on E dual to the connection ∇. It is defined by
the formula

dhE(u, v) = hE(∇u, v) + hE(u,∇′v), u, v ∈ C∞(M,E).

From the definition of the scalar product 〈·, ·〉 on Ω•(M,E) it then
follows that

(8.103) ∇∗ = Γ∇′ Γ, (∇′)∗ = Γ∇Γ.

Since Γ2 = Id, (8.103) implies

(8.104)
(
(Γ∇)2

)∗
= (Γ∇′)2,

(
(∇Γ)2

)∗
= (∇′ Γ)2.

Let B′ denote the odd signature operator associated to the connection
∇′. Using (6.75) and (8.103) one readily sees that

B∗ = B′.

Therefore, if the connection ∇ satisfies Assumption I and II of Subsec-
tion 6.5, then so does the connection ∇′. Our choice of the angle θ in
Subsection 8.5 guarantees that ±2θ are Agmon angles for the operator

(Γ∇′)2 =
(
(Γ∇)2

)∗
.

In particular, the number ξ(∇′, gM , θ) can be defined by formula (7.79),
using the same angle θ and replacing everywhere ∇ by ∇′.

Lemma 8.7. Using the notation introduced above, we have

(8.105) ξ(∇′, gM , θ) ≡ ξ(∇, gM , θ), mod πi,

where z denotes the complex conjugate of the number z ∈ C.
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Proof. Set

Dk :=
(
(Γ∇)2 + (∇Γ)2

)∣∣∣
Ωk(M,E)

: Ωk(M,E) −→ Ωk(M,E).

Then, by (8.104),

D∗
k =

(
(Γ∇′)2 + (∇′ Γ)2

)∣∣∣
Ωk(M,E)

: Ωk(M,E) −→ Ωk(M,E).

With θ given as in Subsection 8.5, we have

(8.106) LDet2θ D
∗
k = LDet−2θ Dk.

Note that Dk has a positive-definite leading symbol. Hence, at most
finitely many eigenvalues of Dk lie in the solid angle L[−2θ,2θ+2π] (which

contains the negative real axis).8 Hence, by (3.26),

(8.107) LDet−2θ Dk ≡ LDet2θ Dk mod 2πi.

Using (8.106) and (8.107), we obtain now from (8.102), that

ξ(∇′, gM , θ)

=
1

2

d∑

k=0

(−1)k+1k LDet2θ D
∗
k

≡
1

2

d∑

k=0

(−1)k+1k LDet2θ Dk

= ξ(∇, gM , θ), mod πi.

q.e.d.

Lemma 8.8. For every ∇ ∈ Flat′(M, gM ) we have TRS(∇′) =
TRS(∇).

Proof. From (8.103), we obtain

∇∗∇ = Γ∇′ Γ∇ = Γ (∇′ Γ∇Γ )Γ = Γ∇′ (∇′)∗ Γ;

∇∇∗ = ∇Γ∇′ Γ = Γ (Γ∇Γ∇′ ) Γ = Γ (∇′)∗∇′ Γ.

8By our assumptions on θ, all these eigenvalues must lie on the real axis. But we
don’t use this fact here.
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From (8.96) we obtain

log TRS(∇)

(8.108)

=
1

2

d∑

k=0

(−1)k+1 k LDet−π

(
(∇∗∇ + ∇∇∗)

∣∣
Ωk(M,E)

)

=
1

2

d∑

k=0

(−1)k+1 k LDet−π

(
Γ
(
∇′(∇′)∗ + (∇′)∗∇′

)
Γ
∣∣
Ωk(M,E)

)

=
1

2

d∑

k=0

(−1)k+1 k LDet−π

((
∇′(∇′)∗ + (∇′)∗∇′

)∣∣
Ωd−k(M,E)

)

=
1

2

d∑

k=0

(−1)k (d− k) LDet−π

((
∇′(∇′)∗ + (∇′)∗∇′

)∣∣
Ωk(M,E)

)
.

By (8.97),

d∑

k=0

(−1)k LDet−π

((
∇′(∇′)∗ + (∇′)∗∇′

)∣∣
Ωk(M,E)

)

=
d∑

k=0

(−1)k LDet−π

(
(∇′)∗∇′

∣∣
Ωk

+(M,E)

)

+
d∑

k=0

(−1)k LDet−π

(
∇′(∇′)∗

∣∣
Ωk

−
(M,E)

)
= 0.

Hence, from (8.108), we obtain

log TRS(∇)

=
1

2

d∑

k=0

(−1)k+1 k LDet−π

((
∇′(∇′)∗ + (∇′)∗∇′

)∣∣
Ωk(M,E)

)

= log TRS(∇′).

q.e.d.

8.9. Proof of Theorem 8.2. In the case ∇ is an acyclic Hermitian
connection the statement has been already proved, cf. (8.98).

In the general case, let

∇̃ =

(
∇ 0
0 ∇′

)

denote the flat connection on E ⊕ E obtained as a direct sum of the
connections ∇ and ∇′. From Lemmas 8.7 and 8.8 we obtain

TRS(∇̃) = TRS(∇) · TRS(∇′) =
(
TRS(∇)

)2
,
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and

(8.109) ξ(∇̃, gM , θ) = ξ(∇, gM , θ) + ξ(∇′, gM , θ) ≡ 2 Re ξ(∇, gM , θ)

modulo πi. Hence, to prove Theorem 8.2, it is enough to show that

(8.110) ξ(∇̃, gM , θ) ≡ log TRS(∇̃) mod πi.

We will prove (8.109) by a deformation argument. For t ∈ [−π/2, π/2]
introduce the rotation Ut on

Ω• := Ω•(M,E) ⊕ Ω•(M,E)

given by

Ut =

(
cos t − sin t
sin t cos t

)
.

Note that U−1
t = U−t.

Consider two one-parameter families of operators

B̃(t), B̂(t) : Ω• → Ω•, t ∈ [−π/2, π/2]

defined by

B̃(t) := ΓUt ∇̃U−1
t + ∇̃Γ; B̂(t) := Γ ∇̃ + Ut ∇̃U

−1
t Γ.

Note that B̃(0) = B̂(0) = B(∇̃, gM ). If the Hermitian metric hE is
invariant with respect to ∇ then ∇′ = ∇ and

(8.111) B̃(t) = B̂(t) = B(∇̃, gM ) = B(∇, gM ) ⊕B(∇′, gM )

for all t ∈ [−π/2, π/2]. It follows then from Assumption II of Subsec-
tion 6.5 that the operator (8.111) is invertible.

Suppose now that ∇ is sufficiently close to an acyclic Hermitian
connection ∇0 in the C0-topology, cf. Subsection 6.7, and that the
metric hE is chosen to be invariant with respect to the connection

∇0. Then ∇′ is also close to ∇0. Since both B̃(t) − B(∇̃, gM ) and

B̂(t)−B(∇̃, gM ) are 0’th order differential operators, it follows that they
are small in the standard operator norm (cf. proof of Proposition 6.8)

for all t ∈ [−π/2, π/2]. Therefore the operators B̃(t), B̂(t) are invertible
for all t ∈ [−π/2, π/2].

We denote by V ⊂ Flat(E) the set of connections, which satisfy
the following property: there exists a Hermitian metric hE such that

the operators B̃(t) and B̂(t) are invertible for all t ∈ [−π/2, π/2].9

Then V is open in Flat(E). Moreover, since for every ∇ ∈ V the

operator B̃(0) = B(∇, gM ) ⊕ B(∇′, gM ) is invertible, it follows that
V ⊂ Flat′(E, gM ).

The above discussion shows that V contains the set of acyclic Her-
mitian connections. In the rest of the proof we assume that ∇ ∈ V and

that hE is chosen so that the operators B̃(t) and B̂(t) are invertible.

9Recall that eB(t) and bB(t) depend on hE since the dual connection ∇′ does.
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Set

Ω•
+(t) := Ker Ut∇̃U

−1
t Γ =

{
ΓUt ( ω

ω′ ) : ω ∈ Ker∇, ω′ ∈ Ker∇′
}

;

Ω•
− := Ker ∇̃ = Ker∇⊕ Ker∇′.

Note that Ω•
− is independent of t.

Since the range of ΓUt∇̃U
−1
t is contained in Ω•

+(t) whereas the range

of ∇̃Γ is contained in Ω•
−, it follows from the surjectivity of B̃(t) that

(8.112) Ω•
+(t) + Ω•

− = Ω•, t ∈ [−π/2, π/2].

Similarly, since, by definition, the kernel of Ut∇̃U
−1
t Γ is equal to Ω•

+(t)

whereas the kernel of Γ ∇̃ is equal to Ω•
−, it follows from injectivity of

B̂(t) that

(8.113) Ω•
+(t) ∩ Ω•

− = {0}, t ∈ [−π/2, π/2].

Combining (8.112) and (8.113) we obtain

(8.114) Ω• = Ω•
+(t) ⊕ Ω•

−, t ∈ [−π/2, π/2].

For each t ∈ [−π/2, π/2] define ξ(t) ∈ C/πiZ by the formula
(8.115)

ξ(t) ≡
1

2

d∑

k=0

(−1)k LDetθ′

(
ΓUt ∇̃U−1

t Γ ∇̃
∣∣
Ωk

+(t)

)
, mod πi,

where θ′ ∈ L(−2θ,2π+2θ) is any Agmon angle for the operators10

ΓUt∇̃U
−1
t Γ∇̃

∣∣
Ωk

+(t)
, k = 0, . . . , N.

Since

ΓU0 ∇̃U−1
0 Γ ∇̃

∣∣
Ωk

+(0)
=

(
Γ∇Γ∇

∣∣
Ωk

+(M,E)
0

0 Γ∇′Γ∇′
∣∣
Ωk

+(M,E)

)
,

for t = 0, (8.115) coincides with (7.79) with ∇ replaced by ∇̃.
Similarly, since

ΓUπ/2 ∇̃U−1
π/2 Γ ∇̃

∣∣
Ωk

+(π/2)
=

(
∇∗∇

∣∣
Ωk

+(M,E)
0

0 ∇′∗∇′
∣∣
Ωk

+(M,E)

)

for t = π/2 the right hand side of (8.115) coincides with (8.97). Sum-
marizing, we conclude that

(8.116) ξ(0) ≡ ξ(∇̃, gM , θ), ξ(π/2) ≡ log TRS(∇̃), mod πi.

10Recall from Subsection 3.10 that a different choice of θ′ ∈ L(−2θ,2π+2θ) changes

the number LDetθ′(ΓUt∇̃U−1
t Γ∇̃

˛̨
Ωk

+
(t)

) by a multiple of 2πi.
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We will finish the proof of (8.110) (and, hence, of Theorem 8.2) by
showing that

(8.117)
d

dt
ξ(t) = 0.

This is done by applying the arguments of the standard proof of the
independence of the Ray-Singer torsion on the Hermitian metric. First
we need the following notation (cf., for example, Section 2 of [12]): Sup-
pose f(s) is a function of a complex parameter s which is meromorphic
near s = 0. We call the zero order term in the Laurent expansion of f
near s = 0 the finite part of f at 0 and denote it by F.p.s=0 f(s). Then,
cf. Lemma 3.7 of [11] or formula (1.13) of [28],

(8.118)
d

dt
LDetθ′

(
ΓUt ∇̃U−1

t Γ ∇̃
∣∣
Ωk

+(t)

)

= F.p.s=0 Tr
[( d

dt

(
ΓUt ∇̃U−1

t Γ∇̃
))(

ΓUt ∇̃U−1
t Γ ∇̃

)−s−1

θ′

∣∣
Ωk

+(t)

]
.

One has

d

dt

(
ΓUt ∇̃U−1

t Γ ∇̃
)

= U̇tU
−1
t

(
ΓUt∇̃U

−1
t Γ ∇̃

)∣∣
Ωk

+(t)

−
(
ΓUt∇̃U

−1
t Γ

)∣∣
Ωk+1

−

U̇tU
−1
t ∇̃

∣∣
Ωk

+(t)
.

By Lemma 7.4, for Re s > d/2,

Tr

[ (
ΓUt∇̃U

−1
t Γ

)∣∣
Ωk+1

−

U̇tU
−1
t ∇̃

∣∣
Ωk

+(t)

(
ΓUt∇̃U

−1
t Γ ∇̃

)−s−1

θ′

∣∣
Ωk

+(t)

](8.119)

= Tr
[
U̇tU

−1
t ∇̃

∣∣
Ωk

+(t)

(
ΓUt∇̃U

−1
t Γ ∇̃

)−s−1

θ′

∣∣
Ωk

+(t)

(
ΓUt∇̃U

−1
t Γ

)∣∣
Ωk+1

−

]

= Tr
[
U̇tU

−1
t

(
∇̃ΓUt∇̃U−1

t Γ
)∣∣

Ωk+1
−

)−s

θ′

]
.

Hence, (8.118) implies that

d

dt
LDetθ′

(
ΓUt∇̃U

−1
t Γ ∇̃

∣∣
Ωk

+(t)

)
(8.120)

= F.p.s=0 Tr
[
U̇tU

−1
t

(
ΓUt∇̃U

−1
t Γ ∇̃

∣∣
Ωk

+(t)

)−s

θ′

− U̇tU
−1
t

(
∇̃ΓUt∇̃U

−1
t Γ

∣∣
Ωk+1

−

)−s

θ′

]
.

Consider the operator

(8.121) ∆̃k(t) := ΓUt ∇̃U−1
t Γ ∇̃

∣∣
Ωk

+(t)
+ ∇̃ΓUt ∇̃U−1

t Γ
∣∣
Ωk

−

.

It is a second order elliptic differential operator on Ωk(M,E⊕E), whose

leading symbol is equal to the leading symbol of the Laplacian ∇̃∗ ∇̃ +
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∇̃∇̃∗ . In other words, ∆̃k(t) is a generalized Laplacian in the sense of
[4].

The decomposition Ωk(M,E ⊕ E) = Ωk
+(t) ⊕ Ωk

− implies that

∆̃k(t)
−s
θ′ =

(
ΓUt ∇̃U−1

t Γ ∇̃
∣∣
Ωk

+(t)

)−s

θ′
+
(
∇̃ΓUt ∇̃U−1

t Γ
∣∣
Ωk

−

)−s

θ′
.

Hence, from (8.120), we obtain

(8.122)
d

dt
ξ(t) =

1

2

d∑

k=0

(−1)k F.p.s=0 Tr
[
U̇tU

−1
t ∆̃k(t)

−s
θ′

]
.

By a slight generalization of a result of Seeley [39], which is discussed
in [47], the right hand side of (8.122) is given by a local formula, i.e.,
by an integral

(8.123)

∫

M
φ

of a differential form φ, whose value at a point x ∈ M depends only

on the full symbol of ∆̃ and a finite number of its derivatives at the
point x. Moreover, since the dimension of the manifold M is odd, the
differential form φ vanishes identically. q.e.d.

9. Dependence of the Graded Determinant on the
Riemannian Metric

As already mentioned, one can consider the graded determinant
Detgr,θ(Beven), defined in (6.76), as a refinement of the Ray-Singer tor-
sion. However, in general, Detgr,θ(Beven) depends on the choice of the

Riemannian metric gM on M . In this section we investigate this depen-
dence. In particular, we show that, if dimM = 2r − 1 ≡ 1 (mod 4),
then Detgr,θ(Beven) is independent of gM . Later we will use the results
of this section to construct a refinement of the Ray-Singer torsion which
is a diffeomorphism invariant of the pair (E,∇) (i.e., is independent of
the metric).

9.1. The η-invariant of the trivial bundle. Let

Btrivial = Btrivial(g
M ) : Ωeven(M) → Ωeven(M)

denote the even part of the odd signature operator corresponding to
the trivial line bundle over M endowed with the trivial connection. We
denote by

ηtrivial = ηtrivial(g
M ) :=

1

2
η
(
0, Btrivial(g

M )
)

the η-invariant of Btrivial(g
M ). Since the operator Btrivial is self-adjoint,

ηtrivial is a real number, cf. Theorem A.2. Also, if dimM ≡ 1(mod 4),
then ηtrivial = 0, cf. [2].
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Definition 9.2. A Riemannian metric gM on M is called admissible
for a given acyclic connection ∇ if the odd signature operator B =
B(∇, gM ) satisfies Assumption II of Subsection 6.5. We denote the set
of admissible metrics by M(∇).

We are now ready to formulate the main result of this section.

Theorem 9.3. Let E be a flat vector bundle over a closed oriented
odd-dimensional manifold M and let ∇ be the flat connection on E. For
each admissible Riemannian metric gM ∈ M(∇) consider the number

(9.124) Detgr,θ
(
Beven(∇, g

M )
)
· eiπ (rank E) η

(
Btrivial(g

M )
)
∈ C\{0},

where θ ∈ (−π/2, 0) is an Agmon angle for Beven(∇, g
M ). Then the

number (9.124) is independent of gM ∈ M(∇) and θ ∈ (−π/2, 0).
In particular, if dimM ≡ 1(mod 4), then η

(
Btrivial(g

M )) = 0, cf. [2],

and, hence, Detgr,θ
(
Beven(∇, g

M )
)

is independent of gM .

The rest of this section is dedicated to the proof of Theorem 9.3.

9.4. Dependence of the η-invariant on the metric. Recall from
Theorem 7.2 that, for gM ∈ M(∇),

(9.125) LDetgr,θ
(
Beven(∇, g

M )
)

= ξ(∇, gM , θ) − iπ η(∇, gM ),

where θ ∈ (−π/2, 0) is an Agmon angle for B such that there are no
eigenvalues of the operator B in the solid angles L(−π/2,θ] and L(π/2,θ+π].

The following proposition is proven on page 52 of [21]. See also
Theorem 2.4 of [3] where the result in the case of a unitary connection
is established.

Proposition 9.5. Modulo Z, the difference

η(∇, gM ) − (rankE) ηtrivial(g
M )

is independent of the Riemannian metric gM . In particular, the imagi-
nary part Im η(∇, gM ) of η(∇, gM ) is independent of gM .

To prove Theorem 9.3 we need to study the dependence of ξ =
ξ(∇, gM , θ) on gM .

9.6. Dependence of ξ on the Riemannian metric. For (9.125) to
hold we need to assume that there are no eigenvalues of the operator
B in the solid angles L(−π/2,θ] and L(π/2,θ+π]. However, for the study

of the dependence of ξ on gM it will be convenient for us to work with
ξ(∇, gM , θ) with the only assumption that both θ ∈ (−π, 0) and θ + π
are Agmon angles for Beven. If θ1 and θ2 are two such angles then, by
(3.26) and (7.79),

(9.126) ξ(∇, gM , θ1) ≡ ξ(∇, gM , θ2) mod πi.
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Proposition 9.7. Suppose gM
0 , gM

1 ∈ M(∇) are admissible Rie-
mannian metrics on M and let θ0, θ1 ∈ (−π/2, 0) be such that, for
j = 0, 1, both θj and θj + π are Agmon angles for B(∇, gM

j ). Then

(9.127) ξ(∇, gM
1 , θ1) ≡ ξ(∇, gM

0 , θ0) mod πi.

Remark 9.8. If, in addition, ∇ is Hermitian and hE is a ∇-invariant
Hermitian metric on E, then, from (6.64) we obtain (Γ∇)2 = ∇∗∇.
By (8.97), ξ(t, θ0) coincides, in this case, with the Ray-Singer torsion.
Hence, in the case of a Hermitian connection, the statement of the
proposition reduces to the classical result about the independence of
the Ray-Singer torsion on the Riemannian metric.

For the proof of the proposition we first consider the case when gM
0

and gM
1 belong to the same path-connected component of the set M(∇)

of admissible metrics.
Suppose that gM

t ∈ M(∇), t ∈ R, is a smooth family of admissible
Riemannian metrics on M and let Bt = B(∇, gM

t ) be the corresponding
odd signature operator. To simplify the notation set

ξ(t, θ) := ξ(∇, gM
t , θ).

Fix t0 ∈ R and let θ0 ∈ (−π/2, 0) be an Agmon angle for Bt0 such
that there are no eigenvalues of Bt0 in the solid angles L(−π/2,θ0] and
L(π/2,θ0+π). Choose δ > 0 so that for every t ∈ (t0−δ, t0+δ) both θ0 and
θ0 + π are Agmon angles of Bt. For t 6= t0 it might happen that there
are eigenvalues of Bt in L(−π/2,θ0) and/or L(π/2,θ0+π). Hence, (9.125) is
not necessarily true, in general, for t 6= t0. However, from (9.126), we
conclude that for every t ∈ (t0 − δ, t0 + δ) and θ ∈ (−π/2, 0), such that
θ and θ + π are Agmon angles for Bt,

(9.128) ξ(t, θ) ≡ ξ(t, θ0) mod πi.

Lemma 9.9. Under the above assumptions, ξ(t, θ0) is independent
of t ∈ (t0 − δ, t0 + δ).

Proof. Let Γt denote the chirality operator corresponding to the met-
ric gM

t . Then, cf. Lemma 3.7 of [11] or formula (1.13) of [28],

(9.129)
d

dt
LDet2θ0

(
(Γt∇)2

∣∣
Ωk

+(M,E)

)

= F.p.s=0 Tr
[( d
dt

(Γt∇)2
) (

(Γt∇)2
)−s−1

2θ0

∣∣
Ωk

+(M,E)

]
,

where we use the notation F.p.s=0 introduced in Subsection 8.9.
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We denote by Γ̇t the derivative of Γt with respect to the parameter
t. Then

(9.130)
d

dt
(Γt∇)2

∣∣
Ωk

+(M,E)
= Γ̇t Γt (Γt∇)2

∣∣
Ωk

+(M,E)

+ (Γt∇)
∣∣
Ωd−k−1

+ (M,E)
Γ̇tΓt(Γt∇)

∣∣
Ωk

+(M,E)
,

where we used that Γ2
t = 1. Using (9.130) and the equality TrAB =

TrBA, we obtain from (9.129) that

d

dt
LDet2θ0

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)
(9.131)

= F.p.s=0 Tr
[
Γ̇tΓt

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)−s

2θ0

+ Γ̇t Γt

(
(Γt ∇)2

∣∣
Ωd−k−1

+ (M,E)

)−s

2θ0

]
.

Hence,

(9.132)
d

dt

d∑

k=0

(−1)k LDet2θ0

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)

= 2
d∑

k=0

(−1)k F.p.s=0 Tr
[
Γ̇tΓt

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)−s

2θ0

]
.

Similarly,

(9.133)
d

dt

d∑

k=0

(−1)k−1 LDet2θ0

(
(∇Γt)

2
∣∣
Ωk

−
(M,E)

)

= 2
d∑

k=0

(−1)k−1 F.p.s=0 Tr
[
ΓtΓ̇t

(
(∇Γt)

2
∣∣
Ωk

−
(M,E)

)−s

2θ0

]
.

From (7.79), we see that (9.132) is equal to 2 d
dtξ(t, θ0). By (7.93), the

left hand sides of (9.132) and (9.133) are equal. Hence (9.133) is also
equal to 2 d

dtξ(t, θ0). We conclude that

d

dt
ξ(t, θ0) =

d∑

k=0

(−1)k F.p.s=0 Tr
[
Γ̇tΓt

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)−s

2θ0

]
(9.134)

=
d∑

k=0

(−1)k−1 F.p.s=0 Tr
[
ΓtΓ̇t

(
(∇Γt)

2
∣∣
Ωk

−
(M,E)

)−s

2θ0

]
.
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Hence,

2
d

dt
ξ(t, θ0)(9.135)

=

d∑

k=0

(−1)k F.p.s=0 Tr
[
Γ̇tΓt

(
(Γt ∇)2

∣∣
Ωk

+(M,E)

)−s

2θ0

− ΓtΓ̇t

(
(∇Γt)

2
∣∣
Ωk

−
(M,E)

)−s

2θ0

]
.

Since Γ2
t = 1, we obtain Γ̇tΓt + ΓtΓ̇t = d

dtΓ
2
t = 0. Hence, (9.135) can

be rewritten as

(9.136) 2
d

dt
ξ(t, θ0) =

d∑

k=0

(−1)k F.p.s=0 Tr
[
Γ̇tΓt ∆̃k(t)

−s
2θ0

]
,

where ∆̃k(t) = (Γt∇)2 + (∇Γt)
2 (k=0,. . . ,d). By a slight generalization

of a result of Seeley [39], which is discussed in [47], the right hand side
of (9.136) is given by a local formula, i.e., by the integral (8.123) of
a differential form φt, whose value at any point x ∈ M depends only
on the values of the components of the metric tensor gM

t and a finite
number of their derivatives at x. Moreover, since the dimension of the
manifold M is odd, the differential form φt vanishes identically. Hence,
d
dtξ(t, θ0) = 0 for all t ∈ (t0 − δ, t0 + δ). q.e.d.

9.10. Proof of Proposition 9.7. Set

gM
t = (1 − t) gM

0 + t gM
1 , t ∈ [0, 1],

and let Γt denote the chirality operator corresponding to the metric
gM
t . The operators Γt depend real analytically on t and we can extend

their definition to all t in some connected open connected neighborhood
U ⊂ C of [0, 1]. Hence, the operator

Bt := Γt ∇ + ∇Γt

is well defined for all t ∈ U and is holomorphic on U in the sense of
Subsection 5.4. If we choose the neighborhood U to be small enough
then B2

t ∈ Ellm,(−5π/4,−3π/4)(M,E) for all t ∈ U . By Corollary 5.10 the
set

Σ :=
{
t ∈ U : Bt is not invertible

}

is a complex analytic subset of U . Thus U\Σ is connected. Since the
metrics gM

0 and gM
1 are admissible, it follows that 0 and 1 are in U\Σ.

For θ ∈ (−π/2, 0) such that both θ and θ+ π are Agmon angles for Bt,
set

(9.137) ξ(t, θ) :=
1

2

d∑

k=0

(−1)k+1 k LDet2θ

[
B2

t

∣∣
Ωk(M,E)

]
.
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If t ∈ [0, 1] is such that the metric gM
t is admissible, then ξ(t, θ) =

ξ(∇, gM
t , θ).

By Theorem 5.7.a, the function t 7→ ξ(t, θ) is holomorphic on the
open set

Uθ :=
{
t ∈ U\Σ : θ, θ + π are Agmon angles for Bt

}
.

By (9.128), if t ∈ Uθ1 ∩ Uθ2 then ξ(t, θ1) ≡ ξ(t, θ2) modulo πZ. Hence,
we can define a multivalued analytic function on U\Σ by the formula

t 7→ ξ(t, θt) + πZ,

where θt ∈ (−π/2, 0) is any angle such that t ∈ Uθt
.

Since the metric gM
0 is admissible there exists ε > 0 such that for

all real t ∈ [0, ε] the metric gM
t is admissible and θ0 and θ0 + π are

Agmon angles for Bt. Hence, by Lemma 9.9, the holomorphic function
ξ(t, θ0) is constant on [0, ε]. Thus, since the set U\Σ is connected, our
multivalued analytic function t 7→ ξ(t, θ) is constant on U\Σ. q.e.d.

9.11. Proof of Theorem 9.3. The fact that (9.124) is independent of
θ follows immediately from (3.26). Let us prove that it is independent
of gM ∈ M(∇). Suppose gM

0 and gM
1 are admissible metrics. We

shall use the notation introduced in Subsection 9.10. For t ∈ U\Σ,
fix θt ∈ (−π/2, 0) such that there are no eigenvalues of Bt in the solid
angles L(−π/2,θt] and L(π/2,θt+π). As t is not necessarily real, in general,
Bt is not an odd signature operator associated to a Riemannian metric.
Hence, to calculate LDetgr,θt

(Bt) we can not use Theorem 7.2. However,
a verbatim repetition of the proof of this theorem shows that

LDetgr,θt

(
Bt

)
= ξ(t, θt) − iπ η(Bt),

where ξ(t, θt) is defined by (9.137). It follows now from Propositions 9.5
and 9.7 that

(9.138) Detgr,θ0

(
Beven(∇, g

M
0 )
)
· eiπ (rank E) η

(
Btrivial(g

M )
)

= ± Detgr,θ1

(
Beven(∇, g

M
1 )
)
· eiπ (rank E) η

(
Btrivial(g

M )
)
,

where θj (j = 0, 1) is an Agmon angle for Beven(∇, g
M
j ).

Since the function

t 7→ Detgr,θt

(
Beven(∇, g

M
t )
)
· eiπ (rank E) η

(
Btrivial(g

M )
)

(which is independent of θt) is continuous on the connected set U\Σ,
the sign on the right hand side of (9.138) must be positive. The theorem
is proven. q.e.d.
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10. Refined Analytic Torsion

Theorem 9.3 justifies the following

Definition 10.1. Let M be a closed oriented manifold of odd dimen-
sion dimM = 2r − 1. Suppose that there exists a Riemannian metric
gM such that ∇ ∈ Flat′(M, gM ). The refined analytic torsion T (∇) is
defined by the formula

T (∇) = T (M,E,∇)(10.139)

: = Detgr,θ(Beven) · e
iπ (rank E) ηtrivial(g

M ) ∈ C\{0},

where θ ∈ (−π, 0) is an Agmon angle for the operator Beven =
Beven(∇, g

M ).
In particular, if dimM ≡ 1(mod 4), then ηtrivial = 0, cf. [2] and T (∇)

is equal to the graded determinant of the odd signature operator Beven.

Note that T (∇) 6= 0 and does not depend on the choice of θ ∈ (−π, 0),
cf. (3.27). Further, by Corollary 8.3, if ∇ is a Hermitian connection then

(10.140) |T (∇)| = TRS(∇).

Substituting (9.125) into (10.139) we obtain

(10.141) T (∇) = eξ · e−iπ
(
η−(rank E)ηtrivial

)
.

The expression η− (rankE)ηtrivial is known as the ρ-invariant of ∇ and
is independent of the metric gM modulo Z.

10.2. Example. We now calculate the refined analytic torsion in the
simplest possible example, when M = R/2πZ is the circle and E =
M × C is the trivial line bundle over M . Fix a number a ∈ C\Z and
define the connection ∇a on E by the formula

∇a : f 7→ df + iafdx, f ∈ Ω0(M,E) = Ω0(M),

where x ∈ [0, 2π) is the coordinate on M . According to the formula
(6.61), the odd signature operator is

Beven = B0 : f 7→ −i ∗ ∇af = −if ′ + af.

As a ∈ C\Z, the operator B0 : Ω0(M) → Ω0(M) is invertible and its
eigenvalues are given by a + n, n ∈ Z. Since Re a ∈ R\Z, the angle
θ = −π/2 is an Agmon angle for B0.

The refined analytic torsion T (∇a) = Detθ(B0) can be easily calcu-
lated using, for example, the general formula for determinants of elliptic
operators on the circle, obtained in [10] (see also [48] for an alterna-
tive way of calculation). As dimM ≡ 1(mod 4) we obtain the following
formula for the refined analytic torsion

T (∇a) = 1 − e2aπi = 2 (sinπa) ei
π
2
(2a−1).
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Note that if a ∈ R\Z then ∇a is a Hermitian connection. We conclude
that, even for a Hermitian connection, the refined analytic torsion is
a complex number, which, depending on the value of a, can have an
arbitrary phase, aside from ±π/2.

11. An Alternative Definition of the Refined Analytic Torsion

The correction term exp(iπ(rankE)ηtrivial) in Definition 10.1 is hard
to compute. In this section we suggest an alternative definition of the
refined analytic torsion, where we replace ηtrivial with an expression,
which depends on some choices, but is much easier to compute.
11.1. Dependence of ηtrivial on the metric. First, we describe the
dependence of ηtrivial(g

M ) on the Riemannian metric gM .
11.1.1. Case when M bounds an oriented manifold N ′. Suppose,
first, that M is the oriented boundary of a smooth compact oriented
manifold N ′. Let sign(N ′) denote the signature of N ′, cf. [2]. This is
an integer defined in purely cohomological terms. In particular, it is
independent of the metric. The signature theorem for manifolds with
boundary (cf. Theorem 4.14 of [2] and Theorem 2.2 of [3]) states that

(11.142) sign(N ′) =

∫

N ′

L(p) − η(Btrivial),

where L(p) := LN ′(p) is the Hirzebruch L-polynomial in the Pontrjagin
forms of a Riemannian metric on N ′ which is a product near M . It
follows from (11.142) that

∫
N ′ L(p) is independent of the choice of the

Riemannian metric on N ′ among those that near ∂N ′ are equal to the
product of the given metric gM on M and a metric on the interval. Note
that if dimM ≡ 1 (mod 4) then L(p) does not have a term of degree
dimN ′ and, hence,

∫
N ′ L(p) = 0.

Combining (11.142) with the metric independence of sign(N ′) and
Proposition 9.5, we conclude that, modulo Z,

(11.143) η − (rankE)

∫

N ′

L(p)

is independent of the metric gM . Since for different choices of N ′, the
integral

∫
N ′ L(p) differs by an integer, the expression (11.143), modulo

Z, is also independent of N ′.
11.1.2. General case (M does not necessarily bound an ori-
ented manifold). In general, there might be no smooth oriented man-
ifold whose oriented boundary is diffeomorphic to M . However, since
dimM is odd, there exists an oriented manifold N whose oriented
boundary is the disjoint union of two copies of M (with the same orien-
tation), cf. [44], [38, Th. IV.6.5]. Then the same arguments as above
show that, modulo Z,

(11.144) η −
rankE

2

∫

N
L(p)
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is metric independent. In particular, if dimM ≡ 1 (mod 4), then the
reduction of η modulo Z is metric independent.

Remark 11.2. Note again that replacing η by (11.144) removes the
dependence on the metric but creates a new dependence on the choice of
the manifold N . For different choices of N the integrals

∫
N L(p) might

differ by an integer.

11.3. Alternative definition of the refined analytic torsion. Let
M be a closed oriented manifold of dimension dimM = 2r − 1. As-
sume that there exists a Riemannian metric gM on M such that ∇ ∈
Flat′(M, gM ). Let θ ∈ (−π, 0) be an Agmon angle for Beven =
Beven(∇, g

M ). Choose a smooth compact oriented manifold N whose
oriented boundary is diffeomorphic to two disjoint copies of M . Then
one can define a version of the refined analytic torsion

T ′(∇) = T ′(M,E,∇, N)(11.145)

: = Detgr,θ(Beven) · exp
(
iπ

rankE

2

∫

N
L(p)

)
,

where L(p) = LN (p) is the Hirzebruch L-polynomial in the Pontrjagin
forms of a Riemannian metric on N which is a product near ∂N .

Remark 11.4. It follows from the above discussion and Theorem 9.3
that T ′(∇) is independent of the angle θ ∈ (−π, 0) and of the metric.
But it does depend on the choice of the manifold N . However, from
Proposition 9.5, we conclude that T ′(∇) is independent of the choice
of N up to multiplication by ik·rank E (k ∈ Z). If rankE is even then
T ′(∇) is well defined up to a sign, and if rankE is divisible by 4, then
T ′(∇) is a well defined complex number.

(Here a quantity being well defined means that it depends only on
M , E and ∇.)

Remark 11.5. If M is the oriented boundary of a smooth compact
oriented manifold N ′, one can define still another version of the refined
analytic torsion:

T#(∇) = T#(M,E,∇, N ′)(11.146)

: = Detgr,θ(Beven) · exp
(
iπ · rankE

∫

N ′

L(p)
)
.

Note that the indeterminacy in the definition of T#(∇) is smaller than
the indeterminacy in the definition of T#(∇), cf. Remark 11.4, as
T#(∇) is well defined up to a sign. If rankE is even, then T#(∇)
is a well defined complex number.
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12. Comparison Between the Refined Analytic and the
Ray-Singer Torsions

Assume thatM is a closed oriented odd-dimensional manifold and gM

is a Riemannian metric on M . By Theorem 8.2, there exists a C0-open
neighborhood U ⊂ Flat(E) of the set of acyclic Hermitian connections
on E, such that, for every ∇ ∈ U ,

(12.147)
∣∣∣ Detgr,θ(Beven)

∣∣∣ = TRS(∇) · eπ Im η(∇,gM ).

Combining this equality with (7.80) and the definition of the refined
analytic torsion we obtain

Theorem 12.1. Assume that M is a closed oriented odd-dimensional
manifold and gM is a Riemannian metric on M . Then there exists
a C0-open neighborhood U ⊂ Flat(E) of the set of acyclic Hermitian
connections on E, such that U ⊂ Flat′(E, gM ) and for all ∇ ∈ U

(12.148) log
|T (∇)|

TRS(∇)
= π Im η(∇, gM ).

In this section we present a local expression for the right hand side
of (12.148).

12.2. Dependence of the η-invariant on the connection. Suppose
that t 7→ ∇t, t ∈ [0, 1], is a smooth path of connections in Flat′(E, gM ).
We shall need the following result of Gilkey [21, Th. 3.7]11 (see also
Theorem 7.6 of [18]12 ):

Theorem 12.3. Let η(∇t, g
M ) ∈ C/Z denote the reduction of

η(∇t, g
M ) modulo Z. Then η(∇t, g

M ) depends smoothly on t, cf. [21,
§1].

1. If dimM ≡ 3 (mod 4) then η(∇t, g
M ) is independent of t ∈ [0, 1].

2. Suppose dimM ≡ 1 (mod 4). Set

(12.149) ψt :=
d

dt
∇t ∈ Ω1(M,End E).

Then

(12.150)
d

dt
η(∇t, g

M ) =
i

2π

∫

M
L(p) ∧ Tr(ψt),

where L(p) = LM (p) is the Hirzebruch L-polynomial in the Pon-
trjagin forms of gM .

11Note that Gilkey considered the η-invariant of the full odd signature operator
B = Beven⊕Bodd. Hence, our η(∇, gM ) is equal to one half of the invariant considered
in [21].

12Note, however, that in the formula of Theorem 7.6 of [18] the sign has to be
replaced by the opposite one.
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12.4. Cohomology class Arg∇. Following Farber, [17], we denote by
Arg∇ the unique cohomology class Arg∇ ∈ H1(M,C/Z) such that for
every closed curve γ ∈M we have

(12.151) det
(
Mon∇(γ)

)
= exp

(
2πi〈Arg∇, [γ]〉

)
,

where Mon∇(γ) denotes the monodromy of the flat connection ∇ along
the curve γ and 〈·, ·〉 denotes the natural pairing

H1(M,C/Z) × H1(M,Z) −→ C/Z.

Remark 12.5. The notation Arg∇ is motivated by the case where
∇ is a Hermitian connection. In this case, Mon∇(γ) is unitary and
Arg∇ ∈ H1(M,R/Z). Therefore, the expression 2π〈Arg∇, [γ]〉 is equal
to the phase of the complex number det(Mon∇(γ)).

Lemma 12.6. Assume that ∇t (t ∈ [0, 1]) is a smooth path of con-
nections. Then, using the notation introduced in Theorem 12.3.2, we
have

(12.152) 2πi
d

dt
Arg∇t

= −
[

Tr ψt

]
∈ H1(M,C),

where
[

Tr ψt

]
denotes the cohomology class of the closed differential

form Tr ψt.

Proof. Let S1 be the standard circle and let x ∈ [0, 2π) be the coor-
dinate on S1. Let γ : S1 → M be a closed curve. Fix a trivialization
of the bundle γ∗E → S1. Let At(x) denote the (periodically extended
to R) connection form on γ∗E induced by ∇t. Then, for each t ∈ [0, 1],
the monodromy Mon∇t(γ) along γ is given by the matrix Φt(2π) where
Φt(x) is the matrix function solving the following initial value problem

(12.153)

∂

∂x
Φt(x) +At(x)Φt(x) = 0, x ∈ R;

Φt(0) = Id .

Let Φ̇t(x) and Ȧt(x) denote the derivative with respect to t of the
matrices Φt(x) and At(x) respectively.

We are interested in computing

2πi
d

dt

〈
Arg∇t

, [γ]
〉

=
d

dt
log det Φt(2π)(12.154)

=
d

dt
Tr log Φt(2π)

= Tr Φ̇t(2π)Φt(2π)−1.

Note that, though log is a multivalued function, the derivatives

∂

∂t
log det Φt(2π) and

∂

∂t
Tr log Φt(2π)

are unambiguously defined complex numbers.
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From (12.153), we obtain

(12.155)
∂

∂x
Φ̇t(x) + Ȧt(x)Φt(x) +At(x) Φ̇t(x) = 0.

Hence,

(12.156)

(
∂

∂x
Φ̇t(x)

)
Φt(x)

−1 = −Ȧt(x) −At(x) Φ̇t(x)Φt(x)
−1.

On the other side,

Tr
∂

∂x

(
Φ̇t(x)Φt(x)

−1
)

(12.157)

= Tr
( ∂

∂x
Φ̇t(x)

)
Φt(x)

−1 − Tr Φ̇t(x)Φt(x)
−1
( ∂
∂x

Φt(x)
)

Φt(x)
−1

= Tr
( ∂

∂x
Φ̇t(x)

)
Φt(x)

−1 + Tr At(x) Φ̇t(x)Φt(x)
−1,

where in the last equality we used (12.153).
Combining (12.157) with (12.156) and using (12.149) we get

(12.158)
∂

∂x
Tr Φ̇t(x)Φt(x)

−1 = − Tr Ȧt(x) = − Tr γ∗ψt(x).

Here γ∗ψt denotes the pull-back of the differential form ψt under the
map γ : S1 →M .

From (12.154) and (12.158) we obtain

d

dt
2πi〈Arg∇t

, [γ]〉 =
d

dt

(
log det Φt(2π) − log det Φt(0)

)

= −

∫ 2π

0
Tr Ȧt(x) dx

= −
〈
[Tr ψt], [γ]

〉
.

q.e.d.

From Lemma 12.6 and (12.150) we obtain

d

dt
η(∇t, g

M ) =
〈
[L(p)] ∪

i

2π
[Tr ψt], [M ]

〉
(12.159)

=
〈
[L(p)] ∪

d

dt
Arg∇t

, [M ]
〉
,

where ∪ denotes the cup-product in cohomology.
Assume that ∇t (t ∈ [0, 1]) is a smooth path of acyclic connections

and that the connection ∇0 is Hermitian. By Remark 12.5, ImArg∇0
=

0 and, thus, (12.152) leads to

(12.160)
[ ∫ t

0
Tr (Reψt) dt

]
= 2π ImArg∇t

∈ H1(M,R).
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12.7. Comparison with the Ray-Singer torsion. Let

U ⊂ Flat′(E, gM )

be as in Theorem 12.1. Denote by U ′ ⊂ U the set of flat connections sat-
isfying the following condition: for every ∇ ∈ U ′ there exists a smooth
path t 7→ ∇t ∈ U , t ∈ [0, 1], of connections such that ∇0 is Hermitian,
and ∇1 = ∇. Then U ′ ⊂ Flat′(E, gM ) is an open neighborhood of the
set of acyclic Hermitian connections.

Theorem 12.8. Let M be a closed oriented odd-dimensional man-
ifold and let gM be a Riemannian metric on M . Suppose ∇ ∈ U ′.
Then, with L(p) = LM (p) denoting the Hirzebruch L-polynomial in the
Pontrjagin forms of a Riemannian metric on M ,

(12.161) log
|T (∇)|

TRS(∇)
= π

〈
[L(p)] ∪ ImArg∇, [M ]

〉
.

In the case dimM ≡ 3 (mod 4)

(12.162) |T (∇)| = TRS(∇).

Remark 12.9.

1. The advantage of Theorem 12.8 over Theorem 12.1 is that the
right hand side of (12.161) is given by a local formula. Hence, it
might be possible to effectively compute it in some examples.

2. When dimM ≡ 3 (mod 4) the right hand side of (12.161) vanishes
since L(p) has no component of degree dimM − 1 and, hence,

[L(p)] ∪ ImArg∇

does not have a component of degree dimM .

Proof. Let ∇t ∈ U ′ (0 ≤ t ≤ 1) be a smooth path of connections such
that ∇0 is a Hermitian connection and ∇1 = ∇. Then, by Theorem 12.1,

(12.163) log
|T (∇t)|

TRS(∇t)
= π Im η(∇t, g

M ), for every t ∈ [0, 1].

As the number η(∇t, g
M ) is defined modulo integers, its imaginary

part is a well defined real number and

Im η(∇t, g
M ) = Im η(∇t, g

M ).

Since the connection ∇0 is Hermitian, Im η(∇0, g
M ) = 0. Hence, from

Theorem 12.3.1 we conclude that Im η(∇, gM ) = 0 if dimM ≡ 3
(mod 4). From Theorem 12.3.2 and (12.160) we see that

Im η(∇, gM ) =
1

2π

∫ 1

0

(∫

M
L(p) ∧ Tr(Reψt)

)
dt

=
〈
[L(p)] ∪ ImArg∇, [M ]

〉
,

if dimM ≡ 1 (mod 4). Theorem 12.8 follows now from (12.163). q.e.d.
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13. Graded Determinant as a Holomorphic Function of a
Representation of π1(M)

In this section we show, first, that the graded determinant
Detgr,θ(Beven(∇, g

M )) of the odd signature operator is, in an appropriate
sense, a holomorphic function of the connection ∇. Then we change the
point of view and consider the graded determinant as a function of the
representation of the fundamental group π1(M) of M . More precisely,
each representation α of π1(M) induces a flat vector bundle (Eα,∇α)
overM and we denote by Bα = B(∇α, g

M ) the corresponding odd signa-
ture operator. The space Rep(π1(M),Cn) of all complex n-dimensional
representations of π1(M) has a natural structure of a complex algebraic
variety. We show that Detgr,θ(Bα,even) is a well defined holomorphic
function on an open subset of this variety. Throughout the section we
assume that the dimension of M is odd.
13.1. Graded determinant as a holomorphic function. Let M
be a closed oriented manifold of odd dimension d = 2r − 1 and let
E → M be a flat vector bundle over M . Every (not necessarily flat)
connection on E can be viewed as a first order differential operator
on Ω•(M,E). Thus the space C(E) of all connections on E is an
affine subspace of the space Diff1(M,Λ•T ∗M ⊗ E) of first order differ-
ential operators on the complex vector bundle Λ•T ∗M ⊗ E → M and,
hence, inherits from Diff1(M,Λ•T ∗M ⊗ E) the structure of a Fréchet
space. See Subsection 5.3 for the definition of the Fréchet topology on
Diff1(M,Λ•T ∗M ⊗ E).

Fix a Riemannian metric gM on M . Recall that we denote by
Flat′(E, gM ) the set of flat connections ∇ on E such that the pair
(∇, gM ) satisfies Assumption I and II of Subsection 6.5. By (3.27),
the graded determinant Detgr,θ

(
Beven(∇, g

M )
)

is independent of the
choice of the Agmon angle θ ∈ (−π, 0). Thus one obtains a function

(13.164)
Detgr : Flat′(E, gM ) −→ C\{0},

Detgr : ∇ 7→ Detgr,θ
(
Beven(∇, g

M )
)
,

where θ is any Agmon angle of B(∇, gM ) in the interval (−π, 0). Recall
that the notion of a holomorphic curve has been introduced in Subsec-
tion 5.1.

Proposition 13.2. Suppose E is a vector bundle over a closed ori-
ented odd-dimensional Riemannian manifold (M, gM ). Let O ⊂ C be
an open set and let γ : O → Flat′(E, gM ) be a holomorphic curve in
Flat′(E, gM ). Then the function λ 7→ Detgr

(
Beven(γ(λ), gM )

)
is holo-

morphic on O.

In fact, we will need a slightly more general statement. Thus we will,
first, generalize Proposition 13.2 and, then, prove this more general
version.
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13.3. Extension of the graded determinant to non-flat con-
nections. Recall from Theorem 7.2 that, for every connection ∇ ∈
Flat′(E, gM ),

(13.165) Detgr,θ
(
Beven(∇, g

M )
)

= eξ(∇,gM ,θ) · e−iπη(∇,gM ),

where θ ∈ (−π/2, 0) is any an Agmon angle for B(∇, gM ) such that
there are no eigenvalues of the operator B(∇, gM ) in the solid angles
L(−π/2,θ] and L(π/2,θ+π].

Let ∇0 ∈ Flat′(M, gM ). Then B(∇0, g
M ) is invertible. Formula

(6.61) defines the odd signature operator B(∇, gM ) for an arbitrary, not
necessarily flat, connection. We wish to extend the notion of the graded
determinant to operators B(∇, gM ) with ∇ in some open neighborhood
of Flat′(E, gM ) in C(E).

The same arguments as in the proof of Proposition 6.8 show that there
exists a C0-neighborhood U of ∇0 in the space C(E) of all connections
such that B(∇, gM ) is invertible for all ∇ ∈ U . As in Lemma 6.4, the
leading symbol of B(∇, gM ) is symmetric and, hence, B(∇, gM ) admits
an Agmon angle for B(∇, gM ) such that there are no eigenvalues of
the operator B(∇, gM ) in the solid angles L(−π/2,θ], L(π/2,θ+π]. Thus

we can use formula (4.33) to define η(∇, gM ) = η
(
Beven(∇, g

M )
)

for
all ∇ ∈ U . Similarly, we can use the expression (8.102) for ξ to define
ξ(∇, gM , θ) to all ∇ ∈ U . We now use (13.165) as the definition of
Detgr,θ

(
Beven(∇, g

M )
)

for ∇ ∈ U .

Proposition 13.4. Suppose E is a complex vector bundle over a
closed oriented odd-dimensional Riemannian manifold (M, gM ) and let
U ⊂ C(E) be the C0-open set defined above. Let O ⊂ C be an open
set and let γ : O → U be a holomorphic curve in C(E) such that there
exists λ0 ∈ O with γ(λ0) ∈ Flat′(E, gM ). Then the function λ 7→
Detgr,θ

(
Beven(γ(λ), gM )

)
is holomorphic in a neighborhood of λ0. Here

θ ∈ (−π/2, 0) is any Agmon angle for Beven(γ(λ), gM ) such that there
are no eigenvalues of the operator Beven(γ(λ), gM ) in the solid angles
L(−π/2,θ] and L(π/2,θ+π].

Proof. Fix an Agmon angle θ ∈ (−π/2, 0) for Beven(γ(λ0), g
M ) such

that there are no eigenvalues of the operator Beven(γ(λ0), g
M ) in the

solid angles L(−π/2,θ] and L(π/2,θ+π]. Then, for all λ in a small neigh-

borhood of λ0, θ is also an Agmon angle for Beven(γ(λ), gM ) and there
are no eigenvalues of Beven(γ(λ), gM ) in the solid angles L(−π/2,θ] and
L(π/2,θ+π].

By Corollary 5.9, the function

O −→ C, λ 7→ e−2iπη(γ(λ),gM )
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is holomorphic on O. Similarly, Theorem 5.7.a and the expression

(8.102) for ξ imply that the function λ 7→ e2ξ(γ(λ),gM ,θ) also is holo-
morphic on O. Hence,

F (λ) := Detgr,θ
(
Beven(γ(λ), gM )

)2
= e2ξ(γ(λ),gM ,θ) · e−2iπη(γ(λ),gM )

is a non-vanishing holomorphic function on O.
Since F (λ) is a continuous function of λ and F (λ0) 6= 0, we can find

a neighborhood O′ ⊂ O of λ0 such that for all λ ∈ O′ we have

∣∣F (λ) − F (λ0)
∣∣ ≤ 1

2

∣∣F (λ0)
∣∣.

Then Detgr,θ
(
Beven(λ, g

M )
)

coincides on O′ with one of the two ana-
lytic square roots of F (λ). q.e.d.

Remark 13.5. The above arguments show a very close relationship

between eξ(∇,gM ,θ) and e−iπη(∇,gM ). Each of these numbers by itself
depends on the choice of the Agmon angle θ. But their product is a well
defined holomorphic function. This relationship plays a very important
role in the whole paper since it explains many features of the refined
analytic torsion.

13.6. Space of representations of the fundamental group. Let
M be a closed oriented manifold of odd dimension d = 2r − 1, where

r ≥ 1. Denote by M̃ the universal cover of M and by π1(M) the
fundamental group of M , viewed as the group of deck transformations

of M̃ → M . The set Rep(π1(M),Cn) of all n-dimensional complex
representations of π1(M) has a natural structure of a complex algebraic
variety. Indeed, π1(M) is a finitely presented group, i.e., it is generated
by a finite number of elements γ1, . . . , γL, which satisfy finitely many
relations. Hence, a representation α ∈ Rep(π1(M),Cn) is given by
2L invertible n× n-matrices α(γ1), . . . , α(γL), α(γ−1

1 ), . . . , α(γ−1
L ) with

complex coefficients satisfying finitely many polynomial equations. In
other words, a representation α is given by a point of the direct product
Matn×n(C)2L of 2L copies of the space Matn×n of n× n-matrices with
complex coefficients.

In the sequel, we fix generators γ1, . . . , γL of π1(M) and view
Rep(π1(M),Cn) as an algebraic subset of Matn×n(C)2L with the in-
duced topology. For α ∈ Rep(π1(M),Cn), we denote by

Eα := M̃ ×α Cn −→M

the flat vector bundle induced by α. Let ∇α be the flat connection on

Eα induced from the trivial connection on M̃ ×Cn. We will also denote
by ∇α the induced differential

∇α : Ω•(M,Eα) −→ Ω•+1(M,Eα),
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where Ω•(M,Eα) denotes the space of smooth differential forms of M
with values in Eα.

For each connected component13 bundles Eα are isomorphic, see e.g.,
[23].

Let Rep0(π1(M),Cn) ⊂ Rep(π1(M),Cn) denote the (possibly empty)
set of all representations α ∈ Rep(π1(M),Cn) such that the connection
∇α is acyclic. A representation α ∈ Rep(π1(M),Cn) is called unitary if
there exists a Hermitian scalar product (·, ·) on Cn which is preserved
by the matrices α(γ) for all γ ∈ π1(M). The scalar product (·, ·) induces
a flat Hermitian metric hEα on the bundle Eα. We denote the set of
unitary representations by Repu(π1(M),Cn). One might think of

Repu(π1(M),Cn) ⊂ Rep(π1(M),Cn)

as the real locus of the complex algebraic variety Rep(π1(M),Cn). Set

Repu
0(π1(M),Cn) := Repu(π1(M),Cn) ∩ Rep0(π1(M),Cn).

13.7. Graded determinant of the odd signature operator as a
function on the space of representations. Fix a Riemannian metric
gM on M . Let

Bα := B(∇α, g
M ) : Ω•(M,Eα) −→ Ω•(M,Eα)

and let Bα,even denote the restriction of Bα to Ωeven(M,Eα).
Suppose that for some representation α0 ∈ Rep0(π1(M),Cn) the op-

erator Bα0 is invertible (in other words, we assume that (∇α0 , g
M ) sat-

isfies Assumptions I and II of Subsection 6.5). Then there exists an
open neighborhood (in classical topology) V ⊂ Rep(π1(M),Cn) of the
set of acyclic unitary representations such that, for all α ∈ V the pair
(∇α, g

M ) satisfies Assumptions I and II of Subsection 6.5. Thus, for
all α ∈ V , the graded determinant Detgr,θ(Bα,even) is defined, where
θ ∈ (−π, 0) is an Agmon angle for Bα.

Theorem 13.8. Let M be a closed oriented odd-dimensional man-
ifold and let gM be a Riemannian metric on M . Let O ⊂ C be a
connected open set and let γ : O → Rep0(π1(M),Cn) be a holomorphic
curve. Assume that for λ0 ∈ O the connection ∇γ(λ0) on Eγ(λ0) → M
satisfies Assumption II of Subsection 6.5 (with respect to the given met-
ric gM ). Then the function

(13.166) λ 7→ Detgr,θ
(
Bγ(λ),even

)

is holomorphic in a neighborhood of λ0.

Proof. First, we need to introduce some additional notations. Let
E be a vector bundle over M and let ∇ be a (not necessarily flat)

13In this paper we always consider the classical (not the Zariski) topology on the
complex analytic space Rep(π1(M), Cn).
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connection on E. Fix a base point x∗ ∈M and let Ex∗
denote the fiber

of E over x∗. We will identify Ex∗
with Cn and π1(M,x∗) with π1(M).

For a closed path φ : [0, 1] → M with φ(0) = φ(1) = x∗, we denote
by Mon∇(φ) ∈ End Ex∗

≃ Matn×n(C) the monodromy of ∇ along φ, cf.
(12.153). Note that, if ∇ is flat then Mon∇(φ) depends only on the class
[φ] of φ in π1(M). Hence, if ∇ is flat, then the map φ 7→ Mon∇(φ) defines
an element of Rep(π1(M),Cn), called the monodromy representation of
∇.

Suppose now that O ⊂ C is a connected open set. Let

γ : O → Rep0(π1(M),Cn)

be a holomorphic curve. By Proposition 4.5 of [23], all the bundles
Eγ(λ), λ ∈ O, are isomorphic to each other. In other words, there exists
a vector bundle E → M and a family of flat connections ∇λ, λ ∈ O,
on E, such that the monodromy representation of ∇λ is isomorphic
to γ(λ) for all λ ∈ O. Moreover, the family ∇λ can be chosen to be
real differentiable, i.e., such that for every λ ∈ O there exist ω1, ω2 ∈
Ω1(M,End E) with

(13.167) ∇µ = ∇λ + Re(µ− λ) · ω1 + Im(µ− λ) · ω2 + o(µ− λ),

where o(µ − λ) is understood in the sense of the Fréchet topology on
C(E) introduced in Subsection 13.1.

By Lemma B.6 there exist a smooth form ω ∈ Ω1(M,End E) with
∇λω = 0 and a family G(µ) ∈ End E (µ ∈ O) of gauge transformations
such that G(λ) = Id and

∇λ + (µ− λ)ω = G(µ) · ∇µ ·G(µ)−1 + o(µ− λ).

Note that the connection ∇λ + (µ− λ)ω is not necessarily flat.
From the definition of the the odd signature operator it then follows

that

(13.168) B
(
∇λ+(µ−λ)ω, gM

)
= G(µ)·B(∇µ, g

M )·G(µ)−1+o(µ−λ),

where o(µ−λ) is understood in the sense of the Fréchet topology intro-
duced in Subsection 5.3.

Suppose now that λ is close enough to λ0 so that the connection ∇γ(λ)

satisfies Assumption II of Subsection 6.5 (with respect to the metric
gM ). Recall that in Subsection 13.3 we extended the definition of the
graded determinant of Beven(∇, g

M ) to the case when the connection ∇
is not necessarily flat. Thus

Detgr,θ
(
Beven(∇λ + (µ− λ)ω, gM )

)

is defined for all µ ∈ C close enough to λ.
By Proposition 13.4, the map

µ 7→ Detgr,θ
(
Beven(∇λ + (µ− λ)ω, gM )

)
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is holomorphic near λ. Hence, there exists a number a ∈ C such that

(13.169) Detgr,θ
(
Beven(∇λ + (µ− λ)ω, gM )

)

= Detgr,θ
(
Beven(∇λ, g

M )
)

+ a · (µ− λ) + o(µ− λ).

On the other side, (13.168) implies that

Detgr,θ
(
Beven(∇λ + (µ− λ)ω, gM )

)
(13.170)

= Detgr,θ
(
G(µ) ·Beven(∇µ, g

M ) ·G(µ)−1
)

+ o(µ− λ)

= Detgr,θ
(
Beven(∇µ, g

M )
)

+ o(µ− λ).

Combining (13.169) with (13.170) we obtain

Detgr,θ
(
Beven(∇µ, g

M )
)

= Detgr,θ
(
Beven(∇λ, g

M )
)

+ a · (µ− λ) + o(µ− λ).

Since the above equality holds for all λ close enough to λ0 the theorem
is proven. q.e.d.

Corollary 13.9. Let M be a closed oriented odd-dimensional mani-
fold. Let V ⊂ Rep(π1(M),Cn) be an open set such that for every α ∈ V
there exists a Riemannian metric gM such that the connection ∇α ∈
Flat′(Eα, g

M ) (cf. Subsection 6.7). Assume, further, that all the points
of V are regular points of the complex algebraic set Rep(π1(M),Cn).
Then the map

Det : V −→ C, Det : α 7→ Det(α) := Detgr,θ(Bα,even)

is holomorphic. Here θ ∈ (−π, 0) is an Agmon angle for Bα,even.

Proof. By Hartogs’ theorem (cf., for example, [26, Th. 2.2.8]), a func-
tion on a smooth algebraic variety is holomorphic if its restriction to
each holomorphic curve is holomorphic. Hence, the corollary follows
immediately from Theorem 13.8. q.e.d.

Remark 13.10. In Section 14 below we mostly view the graded de-
terminant of the odd signature operator as a function on the space of
representations rather than as a function on the space of flat connec-
tions. As Rep(π1(M),Cn) is a finite dimensional algebraic variety, we
can use the methods of complex analysis of holomorphic functions on
finite dimensional varieties.

By the definition of the refined analytic torsion, cf. Definition 10.1,
Theorem 13.8 and Corollary 13.9 imply now the following

Corollary 13.11. Let M be a closed oriented odd-dimensional man-
ifold.
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1. Let O ⊂ C be an open set and let γ : O → Rep0(π1(M),Cn)
be a holomorphic curve. Assume that for λ0 ∈ O there exists
a Riemannian metric gM so that the connection ∇γ(λ0) satisfies
Assumption II of Subsection 6.5. Then the function

(13.171) λ 7→ T (∇γ(λ)

)

is holomorphic in a neighborhood of λ0.
2. Let V ⊂ Rep0(π1(M),Cn) denote the open set of all represen-

tations α such that for some Riemannian metric gM on M the
connection ∇α ∈ Flat′(Eα, g

M ). Let Σ ⊂ Rep(π1(M),Cn) de-
note the set of singular points of the complex algebraic variety
Rep(π1(M),Cn). Then α 7→ T (∇α) is a holomorphic function on
V \Σ.

14. Comparison with Turaev’s Refinement of the
Combinatorial Torsion

In [42, 43], Turaev introduced a refinement T comb
α (ε, o) of the com-

binatorial torsion associated to an acyclic representation α of π1(M).
This refinement depends on an additional combinatorial data, denoted
by ε and called the Euler structure as well as on the cohomological ori-
entation of M , i.e., on the orientation o of the determinant line of the
cohomology H•(M,R) of M . There are two versions of the Turaev
torsion – the homological and the cohomological one. In this paper
it is more convenient for us to use the cohomological Turaev torsion
as it is defined by Farber and Turaev in Section 9.2 of [20]. Given
α ∈ Rep0(π1(M),Cn), the cohomological Turaev torsion T comb

α (ε, o) is
a non-vanishing complex number. If α ∈ Repu

0(π1(M),Cn) the absolute
value of the Turaev torsion is equal to the Reidemeister torsion.14 One
can view Theorem 8.2 as an analytic analogue of this result, where the
role of the Reidemeister torsion is played by the Ray-Singer torsion. An-
other property of the Turaev torsion is that it is a holomorphic function
of α ∈ Rep0(π1(M),Cn). In Corollary 13.11 we established the same
property for the refined analytic torsion.

Though, in general, the refined analytic torsion Tα = T (∇α) and
the Turaev torsion T comb

α (ε, o) are not equal they are very closely re-
lated. In this section we establish this relationship. As an application
we strengthen and generalize a theorem of Farber [17] about the rela-
tionship between the Turaev torsion and the η-invariant.

14.1. Notation. LetM be a closed oriented odd-dimensional manifold.
In this section we view the refined analytic torsion as a function of a
representation of π1(M). Let V ⊂ Rep0(π1(M),Cn) be an open set

14Here the Reidemeister torsion is understood as the positive real number defined,
for example, in Definition 1.1 of [35].
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consisting of representations α such that ∇α ∈ Flat′(E, gM ). Let V ′ ⊂
V be the open subset of V such that, for all α ∈ V ′, the connection ∇α

belongs to the open set U ′ defined in Subsection 12.7. For every α ∈ V
we set Tα := T (∇α), TRS

α := TRS(∇α), ηα := η(∇α, g
M ), etc.

14.2. Comparison between the Turaev and the Ray-Singer
Torsion. Theorem 10.2 of [20] establishes a relationship between the
Turaev and the Ray-Singer torsions for real representations α. The fol-
lowing result is an immediate extension of this result to complex acyclic
representations.

Theorem 14.3. Suppose M is a closed oriented odd-dimensional
manifold. Let c(ε) ∈ H1(M,Z) denote the characteristic class of the
Euler structure ε, cf. [43] or Section 5.2 of [20]. Then, for every
α ∈ Rep0(π1(M),Cn),

(14.172) log
|T comb

α (ε, o)|

TRS
α

= −π 〈ImArgα, c(ε)〉,

where the cohomology class Argα := Arg∇α
∈ H1(M,C/Z) is defined

in Subsection 12.4 and 〈·, ·〉 denotes the natural pairing

H1(M,C/Z) ×H1(M,Z) −→ C/Z.

In particular, if α ∈ Repu
0(π1(M),Cn) then

(14.173)
∣∣T comb

α (ε, o)
∣∣ = TRS

α .

Note that, though 〈Argα, c(ε)〉 is defined only modulo Z, its imagi-
nary part Im〈Argα, c(ε)〉 is a well defined complex number.

Proof. Let αR denote the representation α considered as a real rep-
resentation. Then, for every closed curve γ in M , we have

detMonαR(γ) =
∣∣ det Monα(γ)

∣∣2.

Define ArgαR ∈ H1(M,R/Z) by

det MonαR(γ) = exp
(
2πi〈ArgαR , [γ]〉

)
.

Then, from (12.151), we obtain

exp
(
2πi〈ArgαR , [γ]〉

)
= exp

(
2πi〈2i ImArgα, [γ]〉

)
.

Hence,

(14.174) 〈ArgαR , [γ]〉 ≡ 2i Im 〈Argα, [γ]〉 mod Z.

Let T comb
αR (ε, o) and TRS

αR denote the Turaev and the Ray-Singer tor-

sions associated to the representation αR. Then

(14.175) |T comb
α (ε, o)|2 = T comb

αR (ε, o), (TRS
α )2 = TRS

αR .
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By formula (10.3) of [20], we have
(
T comb

αR (ε, o)

TRS
αR

)2

=
∣∣ exp

(
2πi〈ArgαR , c(ε)〉

) ∣∣ .

Combining this equality with (14.174) and (14.175), we obtain (14.172).
If α is unitary, then ImArgα = 0 and (14.173) follows. q.e.d.

14.4. The homology class βε. We need the following

Lemma 14.5. Let M be a closed oriented manifold of odd dimen-
sion d = 2n − 1. Let Ld−1(p) ∈ Hd−1(M,Q) denote the component in
dimension d− 1 of the Hirzebruch L-polynomial L(p) in the Pontrjagin

classes of M . Then there exists a lift L̃d−1 ∈ Hd−1(M,Z) of Ld−1(p) to

the integer cohomology and the reduction of L̃d−1 modulo 2 is equal to
the (d− 1)-Stiefel-Whitney class wd−1(M) ∈ Hd−1(M,Z2) of M .

Proof. For any homology class ξ ∈ Hd−1(M,Z) there exists a smooth
oriented submanifold Xξ ⊂ M , representing ξ. Then 〈Ld−1(p), ξ〉 is
equal to the signature σ(Xξ) of Xξ. In particular, it is an integer;

hence, the lift L̃d−1 ∈ Hd−1(M,Z) exists.
The parity of σ(Xξ) is equal to the parity of the Euler characteristic

χ(Xξ) of Xξ, which, in turn, is equal to

〈wd−1(M), Xξ〉 = 〈wd−1(Xξ), Xξ〉.

Thus we conclude that

〈L̃d−1 − wd−1(M), ξ〉 = 0 mod 2,

for any homology class ξ ∈ Hd−1(M,Z). q.e.d.

Note that a lift of Ld−1(p) to the integer cohomology is not uniquely
defined if Hd−1(M,Z) has a torsion. From now on we fix such a lift

L̃d−1 ∈ Hd−1(M,Z) and we denote by L̂1 ∈ H1(M,Z) the Poincaré

dual of L̃d−1. Let c(ε) ∈ H1(M,Z) denote the characteristic class of the
Euler structure ε, cf. [43] or Section 5.2 of [20].

Corollary 14.6. The class L̂1(p) + c(ε) ∈ H1(M,Z) is divisible
by 2, i.e., there exists a (not necessarily unique) homology class βε ∈
H1(M,Z) such that

(14.176) − 2βε = L̂1(p) + c(ε).

Proof. It is shown on page 209 of [20] that the reduction of c(ε)
modulo 2 is equal to the Poincaré dual of the Stiefel-Whitney class
wd−1(M). Hence, it follows from Lemma 14.5 that the reduction of

L̂1(p) + c(ε) is the zero element of H1(M,Z2). q.e.d.

The equality (14.176) defines βε modulo two-torsion elements in
H1(M,Z). We fix a solution of (14.176) and for the rest of the paper βε

denotes this solution.
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14.7. Comparison between the Turaev and the refined analytic

torsions. To simplify the notation let us denote by L̂(p) ∈ H•(M,Z)

the Poincaré dual of the cohomology class [L(p)]. Let L̂1 ∈ H1(M,Z)

denote the component of L̂(p) in H1(M,Z). Then

〈 [L(p)] ∪ Argα, [M ] 〉 = 〈Argα, L̂1〉 ∈ C/Z.

Recall that the neighborhood V ′ of Repu
0(π1(M),Cn) was defined in

Subsection 14.1. If α ∈ V ′ then by Theorem 12.8 and (14.172)

Re log
Tα

T comb
α (ε, o)

= log
|Tα|

|T comb
α (ε, o)|

(14.177)

= π
〈
ImArgα, c(ε) + L̂1

〉

= −2π
〈
ImArgα, βε

〉
,

where βε ∈ H1(M,Z) is the homology class defined in (14.176).
Let Σ denote the set of singular points of the complex analytic set

Rep(π1(M),Cn). By Corollary 13.11, the refined analytic torsion Tα is
a non-vanishing holomorphic function of α ∈ V \Σ. By the very con-
struction [42, 43, 20] the Turaev torsion is a non-vanishing holomorphic
function of α ∈ Rep0(π1(M),Cn). Hence,

Tα

T comb
α (ε, o)

is a holomorphic function on V ′\Σ.
By construction of the cohomology class Argα, for every homology

class z ∈ H1(M,Z), the expression

e2π i 〈Argα,z〉

is a holomorphic function on Rep(π1(M),Cn).
Now the expression (14.177) can be rewritten as

∣∣∣∣
Tα

T comb
α (ε, o)

∣∣∣∣ =
∣∣∣ e2πi〈Argα,βε〉

∣∣∣ , α ∈ V ′.

If the absolute values of two non-vanishing holomorphic functions are
equal on a connected open set then the functions must be equal up to
a factor a ∈ C with |a| = 1. Hence, on each connected component
C ⊂ V ′\Σ, there exists a constant φC(ε, o) ∈ R, depending on ε and o,
so that

(14.178)
Tα

T comb
α (ε, o)

e−iφC(ε,o) = e2πi〈Argα,βε〉, α ∈ C.

Note that the constants φC(ε, o) are defined up to an additive multiple

of 2π. Since Tα, T comb
α (ε, o), and e2πi〈Argα,βε〉 depend continuously on

α ∈ V ′, we can choose these constants so that

φC1(ε, o) = φC2(ε, o)
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whenever C1 and C2 are contained in the same connected component of
V ′. Thus (14.178) remains valid if C is a connected component of V ′.

Thus we have proven the following extension of the Cheeger-Müller
theorem about the equality between the Reidemeister and the Ray-
Singer torsions.

Theorem 14.8. Suppose M is a closed oriented odd dimensional
manifold. Let ε be an Euler structure on M and let o be a cohomological
orientation of M . Let V ′ ⊂ Rep0(π1(M),Cn) be as in Subsection 14.1.
Then, for each connected component C of V ′, there exists a constant
φC = φC(ε, o) ∈ R, depending on ε and o, such that

(14.179)
Tα

T comb
α (ε, o)

= eiφC e2πi〈Argα,βε〉.

Remark 14.9. It would be very interesting to calculate the con-
stant φC(ε, o). In particular, it would be interesting to know whether
it actually depends on the connected component C of V ′. Another
interesting question is for which acyclic representations α one can find
an Euler structure ε and a cohomological orientation o such that Tα =
T comb

α (ε, o).15

14.10. Comparison with the Farber-Turaev absolute torsion.
An immediate application of Theorem 14.8 concerns the notion of the
absolute torsion introduced by Farber and Turaev in [19]. Suppose that
the Stiefel-Whitney class wd−1(M) ∈ Hd−1(M,Z2) vanishes, a condition
always satisfied if dimM ≡ 3(mod 4), cf. [32]. Then, by [19, §3.2], there
exists an Euler structure ε such that c(ε) = 0. Assume, in addition,
that the first Stiefel-Whitney class w1(Eα), viewed as a homomorphism
H1(M,Z) → Z2, vanishes on the 2-torsion subgroup of H1(M,Z). In
this case there is also a canonical choice of the cohomological orientation
o, cf. [19, §3.3]. Then the Turaev torsion T comb

α (ε, o) corresponding to
any ε with c(ε) = 0 and the canonically chosen o will be the same.

If the above assumptions on wd−1(M) and w1(Eα) are satisfied, then
the number

(14.180) T abs
α := T comb

α (ε, o) ∈ C, (c(ε) = 0),

is canonically defined, i.e., is independent of any choices. It was intro-
duced by Farber and Turaev, [19], who called it the absolute torsion.16

15Added in proof: Recently, Rung-Tzung Huang [27] showed by an explicit calcu-
lation for lens spaces that, in general, the constant φC(ε, o) depends on the connected
component C. He also showed that it is independent of the Euler structure ε.

16Farber and Turaev, [19], also defined the absolute torsion in the case when the
representation α is not acyclic, in which case the absolute torsion is not a number
but an element of the determinant line Det(H•(M, Eα) of the cohomology of M with
coefficients in Eα.
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Using (14.176) and the fact that L̂1 vanishes if dimM ≡ 3 (mod 4),
Theorem 14.8 leads to the following

Corollary 14.11. In addition to the assumptions made in Theo-
rem 14.8 suppose that dimM ≡ 3 (mod 4) and that the 2-torsion sub-
group of H1(M,Z) is trivial. Then the ratio Tα/T

abs
α is locally constant

on V ′ and its absolute value is equal to 1. 17

14.12. Phase of the Turaev torsion of a unitary representation.
As an application of our study of the refined analytic torsion we obtain
a result about the phase of the Turaev torsion which improves and
generalizes a theorem of Farber [17], cf. Remark 14.16 below.

We denote the phase of a complex number z by Ph(z) ∈ [0, 2π) so

that z = |z|eiPh(z).
Suppose α ∈ Repu

0(π1(M),Cn) is a unitary representation. Then the
number ξα = ξ(∇α, g

M , θ), defined in (7.79), is real (in fact, in this case,
ξα coincides with log TRS

α , cf. (8.98)). Moreover, the η-invariant ηα is
real, cf. Subsection 4.8. Thus, (7.80) and the definition of the refined
analytic torsion (Definition 10.1) imply

(14.181) Ph(Tα) = −π ηα + π (rankα) ηtrivial mod 2π Z.

The second term on the right hand side of (14.181) vanishes if dimM ≡
1 (mod 4).

Combining (14.181) with Theorem 14.8 we obtain the following

Theorem 14.13. Under the assumptions of Theorem 14.8 suppose
that α1, α2 ∈ Repu

0(π1(M),Cn) are unitary representations which lie in
the same connected component of V ′. In particular, they have the same
rank. Then, modulo 2π Z,

(14.182) Ph(T comb
α1

(ε, o)) + π ηα1 + 2π
〈
Argα1

, βε

〉

≡ Ph(T comb
α2

(ε, o)) + π ηα2 + 2π
〈
Argα2

, βε

〉
.

14.14. Sign of the absolute torsion. Suppose that the Stiefel-Whit-
ney class wd−1(M) = 0 and that the first Stiefel-Whitney class w1(Eα),
viewed as a homomorphism H1(M,Z) → Z2, vanishes on the 2-torsion
subgroup of H1(M,Z). Then the Farber-Turaev absolute torsion
(14.180) is defined. If α ∈ Repu

0(π1(M),Cn), then T abs
α is real, cf. The-

orem 3.8 of [19] and, hence,

eiPh(T abs
α ) = sign(T abs

α ).

From Theorem 14.8 and Theorem 14.13 we now obtain the following

17Added in proof: Recently, Huang [27] proved that, under the assumptions of
Corollary 14.11, Tα/T abs

α = ±e−iπρα , where ρα = ηα − (rank α)ηtrivial is the ρ-
invariant of Eα.
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Theorem 14.15. Under the assumptions of Theorem 14.8 suppose
that α1, α2 ∈ Repu

0(π1(M),Cn) are unitary representations which lie in
the same connected component of V ′.

1) Let dimM ≡ 3 (mod 4). Assume that the first Stiefel-Whitney
class w1(Eα1) = w1(Eα2) vanishes on the 2-torsion subgroup of
H1(M,Z). Then

sign
(
T abs

α1
) · eiπηα1 = sign

(
T abs

α2
) · eiπηα2 .

2) Let dimM ≡ 1 (mod 4). Assume that wd−1(M) = 0 and the group
H1(M,Z) has no 2-torsion. Then

sign
(
T abs

α1
) · eiπ

(
ηα1−〈[L(p)]∪Argα1

,[M ]〉
)

= sign
(
T abs

α2
) · eiπ

(
ηα2−〈[L(p)]∪Argα2

,[M ]〉
)
.

Remark 14.16. Note that the unitary representations α1 and α2 in
Theorem 14.15 are assumed to be connected by a path in V ′. For the
special case when there is a real analytic path αt of unitary represen-
tations connecting α1 and α2 such that the twisted deRham complex
(6.63) is acyclic for all but finitely many values of t, Theorem 14.15 was
established by Farber, using a completely different method.

Appendix A. Determinant of an Operator with the
Spectrum Symmetric about the Real Axis

In this appendix we show that for a wide and important class of dif-
ferential operators, including the self-adjoint ones, formula (4.34) rep-
resents LDetθ(D) as a sum of its real and imaginary parts.

Definition A.1. The spectrum of D is symmetric with respect to the
real axis if the following condition holds: if λ is an eigenvalue of D, then
λ also is an eigenvalue of D and has the same algebraic multiplicity as
λ.

Note that every operator with real coefficients has this property. See
[1] for examples of other interesting operators with symmetric spec-
trum.18

Theorem A.2. Let D : C∞(M,E) → C∞(M,E) be an injective
elliptic differential operator of order m with self-adjoint leading symbol,
whose spectrum is symmetric about the real axis. Let θ ∈ (−π/2, 0)
be an Agmon angle for D. Then the numbers ζ2θ(0, D

2), η(D), and

18All the operators considered in [1] have spectrum symmetric about the imagi-

nary axis. However, the spectrum of the operator considered in Section 5 of [1] is
also symmetric about the real axis. Further, the spectrum of the operator ΓL ·Dmn,
discussed at the end of Section 6.8 of [1], is symmetric about the real axes.
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Det2θ(D
2) = e−ζ′2θ

(0,D2) are real. In particular, the following analogue
of (4.45) and (4.46) holds:

(A.183) Detθ(D) = (−1)m− ·
√∣∣Det2θ(D2)

∣∣ · e−iπ
(
η(D)− 1

2
ζ2θ(0,D2)

)
,

where m− = rankP− is the number of the eigenvalues of D (counted
with their algebraic multiplicities) on the negative part of the imaginary
axis, cf. Subsection 4.1.

Corollary A.3. If, in addition to the assumptions of Theorem A.2,
D is self-adjoint, then m− = 0 and Det2θ(D

2) is real and positive.
Hence, as expected, formulas (4.45) and (4.46) hold.

Proof of Corollary A.3. If D is self-adjoint, the spectrum of D lies on
the real line. Hence, in particular, m− = 0. It follows from (4.41) to-
gether with (A.184) and (A.186) below that Im

(
ζ ′2θ(0, D

2)
)

= 0. Hence,

Det2θ(D
2) > 0. q.e.d.

Remark A.4. It is interesting to compare (A.183) with Theorem 3.2
of [1]. Suppose that the spectrum of D is also symmetric about the
imaginary axis. Then η(D) = 0. If, in addition, dimM is odd, then
ζ2θ(0, D

2) = 0, cf. Remark 4.7.c. Hence, (A.183) imply that, in this
case, Detθ(D) is real and its sign is equal to (−1)m− . Theorem 3.2 of
[1] states that this is true without the assumption that the spectrum of
D is symmetric about the real axis19 (i.e., for every invertible elliptic
operator with self-adjoint leading symbol, whose spectrum is symmetric
about the imaginary axis).

Proof of Theorem A.2. In view of (3.26), it is enough to consider the
case when θ is sufficiently close to −π/2 so that there are no eigen-
values of D in the solid angles L(−π/2,θ] and L(π/2,θ+π], which we will
henceforth assume. By (4.41), (4.42), and (4.44) it suffices to show that
the numbers

ζθ(0, Π̃+, D) ± ζθ(0, Π̃−,−D)

=
(
ζθ(0,Π+, D) ± ζθ(0,Π−,−D)

)

+
(
ζθ(0, P+, D) ± ζθ(0, P−,−D)

)

are real and that the imaginary part of the number

ζ ′θ(0, Π̃+, D) + ζ ′θ(0, Π̃−,−D)

=
(
ζ ′θ(0,Π+, D) + ζ ′θ(0,Π−,−D)

)

+
(
ζ ′θ(0, P+, D) + ζ ′θ(0, P−,−D)

)

is equal to −πm−.

19In [1] the spectral cut was taken in the upper half-plane. Consequently, m− is
replaced there by m+.
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Since the projections P± have finite rank, one has

ζθ(0, P±,±D) = rankP±.

Thus these numbers are real.
Because the spectrum of D is symmetric about the real axis,

rankP+ = rankP−.

As, for every r > 0 one has

d

ds
|s=0 (ir)−s

θ = − log r − i
π

2
,

we conclude that

Im ζ ′θ(0, P+, D) = Im ζ ′θ(0, P−,−D) = −
π

2
rankP−.

Hence,

(A.184) Im
(
ζ ′θ(0, P+, D) + ζ ′θ(0, P−,−D)

)
= −π rankP− ∈ π Z.

It remains to show that

ζθ(0,Π±,±D), ζ ′θ(0,Π±,±D) ∈ R.

We will show that the numbers ζθ(0,Π+, D) and ζ ′θ(0,Π+, D) are real.
The fact that the other two numbers are real as well follows then by
replacing D with −D.

Let
λj > 0, j ∈ I1 ⊂ N

be all the positive real eigenvalues of D and let

λj = ρje
iαj , j ∈ I2 ⊂ N

be all the eigenvalues of D which lie in the solid angle L(0,π/2). Let mj

denote the algebraic multiplicity of λj , cf. Subsection 3.9. Since the
spectrum of D is symmetric about the real axis,

ρje
−iαj , j ∈ I2,

are all the eigenvalues of D in the solid angle L(−π/2,0) and

ζθ(s,Π+, D)

=
∑

j∈I1

mj λ
−s
j +

∑

j∈I2

mj ρ
−s
j (e−isαj + eisαj )

=
∑

j∈I1

mj λ
−s
j + 2

∑

j∈I2

mj ρ
−s
j cos(sαj), Re s >

dimM

m
.

Hence,

(A.185) ζθ(s,Π+, D) = ζθ(s̄,Π+, D), Re s >
dimM

m
.

Since both sides of (A.185) are holomorphic functions of s, the equal-
ity (A.185) holds for all regular points of ζθ(s,Π+, D). In particular,
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ζθ(s,Π+, D) is real for all real regular points. Hence, ζθ(0,Π+, D) ∈ R.
Since (A.185) implies

(A.186) ζ ′θ(s,Π+, D) = ζ ′θ(s̄,Π+, D),

we conclude that the number ζ ′θ(0,Π+, D) is also real. q.e.d.

Appendix B. Families of flat connections

In this appendix we review some of the results of [23] and reformulate
them in a form convenient for our purposes. These results are used in
Section 13.

B.1. Connections flat modulo lower order terms. First, we in-
troduce some definitions from [23], but we formulate them in a slightly
different form which is more convenient for our purposes.

Let k[t] = k[t1, . . . , tr] denote the polynomial ring in r variables over
a field k. Let m ⊂ k[t] denote the unique maximal ideal of k[t] (the
augmentation ideal), i.e., the ideal generated by t1, . . . , tr. Let Am =
k[t]/mm+1. We denote by Gm = GL(n,Am) the group of matrices with
entries in Am.

Let M be a manifold and let E be a complex vector bundle over M .
Suppose ∇ is a flat connection on E. Let

(B.187) ∇(t) = ∇ +
∑

0<|α|≤m

ωαt
α, t ∈ kr,

be a family of connections. Here α ∈ (Z≥)r is a multi-index, |α| =
α1 + · · ·+αr, t

α = tα1
1 tα2

2 · · · tαr
r , and ωα are smooth 1-forms with values

in End E. We say that the family ∇(t) is flat modulo tm+1 if ∇(t)2 ∈
m

m+1.
Fix a base point x∗ ∈ M . Given a continuous path φ : [0, 1] →

M, φ(0) = φ(1) = x∗, for any t ∈ kr, we denote by Mon∇(t)(φ) the
monodromy of ∇(t) along φ, cf. (12.153). If the family ∇(t) is flat
modulo tm+1 then, for any homotopic paths φi : [0, 1] → M, φi(0) =
φi(1) = x∗ (i = 1, 2),

Mon∇(t)(φ1) ≡ Mon∇(t)(φ2) mod m
m+1.

Hence, we have a well defined representation

(B.188) Mon∇(t) : π1(M,x∗) −→ Gm.

One says that two families of connections ∇1(t) and ∇2(t), which are
flat modulo tm+1, are Am-gauge equivalent if there exists a family of
gauge transformations

(B.189) g(t) = g0 +
∑

0<|α|≤m

gαt
α
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where each gα is a gauge transformation of E, such that

∇2(t) ≡ g(t) · ∇1(t) · g(t)−1 mod m
m+1.

B.2. Relationship between families of connections and fami-
lies of representations of the fundamental group in Gm. Propo-
sition 6.3 of [23] states that there is a one-to-one correspondence be-
tween the Am-gauge equivalence classes of connections ∇(t) and the
isomorphism classes of representations γ(t) of π1(M) in Gm given by
the monodromy representation (B.188). In other words, we have the
following

Lemma B.3.

(i) For every family of representations

γ(t) : π1(M,x∗) → Gm,

there exists a flat modulo tm+1 family of connections ∇(t) such
that

(B.190) Mon∇(t) ≡ γ(t) mod m
m+1.

(ii) Every two connections ∇1(t) and ∇2(t) which are of the form
(B.187), are flat modulo tm+1, and satisfy (B.190) are Am-gauge
equivalent, i.e., there exists a family of gauge transformations
(B.189) such that

(B.191) ∇2(t) ≡ g(t) · ∇1(t) · g(t)−1 mod m
m+1.

Moreover, if ∇1(0) = ∇2(0), then one can choose

g(t) = g0 +
∑

0<|α|≤m

gαt
α

so that g0 = Id.

B.4. The case when k = C or R. Suppose now that k = C or R and
r ∈ Z≥1. Let O ⊂ kr be an open set and let ∇µ (µ ∈ O) be a family of
connections such that for some λ ∈ O we have

(B.192) ∇µ = ∇λ +
∑

0<|α|≤m

ωα(µ− λ)α + o(|µ− λ|m), µ ∈ O,

where o(|µ−λ|m) is understood in the sense of the Fréchet topology on
C(E) introduced in Subsection 13.1.

Denote t = µ− λ and set

(B.193) ∇(t) = ∇λ +
∑

0<|α|≤m

ωαt
α.

Then ∇µ = ∇(µ − λ) + o(|µ − λ|m). Hence, for every closed path
φ : [0, 1] →M, φ(0) = φ(1) = x∗ we have

(B.194) Mon∇µ(φ) = Mon∇(µ−λ)(φ) + o(|µ− λ|m),
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where o(|µ − λ|m) is understood in the sense of the Fréchet topology
introduced in Subsection 5.3. If the family ∇(t) is flat modulo tm+1,
we will view Mon∇µ as a map π1(M,x∗) → Gm by identifying it with
Mon∇(µ−λ).

B.5. Application to real differentiable families of flat connec-
tions. Let O ⊂ C be an open set. A family ∇µ (µ ∈ O) of flat
connections on E is called real differentiable at λ ∈ O if there exist
ω1, ω2 ∈ Ω1(M,End E) with

(B.195) ∇µ = ∇λ + Re(µ− λ) · ω1 + Im(µ− λ) · ω2 + o(µ− λ).

(Again, o(µ− λ) is understood in the sense of the Fréchet topology on
C(E) introduced in Subsection 13.1.)

Lemma B.6. Let λ ∈ C and let O ⊂ C be an open neighborhood of
λ in C. Suppose that ∇µ (µ ∈ O) is a family of flat connections which
is real differentiable at λ, cf. (B.195). Assume that the map

O → Rep(π1(M),Cn), µ 7→ Mon∇µ

is a holomorphic curve in Rep(π1(M),Cn). Then the following state-
ments hold:

(i) There exists a smooth form ω ∈ Ω1(M,End E) such that ∇λω = 0
and

(B.196) Mon∇λ+(µ−λ)ω(φ) = Mon∇µ(φ) + o(µ− λ),

for every closed path φ : [0, 1] →M, φ(0) = φ(1) = x∗.
(ii) There exists a family of gauge transformations G(µ) ∈ End E

(µ ∈ O) such that G(λ) = Id and

(B.197) ∇λ + (µ− λ)ω = G(µ) · ∇µ ·G(µ)−1 + o(µ− λ).

Proof. To prove part (i) of the lemma we apply Lemma B.3 with
k = C, t = t1 (i.e., r = 1), m = 1, and t = µ− λ. Since µ → Mon∇µ is
a holomorphic curve, its Taylor expansion at λ up to first order, γ(t),
defines a map O → G1. Then

(B.198) Mon∇λ+tω
= γ(t) + o(t).

By Lemma B.3(i), there exists a flat modulo t2 family of connections

∇̃(t) = ∇̃(0) + tω̃ such that

(B.199) Mon∇̃(t) ≡ γ(t) mod t2.

Since Mon∇̃(0) = γ(0) there exists a gauge transformation g ∈ End E

such that its restriction to the fiber of E over the base point x∗ is the
identity map and

∇λ = g
−1 · ∇̃(0) · g.
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Then ω := g
−1 ω̃ g is a smooth End E-valued 1-form and (B.199) takes

the form

(B.200) Mon∇λ+tω ≡ γ(t) mod t2,

which together with (B.198) implies (B.196). Note that ∇λ + tω is a
flat modulo t2 connection and, hence, ∇λω = 0.

For part (ii) let us set k = R, t = (t1, t2) (i.e., r = 2), and m = 1.
Denote t1 := Re(µ − λ), t2 := Im(µ − λ). Then, by the assumption of
real differentiability, ∇µ is of the form

∇λ + t1 ω1 + t2 ω2 = ∇µ + o(µ− λ).

Note that both ∇λ + t1ω1 + t2ω2 and ∇λ +(t1 + it2)ω are flat modulo t2

connections which, by (B.198), induce the same monodromy representa-
tion γ(t) : π1(M,x∗) → G1. Hence, (B.197) follows from Lemma B.3(ii).

q.e.d.
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