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REFINED ANALYTIC TORSION

MaxiM BRAVERMAN & THOMAS KAPPELER

Abstract

Given an acyclic representation « of the fundamental group
of a compact oriented odd-dimensional manifold, which is close
enough to an acyclic unitary representation, we define a refine-
ment T, of the Ray-Singer torsion associated to a, which can be
viewed as the analytic counterpart of the refined combinatorial
torsion introduced by Turaev. Ty, is equal to the graded determi-
nant of the odd signature operator up to a correction term, the
metric anomaly, needed to make it independent of the choice of
the Riemannian metric.

T, is a holomorphic function on the space of such representa-
tions of the fundamental group. When « is a unitary representa-
tion, the absolute value of T, is equal to the Ray-Singer torsion
and the phase of T}, is proportional to the n-invariant of the odd
signature operator. The fact that the Ray-Singer torsion and the
n-invariant can be combined into one holomorphic function allows
one to use methods of complex analysis to study both invariants.
In particular, using these methods we compute the quotient of the
refined analytic torsion and Turaev’s refinement of the combina-
torial torsion generalizing in this way the classical Cheeger-Miiller
theorem. As an application, we extend and improve a result of
Farber about the relationship between the Farber-Turaev abso-
lute torsion and the n-invariant.

As part of our construction of T, we prove several new results
about determinants and n-invariants of non self-adjoint elliptic
operators.

1. Introduction

In this paper we refine the analytic torsion which has been introduced
by Ray and Singer [35]. In our set-up we are given a complex flat vector
bundle E — M over a closed oriented odd-dimensional manifold M and
we denote by V the flat connection on M. Whereas the Ray-Singer
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194 M. BRAVERMAN & T. KAPPELER

torsion TRS(V) is a positive real number, the proposed refined analytic
torsion T'= T(V) will be, in general, a complex number, and hence will
have a nontrivial phase. The refined analytic torsion can be viewed as
an analytic analogue of the refined combinatorial torsion, introduced by
Turaev [42, 43] and further developed by Farber and Turaev [19, 20].
Though T is not equal to the Turaev torsion in general, the two torsions
are very closely related, as described in Section 14.

Definition. In this paper the refined analytic torsion is defined as a non-
zero complex number which is canonically associated to any acyclic flat
connection lying in an open set of acyclic connections, which contains all
acyclic Hermitian connections, see [7, 8], where we extend this definition
to arbitrary flat connections.

Relation to the n-invariant and the Ray-Singer torsion. If the
connection V is Hermitian, i.e., if there exists a Hermitian metric on
E which is preserved by V, then the refined analytic torsion T is a
complex number whose absolute value is equal to the Ray-Singer torsion
and whose phase is determined by the n-invariant of the odd signature
operator. When V is not Hermitian, the relationship between the refined
analytic torsion, the Ray-Singer torsion, and the n-invariant is slightly
more complicated, cf. Section 12.

Analytic property. One of the most important properties of the re-
fined analytic torsion is that it depends, in an appropriate sense, holo-
morphically on the connection V. The fact that the Ray-Singer torsion
and the n-invariant can be combined into one holomorphic function al-
lows us to use methods of complex analysis to study both invariants.
In particular, using these methods we establish a relationship between
the refined analytic torsion and Turaev’s refinement of the combina-
torial torsion which generalizes the classical Cheeger-Miiller theorem
about the equality between the Ray-Singer and the combinatorial tor-
sion [15, 33]. As an application, we generalize and improve a result of
Farber about the comparison between the sign of the Farber-Turaev ab-
solute torsion and the n-invariant, [17]. In fact, we compare the phase
of the Turaev torsion and the n-invariant in a more general set-up.

Regularized determinant. Our construction of the refined analytic
torsion uses determinants of non self-adjoint elliptic differential opera-
tors. In Section 4 and Appendix A we prove several new results about
these determinants which generalize well known facts about determi-
nants of self-adjoint differential operators. In particular, we express the
determinant of a (not necessarily self-adjoint) operator D in terms of
the determinant of D?, the value at 0 of the ¢(-function of D?, and the
n-invariant of D. Note that the n-invariant of a non-self-adjoint opera-
tor was defined and studied by Gilkey [21]. In this paper we use a sign
refined version of Gilkey’s construction, cf. Definition 4.2.
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Related works. In [42, 43|, Turaev constructed a refined version of the
combinatorial torsion for an arbitrary acyclic connection. This notion
was later extended by Farber and Turaev [19, 20]. In [43] Turaev posed
the problem of constructing an analytic analogue of his torsion. In [20,
§10.3], Farber and Turaev suggested that such an analogue should be
related to the n-invariant. More precisely, one can ask if it can be defined
in terms of regularized determinants of elliptic differential operators and,
if so, whether the phase is related to the n-invariant of these differential
operators. In the present paper we show that on the open neighborhood
of the set of acyclic Hermitian connections, where the proposed refined
analytic torsion T'(V) is defined, T'(V) solves this problem.

In [7] we extend the notion of refined analytic torsion to the set of
all flat connections and in [8] we discuss properties and applications of
the refined analytic torsion.

In addition to the works of Turaev [42, 43] and Farber-Turaev [19,
20] on their refined combinatorial torsion and the relation of its absolute
value to the Ray-Singer torsion [43, 20] as well as the study of its phase
[17], we would like to mention a recent paper of Burghelea and Haller,
[13]. In that paper, among many other topics, the authors address the
question of whether the Ray-Singer torsion TR%(V) can be viewed as
the absolute value of a (in an appropriate sense) holomorphic function
f(V) on the space of acyclic connection V. Burghelea and Haller gave
an affirmative answer to this question and showed that

(1.1) TRS(V) = |f1(V) - f2(V)],

where f1(V) is Turaev’s refinement of the combinatorial torsion and
f2(V) is an explicitly calculated holomorphic function.! The result
of Burghelea and Haller is valid for manifolds of arbitrary dimension.
If the dimension of the manifold is odd, the refined analytic torsion
proposed in this paper allows to obtain an identity of the type (1.1).
In contrast to [13], the holomorphic function on the right hand side
of equality (1.1) is constructed in this paper in purely analytic terms,
cf. Theorem 12.8. The quotient between the Ray-Singer torsion and
the absolute value of Turaev’s refinement of the combinatorial torsion
is discussed in Section 14.

In response to a first version of our paper, Dan Burghelea kindly
brought to our attention his ongoing project with Stefan Haller [14]
where they consider, among other things, Laplace-type operators act-
ing on forms obtained by replacing a Hermitian scalar product on a
given complex vector bundle by a non-degenerate symmetric bilinear
form. These operators are non self-adjoint and have complex-valued
zeta-regularized determinants. Burghelea and Haller then express the

!Note that, in the case when the dimension of the manifold is odd, (1.1) is similar
to our Theorem 14.3.
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square of the Turaev torsion in terms of these determinants and some
additional ingredients. 2

The results of this paper were announced in [6].

2. Summary of the Main Results

Throughout this section M is a closed oriented manifold of odd di-
mension dim M = d = 2r — 1 and E is a complex vector bundle over M
endowed with a flat connection V.

2.1. The odd signature operator. The refined analytic torsion is
defined in terms of the odd signature operator, hence, let us begin by
recalling the definition of this operator.

Let Q°*(M, E) denote the space of smooth differential forms on M
with values in F and set

r—1
Qv(M,E) = P> (M, E),
p=0

where r = %. Fix a Riemannian metric ¢ on M and let x :

Q*(M,E) — Q% *(M, E) denote the Hodge *-operator. The chirality
operator
I: Q%M E)— Q¥*(M,E)
is then given by the formula, cf. [4, §3.2],
Dw:=i" (=DFEED2 5 we Q¥ (M, E).

The odd signature operator B = B(V,g™) : Q*(M,E) — Q*(M, E) is
defined by
B:=T'V+VI.

It leaves Q" (M, E) invariant. Denote its restriction to Q" (M, E)
by Beyen. Then, for w € Q?P(M, E), one has

Bu=i" (-1’ (« V-V )w € Q" YM,E) ® Q2T (M, E).

The odd signature operator was introduced by Atiyah, Patodi, and
Singer, [2, p. 44], [3, p. 405], and, in the more general setting used here,
by Gilkey, [21, p. 64-65].

The operator Beyen is an elliptic differential operator of order one,
whose leading symbol is symmetric with respect to any Hermitian metric
h¥ on E.

In this paper we define the refined analytic torsion in the case when
the pair (V,g") satisfies the following simplifying assumptions. The
general case will be addressed in [7, 8].

2Added in proof: D. Burghelea & S. Haller, Complez valued Ray-singer torsion,
math.DG/0604484; M. Braverman & T. Kappeler, Comparison of the refined analytic
and the Burghelea-Haller torsions, math.DG/0606398.
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Assumption I. The connection V is acyclic, i.e.,

Im (V|Qk71(M’E)) = Ker (V|Qk(M7E)), for every k=0,...,d.
Assumption II. Beyen, = Beven(v,gM) is bijective.

Note that if V is a Hermitian connection then Assumption I implies
Assumption II, cf. Subsection 6.6. Hence, all acyclic Hermitian connec-
tions satisfy Assumptions I and II. By a simple continuity argument, cf.
Proposition 6.8, these two assumptions are then satisfied for all flat con-
nections in an open neighborhood (in C°-topology, cf. Subsection 6.7)
of the set of acyclic Hermitian connections.

2.2. Graded determinant. Set
OF (M, E) :=Ker (VD) N QF(M, E),
QF (M, E) :=Ker (T'V) N Q%(M, E).
Assumption II implies that Q¥(M,E) = QF(M,E) & QF (M, E), cf.
Subsection 6.9. Hence, (2.2) defines a grading on Q¥ (M, E).

Define Q' (M, E) = @ _y Q3 (M, E) and let B,

(2.2)

ven, denote the re-
striction of Beyen to Q9"(M, E). It is easy to see that Beyen leaves the
subspaces Q9" (M, E) invariant and it follows from Assumption IT that
the operators BE,, : Q9(M, E) — Q%°"(M, E) are bijective.

One of the central objects of this paper is the graded determinant of
the operator Beyen. To construct it we need to choose a spectral cut
along a ray Ry = {pew 0<p< oo}7 where 0 € [—7, ) is an Agmon
angle for Beyen, cf. Definition 3.4. Since the leading symbol of Beyen
is symmetric, Beyen admits an Agmon angle € (—m,0). Given such
an angle 6, observe that it is an Agmon angle for BX_ as well. The
graded determinant of Beyey, is the non-zero complex number defined by

the formula
Detg (BJr )

even

 Detg(—Baven)

By standard arguments, cf. Subsection 3.10, Detg; g(Beven) is indepen-
dent of the choice of the Agmon angle § € (—,0).

(2.3) Detgr 6(Beven)

2.3. A convenient choice of the Agmon angle. For 7 € R we
denote by Lz the solid angle

Lz:{pei9:0<p<oo,061}.

Though many of our results are valid for any Agmon angle 6 €
(—m,0), some of them are more easily formulated if the following con-
ditions are satisfied:

(AG1) 0 € (—7/2,0), and
(AG2) there are no eigenvalues of the operator Beyen in the solid angles
L(—7T/279] and L(7T/276+7T]‘
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For the sake of simplicity of exposition, we will assume that 6 is chosen
so that these conditions are satisfied throughout the Introduction. Since
the leading symbol of Beyen is symmetric (with respect to an arbitrary
Hermitian metric on E), such a choice of 6 is always possible.

2.4. Relationship with the Ray-Singer torsion and the n-inva-
riant. For a pair (V, gM) satisfying Assumptions I and II set
=
_ M o k 2

where (4, (s, (T V)Q‘Qﬁ(M,E

(-function of the operator (I'V

) ) is the derivative with respect to s of the

)Q‘Qk (M.E) corresponding to the spectral
+ k)
cut along the ray Rgg, cf. Subsection 3.5, and # is an Agmon angle
satisfying (AG1)-(AG2).
Let n = n(V, g™) denote the (sign refined) n-invariant of the operator
Beven(V, gM), cf. Definition 4.2. Theorem 7.2 implies that,

(2.5) Detyr o(Beven) = L(V.gM0) | —imn(V,gM)

This representation of the graded determinant turns out to be very
useful, e.g., in computing the metric anomaly of Detg; g(Beven)-

If the connection V is Hermitian, then (2.4) coincides with the well
known expression for the logarithm of the Ray-Singer torsion THS =
TRS(V). Hence, for a Hermitian connection V we have

&V, gM,0) =log TR(V).

If V is not Hermitian but is sufficiently close (in C°-topology) to an
acyclic Hermitian connection, then Theorem 8.2 states that

(2.6) log TRS(V) — Re £(V,gM, 9).
Combining (2.6) and (2.5), we get
(2.7) } Detgrﬂ(Beven) ‘ — TRS(V) . eWImﬂ(V,gM).

If V is Hermitian, then the operator Beyen is self-adjoint (cf. Subsec-
tion 6.6) and n = n(V, gM) is real. Hence, cf. Corollary 8.3, for the case
of an acyclic Hermitian connection we obtain from (2.7)

| Detgy 6(Beven) | = TR (V).

2.5. Metric anomaly of the graded determinant. The graded de-
terminant of the odd signature operator is not a differential invariant
of the connection V since, in general, it depends on the choice of the
Riemannian metric g™. Hence, we first investigate the metric anomaly
of the graded determinant and then use it to “correct” the graded de-
terminant and construct a differential invariant — the refined analytic
torsion.
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Suppose an acyclic connection V is given. We call a Riemannian
metric g™ on M admissible for V if the operator Beven = Beven(V, g™)
satisfies Assumption II of Subsection 2.1. We denote the set of ad-
missible metrics by M(V). The set M(V) might be empty. However,
Proposition 6.8 implies that admissible metrics exist for all flat connec-
tions in an open neighborhood (in C°-topology) of the set of acyclic
Hermitian connections.

For each admissible metric ¢ € M(V) choose an Agmon angle 6
satisfying (AG1)-(AG2). Then the reduction of £(V, g™, 6) modulo 77
depends neither on the choice of # nor on the choice of g™ € M(V), cf.
Proposition 9.7.

The dependence of n = n(V, ¢™) on g™ has been analyzed in [3] and
[21]. In particular, it follows from the results in these papers that (cf.
Proposition 9.5)

e Ifdim M =1 (mod4) then the reduction of n(V, g™) modulo 7Z is
independent of the choice of the admissible metric g™ ;

e Suppose dim M = 3 (mod4) and let Nirivial(g™) denote the n-
mwvariant of the odd signature operator associated to the trivial
connection on the trivial line bundle over M. Then, modulo 7Z,

(V. d™) = Niivial(¢™) - rank B

is independent of the choice of the metric gM.

2.6. Definition of the refined analytic torsion. The refined ana-
lytic torsion T (V) corresponding to an acyclic connection V, satisfying
M(V) # 0, is defined as follows: fix an admissible Riemannian metric
g™ € M(V) and let 6 € (—7,0) be an Agmon angle for Beyen(V, gM).
Then

T(V)=T(M,E,V)
: = Detgr g(Beven) - €xXp (iﬂ' mrivial(gM) . rankE) e C\0.

Note that if dimM = 1 (mod4) then 7uivia(¢™) = 0 and, hence,
T(V) = Detg g (Beven(V,9M)).

If V is close enough to an acyclic Hermitian connection, then M (V) #
() and, it follows from the discussion of the metric anomaly of the graded
determinant of Beyen in Subsection 2.5, that T'(V) is independent of
the choice of the admissible metric gM. Moreover, as Detgr,g(Beven) is
independent of the choice of the Agmon angle 6 € (—m,0), so is T(V).

A simple example in Subsection 10.2 shows that even when the con-
nection V is Hermitian, the refined analytic torsion can have an arbi-
trary phase.

In Section 11 we also suggest an alternative definition of the refined
analytic torsion, which is more convenient for some applications.
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2.7. Comparison with the Ray-Singer torsion. The equality (2.7)
implies that, if V is C%-close to an acyclic Hermitian connection, then

(V)] M
(2.8) log TRS(V) =m Im n(V,g").
In particular, if V is an acyclic Hermitian connection, then
| T(V) | =T"(V).

Theorem 12.8 provides a local expression for the right hand side of
(2.8). Following Farber, [17], we denote by Argy the unique cohomol-
ogy class Argy € H'(M,C/Z) such that for every closed curve v € M
we have

det ( Mony(y) ) = exp (27i(Argy, [1]) ),

where Mony () denotes the monodromy of the flat connection V along
the curve v and (-, ) denotes the natural pairing

HY(M,C/Z) x H(M,Z) — C/Z.

Theorem 12.8 states that, if V is C°-close to an acyclic Hermitian con-
nection, then

T(V)l
(2.9) log TRS(V) — m([L(p)] UIm Argy, [M] ),
where L(p) = Ly (p) denotes the Hirzebruch L-polynomial in the Pon-
trjagin forms of the Riemannian metric on M. If dim M = 3 (mod 4),
then L(p) has no component of degree dim M — 1 and, hence, |T'(V)| =
TRS(V).

2.8. The refined analytic torsion as a holomorphic function on
the space of representations. One of the main properties of the re-
fined analytic torsion 7'(V) is that, in an appropriate sense, it depends
holomorphically on the connection. Note, however, that the space of
connections is infinite dimensional and one needs to choose an appro-
priate notion of a holomorphic function on such a space. A possible
choice is explained in Subsection 13.1. As an alternative one can view
the refined analytic torsion as a holomorphic function on a finite dimen-
sional space, which we shall now explain.

The set Rep(my (M), C") of all n-dimensional complex representations
of w1 (M) has a natural structure of a complex algebraic variety, cf.
Subsection 13.6. Each representation aw € Rep(my (M), C™) gives rise to
a vector bundle E, with a flat connection V,, whose monodromy is
isomorphic to «, cf. Subsection 13.6. Let

Repo(mi(M),C") C Rep(m(M),C")

denote the set of all representations o € Rep(mi (M), C") such that the
connection V, is acyclic. We also denote by

Rep®(m(M),C") C Rep(m(M),C")
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the set of all unitary representations and set
Repg (m1 (M), C") = Rep(m1(M),C"™) N Repo(m (M), C").

Denote by V' C Repo(m1(M),C") the set of representations a for
which there exists a metric ¢™ so that the odd signature operator
Beven(V, gM) is bijective (i.e., Assumption II of Subsection 2.1 is satis-
fied). It is not difficult to show, cf. Subsection 13.7, that V' is an open
neighborhood of the set Repg (71 (M), C™) of acyclic unitary representa-
tions.

For every o € V one defines the refined analytic torsion Ty, := T'(V,).
Corollary 13.11 states that the function « +— Ty, is holomorphic on the
open set of all non-singular points of V.

2.9. Comparison with Turaev’s torsion. In [42, 43], Turaev intro-
duced a refinement T<°™P (¢, 0) of the combinatorial torsion associated
to an acyclic representation « of 71 (M). This refinement depends on
an additional combinatorial data, denoted by e and called the Fuler
structure as well as on the cohomological orientation of M, i.e., on the
orientation o of the determinant line of the cohomology H*®(M,R) of M.
There are two versions of the Turaev torsion — the homological and the
cohomological one. In this paper it turns out to be more convenient to
use the cohomological Turaev torsion as it is defined by Farber and Tu-
raev in Section 9.2 of [20]. For a € Repg (71 (M), C™), the cohomological
Turaev torsion TSP (g, 0) is a non-vanishing complex number.

Theorem 10.2 of [20] computes the quotient of the Turaev and the
Ray-Singer torsions. Combined with (2.9) this result leads to the fol-
lowing equality (cf. Subsection 14.7):

Let c(e) € Hi(M,Z) be the characteristic class of the Euler struc-
ture €, cf. [43] or Section 5.2 of [20]. Let L4—1(p) denote the compo-
nent of L(p) in dimension d — 1. It represents a class in H~1(M,Q),
which can be lifted to a class in the integer cohomology H?~1(M,Z),
of. Lemma 14.5. We fix such a lift and we denote by L, € Hy(M,Z)
its Poincaré dual homology class. By Corollary 14.6 there exists a ho-
mology class 8. € Hy(M,Z) such that —28. = L1(p) + c(). Then there
exists an open neighborhood V' C V of Repg (w1 (M), C™) such that for
every o € V'

Ty
Tcomb (g o)
where Arg, := Argy_ € H'(M,C/Z) is as in Subsection 2.7 and (-, -)
denotes the natural pairing H'(M,C/Z) x Hy(M,Z) — C/Z.

Let X denote the set of singular points of the complex analytic set
Rep(m1(M),C™). By Corollary 13.11, the refined analytic torsion Ty, is

a non-vanishing holomorphic function of @ € V\X. By the very con-
struction [42, 43, 20| the Turaev torsion is a non-vanishing holomorphic

Y

(2.10) ‘

_ ‘ 627ri<Arga ,Be)
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function of a € Repo(mi(M),C"). Hence, T, /TS is a holomorphic
function on V'\X. By construction of the cohomology class Arg,,, for
every homology class z € Hi(M,Z), the expression e?7%{Ar8q2)
holomorphic function on Rep(m; (M), C").

If the absolute values of two non-vanishing holomorphic functions are
equal on a connected open set then the functions must be equal up to a
factor p € C with |u| = 1. This observation and (2.10) lead to the fol-
lowing generalization of the Cheeger-Miiller theorem, cf. Theorem 14.8:

s a

Theorem 2.10. For each connected component C of V', there exists
a constant o = ¢c(e,0) € R, depending on € and o, such that
Ty
Tcomb (g o)

In the case when dim M = 3(mod4) and c¢(¢) = 0 formula (2.11)
simplifies, cf. Corollary 14.6.

(2.11) — ¢itc 2mi(Arg,,fe)

2.11. Application: Phase of the Turaev torsion of a unitary
representation. We denote the phase of a complex number z by

Ph(z) € [0,27)

so that z = |2]e’ PP, Set 1, := 17(Va, g™).

Suppose a1, az € Repg (w1 (M), C") are unitary representations which
lie in the same connected component of V', where V/ C V is the open
neighborhood of Repg(mi(M),C") defined in Subsection 2.9. As an
application of (2.11) one obtains, cf. Theorem 14.13, that, modulo
27 7,

(2.12) Ph(TZ™(e,0)) + 7 1o, + 27 ( Arg,,, B:)
= Ph(T0™(e,0)) + Tia, + 27 { Arg,,, B:).

2.12. Sign of the absolute torsion and a theorem of Farber.
Suppose that the Stiefel-Whitney class wq_1(M) € H? (M, Zy) van-
ishes (which is always the case when dim M = 3 (mod 4), cf. [32]).
Then one can choose an Euler structure € such that c¢(e) = 0, cf. [19,
§3.2]. Assume, in addition, that the first Stiefel-Whitney class w;(E,),
viewed as a homomorphism H;(M,Z) — Zsg, vanishes on the 2-torsion
subgroup of Hy(M,Z). In this case there is also a canonical choice of the
cohomological orientation o, cf. [19, §3.3]. Then the Turaev torsions
TP (£, 0) corresponding to different choices of ¢ with ¢(¢) = 0 and the
canonically chosen o will be the same.

If the above assumptions on wg_1 (M) and w; (E,) are satisfied, then
the number

Te™ =T (e,0) € C\{0},  (c(e) = 0),
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is canonically defined, i.e., is independent of any choices. It was intro-
duced by Farber and Turaev, [19], who called it the absolute torsion® .
If o € Repy (1 (M), C"), then T2 is a real number, cf. Theorem 3.8 of
[19]. In Subsection 14.14 we show that, under the above assumptions,
(2.12) implies that if a1, aa € Repg (w1 (M), C") are unitary representa-
tions which lie in the same connected component of V' then the following
statements hold:

1) in the case dim M = 3 (mod 4)
son (T2 -7 s (T5) -

2) in the case dim M =1 (mod 4)
sign (TabS) . e’iﬂ (na1—<[L(p)]UArgal7[M]>)
(&5}
= sign (T22%) - €™ (0s —([L(PUATg,,,[M]))
a9 .

For the special case when there is a real analytic path a; of uni-
tary representations connecting a; and ag such that the twisted deR-
ham complex (6.63) is acyclic for all but finitely many values of t,
Theorem 14.15 was established by Farber, using a completely different
method,* see [17], Theorems 2.1 and 3.1.

3. Preliminaries on Determinants of Elliptic Operators

In this section we briefly review the main facts about the (-regularized
determinants of elliptic operators. At the end of the section (cf. Sub-
section 3.11) we define a sign-refined version of the graded determinant
— a notion, which plays a central role in this paper.

3.1. Setting. Throughout this paper let E¥ be a complex vector bun-
dle over a smooth compact manifold M and let D : C®(M,E) —
C>(M, E) be an elliptic differential operator of order m > 1. Denote
by o(D) the leading symbol of D.

3.2. Choice of an angle. Our aim is to define the (-function and the
determinant of D. For this we will need to define the complex powers of
D. As usual, to define complex powers we need to choose a spectral cut
in the complex plane. We will restrict ourselves to the simplest spectral
cuts given by a ray

(3.13) Rgz{pew: 0<p<oo}, 0<6<2m.

Consequently, we have to choose an angle 6 € [0, 27).

3In [19], Farber and Turaev defined the absolute torsion also in the case when the
representation « is not necessarily acyclic.

4Note that Farber’s definition of the n-invariant differs from ours by a factor of 2
and also that the sign in front of ([L(p)]U Arg,,,[M]) in [17] has to be replaced by
the opposite one.
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Definition 3.3. The angle 0 is a principal angle for an elliptic oper-
ator D if

spec (o(D)(z,£)) N Ry =10, forall =z e M, £ e T, M\{0}.
If T C R we denote by Lz the solid angle
Lz:{pew: ()<p<oo,0€I}.

Definition 3.4. The angle 6 is an Agmon angle for an elliptic op-
erator D if it is a principal angle for D and there exists € > 0 such
that

spec (D) N L[075,6’+s] = 0.

3.5. (-function and determinant. Let # be an Agmon angle® for
D. Assume, in addition, that D is injective. In this case, the (-function
Co(s, D) of D is defined as follows.

Since D is invertible, there exists a small number pg > 0 such that

spec (D) N {z € C; |z] < 2pp} = 0.
Define the contour I' = I'y ,, C C consisting of three curves
'=Ir; Uy UTls,
where
(3.14) I't = {peie To0 > p > ,00}, Iy = {poeia l<a< 0—i—27r},
I's = {peiw””) po < p< oo}

For Res > 4mM the operator

m
(3.15) Dyt == AT (D — A)~tdA
2w Fe,po

is a pseudo-differential operator with continuous kernel D, *(z,y), cf.
(39, 40]. When the angle 6 is fixed we will often write D~° for D, *.

We define

dim M
(3.16) Co(s, D) =TrD,* = / tr Dy*(z,z)dz,  Res> ——r.
M m

It was shown by Seeley [39] (see also [40]) that (s(s, D) has a meromor-
phic extension to the whole complex plane and that 0 is a regular value
of C@(S, D) .

More generally, let @ be a pseudo-differential operator of order g. We
set

(3.17) Co(5,Q,D)=Tr QD;*,  Res> (q+ dimM)/m.

5The existence of an Agmon angle is an additional assumption on D, though a
very mild one. In particular, if D possesses a principal angle it also possesses an
Agmon angle, cf. the discussion in Subsection 3.10.
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This function also has a meromorphic extension to the whole complex
plane, cf. [47, §3.22], [24, Th. 2.7], and [25]. Moreover, if @ is a 0-th
order pseudo-differential projection, i.e., a 0-th order pseudo-differential
operator satisfying Q> = @, then by [46, §7], [47] (see also [9, 34]),
Co(s, Q, D) is regular at 0.

Definition 3.6. The (-regularized determinant of D is defined by

the formula
d
(3.18) Detg(D) := exp <—d8\80g9(s,D)> :

Roughly speaking, (3.18) says that the logarithm log Detg(D) of the
determinant of D is equal to —(y(0, D). However, the logarithm is a
multivalued function. Hence, log Detg(D) is defined only up to a multi-
ple of 274, while —(j(0, D) is a well defined complex number. We denote

by LDety(D) the particular value of the logarithm of the determinant
such that

(3.19) LDety(D) = —(4(0, D).
Let us emphasize that the equality (3.19) is the definition of the number

LDety (D).
We will need the following generalization of Definition 3.6.

Definition 3.7. Suppose @ is a 0-th order pseudo-differential pro-
jection commuting with D. Then V :=Im @ is a D invariant subspace
of C*°(M, E). The (-regularized determinant of the restriction D[y of
D to V is defined by the formula

(3.20) Detg(D|y) := elPete(Plv)
where

d
(3.21) LDety(Dlv) = —d*S’S:OCe(S, Q, D).

Remark 3.8. From the representation of (y(s, @, D) for Re s > %
by the eigenvalues of D|y, cf. (3.26) below, it follows that the right hand
side of (3.21) is independent of @ except through Im(Q). This justifies
the notation LDety(D]|y). However, we need to know that V is the
image of a 0-th order pseudo-differential projection ) to ensure that
Cp(s, D) has a meromorphic extension to the whole s-plane with s = 0
being a regular point.

3.9. Case of a self-adjoint leading symbol. Let us assume now that
(3.22) o(D)*(z,&) = o(D)(x,§), (x,§) e T*M,

where o(D)*(x, &) denotes the adjoint of the linear operator o(D)(x, &)
with respect to some fixed scalar product on the fibers on E. This
assumption implies that D can be written as a sum D = D’ + A where
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D’ is a self-adjoint differential operator of order m and A is a differential
operator of order smaller than m.

Though the operator D is not self-adjoint in general, the assumption
(3.22) guarantees that it has nice spectral properties. More precisely,
cf. [31, §1.6], the space L?(M, E) of square integrable sections of E is
the closure of the algebraic direct sum of finite dimensional D-invariant
subspaces

(3.23) L*(M,E) = P M

such that the restriction of D to Ay has a unique eigenvalue A\; and
limy_o0 |Ak| = 00. In general, the sum (3.23) is not a sum of mutually
orthogonal subspaces.

The space A are called the space of root vectors of D with eigenvalue
M- We call the dimension of the space Ay the (algebraic) multiplicity
of the eigenvalue A\; and we denote it by my.

Assume now that 8 is an Agmon angle for D. As, for Res > 7diran

the operator D), ® is of trace class, we conclude by Lidskii’s theorem, [30],
[36, Ch. XI], that the (-function (3.16) is equal to the sum (including

the algebraic multiplicities) of the eigenvalues of D, . Hence,

(3.24) Go(s,D) =Y my (Me)y® = my, e *1o80 M,
k=1 k=1

where logg(A) denotes the branch of the logarithm in C\ Ry with

0 < Imlogy(N) < 0 + 2.

3.10. Dependence of the determinant on the angle. Assume now
that 6 is only a principal angle for D. Then, cf. [39, 40], there exists ¢ >
0 such that spec (D) Lig_ g4 is finite and spec (o(D))NLjg_z g1 = 0.
Thus we can choose an Agmon angle 6/ € (0 —,0 + ¢) for D. In this
subsection we show that Detg (D) is independent of the choice of this
angle #’. For simplicity, we will restrict ourselves to the case when D
has a self-adjoint leading symbol.

Let 68”7 > 0" be another Agmon angle for D in (8 —¢,0 + ). Then
there are only finitely many eigenvalues A, ,..., A, of D in the solid
angle L[glﬂgu]. We have

logg Ak, if ke {ry,...,r};

3.25 1 "N\ =
( ) o {logex A + 2me, if ke {r,....,m}.
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Hence

(3.26)  ¢pr(0, D) = (o (0, D)

= El l
d ‘
di{s—o My, 8_510‘%9'()\7%‘)(1 — 6—27T'LS) i -
gls=

and, by Definition 3.6,
(327) Detgu (D) = Det(;/(D).

Note that the equality (3.27) holds only because both angles 6 and 6"
are close to a given principal angle 6 so that the intersection spec (D)N
Ligr g is finite. If there are infinitely many eigenvalues of D in the solid
angle Ly g/ then Detgr (D) and Dete (D) might be different.

3.11. Graded determinant. Let D : C*°(M,E) — C*(M,E) be a
differential operator with a self-adjoint leading symbol. Suppose that
Qj : C®°(M,E) — C*(M,E) (j =0,...,d) are 0-th order pseudo-
differential projections commuting with D. Set V; := Im (); and assume
that

d
C™(M,E)=EPV;.
=0

Definition 3.12. Assume that D is injective and that 6 € [0, 27) is
an Agmon angle for the operator (—l)jD|V]., for every j =0,...,d. The
graded determinant Detg, g(D) of D (with respect to the grading defined
by the pseudo-differential projections @Q);) is defined by the formula

(3.28) Detg g(D) := el Petaro (D)
where
d . .
(3.29) LDetg (D) := » _ (—1)/ LDetq ((—1)'Dly,).
j=0

The following is an important example of the above situation: Let
F= @?’:0 E; be a graded vector bundle over M. Suppose that for each
7 =0,...,d, there is an injective elliptic differential operator

Dj : COO<M,E]) — COO(M, Ej),
such that 6 € [0, 27) is an Agmon angle for (—1)/D; for all j =0,...,d.
We denote by

d
(3.30) D=EP D;: C*(M,E) — C™(M, E)
j=0
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the direct sum of the operators D;. Then (3.29) reduces to

d
(3.31) LDetg (D) := Y (—1)/ LDety ((—1)7D;).
j=0

4. The n-invariant of a non Self-Adjoint Operator and the
Determinant

It is well known, cf. [41, 48], that the phase of the determinant of a
self-adjoint elliptic differential operator D can be expressed in terms of
the n-invariant of D and the ¢-function of D?. In this section we extend
this result to non self-adjoint operators.

Throughout this section we use the notation introduced in Section 3
and assume that D : C*°(M, E) — C*(M, E) is an elliptic differential
operator of order m with self-adjoint leading symbol, cf. Subsection 3.9.
We also assume that 0 is not in the spectrum of D.

4.1. n-invariant. First, we recall the definition of the n-function of D
for a non-self-adjoint operator, cf. [21].

Definition 4.2. Let 6 be an Agmon angle for D, cf. Definition 3.4.
Using the spectral decomposition of D defined in Subsection 3.9, we
define the n-function of D by the formula

(4.32) mo(s, D)= > mp (A)g®— D> me (—Ar)p”.

Re A >0 Re A\ <0

Note that, by definition, the purely imaginary eigenvalues of D do
not contribute to ny(s, D).

It was shown by Gilkey, [21], that 79(s, D) has a meromorphic exten-
sion to the whole complex plane C with isolated simple poles, and that
it is regular at 0. Moreover, the number 7y(0, D) is independent of the
Agmon angle 6.

Since the leading symbol of D is self-adjoint, the angles +7m/2 are
principal angles for D, cf. Definition 3.3. In particular, there are at
most finitely many eigenvalues of D on the imaginary axis.

Let m (respectively, m_) denote the number of eigenvalues (counted
with their algebraic multiplicities, cf. Subsection 3.9) of D on the posi-
tive (respectively, negative) part of the imaginary axis.

Definition 4.3. The n-invariant (D) of D is defined by the formula
0,D)+my —m_

5 .
In view of (3.25), n(D) is independent of the angle 6.

(4.33) n(D) = ™!

Let D(t) be a smooth 1-parameter family of operators. Then n(D(t))
is not smooth but may have integer jumps when eigenvalues cross the
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imaginary axis. Because of this, the n-invariant is usually considered
modulo integers. However, in this paper we will be interested in the
number €™ () which changes its sign when n(D) is changed by an odd
integer. Hence, we will consider the n-invariant as a complex number.

Remark 4.4. Note that our definition of n(D) is slightly different
from the one suggested by Gilkey in [21]. In fact, in our notation,
Gilkey’s definition is (D) + m_. Hence, reduced modulo integers the
two definitions coincide. However, the number ¢/™(P) will be multiplied
by (—1)"- if we replace one definition by the other. In this sense,

Definition 4.3 can be viewed as a sign refinement of the definition given
in [21].

4.5. Relationship between the 7-invariant and the determi-
nant. Since the leading symbol of D is self-adjoint, the angles +m/2
are principal for D. Hence, cf. Subsection 3.10, there exists an Ag-
mon angle 6 € (—m/2,0) such that there are no eigenvalues of D in the
solid angles L(_r /2 9) and L(z /2 4. Then 26 is an Agmon angle for the
operator D?.

Theorem 4.6. Let D : C*°(M,E) — C*(M, E) be a bijective elliptic
differential operator of order m with self-adjoint leading symbol. Let 6 €
(=7/2,0) be an Agmon angle for D such that there are no eigenvalues
of D in the solid angles L(_y/29 and L(x/264x (hence, there are no
eigenvalues of D? in the solid angle L(_mgg}). Then ©

(4.34) LDetg(D) = % LDetog(D?) — im <77(D) - ;C29(0,D2)> )

In particular,

(4.35) Dety(D) = e~ $0(0:D%) . g=im (n(D)=3¢20(0.D%))

Remark 4.7.

a. Let 6 be as in Theorem 4.6 and suppose that 6’ € (—,0) is another
angle such that both 6" and 6’ + 7 are Agmon angles for D. Then,
by (3.26) and (3.27),

Detg/ (D) = Detg(D),
(4.36) ) ) ) ; '
(20(0, D*) = (5/(0, D7) mod 27i.
In particular,
(4.37) =3 S (OD%) — 4 o= 5 G3o(0.0%).

SRecall that we denote by LDetg (D) the particular branch of the logarithm of the
determinant of D defined by formula (3.19).
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Clearly, Cp, (0, D?) = (y, (0, D?) if there are finitely many eigen-
values of D? in the solid angle Lig, 9,)- Hence, (24 (0, D?) =
C29:(0, D?). We then conclude from (4.35), (4.36), and (4.37) that

(g (0,D%)
- 2

(4.38) Detg (D) = + 2 S0/ (0:D%) . g=im (n(D) )

In other words, for (4.35) to hold we need the precise assumptions
on # which are specified in Theorem 4.6. But “up to a sign” it
holds for every spectral cut in the lower half plane.

b. If instead of the spectral cut Ry in the lower half-plane we use
the spectral cut Ry, in the upper half-plane we will get a similar
formula

(4.39)  LDetg, (D) = % LDetog(D?) + i <77(D) - ;gza(o,m)) ,

whose proof is a verbatim repetition of the proof of (4.34), cf.
below.

c. If the dimension of M is odd, then the (-function of an elliptic
differential operator of even order vanishes at 0, cf. [39]. In par-
ticular, (29(0, D?) = 0. Hence, (4.34) simplifies to

(4.40) LDety(D) = % LDetgg(D?) — imn(D).

Proof. Let II+ and TI_ denote the spectral projections of D corre-
sponding to the solid angles L(_ /2 x/2) and Lz 2 37 /2) respectively. Let
P, and P_ denote the spectral projections of D corresponding to the
rays R, o and R_/, respectively (here we use the notation introduced

in (3.13)). Set Iy = I+ + P.. Since D is injective Id = I, + IT_.
Clearly

Co(s,D) = Tr [TI4 D, ®] + e ™ Tr [II_ (-D),*];
(0(s/2,D?) = Tr [IIL D, %] + Tr [II_ (-D),*].
Hence, using the notation introduced in (3.17), we obtain
Co(s. D) = Go(s, 1Ly, D) + €™ Cy(s, I, —D);
Con(5/2, D) =C(s,TLy, D) + Co(s, 11—, = D).

As, by assumption, the solid angles L(_, /39 and Lz /3 945 do not con-
tain eigenvalues of D, it follows that

(4.42) 1(s. D) = Tr [IL.D;°] ~ Tr [I_(~D);"]
= C9(57H+a D) - C@(Sanfa _D)'

(4.41)

Recall that the projectors P4+ have finite rank, which we denoted by
m+, cf. Subsection 4.1. Hence,

CG(O, Pia j:D) - rank Pi = mq.
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Combining this equality with (4.42), and using (4.33), we obtain

(4.43) n(D) = 20 Iy, D) —2Ce(0, i, -D)

From (4.41) and (4.43), we get
+ Cé(ov 1:[—7 _D) —am C@(Oa 1:[—7 _D)

i (C9(0>H+7 D) +2C9(O>H7 _D)

1
= 5(&6(07 Dz) -

_ 49(07 ﬁ-i-v D) - C@(Oa ﬁ—v _D)>
2

= £ Go(0,D?) — i S Gan(0, D) — (D).

Since, by definition (3.19) of the logarithm of the determinant
LDetg(D) = — ¢,(0, D),
equality (4.34) follows from (4.44). q.e.d.

4.8. Determinant of a self-adjoint operator and the n-invariant.
If the operator D is, in addition, self-adjoint, then n(D) and (2 (0, D?)
are real and the number Detoy(D?) is positive, cf. Corollary A.3 in
Section A. Hence, formula (4.35) leads to

(4.45) | Dety(D)| = +/Detag(D?),

(446) Ph (Dety(D)) =~ (n(D) - %@9(0,1)2)), mod 2r,

where Ph ( Detgy(D)) denotes the phase of the complex number Detg(D).

If D is not self-adjoint, (4.45) is not true in general, because the
numbers LDetog(D?), n(D), and (a9(0, D?) need not be real. However,
they are real and a version of (4.45) and (4.46) holds for a class of
injective elliptic differential operators whose spectrum is symmetric with
respect to the real axis. Though we will not use this result we present it
in the Appendix A for the sake of completeness.

4.9. n-invariant and graded determinant. Suppose now that D =
@?zo D; as in (3.30). Choose 6 € (—n/2,0) such that there are no
eigenvalues of D; in the solid angles L(_r /29 and Lz 294 for every
0 < j <d. From the definition of the n-invariant it follows that

n(£D;) =£n(D;).
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Combining this equality with (3.29) and (4.34) we obtain

d
1
(4.47) LDetg (D) = o > " (~1)7 LDetyy(D3)
7=0
1 d
—im 2]23 1Y/¢20(0.D3) | ,

where

d
=> n(D

J=0

is the n-invariant of the operator D = @;‘lzo D
Finally, note that, as in Remark 4.7.c, if the dimension of M is odd,
then (29(0, D7) = 0, and (4.47) takes the form

d
(4.48) LDetg (D) = % > (~1)7 LDetyy(D?) — im n(D).
j=0

4.10. Generalization. All the constructions and theorems of this sec-
tion easily generalize to operators acting on a subspace of the space
C*°(M, E) of sections of E.

Let D : C*°(M,E) — C>*(M, E) be an injective elliptic differential
operator with a self-adjoint leading symbol. Let @ : C*°(M,E) —
C>®(M,E) be a 0-th order pseudo-differential projection commuting
with D. Then V := ImQ C C*(M,E) is a D-invariant subspace.
Hence, the decomposition (3.23) implies that

V=@ (AnV)

k>1

and the restriction D|y of D to V has the same eigenvalues A, Ag,. ..
as D but with new multiplicities m},mY ,.... Note, that now m} >0
might vanish for certain i’s. Let mK (respectively, m") denote the
number of eigenvalues (counted with their algebraic multiplicities) of
D|y on the positive (respectively, negative) part of the imaginary axis.
Set

(449) (s, Dlv) = > mf (w)g®— D mi (=M
Re A\ >0 Re A\ <0

779(0, D|V) + mK — mY

2

n(Dly) =
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A verbatim repetition of the proof of Theorem 4.6 implies

1
(4.50) LDety(Dlv) = 3 LDetog(D?|y)

. 1
—ir (4(Dly) =y (0.0%)).
where we used the notation

(451) <29(37D2‘V) = <20(87Q7D2)a
cf. (3.17).

Finally, suppose that V = @;?:Ovj is given as in Definition 3.12.
Then

d
1
(4.52)  LDetg (D) =5 Z 1)/ LDetog(D?|v;)
Jj=
1 d
— i 220 ) G20(0, D?|y;)
J:

Note, however, that an analogue of (4.48) does not necessarily hold in
this case even if dim M is odd, because (a9(s, D?|y;), defined by (4.51),
is not a (-function of a differential operator and does not necessarily
vanish at 0.

5. Determinant as a Holomorphic Function

In this section we explain that the determinant can be viewed as
a holomorphic function on the space of elliptic differential operators.
We also discuss some applications of this result, which will be used in
Section 13 to show that the refined analytic torsion is a holomorphic
function and in Section 9 for studying the dependence of the graded
determinant on the Riemannian metric.

5.1. Holomorphic curves in a Fréchet space. Let £ be a complex
Fréchet space and let O C C be an open set. Recall (cf., e.g., [37,
Def. 3.30]) that a map v : O — & is called holomorphic if for every
A € O the following limit exists,

i Y =)

U= on— A
We will refer to a holomorphic map v : O — & as a holomorphic curve
in £.

Let Z C &€ be a subset of a complex Fréchet space. By a holomorphic
curve in Z we understand a holomorphic map v : O — & such that
y(A) € Z for all A € O.

Suppose now that V C C™ is an open set. We callamap f:V — Z
holomorphic if for each holomorphic curve v : O — V the composition
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fov: O — Z is a holomorphic curve in Z. Note that if Z = C then,
by Hartogs’ theorem (cf., e.g., [26, Th. 2.2.8]), the above definition is
equivalent to the standard definition of a holomorphic map.

5.2. The space of smooth functions as a Fréchet space. The
space C2°(R?) of bounded smooth complex-valued functions on R? with
bounded derivatives has a natural structure of a Fréchet space (cf., e.g.,
[49, Ch. I]) with topology defined by the semi-norms

(5.53) [ fllo :== sup |03 f(z)],
z€eR4
where a = (g, ...,0q) € (Zzo)d and 0% = ((9%1)0‘1 i (%)ad.

5.3. A Fréchet space structure on the space of differential op-
erators. Let M be a closed d-dimensional manifold and let £ be a
complex vector bundle over M. Denote by Diff,, (M, E) the set of dif-
ferential operators D : C*°(M,E) — C*(M,E) of order < m with
smooth coefficients. It has a natural structure of a Fréchet space defined
as follows. Consider a pair (¢, ®) where ¢ : U — R? is a diffeomorphism
(with U € M an open set), and ® : E|y — C! x U is a bundle map
which identifies the restriction E|y of E to U with the trivial bundle
C' x U — U. We refer to (¢, ®) as a coordinate pair.

Using the maps ¢ and ® we can identify the restriction of an operator
D e Diff,,,(M, E) to U with the operator

(5.54) Digay = Y, ;4 (@) 07 € Diff, (R, C' x RY),
|B|<m

where |G| = Z;l:l B; and a’(g(b’q))(x) = {a(ﬁqs’q));i’j(:c) }i,jzl are smooth
bounded matrix-valued functions on R?, called the coefficients of D
with respect to the coordinate pair (¢, ®).

We now define a structure of a Fréchet space on Diff,,(M, E) using
the semi-norms

(5.55) IDIIGs,0),5:.5 = I a(ﬁ¢>,<p);i,j Hou

where (¢, ®) runs over all coordinate pairs, a, 8 € (Z>0)? with |8] < m,
1 <4,j <1, and the norm on the right hand side of (5.55) is defined by
(5.53).

5.4. Holomorphic curves in the space of differential operators.
Suppose O C C is an open set and consider a map v : O — Diff,,,(M, E).

For every coordinate pair (¢, ®) we denote by a’? ! q))(x; A) the coefficients

of v(A\) with respect to the coordinate pair (¢, P).

Clearly, v is a holomorphic curve in Diff,, (M, E) with respect to the
Fréchet space structure introduced in Subsection 5.3 if and only if for
every coordinate pair (¢, ®), every 3 € (Zzo)d with |3] < m, and every
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1 < 4,5 <1, the map A — a@) @),ij(x;)\) is a holomorphic curve in
Cpo(RY).
The following lemma follows immediately from the definitions.

Lemma 5.5. Let O C C be an open set and, fori=1,2, letv; : O —
Diff,,,, (M, E) be a holomorphic curve. Then X+ () := y1(A) 0 y2(N)
is a holomorphic curve in Diff p,, 4m, (M, E). Here v1(X) o y2(A) is the
composition of the differential operators 1 () and y2(\).

5.6. Determinant of a holomorphic curve of operators. Let
Ell,,(M,FE) c Diff,,(M, E)

denote the open set of elliptic differential operators of order m and let
Ell,, (M, E) C Ell,;,(M, E) be the open subset of operators which have
f as an Agmon angle. We denote by Ell;nﬁ(M , E) the open subset of
invertible operators in Ell,, o(M, E). According to Subsection 3.5, the
function

LDety : Ell,, o(M,E) — C
is well defined. For D € Ell,, (M, E) we set

exp (LDetg(D)), if D is invertible;
0, otherwise.

(5.56) Detg(D) = {

Further, we denote by Ell,, (5, g,)(M, E) C Ell,;,(M, E) the open sub-
set of operators for which all the angles § € (61,63) are principal, cf.
Subsection 3.2. Any operator D € Ell,;, g, 9,)(M, E) has an Agmon an-
gle 6 € (01, 62) and, by (3.27), the determinant Dety(D) is independent
of the choice of # in the interval (1, 62). The following theorem is well
known, cf., for example, [29, Corollary 4.2],

Theorem 5.7. Let E be a complex vector bundle over a closed man-
ifold M and let O C C be an open set.

a. Suppose v : O — Ell;,n’g(M, E) is a holomorphic curve in
Ell, (M, E) C Diff,,(M, E).

Then the function O — C, X — LDety (7(X)) € C is holomorphic.
b. Given angles 6y < 02 and an operator D € Ell,;, 4, ¢,y(M, E), de-
note by Detg, g,)(D) the determinant Deto(D) defined using any
Agmon angle 6 € (01,02). Let v : O — Ell,, g, 9,)(M, E) be a
holomorphic curve in Ell,, g, 9,) C Diffy,,(M, E). Then

(5.57) O — C, X Detg, g, (v(V)

18 a holomorphic function.
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Remark 5.8. The theorem implies that the function Det g, g,y(D) is
Gateaux holomorphic on Ell,,, 9, 4,)(M, E), cf. [16, Def. 3.1]. Moreover,
since Detg, g,) is continuous on EllL,, g, 9,)(M, E) it follows that this
function is holomorphic in the sense of Definition 3.6 of [16]. However,
since there seems to be no standard notion of a holomorphic function
on a Fréchet space, we prefer to avoid this terminology.

Corollary 5.9. Suppose EE — M is a complex Hermitian vector bun-
dle over a closed manifold M. Let Ell,, ., (M, E) denote the set of in-
vertible elliptic operators of order m with self-adjoint leading symbol
and let vy : O — B, . (M, E) be a holomorphic curve in EI,, .. (M, E).

Then the function 7 ’
(5.58) 0O — C, A - 2mnh)
s holomorphic.

Proof. By formula (4.35) of Theorem 4.6

(5.59) 2min(v(\) Det(_r0) (Y(V)?) : im0 (09(0)?)
( Det(_r/2,0) (v(V)) )

By Lemma 5.5, A — 7(A)? is a holomorphic curve in Elly,, (M, E).
Hence, by Theorem 5.7.b the quotient on the right hand side of (5.59)
is a holomorphic function in A. It remains to show that (29 (O,fy()\)2)
depends holomorphically on A.

First, note that by (3.25), (29(0,7(A)?) is independent of §. By a
result of Seeley [39] (see also [40]), the value (2 (0,7(X)?) of the zeta-
function of y(\)? is given by a local formula, i.e., by an integral over
M of a C-valued differential form ¢ whose value at a point x € M is
a rational function of the symbol of v(\) and a finite number of its
derivatives. It follows that the function @ — C, X (a9(0,7()\)?) is
holomorphic. q.e.d.

Another important consequence of Theorem 5.7 is the following
Corollary 5.10. Let V C C” be an open set and let
f:V - Ellm7(91792)(M, E)
be a holomorphic map in the sense of Subsection 5.1. Then the set
S:={AeV: f(}\) is not invertible}

18 a complex analytic subset of V. In particular, if V is connected then
so is V\X.

Proof. In view of Hartogs’ theorem (|26, Th. 2.2.8]), Theorem 5.7.b
implies that the function V' — C, A+ Det(g, 4,)(f(A)) is holomorphic
on V. By (5.56), ¥ = {A € V : Detg, g,)(f(A)) = 0}. q.e.d.
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6. Graded Determinant of the Odd Signature Operator

In this section we define the graded determinant of the Atiyah-Patodi-
Singer odd signature operator, [3, 21|, of a flat vector bundle E over
a closed Riemannian manifold M. In Section 8 we show that, if
admits an invariant Hermitian metric, then the absolute value of this
determinant is equal to the Ray-Singer analytic torsion [35]. There
is a similar, though slightly more complicated, relationship between
the graded determinant and the Ray-Singer torsion in the general case,
cf. Theorem 8.2. Thus, the graded determinant of the odd signature
operator can be viewed as a refinement of the Ray-Singer torsion.

6.1. Setting. Let M be a smooth closed oriented manifold of odd di-
mension d = 2r — 1 and let F — M be a complex vector bundle over
M endowed with a flat connection V. We denote by V also the induced
differential

V:QM,E) — QTY(M, E),
where QF(M, E) denotes the space of smooth differential forms of M
with values in E of degree k.
6.2. Odd signature operator. Fix a Riemannian metric ¢ on M
and let % : Q*(M, E) — Q%*(M, E) denote the Hodge *-operator. De-
fine the chirality operator T : Q*(M, E) — Q°*(M, E) by the formula
(6.60) FTwi=i" (-1)"%" xw, weQ* M, E),
with r given as above by r = %. This operator is equal to the operator
defined in §3.2 of [4] as follows from applying Proposition 3.58 of [4] in
the case dim M is odd. Note that I'> = 1 and that I is self-adjoint with
respect to the scalar product on Q°(M, E) induced by the Riemannian
metric ¢™ and by an arbitrary Hermitian metric on E.

Definition 6.3. The odd signature operator is the operator
B=DB(V,¢"): Q*(M,E) — Q*(M,E)
defined by
(6.61) B=TV+VI.
We denote by By, the restriction of B to the space QF(M, E).
Explicitly, for w € Q¥(M, E) one has

(k+1)
(6.62) Byw:=i"(—=1) 2 (=)} +V - Vx)w
e Qd—k—l(M’ E) D Qd—k’-i-l(]\47 E)
The odd signature operator was introduced by Atiyah, Patodi, and
Singer, [2, p. 44], [3, p. 405], in the case when E is endowed with
a Hermitian metric invariant with respect to V (i.e., invariant under

parallel transport by V). The general case was studied by Gilkey, [21,
p. 64-65].
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Lemma 6.4. Suppose that E is endowed with a Hermitian metric
h¥. Denote by (-,-) the scalar product on Q*(M, E) induced by h* and
the Riemannian metric g™ on M.

1. B is elliptic and its leading symbol is symmetric with respect to

the Hermitian metric h”.

2. If, in addition, the metric h¥ is invariant with respect to the con-
nection V, then B is symmetric with respect to the scalar product
<'7 '>7

B* = B.
If the metric h¥ is not invariant, then, in general, B is not sym-
metric.

The proof of the lemma is a simple calculation. The first part is
already stated in [3, p. 405]. The second part is proven in the Remark
on page 65 of [21].

6.5. Assumptions. In this paper we study the odd signature operator
B and the analytic torsion under the following simplifying assumptions.
The general case is addressed in [7].

Assumption I. The connection V is acyclic, i.e., the twisted deRham
complex

(6.63) 0 — QM,E) —— QY(M,E) —Y— ...
Y QM E) — 0
is acyclic,
Im (V|Qk—1(M7E)) = Ker (V|Qk(M7E)) for every k=1,...,d.
Assumption II. The odd signature operator
B: Q*(M,E) — Q*(M,E)
is bijective.
6.6. Hermitian connection. Suppose that there exists a Hermitian
metric h¥ on FE invariant with respect to V (in this case we say that
the connection V is Hermitian). Then Assumption IT follows from As-
sumption I. Indeed, in this case the operator B is symmetric with re-
spect to the scalar product (-,-), defined by the metrics g™ and h¥, cf.
Lemma 6.4. Hence, we only need to show that Ker B = {0}. Let V*
denote the formal adjoint of the operator V : Q*(M, E) — Q*T1(M, E)

with respect to the scalar product (-,-). Since the metric h” is flat, we
obtain, cf. [45, §6.1],

(6.64) V*=TVTI.
Using this identity and the definition (6.61) of B we see that
(6.65) B*=V*V+VV*
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is the Laplacian. Thus Ker B = Ker B? is isomorphic to the cohomology
of the complex (6.63), and, hence, is trivial by Assumption I. Conversely,
these arguments show at the same time that, in the case considered,
Assumption II implies Assumption I.

6.7. Connections which are close to a Hermitian connection.
In this paper we are interested in the study of connections which are
close to a Hermitian connection in the following sense:

Let Q'(M,End (E)) denote the space of differential 1-forms on M
with values in the bundle End (F) of endomorphisms of E. A Hermitian
metric on E and a Riemannian metric on M define a natural norm | - |
on the bundle A'(T*M) ® End (F) — M. Using this norm we define
the sup-norm

”stup = m%\}( ’w(ﬂi')’, w e Ql(M, End E)
Te

on QY(M,End E). The topology defined by this norm is independent
of the metrics and is called the C%-topology on Q!(M,End E).

Let C(E) denote the space of connections on the bundle E. By choos-
ing a connection Vo we can identify this space with Q! (M, End E) asso-
ciating to a connection V € C(E) the 1-form V — Vg € Q'(M,End E).
By this identification the C°-topology on Q'(M,End E) provides a
topology on C(E) which is independent of the choice of V and is called
the C°-topology on the space of connections.

Finally, we denote by Flat(F) C C(F) the set of flat connections on
E and by Flat'(E, gM) C Flat(E) the set of flat connections satisfying
Assumptions I and II of Subsection 6.5. The topology induced on these
sets by the C%-topology on C(E) is also called the C°-topology. The
discussion of the previous subsection implies that Flat'(E, g™) contains
all the acyclic Hermitian connections.

Proposition 6.8. Flat'(E,g™) is a C°-open subset of Flat(E),
which contains all acyclic Hermitian connections on E.

Proof. We already know that Flat'(E, g") contains all acyclic Her-
mitian connections on E. Hence it is enough to show that Flat'(FE, M)
is open in C°-topology.

Let V € Flat'(E, g™) and suppose that V' € Flat(E) is sufficiently
close to V in C%-topology. Let B = B(V,g™), B' = B(V/,gM) de-
note the odd signature operators associated to the connections V and
V', respectively. Then B — B’ is a 0’th order differential operator on
Q*(M, E) and, hence, is bounded. Moreover, if V is close to V' in the
CP-topology, then B’ — B : Q*(M, E) — Q°*(M, E) is small in the op-
erator norm, when Q®(M, E) is endowed with the L?-norm induced by
the Riemannian metric on M and the Hermitian metric on E. We refer
to this operator norm as the standard operator norm and denote it by
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Since the operator B satisfies Assumption II, its inverse B~! can
be viewed as a bounded operator on the L?-completion L?Q®*(M, E) of
Q*(M, E). If B—B' is sufficiently small so that ||(B’—B)B~!| < 1, then
B', viewed as an unbounded operator on L?Q®*(M, E), has a bounded
inverse given by the formula

(B '=B7'(ld+(B'-B)B™")

By elliptic theory, (B’)~! maps the space of smooth forms Q°(M, E) to
itself. Hence, B’ satisfies Assumption II. q.e.d.

-1

6.9. Decomposition of the odd signature operator. Set

r—1 r
OV (M, E) == P (M, E), (M, E) =5 0 '(M,EB),
p=0 p=1
r—1
Beven 1= @D Bap : QV(M,E) — Q7(M, E),
p=0

-
Boaa := P Bap-1: QM (M,E) — QMM E).
p=1
Using that I'2 = 1, we obtain
(666) Bodd =To Beven ol

Qodd (M,E) .

Hence, the whole information about the odd signature operator is en-
coded in its even part Beyen. The operator Beyen can be expressed by
the following formula, which is slightly simpler than (6.62):

(6.67) Beyenw =" (—1)P*1 (xV =V ) w, for we Q*(M,E).

Assume now that V € Flat/(E, g™), i.e., that Assumptions I and II
of Subsection 6.5 are satisfied. From Assumption I we conclude that
the kernel and the image of the operator V : Q*(M, E) — Q°*(M, E)
coincide. Hence,

Ker(I'V)=Ker V=Im V=Im(VTI)
(6.68)
Ker(VI) =T (Ker V) =T (Im V) =Im(I'V).

We set
(6.69)
Q% (M,E) :=Ker (VT) N Q*(M,E) = (I Ker V) n Q*(M, E);

OF (M, E) :=Ker (V) N QF(M, E) = Ker V N Q(M, E),

and refer to Q% (M, E) and QF (M, E) as the positive and negative sub-
spaces of QF(M, E).”

"Note, that our grading is opposite to the one considered in 12, §2].
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Assumption IT of Subsection 6.5 then implies that, forallk =0, ..., d,
(6.70)  Ker (VTlgu(py ) N Ker (T Vguqay ) = (0}
(as B is one-to-one) and
k
(6.71) 1 (VT gucs 4y ) ) + 10 (T V| guoics 41 ) ) = (M, E)
(

as B is onto). Combining (6.70) and (6.71) with (6.68) and (6.69) we
conclude that

(6.72) QF(M,E) = QX (M, E) @ QF (M, E).
Clearly,
(6.73) I': QL (M, E) — Q&%M,E), kE=0,...,d.

Remark 6.10. Suppose that k¥ is a flat Hermitian metric on E.
Then, using (6.64) and (6.68), we obtain

(6.74) Q% (M, E) = Ker V* N Q%(M, E),

where V* is the adjoint of V with respect to the scalar product induced
by the metrics ¢™ and hP.

Let B,:f denote the restriction of B to Q% (M, E). By (6.61) and
(6.68),

Bf=rv: Q8(M,FE) — QT M, E),
By =VTI: Q8 (M, E) — QTF(M,E).

It follows from Assumption IT of Subsection 6.5 that both B,': and B,
are invertible.

(6.75)

6.11. Graded determinant of the odd signature operator. Set

r—1
QYN(M, E) = €D Q¥ (M. E)
p=0
and let BL_, denote the restriction of Beyen to the space Q8" (M, E).
Then

BZ . : QY (M,E) — QY°(M,E).
We consider Q2°V°"(M, E) as a graded vector space
QVYM,E) = QY"(M,E) ® QV"(M, E).
By Definition 3.12, the graded determinant of the odd signature opera-
tor is
(6.76) Detgy g(Beven) := el Petero(Beven)

where 0 € (—7,0) is an Agmon angle for the operator B = Beyen ® Bodd,
cf. Definition 3.4, and

(6.77)  LDetgy g(Beven) := LDety (B,

even

) — LDety ( — Bgyen) € C.

even
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According to (3.27), Detgy g(Beven) is independent of the choice of the
Agmon angle 6 € (—m,0).

7. Relationship with the n-invariant

In this section we use the notations of the previous section and assume
that, for a given pair (V,¢™), Assumptions I and II of Subsection 6.5
are satisfied. In particular the operator B = B(V, ¢M) is bijective. It
follows that the operators Beven and By : QF (M, E) — Qfl[k*l(M, E)
(0 <k <d-—1) are also invertible.

7.1. Graded determinant and 7n-invariant. To simplify the nota-
tion set

(7.78) n= H(V,QM) := 1(Beven),
and

1 d—1
(7.79)  €=¢&(V,gM,0) = 5 (—1)* LDetog (BJ ,_, © B}Y)

k=0
1 d—1
k 2
=5 k_o(—1) LDetog ((PV) \WM’E)).

Theorem 7.2. Let V € Flat'(E, g™) be a flat connection on a vector
bundle E over a closed oriented Riemannian manifold (M,g™) of odd
dimension d = 2r — 1. Let § € (—n/2,0) be an Agmon angle for B
such that there are no eigenvalues of the operator B in the solid angles
L(_ﬂ-/gﬁ] and L(7r/2,0+7r]' Then

(7.80) LDetgy 6(Beven) = & — i 1).

The rest of this section is devoted to the proof of Theorem 7.2. By
(4.52), it is enough to show that

(7.81) 2¢ = LDetyy (B,

(782) G2 (07 (B;:/en)Z) — G0 (07 (Bt;/en)2) = 0.

Note that though the value at 0 of the (-function of a second order
differential operator on an odd-dimensional manifold vanishes, [39], the
operators BL, are pseudo-differential and, hence, the equality (7.82) is
not trivial. In particular, the individual terms (o9 (0, (BZ,)?) need not

vanish.

)2 — LDetgg (Bayey)?;

even

7.3. Calculation of (o (s, (Bdien)?) — C20(5, (Baven)?)- Set

Af =B +Bf , : Q8 (M,E)e QY (M, E)
— Q8 (M, E) e QM B),
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for k=0,...,r —2, and
Af =B Q7' (M,E) — Q7Y (M,E).
Similarly, set
Apy = By + By Q5 (M,E) @ QM (M, E)
— O (M, E) @ QMM E)
fork=1,...,r—1, and

(7.83) A7 =B : Q" (M,E) — Q" (M,E).
Then
2 2
(7.84) (A7) =(TV) ‘Q’jr(M,E)@Qi_k_l(M,E)’
—\2 2
(A4;)"=(VTI) ‘QE(M,E)@QT’““(M,E)'
Hence,
(7.85) Coo (s, (AF)?) = oo (s, (T V)Q‘Qi(M,E))

2
+ G (5 (DY) g4y )
From (6.66) and (6.73) we get

(7.86) Af=ToA_ ol
Hence,
(7.87) Gon (s, (A])?) = Gaa (s, (A5_1)?).
Since BZ, is a direct sum of the operators A2p’ we obtain from (7.87)
that
C29( ( even) ) - C29( ( ;/en)2)
[(r—1)/2] [r/2]
Z Coo (s Z Con(s
[7“ 1)/2] [7‘/2
Z (20 Z C29 zp 1 )
r—1
=D (=" (s, (40)%).
k=0

Combining this equality with (7.85) we get
(788) <29( (B;/en)Q) - <29 (Sa (Bt;ven)Q)

= (—1)" (o (Sa (r V)2’Qi(M,E)) '
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Lemma 7.4. Let Fi, Fy be vector bundles over M and let
P COO(M,Fl) - COO(M,FQ) and QZ COO(M,FQ) — COO(M,FQ)

be invertible elliptic pseudo-differential operators such that ¢ is an Ag-
mon angle for PQ and QP. Then, every reqular point s € C of the
function s — (y(s, PQ) is also a regular point of s — (4(s,QP) and

(7.89) Co(s, PQ) = Gy(s, QP).
In particular,
(7.90) (0, PQ) = (4(0,QP).

Proof. For every elliptic operator D with Agmon angle ¢
—s—1—1 —1y\—s—1
QD;*7'Q 7 = (QDQ 1), "

Hence,

(7.91) QPQ); ™ =[QPQ),; QT =(QP);"Q.

Recall that if T' and S are operators such that the composition 7T'S is
of trace class, then ST is also of trace class and Tr(7'S) = Tr(ST), cf.
[22, Ch. III, Th. 8.2]. Using this equality and (7.91) we obtain

(7.92)  Co(s, PQ) = Tr (PQ),° = Tr [(PQ),> ' PQ]
=Tr [Q(PQ),*'P] =Tr(QP);* = (4(s,QP).

Since both the left and the right hand sides of (7.92) are analytic in s,
this equality holds for all regular points of the function s — (4(s, PQ).
q.e.d.

From (7.89), we conclude that for all regular points of the function
s — Coo (s, (FV)Q‘Qk M E)) the following equality holds
+ k)

(7.93)  Cao(s, (T v)2|ﬂﬁ_(M,E)) = C2o(s,(T'VT) ‘Q’i“(M,E)v’Q’j_(M,E))
= Can (s, v’ﬂi(M,E) (V) |Q’1+1(M,E))
= G20 (37 (V P)Q ‘Qliﬂ(M,E))-

From (7.84), (6.70), and (6.71), we get
Gao (3, B | (arm)) = Coo <8’ ((CV)*+(VI)?) ‘QHM,E))
= G0 (5= (T V)2’Q’;(M,E)) + G20 (Sa (V F)Z‘QE(M,E)))'
Using this equality, (7.88), and (7.93), we obtain
(794) C29 (37 (B;:/en)2) - CQ@ (S, (B(;/en)2)

I
M~

(=1F 1k Cog (5’ B2}Q’€(M,E))'

=
Il

0
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7.5. Proof of Theorem 7.2. From (7.79) and (7.88) we conclude that

d _
(795) 25 = %‘S:O [CZQ (87 (B;:zen)Q) - 429 (87 (Beven)Q)} :
Hence (7.81) is established.
Since the dimension of M is odd, the (-function of every elliptic
differential operator of even order vanishes at 0, cf. [39]. Hence, by

Lemma 6.4.1, the equality (7.94) implies (7.82). q.e.d.

8. Comparison with the Ray-Singer Torsion

8.1. Ray-Singer torsion. Let & — M be a complex vector bundle
over a closed oriented manifold M of odd dimension d = 2r — 1 and
let V be an acyclic flat connection on E. Fix a Riemannian metric g
on M and a Hermitian metric h¥ on E. Let V* denote the adjoint of
V with respect to the scalar product (-,-) on Q®(M, E) defined by h¥
and the Riemannian metric ¢™. If V is acyclic (i.e., Assumption I of
Subsection 6.5 is satisfied) the Ray-Singer torsion T®S of E, [35, 5, 12],
is defined by

(8.96) TR = TRS(V)
1
— k+1 * *
.= exp (5 ;0(—1) k LDet_ ((V*V + VV )\WM’E))),
where V* denotes the adjoint of V with respect to the scalar prod-

uct (-,-) induced by g™ and h¥. Note that, as V is assumed to be
acyclic, (V*V + VV*)|Qk(M o is a strictly positive operator and, there-

fore, LDet_r ((V*V + VV*)| . o, E)) is well defined.

The Ray-Singer torsion is a positive number, which, in the case con-
sidered, is independent of the the Hermitian metric A¥ and the Rie-
mannian metric g™, cf. [35, 5]. We denote by log T®S the value at TRS
of the principal branch of the logarithm.

The determinants in (8.96) are defined using the spectral cut R_,
along the negative real axis. Since the spectrum of the operator V*V +
VV* lies on the positive real axis, we can replace it with a spectral cut
Ry for any ¢ # 0 without changing the formula. In particular, we can
take the spectral cut along Raog, where 6 € (—m/2,0) is an Agmon angle
for the odd signature operator B.

Using the decomposition (6.72), we have

d

(8.97) log TR = = Z;) (—1)* LDetgy (V'Y ar,)

N | =
ke
Il

Il
DO |
(1=~

(—1)F*1 LDetoyy (vv*yﬂ,i (ME)).

bl

=0
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This formula is proven, for example, on page 340 of [12].
Suppose now that the Hermitian metric ” on E is invariant with
respect to V. From (6.64), we obtain

\ARY r'v) .
|Qk k (M,E) = ( |Qi(M,E)
Hence, we can rewrite (8.97) as

(8.98) log TS

d
S (1 LDetas (D9 4y ) ) = E(719™,0),

k=0

l\.')\r—t

where the number ¢ = £(V, g™, 0) is defined in (7.79).

The next theorem generalizes this result to the case where h¥ is not
necessarily invariant. Recall that the set Flat’ (M, g™) is defined in
Subsection 6.7.

Theorem 8.2. Assume that M is a closed oriented manifold and
g™ is a Riemannian metric on M. Then there exists an C°-open (cf.
Subsection 6.7) neighborhood U C Flat(E) of the set of acyclic Hermit-
tan connections on E, such that for every connection V € U we have

V € Flat'(M, g™) and

(8.99) log TRS(V)

d
Re Y (~1)" LDety ((T V)2|Q,i(M’E)) = Re £(V, M. 9).
k=0

l\D\H

Hence, in view of (7.80), for every V € U, we obtain

(8.100) ‘ Detgr o(Beven) | = TRS(V) T Imn(V,gM)

If V is an acyclic Hermitian connection, then the operator Beyen iS
self-adjoint with respect to the inner product given by g™ and the in-
variant Hermitian metric ¥ on E. Thus, the n-invariant n = n(V, g™)
is real. Hence, Theorem 8.2 implies the following

Corollary 8.3. If V is an acyclic Hermitian connection then
(8.101) | Detgrg(Beven) | = TR (V).

In particular, Corollary 8.3 implies that, under the given assumptions,
Detgng(Beven) contains all the information about the Ray-Singer torsion,
and, hence, “refines” it by having a phase.

The rest of this section is occupied with the proof of Theorem 8.2.
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8.4. Alternative formula for . From (7.95) and (7.94) we obtain
the following analogue of (8.96):

(8.102)  £(V,¢M,0)

_ % ;;(_1)“1 k LDetyy [(DV)? + (VD)?) m(M,EJ’

where 6 € (—m/2,0) is an Agmon angle for B so that there are no
eigenvalues of B in the solid angles L(_r /2] and L /24 Note that
this condition implies that for all k =0, ..., d, 20 is an Agmon angle for

B ‘Qk(M,E) :

8.5. Choice of the spectral cut.It follows from (3.27) that
Detgr g(Beven) does not depend on the choice of the Agmon angle 6 €
(=m,0). It is convenient for us to work with an angle 6 € (—7/2,0)
such that there are no eigenvalues of the operator B in the solid angles
L(—7r/2,6]7 L[—HJ/Q)’ L(7r/2,9+7r] and L[—e—ﬂ'v—ﬂﬂ)' We will fix such an
angle till the end of this section.

8.6. The dual connection. Fix a Hermitian metric h* on E. Denote
by V’ the connection on E dual to the connection V. It is defined by
the formula

dh¥ (u,v) = h¥ (Vu,v) + hE (u, V'v), u,v € C°(M,E).

From the definition of the scalar product (-,-) on Q*(M, E) it then
follows that

(8.103) V*=IV'l, (V)*=TVI.
Since I'? = Id, (8.103) implies
(8.104) (r V)2>* v (v F)Q)* — (V'T)2

Let B’ denote the odd signature operator associated to the connection
V'. Using (6.75) and (8.103) one readily sees that

B* — B/
Therefore, if the connection V satisfies Assumption I and II of Subsec-

tion 6.5, then so does the connection V’. Our choice of the angle 6 in
Subsection 8.5 guarantees that +260 are Agmon angles for the operator

T V)= (TV)?)"

In particular, the number £(V’, g™, 6) can be defined by formula (7.79),
using the same angle 6 and replacing everywhere V by V.

Lemma 8.7. Using the notation introduced above, we have
(8.105) &V, gM,0)=¢(V,gM,0), mod i,

where Z denotes the complex conjugate of the number z € C.
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Proof. Set
Dy, = ((FV)2+ (VF)2> s OF(M,E) — QF(M, E).
Then, by (8.104),
D} = ((rv’)2+(v'r)2) . OF(M,E) — Q"(M, E).

With 6 given as in Subsection 8.5, we have

(8.106) LDetoy Dj = LDet_og Dy,.

Note that D, has a positive-definite leading symbol. Hence, at most
finitely many eigenvalues of Dy, lie in the solid angle L{_4 26125 (Which
contains the negative real axis).® Hence, by (3.26),

(8.107) LDet_99 D), = LDetog Dy, mod 27i.

Using (8.106) and (8.107), we obtain now from (8.102), that

q.e.d.

Lemma 8.8. For every V € Flat'(M,gM) we have TRS(V') =
TRS(V).

Proof. From (8.103), we obtain

VV=TVIV=D(VIVD)T =TV (V)T;
VV*=VIVIT=0(I'VIV)T=T(V)*V'T.

8By our assumptions on 6, all these eigenvalues must lie on the real axis. But we
don’t use this fact here.
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From (8.96) we obtain
(8.108)

d
— LS (c g Lbet (VY + YV g ary)
=
1 d
= 3 > (=1 k LDet o (T (V/(V')" + (V)'V') Dl 1))
k=
d
1
= 5 S DM R Lot (V9" + (V)Y |qucsqur )
k=

d
= DR k) LDet (V) 4 (V) ) guarn )

d
Z (—1)* LDet_, ((V/(VI)* +(V)'V) ‘Qk(M,E))

k=0
d
k *
=3 (-1)* LDet_, ((V') v/‘ﬂ’j_(M,E)>
k=0
d
+3 (~1)* LDet (V'(V')*}QE(M,E» =0
k=0
Hence, from (8.108), we obtain
log TH5(V)

d
Z (=) k LDet_, ((V/(V/)* +(V)V') ’Qk(M7E)>
k=0

og TR (V).

N =

—_

q.e.d.

8.9. Proof of Theorem 8.2.In the case V is an acyclic Hermitian
connection the statement has been already proved, cf. (8.98).

In the general case, let
~ vV 0
(i v)

denote the flat connection on F @ E obtained as a direct sum of the
connections V and V’. From Lemmas 8.7 and 8.8 we obtain

TRS(V) = TRS(V) . TRS(V') = (TRS(V))Z’
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and

(8.109) £(V,g™,0) =&(V,g™M,0) + (V' gM,0) =2 Re £(V, g™, 0)
modulo 7¢. Hence, to prove Theorem 8.2, it is enough to show that
(8.110) E(V,gM,0) =log TRS(V)  mod mi.

We will prove (8.109) by a deformation argument. Fort € [—7/2,7/2]
introduce the rotation U; on

Q0 :=Q*(M,E) @ Q*(M,E)

cost — sint
Ur = (sint cost)'
Note that U, = U_y.
Consider two one-parameter families of operators

B(t),Bt): Q* — Q°,  te|-n/2,7/2]

given by

defined by
B(t):=TU, VU '+VI; B(t):=LV+UVU 'T.

Note that B(0) = B(0) = B(V,gM). If the Hermitian metric AZ is
invariant with respect to V then V' = V and

(8.111) B(t) = B(t) = B(V,g™) = B(V,¢™) @ B(V', g™)

for all t € [—7/2,7/2]. It follows then from Assumption II of Subsec-
tion 6.5 that the operator (8.111) is invertible.

Suppose now that V is sufficiently close to an acyclic Hermitian
connection Vg in the C-topology, cf. Subsection 6.7, and that the
metric h¥ is chosen to be invariant with respect to the connection
Vo. Then V' is also close to V. Since both B(t) — B(V,¢M) and
B(t)—B(V, gM) are 0’th order differential operators, it follows that they
are small in the standard operator norm (cf. proof of Proposition 6.8)
for all t € [—7/2,7/2]. Therefore the operators B(t), B(t) are invertible
for all t € [-7/2,7/2].

We denote by V' C Flat(E) the set of connections, which satisfy
the following property: there exists a Hermitian metric h¥ such that
the operators B(t) and B(t) are invertible for all t € [—m/2,7/2].2
Then V is open in Flat(E). Moreover, since for every V € V the
operator B(0) = B(V,¢M) & B(V’,gM) is invertible, it follows that
V C Flat'(E, gM).

The above discussion shows that V' contains the set of acyclic Her-
mitian connections. In the rest of the proNOf we assume that V € V and
that h¥ is chosen so that the operators B(t) and B(t) are invertible.

9Recall that B(t) and B(t) depend on h* since the dual connection V' does.
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Set
Q8 (t) :==Ker ;VU; ' T ={TU; (&) :weKerV, v € Ker V' } ;
Q* =KerV =KerV@KerV.
Note that 2 is independent of ¢.

Since the range of TU; VU, ! is contained in Q¢ % (t) whereas the range
of VT is contained in Q° , it follows from the surjectivity of B(¢) that

(8.112) QL)+ Q0 =08, te[-m/2,m/2.
Similarly, since, by definition, the kernel of U; VU, 'T is equal to Q2 (t)

whereas the kernel of 'V is equal to Q°, it follows from injectivity of
B( ) that

(8.113) Q% (t) Q> = {0}, te[-n/2,m/2].
Combining (8.112) and (8.113) we obtain
(8.114) =)o,  te|-m/2,7/2.

For each t € [—7/2,m/2] define £(t) € C/miZ by the formula
(8.115)

d
> (~DFLDety (LU VU TV g1 ) mod i,
0

N |

k=
where 6 € L(_20,2x120) is any Agmon angle for the operators 10
—1
TU,VU; FV\QW, k=0,...,N.

Since

. . IVIV| 0
—1 . ok (M,E)
+ ?

for t = 0, (8.115) coincides with (7.79) with V replaced by V.
Similarly, since

V*V‘Qk M,E 0
FUW/QVU Fv‘ﬂk (n/2) = < 0+( ) \vAlvA

’Qﬁ(M,E)
for t = w/2 the right hand side of (8.115) coincides with (8.97). Sum-

marizing, we conclude that

(8.116)  £(0) = £&(V,gM,0), £(n/2) =log TRS(V),  mod mi.

10Recall from Subsection 3.10 that a different choice of 6’ € L(_26,2r+26) changes

the number LDety: (FUtVU 11"V’Q,C ) by a multiple of 27i.

(®)
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We will finish the proof of (8.110) (and, hence, of Theorem 8.2) by
showing that
d
A1 — &(t) =
(8.117) & =0

This is done by applying the arguments of the standard proof of the
independence of the Ray-Singer torsion on the Hermitian metric. First
we need the following notation (cf., for example, Section 2 of [12]): Sup-
pose f(s) is a function of a complex parameter s which is meromorphic
near s = 0. We call the zero order term in the Laurent expansion of f
near s = 0 the finite part of f at 0 and denote it by F.p.s—o f(s). Then,
cf. Lemma 3.7 of [11] or formula (1.13) of [28],

d L
(8.118) = LDety (DU VU TV )
— F.paoTr [(i(rm@w%?)) (rovo;'ry) & \Qk )]
One has

% (T U vU7lr @) =U,U; ! (T U,VU;'T @) ‘Qi(t)
—(r UNU;lr)\QﬁﬂUtUt—lWQi(ﬂ

By Lemma 7.4, for Res > d/2,

(8.119)

Tr [(r UNU;'T ) | g GU; WQ{W (FUNUt FV) N \Qk )]

=Tr 0,0 Vg  (ruvurTy , \Qk (PTVU'T) g |
=T [GU7 (VI UV U7 | gon),, |
Hence, (8.118) implies that
(8.120) di LDety (DU VU; T Vg, )
= Fopomo T [O07 (TUNUTT Ve )
- Ut (VT UﬁU;lr\wl); |
Consider the operator

(8.121) At):=TU, VU 'TV |Qk ) FVTUVUTT g

It is a second order elliptic differential operator on Q¥ (M, E® E), whose
leading symbol is equal to the leading symbol of the Laplacian V* V +
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VV*. In other words, A.(t) is a generalized Laplacian in the sense of
[4]'i“he decomposition QF(M,E® E) = Q% (t) @ QF implies that
Bt = (TUN UV g ) "+ (VDU UT g )
Hence, from (8.120), we obtain

1 d

d k : —1 X —
(8.122) ) =3 kz_o(—n F.p.s_o Tr [UtUt Ak(t)e,ﬂ.
By a slight generalization of a result of Seeley [39], which is discussed
in [47], the right hand side of (8.122) is given by a local formula, i.e.,
by an integral

(8.123) /M ¢

of a differential form ¢, whose value at a point x € M depends only
on the full symbol of A and a finite number of its derivatives at the
point xz. Moreover, since the dimension of the manifold M is odd, the
differential form ¢ vanishes identically. q.e.d.

9. Dependence of the Graded Determinant on the
Riemannian Metric

As already mentioned, one can consider the graded determinant
Detgy g(Beven), defined in (6.76), as a refinement of the Ray-Singer tor-
sion. However, in general, Detng(Beven) depends on the choice of the
Riemannian metric g™ on M. In this section we investigate this depen-
dence. In particular, we show that, if dimM = 2r — 1 = 1 (mod 4),
then Detgy g(Beven) is independent of gM. Later we will use the results
of this section to construct a refinement of the Ray-Singer torsion which
is a diffeomorphism invariant of the pair (E,V) (i.e., is independent of
the metric).

9.1. The n-invariant of the trivial bundle. Let

Btrivial - Btrivial(gM) : Qeven(M) — Qe (M)
denote the even part of the odd signature operator corresponding to
the trivial line bundle over M endowed with the trivial connection. We
denote by

1
Ttrivial = ntrivial(gM) = 5 77(0> Btrivial(gM))

the n-invariant of Byivial(¢™). Since the operator Biivial is self-adjoint,
Nirivial 1S & real number, cf. Theorem A.2. Also, if dim M = 1(mod4),
then nivial = 0, cf. [2].

M)
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Definition 9.2. A Riemannian metric ¢ on M is called admissible
for a given acyclic connection V if the odd signature operator B =
B(V, gM) satisfies Assumption II of Subsection 6.5. We denote the set
of admissible metrics by M(V).

We are now ready to formulate the main result of this section.

Theorem 9.3. Let E be a flat vector bundle over a closed oriented
odd-dimensional manifold M and let V be the flat connection on E. For
each admissible Riemannian metric g™ € M(V) consider the number

(9.124)  Dety g (Beven(V,gM)) . ¢im (rank B) 1 (Busivia(g™)) e C\{0},

where 6 € (—m/2,0) is an Agmon angle for Beven(V,g™). Then the
number (9.124) is independent of g™ € M(V) and 6 € (—m/2,0).

In particular, if dim M = 1(mod4), then n(Biivial(g™)) = 0, cf. [2],
and, hence, Detg; g (Beven(v,gM)) is independent of g™.

The rest of this section is dedicated to the proof of Theorem 9.3.

9.4. Dependence of the n-invariant on the metric. Recall from
Theorem 7.2 that, for g™ € M(V),

(9.125) LDetgy g (Beven(V,gM)) =&V, g™, 0) —irn(V, g™),

where 6 € (—7/2,0) is an Agmon angle for B such that there are no
eigenvalues of the operator B in the solid angles L(_ /3 9) and Lz /2 947]-

The following proposition is proven on page 52 of [21]. See also
Theorem 2.4 of [3] where the result in the case of a unitary connection
is established.

Proposition 9.5. Modulo Z, the difference
U(V,!]M) - (rank E) ntrivial(gM)

is independent of the Riemannian metric g™ . In particular, the imagi-
nary part Imn(V, g™) of n(V,g™) is independent of g™ .

To prove Theorem 9.3 we need to study the dependence of ¢ =
&(V,gM,6) on g

9.6. Dependence of £ on the Riemannian metric. For (9.125) to
hold we need to assume that there are no eigenvalues of the operator
B in the solid angles L(_r/29 and L/ 9. However, for the study
of the dependence of ¢ on g™ it will be convenient for us to work with
£(V,gM,0) with the only assumption that both § € (—,0) and 6 + 7
are Agmon angles for Beyen. If 01 and 65 are two such angles then, by
(3.26) and (7.79),

(9.126) E(V,gM,0,) = £(V, g™, 0) mod 7.
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Proposition 9.7. Suppose gé”, gt € M(V) are admissible Rie-
mannian metrics on M and let 6y,0, € (—7/2,0) be such that, for
j=0,1, both 0; and 0; + ™ are Agmon angles for B(V,g}w). Then

(9.127) EV,gM1.0) =€V, g),00)  mod mi.

Remark 9.8. If, in addition, V is Hermitian and h¥ is a V-invariant
Hermitian metric on E, then, from (6.64) we obtain (I'V)? = V* V.
By (8.97), £(t,6p) coincides, in this case, with the Ray-Singer torsion.
Hence, in the case of a Hermitian connection, the statement of the
proposition reduces to the classical result about the independence of
the Ray-Singer torsion on the Riemannian metric.

For the proof of the proposition we first consider the case when g}?
and g belong to the same path-connected component of the set M(V)
of admissible metrics.

Suppose that g € M(V), t € R, is a smooth family of admissible
Riemannian metrics on M and let B, = B(V, gM) be the corresponding
odd signature operator. To simplify the notation set

5(15,«9) = g(vmgzg\/[? 6)

Fix tp € R and let 6y € (—7/2,0) be an Agmon angle for By, such
that there are no eigenvalues of By, in the solid angles L(_; /24, and
L(x/2,60+x)- Choose > 0 so that for every ¢ € (to—d,t9+0) both 6y and
0o + m are Agmon angles of B;. For t # tg it might happen that there
are eigenvalues of By in L(_r /94,y and/or Lz 2 g, 4. Hence, (9.125) is
not necessarily true, in general, for t # to. However, from (9.126), we
conclude that for every t € (tg — d,%p + J) and 6 € (—7/2,0), such that
0 and 0 + w are Agmon angles for By,

(9.128) £(t,0) = &(t,6p) mod 7.

Lemma 9.9. Under the above assumptions, £(t,0y) is independent
of t € (to—d,to + 0).

Proof. Let I'y denote the chirality operator corresponding to the met-
ric gM. Then, cf. Lemma 3.7 of [11] or formula (1.13) of [28],

d
(9.129) p LDetog, ((Ftv)zbi(M,E))
d —s—1
=F.p.goTr {(@ (T:V)?) ((FtV)2)260 }Qi(M,E)]’

where we use the notation F. p.c—¢ introduced in Subsection 8.9.
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We denote by I'; the derivative of T'; with respect to the parameter
t. Then

©9.130) L,

=1, (I
dt tt(t

2
V) ‘Qﬁ(M,E)
+ (Ftv)|Qi*k*1(M,E)FtFt(Ftv)’ﬂi(M,E)’

2
V) ‘Qﬁ(M,E)

where we used that I'? = 1. Using (9.130) and the equality Tr AB =
Tr BA, we obtain from (9.129) that

d
(9.131) = LDetay, ((Ft V)ngi(ME))
= F.pco Tr | 40 (I

v)? |Q§_(M,E))2_050
+ 1, Ty (T V)Q‘kafl(M,E))z_esJ :

Hence,

d

d

(9.132) — > (=1)" LDetay, ((FtV)2’Qg(M,E)>
k=0

~+

d
=2 (~1)F F.pocoTr {Ftr‘t (T V)Q‘Qi(M,E));;o]'
k=0
Similarly,

4
d

R

(9.133) (=1)*"! LDetyg, ((vrt)2‘Q’j(M,E))

e
Il

0

d
=23 (-)F ! Fopeo T [tht ((vrt)%,i(M’E));;O].
k=0

From (7.79), we see that (9.132) is equal to 2%5(16,90). By (7.93), the
left hand sides of (9.132) and (9.133) are equal. Hence (9.133) is also
equal to 2%5(1&, 6o). We conclude that

(9.134)

d . s
T §(t,00) =Y (=1)* F.p.=o Tr [Ftrt (T V)2}QI;(M,E))20J

M= M-

(—1)* L F. oo Tt [rtft ( (Vrt)Zlng(M,E));eﬂ-

il
=)
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Hence,

(9.135) 2 % £(t, 0)

d
=3 (-1)F Fopacp Tr [rtrt (T V)|t a2y )2
k=0

—T,Iy ((VFt)Q‘Q’z(M,E));f)ﬂ .

Since T'? = 1, we obtain L0, + 0,0 = jtF2 = 0. Hence, (9.135) can
be rewritten as
d d
(9.136) E(t,00) = (~1)F Fopag Tr [Ptrt NYOAR
k=0

where A (t) = (TyV)2 + (VIy)? (k=0,...,d). By a slight gencralization
of a result of Seeley [39], which is discussed in [47], the right hand side
of (9.136) is given by a local formula, i.e., by the integral (8.123) of
a differential form ¢;, whose value at any point © € M depends only
on the values of the components of the metric tensor g/ and a finite
number of their derivatives at z. Moreover, since the dimension of the
manifold M is odd, the differential form ¢; vanishes identically. Hence,
4£(t,00) =0 for all t € (tg — 6,1 + 0). q.e.d.

9.10. Proof of Proposition 9.7. Set
g =0 -tg +tgl,  telo,1],

and let T'; denote the chirality operator corresponding to the metric

M The operators I'y depend real analytically on ¢ and we can extend
their definition to all ¢ in some connected open connected neighborhood
U C C of [0,1]. Hence, the operator

Bt ::I‘tV—i-VFt

is well defined for all t € U and is holomorphic on U in the sense of
Subsection 5.4. If we choose the neighborhood U to be small enough
then B? € Bl (—57/4,—37/4)(M, E) for all t € U. By Corollary 5.10 the
set

Y= {t € U : By is not invertible}

is a complex analytic subset of U. Thus U\X is connected. Since the
metrics gé\/[ and g{‘/f are admissible, it follows that 0 and 1 are in U\X.
For 6 € (—m/2,0) such that both 6 and 6 4+ m are Agmon angles for By,
set

d
1
(9.137) £(t,0) := 3 E (—1)k+1 k LDetoy [BtZ‘Qk(ME)]'
k=0
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If t € [0,1] is such that the metric g/ is admissible, then £(¢,6) =
§(V, i, 0).

By Theorem 5.7.a, the function ¢ — &(t,0) is holomorphic on the
open set

Up:={tceU\Z: 6, 0+ are Agmon angles for B, }.

By (9.128), if t € Uy, N Uy, then &(t,01) = &(t,02) modulo 7Z. Hence,
we can define a multivalued analytic function on U\X by the formula

t — g(taet)+7TZa

where 0; € (—7/2,0) is any angle such that ¢ € Up,.

Since the metric gé\/f is admissible there exists € > 0 such that for
all real ¢ € [0,¢] the metric g/ is admissible and 6y and 6y + 7 are
Agmon angles for B;. Hence, by Lemma 9.9, the holomorphic function
&(t,6p) is constant on [0,e]. Thus, since the set U\X is connected, our

multivalued analytic function ¢ — (¢, 0) is constant on U\X. q.e.d.

9.11. Proof of Theorem 9.3. The fact that (9.124) is independent of
6 follows immediately from (3.26). Let us prove that it is independent
of g™ € M(V). Suppose g)f and g} are admissible metrics. We
shall use the notation introduced in Subsection 9.10. For ¢ € U\,
fix 6, € (—m/2,0) such that there are no eigenvalues of B; in the solid
angles L(_r/2,] and Lz /26, +x). As t is not necessarily real, in general,
By is not an odd signature operator associated to a Riemannian metric.
Hence, to calculate LDet,; g, (B;) we can not use Theorem 7.2. However,
a verbatim repetition of the proof of this theorem shows that

LDetgy g, (Bt) = (¢, 6;) — imn(By),

where £(t, 6;) is defined by (9.137). It follows now from Propositions 9.5
and 9.7 that

(9138) Detgr,@o (BEVen(v7 g(])\/[)) : eiﬂ (rank £) 77(B“"i"i“l(gM))

= :t Detgr,ﬁl (-Beven(v7 g{\/[)) . eiﬂ- (rankE) ,'7(Btrivial(!]]\/1))7

where 0; (j =0,1) is an Agmon angle for Beyen(V, gjw)
Since the function

t— Detgrﬂt (Beven(v’ gy) ) . eiﬂ— (rankE) n(Btrivial(gNI))

(which is independent of 6;) is continuous on the connected set U\X,
the sign on the right hand side of (9.138) must be positive. The theorem
is proven. q.e.d.
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10. Refined Analytic Torsion
Theorem 9.3 justifies the following

Definition 10.1. Let M be a closed oriented manifold of odd dimen-
sion dim M = 2r — 1. Suppose that there exists a Riemannian metric
g™ such that V € Flat' (M, gM). The refined analytic torsion T(V) is
defined by the formula

(10.139)  T(V) =T(M,E,V)
L= Detgr,@(Beven) . eiﬂ- (rank E) 7/]trivial(g]u) E C\{O}’

where § € (—m,0) is an Agmon angle for the operator Beyen =
Beven(V, QM)-

In particular, if dim M = 1(mod 4), then ngyivial = 0, cf. [2] and T'(V)
is equal to the graded determinant of the odd signature operator Beyen.

Note that T'(V) # 0 and does not depend on the choice of 6 € (—,0),
cf. (3.27). Further, by Corollary 8.3, if V is a Hermitian connection then

(10.140) IT(V)| = TRS(V).
Substituting (9.125) into (10.139) we obtain

(10.141) T(V) = ¢ . ¢~ (1= (ank P)iviar) |

The expression 7 — (rank E)ntyivial is known as the p-invariant of V and
is independent of the metric ¢ modulo Z.

10.2. Example. We now calculate the refined analytic torsion in the
simplest possible example, when M = R/27Z is the circle and E =
M x C is the trivial line bundle over M. Fix a number a € C\Z and
define the connection V, on E by the formula

Vo: f — df +iafdz, fe (M, E)=0%M),

where = € [0,27) is the coordinate on M. According to the formula
(6.61), the odd signature operator is

Beven=Bo: f — —ixV.f =—if +af.

As a € C\Z, the operator By : Q°(M) — Q°(M) is invertible and its
eigenvalues are given by a + n, n € Z. Since Rea € R\Z, the angle
0 = —m/2 is an Agmon angle for By.

The refined analytic torsion T'(V,) = Dety(Bp) can be easily calcu-
lated using, for example, the general formula for determinants of elliptic
operators on the circle, obtained in [10] (see also [48] for an alterna-
tive way of calculation). As dim M = 1(mod 4) we obtain the following
formula for the refined analytic torsion

T(Vq) =1 — €™ = 2 (sinma) e’z 1),
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Note that if a € R\Z then V, is a Hermitian connection. We conclude
that, even for a Hermitian connection, the refined analytic torsion is
a complex number, which, depending on the value of a, can have an
arbitrary phase, aside from 4+ /2.

11. An Alternative Definition of the Refined Analytic Torsion

The correction term exp(im(rank E)nrivial) in Definition 10.1 is hard
to compute. In this section we suggest an alternative definition of the
refined analytic torsion, where we replace niivial With an expression,
which depends on some choices, but is much easier to compute.

11.1. Dependence of 7,iviai on the metric. First, we describe the
dependence of 7ivial(¢™) on the Riemannian metric g,

11.1.1. Case when M bounds an oriented manifold N’. Suppose,
first, that M is the oriented boundary of a smooth compact oriented
manifold N’. Let sign(N’) denote the signature of N’, cf. [2]. This is
an integer defined in purely cohomological terms. In particular, it is
independent of the metric. The signature theorem for manifolds with
boundary (cf. Theorem 4.14 of [2] and Theorem 2.2 of [3]) states that

(11.142) sign(N’) = /N/ L(p) — n(Btrivial )

where L(p) := Ly/(p) is the Hirzebruch L-polynomial in the Pontrjagin
forms of a Riemannian metric on N’ which is a product near M. It
follows from (11.142) that [y, L(p) is independent of the choice of the
Riemannian metric on N’ among those that near N’ are equal to the
product of the given metric g™ on M and a metric on the interval. Note
that if dim M = 1 (mod 4) then L(p) does not have a term of degree
dim N’ and, hence, [, L(p) = 0.

Combining (11.142) with the metric independence of sign(/N’) and
Proposition 9.5, we conclude that, modulo Z,

(11.143) n — (rank E) / L(p)

!

is independent of the metric ¢™. Since for different choices of N’, the
integral [y, L(p) differs by an integer, the expression (11.143), modulo
Z, is also independent of N'.

11.1.2. General case (M does not necessarily bound an ori-
ented manifold). In general, there might be no smooth oriented man-
ifold whose oriented boundary is diffeomorphic to M. However, since
dim M is odd, there exists an oriented manifold N whose oriented
boundary is the disjoint union of two copies of M (with the same orien-
tation), cf. [44], [38, Th. IV.6.5]. Then the same arguments as above
show that, modulo Z,

(11.144) n—rankE/ L(p)
2 N
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is metric independent. In particular, if dim M = 1 (mod 4), then the
reduction of  modulo Z is metric independent.

Remark 11.2. Note again that replacing n by (11.144) removes the
dependence on the metric but creates a new dependence on the choice of
the manifold N. For different choices of N the integrals [, L(p) might
differ by an integer.

11.3. Alternative definition of the refined analytic torsion. Let
M be a closed oriented manifold of dimension dim M = 2r — 1. As-
sume that there exists a Riemannian metric g™ on M such that V €
Flat'(M,gM). Let § € (—m,0) be an Agmon angle for Beyen =
Beven(V, gM ). Choose a smooth compact oriented manifold N whose
oriented boundary is diffeomorphic to two disjoint copies of M. Then
one can define a version of the refined analytic torsion

(11.145) T'(V)=T'(M,E,V,N)

. rank F
L= Detgr,G(Beven) + €xp (”T 9 / L(p)),
N

where L(p) = Ly(p) is the Hirzebruch L-polynomial in the Pontrjagin
forms of a Riemannian metric on N which is a product near ON.

Remark 11.4. It follows from the above discussion and Theorem 9.3
that 77(V) is independent of the angle 6 € (—m,0) and of the metric.
But it does depend on the choice of the manifold N. However, from
Proposition 9.5, we conclude that 7"(V) is independent of the choice
of N up to multiplication by i*™% ¥ (k ¢ 7). If rank E is even then
T'(V) is well defined up to a sign, and if rank F is divisible by 4, then
T'(V) is a well defined complex number.

(Here a quantity being well defined means that it depends only on
M, E and V.)

Remark 11.5. If M is the oriented boundary of a smooth compact
oriented manifold N’, one can define still another version of the refined
analytic torsion:

(11.146)  T#(V)=T#(M,E,V,N’)

: = Detgr g(Beven) - €xp <i7r -rank L(p)).

N/
Note that the indeterminacy in the definition of T# (V) is smaller than
the indeterminacy in the definition of T#(V), cf. Remark 11.4, as
T#(V) is well defined up to a sign. If rank E is even, then 7% (V)
is a well defined complex number.
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12. Comparison Between the Refined Analytic and the
Ray-Singer Torsions

Assume that M is a closed oriented odd-dimensional manifold and g™
is a Riemannian metric on M. By Theorem 8.2, there exists a C%-open
neighborhood U C Flat(E) of the set of acyclic Hermitian connections
on FE, such that, for every V € U,

12.147 Det,y g(Boven) | = TRS (V) - 7 m(V:6™)
g b}

Combining this equality with (7.80) and the definition of the refined
analytic torsion we obtain

Theorem 12.1. Assume that M is a closed oriented odd-dimensional
manifold and g™ is a Riemannian metric on M. Then there exists
a C-open neighborhood U C Flat(E) of the set of acyclic Hermitian
connections on E, such that U C Flat'(E, gM) and for all V € U

(V)] M
(12.148) log TRS(v) =7 Im n(V,g").
In this section we present a local expression for the right hand side
of (12.148).

12.2. Dependence of the n-invariant on the connection. Suppose
that ¢t — Vy, t € [0,1], is a smooth path of connections in Flat'(E, gM).
We shall need the following result of Gilkey [21, Th. 3.7]'! (see also
Theorem 7.6 of [18]'2):

Theorem 12.3. Let 7(Vy,g™) € C/Z denote the reduction of
n(Ve, g™) modulo Z. Then 7(Vy,g™) depends smoothly on t, cf. [21,
§1].

1. If dim M = 3 (mod 4) then 7(Vy, g™) is independent of t € [0, 1].

2. Suppose dim M =1 (mod 4). Set

(12.149) Yy = %vt € Q'(M,End E).
Then
d i
12.1 —7 My— — | L T
(12150)  GuVig™) =5 [ L) AT

where L(p) = L (p) is the Hirzebruch L-polynomial in the Pon-
trjagin forms of gM.

" Note that Gilkey considered the n-invariant of the full odd signature operator
B = Beven®Boda. Hence, our n(V, gM) is equal to one half of the invariant considered
in [21].

12Note, however, that in the formula of Theorem 7.6 of [18] the sign has to be
replaced by the opposite one.
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12.4. Cohomology class Argy. Following Farber, [17], we denote by
Argg the unique cohomology class Argy € H'(M,C/Z) such that for
every closed curve v € M we have

(12.151) det (Mony (7)) = exp (2mi(Argy, [])),

where Mony () denotes the monodromy of the flat connection V along
the curve v and (-,-) denotes the natural pairing

HY(M,C/Z) x H(M,Z) — C/Z.

Remark 12.5. The notation Argy is motivated by the case where
V is a Hermitian connection. In this case, Mony(v) is unitary and
Argy € HY(M,R/Z). Therefore, the expression 27 (Argy, [7]) is equal
to the phase of the complex number det(Mony(7)).

Lemma 12.6. Assume that V; (t € [0,1]) is a smooth path of con-
nections. Then, using the notation introduced in Theorem 12.3.2, we
have

d
(12.152) 2mi . Argy, = —[Try] € HY(M,C),

where [Tr wt] denotes the cohomology class of the closed differential
form Tr 4.

Proof. Let S* be the standard circle and let = € [0,27) be the coor-
dinate on S'. Let v : S' — M be a closed curve. Fix a trivialization
of the bundle v*E — S*. Let A;(x) denote the (periodically extended
to R) connection form on y*E induced by V;. Then, for each t € [0, 1],
the monodromy Mony, (y) along ~ is given by the matrix ®;(27) where
®;(x) is the matrix function solving the following initial value problem

)
(12.153) 55 2(@) + (@) () =0, zeR;

$,(0) =1d.

Let ®;(z) and A;(x) denote the derivative with respect to ¢ of the
matrices ®;(x) and Ai(z) respectively.
We are interested in computing

d d
(12.154) 2mi £< Argg,. 7)) = p log det ®;(27)

d
== Trlog ®:(27)

=Tr (I)t(Qﬂ') q)t(QW)_l.

Note that, though log is a multivalued function, the derivatives

% logdet ®4(27) and % Trlog ®.(27)

are unambiguously defined complex numbers.
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From (12.153), we obtain
0

(12.155) o Dy (x) + Ap(z) @4 (z) + Ap(z) D4(z) = 0.

Hence,

(12.156) ( % Dy () ) Dy(z) 7t = —Ay(z) — Ag(z) Dp() By(z)

On the other side,

(12.157)

Tr aax (@t(x) cpt(x)*l)
)

1 ( a% () ) Bulw) ™ = T o) o) (o D)) Bi() !

x
0 . .
~Tr ( 2 @t(x))@(:ﬁ)—l ETr Ay(x) By(x) By(z) 7L,
Ox
where in the last equality we used (12.153).
Combining (12.157) with (12.156) and using (12.149) we get
(12.158) ;)x Tr &y(2) Op(x) ! = — Tr Ay(z) = — Tr v Yy (z).

Here v*1; denotes the pull-back of the differential form ; under the
map 7y : ST — M.
From (12.154) and (12.158) we obtain

d . . d
pn 2mi(Argy,, [7]) = T <log det ®,(27) — log det <I>t(0)>

2m
= — / Tr As(x)dx
0
= _< [TI‘ ¢t]a [7] >

From Lemma 12.6 and (12.150) we obtain

d

12.159
( ) o7l

Ve, g™ = ([L Trwt][ 1)

_< d Argvt7[M]>7

where U denotes the cup-product in cohomology.

Assume that V; (¢ € [0,1]) is a smooth path of acyclic connections
and that the connection Vj is Hermitian. By Remark 12.5, Im Argy, =
0 and, thus, (12.152) leads to

(12.160) [/t Tr (Rezpt)dt} — 27 Im Argy, € H'(M,R).
0
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12.7. Comparison with the Ray-Singer torsion. Let
U c Flat'(E, gM)

be as in Theorem 12.1. Denote by U’ C U the set of flat connections sat-
isfying the following condition: for every V € U’ there exists a smooth
path t — V, € U, t € [0, 1], of connections such that V is Hermitian,
and Vi = V. Then U’ C Flat/(E, g™) is an open neighborhood of the
set of acyclic Hermitian connections.

Theorem 12.8. Let M be a closed oriented odd-dimensional man-
ifold and let g™ be a Riemannian metric on M. Suppose V € U’.
Then, with L(p) = Lyr(p) denoting the Hirzebruch L-polynomial in the
Pontrjagin forms of a Riemannian metric on M,

(12.161) log Tul;g(vé) =7 ([L(p)] UIm Argy, [M] ).
In the case dim M = 3 (mod 4)
(12.162) IT(V)| = TRS(V).

Remark 12.9.

1. The advantage of Theorem 12.8 over Theorem 12.1 is that the
right hand side of (12.161) is given by a local formula. Hence, it
might be possible to effectively compute it in some examples.

2. When dim M = 3 (mod 4) the right hand side of (12.161) vanishes
since L(p) has no component of degree dim M — 1 and, hence,

[L(p)] U Im Argy
does not have a component of degree dim M.
Proof. Let Vy € U’ (0 <t < 1) be a smooth path of connections such
that Vg is a Hermitian connection and V; = V. Then, by Theorem 12.1,

T
(12.163) log '.Jﬂg(vé)yj) =7 Im n(V, g™M), for every t e 0,1].

As the number 7(V;, M) is defined modulo integers, its imaginary
part is a well defined real number and

Im 7(Vy, ¢™) = Im n(Vy, g™).

Since the connection Vg is Hermitian, Imn(Vo, g™) = 0. Hence, from
Theorem 12.3.1 we conclude that Im 7(V,gM) = 0 if dimM = 3
(mod 4). From Theorem 12.3.2 and (12.160) we see that

1 1

Im n(V,¢") = — / (/ L(p) A Tr(Reqﬂt)) dt
2 0 M
= ([L(p)] UIm Argy, [M]),

if dim M =1 (mod 4). Theorem 12.8 follows now from (12.163). q.e.d.
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13. Graded Determinant as a Holomorphic Function of a
Representation of 71 (M)

In this section we show, first, that the graded determinant

Detgy g(Beven(V, g™)) of the odd signature operator is, in an appropriate
sense, a holomorphic function of the connection V. Then we change the
point of view and consider the graded determinant as a function of the
representation of the fundamental group 71 (M) of M. More precisely,
each representation a of m (M) induces a flat vector bundle (E,, V,)
over M and we denote by B, = B(V, g™) the corresponding odd signa-
ture operator. The space Rep(m1(M),C") of all complex n-dimensional
representations of w1 (M) has a natural structure of a complex algebraic
variety. We show that Detg; g(Baeven) is a well defined holomorphic
function on an open subset of this variety. Throughout the section we
assume that the dimension of M is odd.
13.1. Graded determinant as a holomorphic function. Let M
be a closed oriented manifold of odd dimension d = 2r — 1 and let
E — M be a flat vector bundle over M. Every (not necessarily flat)
connection on E can be viewed as a first order differential operator
on Q°(M,E). Thus the space C(F) of all connections on E is an
affine subspace of the space Diff| (M, A*T*M ® E) of first order differ-
ential operators on the complex vector bundle A*T*M ® E — M and,
hence, inherits from Diff; (M, A*T*M ® E) the structure of a Fréchet
space. See Subsection 5.3 for the definition of the Fréchet topology on
Diff; (M, A*T*M ® E).

Fix a Riemannian metric ¢ on M. Recall that we denote by
Flat'(E, g™) the set of flat connections V on E such that the pair
(V,gM) satisfies Assumption I and II of Subsection 6.5. By (3.27),
the graded determinant Det,; g (Beven(v, gM )) is independent of the
choice of the Agmon angle # € (—m,0). Thus one obtains a function

Detg, : Flat'(E,¢™) — C\{0},

(13.164)
Detgr 'V — Detgr,e (Beven(vagM) )?

where 6 is any Agmon angle of B(V, g™) in the interval (—,0). Recall
that the notion of a holomorphic curve has been introduced in Subsec-
tion 5.1.

Proposition 13.2. Suppose E is a vector bundle over a closed ori-
ented odd-dimensional Riemannian manifold (M, gM). Let O C C be
an open set and let v : O — Flat/(E, g™M) be a holomorphic curve in
Flat'(E, gM). Then the function A — Detgy (Beven(v(A), g™)) is holo-
morphic on O.

In fact, we will need a slightly more general statement. Thus we will,
first, generalize Proposition 13.2 and, then, prove this more general
version.
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13.3. Extension of the graded determinant to non-flat con-

nections. Recall from Theorem 7.2 that, for every connection V €
Flat'(E, g"),

(13.165)  Detyp (Beven(V,g™)) = S(V9"0) . emimi(V.a™),

where 0 € (—7/2,0) is any an Agmon angle for B(V,¢™) such that
there are no eigenvalues of the operator B(V, g™) in the solid angles
L(—7r/2,6] and L(7r/2,0+7r]'

Let Vo € Flat'(M,gM). Then B(Vy,g") is invertible. Formula
(6.61) defines the odd signature operator B(V, g™) for an arbitrary, not
necessarily flat, connection. We wish to extend the notion of the graded
determinant to operators B(V, gM ) with V in some open neighborhood
of Flat'(E, gM) in C(E).

The same arguments as in the proof of Proposition 6.8 show that there
exists a C’-neighborhood U of Vg in the space C(E) of all connections
such that B(V, gM) is invertible for all V € U. As in Lemma 6.4, the
leading symbol of B(V, ¢g™) is symmetric and, hence, B(V, g™) admits
an Agmon angle for B(V,¢™) such that there are no eigenvalues of
the operator B(V,g") in the solid angles L_z/2.0) L(zj2,04n- Thus
we can use formula (4.33) to define 7(V,g*) = n(Beven(V,gM)) for
all V € U. Similarly, we can use the expression (8.102) for £ to define
E(V,gM,0) to all V € U. We now use (13.165) as the definition of
Detgr g (Beven(v,gM)) for Vel.

Proposition 13.4. Suppose E is a complex vector bundle over a
closed oriented odd-dimensional Riemannian manifold (M, gM) and let
U C C(E) be the C%-open set defined above. Let O C C be an open
set and let v: O — U be a holomorphic curve in C(E) such that there
exists \g € O with v(\o) € Flat'(E,g™). Then the function A\
Detg, g (Beven(v()\),gM)) s holomorphic in a neighborhood of \g. Here
0 € (—7/2,0) is any Agmon angle for Beyen(7()),g™) such that there
are no eigenvalues of the operator Beyen(Y(N), g™) in the solid angles

L(_z2,00 and Lz /2,04x]-

Proof. Fix an Agmon angle § € (—7/2,0) for Beven(v(Mo),g™) such
that there are no eigenvalues of the operator Beyen(7(Ao),g™) in the
solid angles L(_r /29 and L(r/294~). Then, for all A in a small neigh-
borhood of Ag, @ is also an Agmon angle for Beyen(7()\), g™) and there
are no eigenvalues of Beven(v(\), ™) in the solid angles L(_z /2,69 and
Lz /2,647

By Corollary 5.9, the function

O — C, N s e 2im(v(N).g™M)
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is holomorphic on (. Similarly, Theorem 5.7.a and the expression
(8.102) for ¢ imply that the function A — e20™):9"9 also is holo-
morphic on O. Hence,

F()\) = Detgrﬂ (Beven(’Y(A)mgM) )2 = 625(7()\)01\/[76) ' e_2i7r77(7(/\)7gM)

is a non-vanishing holomorphic function on O.
Since F'(A) is a continuous function of A and F'(\g) # 0, we can find
a neighborhood O’ C O of Ay such that for all A € O’ we have

| FO) = FOo) | £ 5[ FO0)|.

Then Detg, g (Beven()\, gM )) coincides on @’ with one of the two ana-
lytic square roots of F'(\). q.e.d.

Remark 13.5. The above arguments show a very close relationship
between ¢£(V:9":0) and e=1(V.9™)  Each of these numbers by itself
depends on the choice of the Agmon angle §. But their product is a well
defined holomorphic function. This relationship plays a very important
role in the whole paper since it explains many features of the refined
analytic torsion.

13.6. Space of representations of the fundamental group. Let
M be a closed oriented manifold of odd dimension d = 2r — 1, where
r > 1. Denote by M the universal cover of M and by (M) the
fundamental group of M, viewed as the group of deck transformations
of M — M. The set Rep(m(M),C™) of all n-dimensional complex
representations of w1 (M) has a natural structure of a complex algebraic
variety. Indeed, w1 (M) is a finitely presented group, i.e., it is generated

by a finite number of elements ~1,...,vr, which satisfy finitely many
relations. Hence, a representation o € Rep(m(M),C") is given by
2L invertible n x n-matrices (1), ..., a(yr), a(y 1), ..., a(y; ) with

complex coefficients satisfying finitely many polynomial equations. In
other words, a representation « is given by a point of the direct product
Mat,,»r (C)2F of 2L copies of the space Mat,,x, of n x n-matrices with
complex coefficients.

In the sequel, we fix generators ~i,...,7yr of m (M) and view
Rep(my(M),C") as an algebraic subset of Mat,x,(C)?* with the in-
duced topology. For a € Rep(m1(M),C"), we denote by

Ea::MXa(Cn — M

the flat vector bundle induced by «a. Let V, be the flat connection on

E, induced from the trivial connection on M x C". We will also denote
by V, the induced differential

Vo: Q(M,E,) — Q"M E,),
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where Q°(M, E,) denotes the space of smooth differential forms of M
with values in F,.

For each connected component!'® bundles E,, are isomorphic, see e.g.,
[23].

Let Repo(m1(M),C"™) C Rep(m1 (M), C") denote the (possibly empty)
set of all representations o € Rep(mi (M), C") such that the connection
V. is acyclic. A representation o € Rep(m (M), C") is called unitary if
there exists a Hermitian scalar product (-,-) on C" which is preserved
by the matrices a(7) for all v € 71 (M). The scalar product (-,-) induces
a flat Hermitian metric A on the bundle E,. We denote the set of
unitary representations by Rep®(m1 (M), C™). One might think of

Rep“(m(M),C") C Rep(mi(M),C")
as the real locus of the complex algebraic variety Rep (w1 (M), C™). Set
Repg (m1 (M), C") := Rep“(m1(M),C") N Repg(m1 (M), C"™).

13.7. Graded determinant of the odd signature operator as a
function on the space of representations. Fix a Riemannian metric

gM on M. Let
B, := B(Va,gM): Q*(M,E,) — Q*(M,E,)

and let By cven denote the restriction of B, to Q" (M, E,).

Suppose that for some representation oy € Repg(m1 (M), C™) the op-
erator By, is invertible (in other words, we assume that (Vg,,g") sat-
isfies Assumptions I and II of Subsection 6.5). Then there exists an
open neighborhood (in classical topology) V' C Rep(m (M), C") of the
set of acyclic unitary representations such that, for all a € V the pair
(Va,gM) satisfies Assumptions I and II of Subsection 6.5. Thus, for
all o« € V, the graded determinant Detgy g(Ba,even) is defined, where
0 € (—m,0) is an Agmon angle for B,.

Theorem 13.8. Let M be a closed oriented odd-dimensional man-
ifold and let g™ be a Riemannian metric on M. Let O C C be a
connected open set and let v : O — Repo(m1(M),C") be a holomorphic
curve. Assume that for Ao € O the connection V,\,y on E ) — M
satisfies Assumption I1 of Subsection 6.5 (with respect to the given met-
ric g™). Then the function

(13.166) A Detgr g (By(\)even )
is holomorphic in a neighborhood of Ag.

Proof. First, we need to introduce some additional notations. Let
E be a vector bundle over M and let V be a (not necessarily flat)

3Tn this paper we always consider the classical (not the Zariski) topology on the
complex analytic space Rep(m(M),C").
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connection on E. Fix a base point x, € M and let E,, denote the fiber
of E over z,. We will identify E,, with C" and m (M, z,) with 71 (M).

For a closed path ¢ : [0,1] — M with ¢(0) = ¢(1) = x., we denote
by Mony (¢) € End E,, ~ Mat, «x,(C) the monodromy of V along ¢, cf.
(12.153). Note that, if V is flat then Mony (¢) depends only on the class
[¢] of ¢ in 1 (M ). Hence, if V is flat, then the map ¢ — Mony (¢) defines
an element of Rep(m (M), C"), called the monodromy representation of
V.

Suppose now that O C C is a connected open set. Let

v: O — Repo(m(M),C")

be a holomorphic curve. By Proposition 4.5 of [23], all the bundles
E, (), A € O, are isomorphic to each other. In other words, there exists
a vector bundle £ — M and a family of flat connections Vy, A € O,
on F, such that the monodromy representation of V) is isomorphic
to v(A) for all A € O. Moreover, the family V) can be chosen to be
real differentiable, i.e., such that for every A € O there exist wy,ws €

Q!(M, End E) with
(13.167) V,=Va+Re(p—A)-wi +Im(p— ) -wa +o(p— ),

where o(u — \) is understood in the sense of the Fréchet topology on
C(FE) introduced in Subsection 13.1.

By Lemma B.6 there exist a smooth form w € Q!(M,End E) with
Viw = 0 and a family G(u) € End E (u € O) of gauge transformations
such that G(\) = Id and

Vat(p=Nw =G V-G~ +o(u—A).

Note that the connection V) 4 (¢ — A) w is not necessarily flat.
From the definition of the the odd signature operator it then follows
that

(13.168) B (Va+(n—A) w,g™) = G(p)-B(V,, g™)-G() ™ +o(p—N),

where o(p — A) is understood in the sense of the Fréchet topology intro-
duced in Subsection 5.3.

Suppose now that A is close enough to Ag so that the connection V)
satisfies Assumption II of Subsection 6.5 (with respect to the metric
g™). Recall that in Subsection 13.3 we extended the definition of the
graded determinant of Beyen(V,g™) to the case when the connection V
is not necessarily flat. Thus

Detgrﬁ (Beven(v)\ + (H - A) W, gM) )

is defined for all u € C close enough to A.
By Proposition 13.4, the map

p = Detgrg (Beven(vA + (1 — Aw, gM))
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is holomorphic near A. Hence, there exists a number a € C such that

(13.169) Detgr g ( Beven(Va + (1t — A w, g™))
= Detg 0 (Beven(v,\,gM) J4+a-(p—A) +o(pn—N).
On the other side, (13.168) implies that

(13.170) Detgyr g (Beven(Va + (10 — A w, g™))
= Detgro (G(1) - Beven(Vyu g™) - G(1) ™) + 0 = )
= Detgy g (Beven(Vyu, g™)) + 0l — ).

Combining (13.169) with (13.170) we obtain

Detgr,e (Beven(v/ugM))
= Detgr g (Beven(Vasg™) ) +a- (1 —N) +o( — ).

Since the above equality holds for all A close enough to Ag the theorem
is proven. q.e.d.

Corollary 13.9. Let M be a closed oriented odd-dimensional mani-
fold. Let V C Rep(mi(M),C"™) be an open set such that for every a € V
there exists a Riemannian metric g™ such that the connection V, €
Flat'(E,, gM) (cf. Subsection 6.7). Assume, further, that all the points
of V' are regular points of the complex algebraic set Rep(m (M), C").
Then the map

Det: V — C, Det : a +— Det(a) := Detgr g(Ba,even)
is holomorphic. Here 6 € (—m,0) is an Agmon angle for By even-

Proof. By Hartogs’ theorem (cf., for example, [26, Th. 2.2.8]), a func-
tion on a smooth algebraic variety is holomorphic if its restriction to
each holomorphic curve is holomorphic. Hence, the corollary follows
immediately from Theorem 13.8. q.e.d.

Remark 13.10. In Section 14 below we mostly view the graded de-
terminant of the odd signature operator as a function on the space of
representations rather than as a function on the space of flat connec-
tions. As Rep(m(M),C") is a finite dimensional algebraic variety, we
can use the methods of complex analysis of holomorphic functions on
finite dimensional varieties.

By the definition of the refined analytic torsion, cf. Definition 10.1,
Theorem 13.8 and Corollary 13.9 imply now the following

Corollary 13.11. Let M be a closed oriented odd-dimensional man-

ifold.
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1. Let O C C be an open set and let v : O — Repo(m(M),C")
be a holomorphic curve. Assume that for \g € O there exists
a Riemannian metric g™ so that the connection V() Satisfies
Assumption 11 of Subsection 6.5. Then the function

(13.171) A =T (V)

18 holomorphic in a neighborhood of \g.

2. Let V. C Repo(mi1(M),C") denote the open set of all represen-
tations o such that for some Riemannian metric g™ on M the
connection V, € Flat'(E,, g™). Let ¥ C Rep(m(M),C") de-
note the set of singular points of the complex algebraic variety
Rep(m(M),C"). Then a — T(Vy) is a holomorphic function on
V\Z.

14. Comparison with Turaev’s Refinement of the
Combinatorial Torsion

In [42, 43], Turaev introduced a refinement TS°™P (e, 0) of the com-
binatorial torsion associated to an acyclic representation « of 71 (M).
This refinement depends on an additional combinatorial data, denoted
by € and called the Euler structure as well as on the cohomological ori-
entation of M, i.e., on the orientation o of the determinant line of the
cohomology H®(M,R) of M. There are two versions of the Turaev
torsion — the homological and the cohomological one. In this paper
it is more convenient for us to use the cohomological Turaev torsion
as it is defined by Farber and Turaev in Section 9.2 of [20]. Given
a € Repo(m (M), C"), the cohomological Turaev torsion TSP (g, 0) is
a non-vanishing complex number. If o € Repg(m1 (M), C™) the absolute
value of the Turaev torsion is equal to the Reidemeister torsion.'* One
can view Theorem 8.2 as an analytic analogue of this result, where the
role of the Reidemeister torsion is played by the Ray-Singer torsion. An-
other property of the Turaev torsion is that it is a holomorphic function
of @ € Repo(m(M),C"). In Corollary 13.11 we established the same
property for the refined analytic torsion.

Though, in general, the refined analytic torsion T, = T(V,) and
the Turaev torsion TS°™P(g,0) are not equal they are very closely re-
lated. In this section we establish this relationship. As an application
we strengthen and generalize a theorem of Farber [17] about the rela-
tionship between the Turaev torsion and the n-invariant.

14.1. Notation. Let M be a closed oriented odd-dimensional manifold.
In this section we view the refined analytic torsion as a function of a
representation of w1 (M). Let V' C Repg(m(M),C™) be an open set

Here the Reidemeister torsion is understood as the positive real number defined,
for example, in Definition 1.1 of [35].
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consisting of representations a such that V,, € Flat'(E, gM). Let V' C
V be the open subset of V' such that, for all « € V', the connection V,
belongs to the open set U’ defined in Subsection 12.7. For every a € V
we set Ty, := T(Vq), TRS := TRS(V,), 74 := n(Va, gM), etc.

14.2. Comparison between the Turaev and the Ray-Singer
Torsion. Theorem 10.2 of [20] establishes a relationship between the
Turaev and the Ray-Singer torsions for real representations . The fol-
lowing result is an immediate extension of this result to complex acyclic
representations.

Theorem 14.3. Suppose M is a closed oriented odd-dimensional
manifold. Let c(e) € H1(M,Z) denote the characteristic class of the
Euler structure €, cf. [43] or Section 5.2 of [20]. Then, for every
o€ Repo(m(M),(C”),

|75 (e, 0))

(14.172) log 7S

= —n (ImArg,, c(¢)),
where the cohomology class Arg, := Argy_ € HY(M,C/Z) is defined
in Subsection 12.4 and (-,-) denotes the natural pairing
HY(M,C/Z) x H(M,Z) — C/Z.
In particular, if o € Repg(m1(M),C") then
(14.173) | TS (e, 0) | = THS.

Note that, though (Arg,,c(¢)) is defined only modulo Z, its imagi-
nary part Im(Arg,, c(¢)) is a well defined complex number.

Proof. Let o® denote the representation o considered as a real rep-
resentation. Then, for every closed curve v in M, we have

det Monr () = ‘ det Mong () ’2.
Define Arg,» € H'(M,R/Z) by
det Mon k() = exp (2mi(Arg,z, [7])).
Then, from (12.151), we obtain
exp (27mi(Arg,=, [7])) = exp (27i(2iIm Arg,, [7])).
Hence,
(14.174) (Arg.x,[7]) = 2i Im (Arg,,[y]) mod Z.

Let T;gmb (e,0) and TOFL%S denote the Turaev and the Ray-Singer tor-
sions associated to the representation a®. Then

(14.175) TEmb (e, 0)[2 = TE0™ (e,0),  (TRS)? = 78S,

oR
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By formula (10.3) of [20], we have

Tcomb €,0 2
<QRTR(S ) > = ‘ exp (27ri<ArgaR, c(e)) ) ‘ .
R

Combining this equality with (14.174) and (14.175), we obtain (14.172).
If «v is unitary, then Im Arg,, = 0 and (14.173) follows. q.e.d.

14.4. The homology class (.. We need the following

Lemma 14.5. Let M be a closed oriented manifold of odd dimen-
sion d = 2n — 1. Let Ly_y1(p) € HY(M,Q) denote the component in
dimension d — 1 of the Hirzebruch L-polynomial L(p) in the Pontrjagin
classes of M. Then there exists a lift Lq_y € H*Y(M,Z) of Lq_1(p) to
the integer cohomology and the reduction of Ed_l modulo 2 is equal to
the (d — 1)-Stiefel-Whitney class wq_1(M) € H¥=Y(M,Zs) of M.

Proof. For any homology class £ € Hy_1(M,Z) there exists a smooth
oriented submanifold X C M, representing &. Then (Lq—1(p),§) is
equal to the signature o(X¢) of X¢. In particular, it is an integer;
hence, the lift Ly, € H* (M, Z) exists.

The parity of o(X¢) is equal to the parity of the Euler characteristic
X(X¢) of X¢, which, in turn, is equal to

(wa-1(M), X¢) = (wa—1(Xe¢), Xe).
Thus we conclude that
(Lg—1 —wg-1(M),€) =0 mod 2,
for any homology class € € Hy_1(M,Z). q.e.d.

Note that a lift of Ly_1(p) to the integer cohomology is not uniquely
defined if H?~1(M,Z) has a torsion. From now on we fix such a lift
Ly € H Y(M,Z) and we denote by L € Hy(M,Z) the Poincaré
dual of Ly_;. Let c(e) € Hi(M,Z) denote the characteristic class of the
Euler structure ¢, cf. [43] or Section 5.2 of [20].

Corollary 14.6. The class Li(p) + c(e) € Hy(M,Z) is divisible
by 2, i.e., there exists a (not necessarily unique) homology class (. €
Hy(M,Z) such that

(14.176) —28. = Li(p) + c(e).

Proof. Tt is shown on page 209 of [20] that the reduction of c(e)
modulo 2 is equal to the Poincaré dual of the Stiefel-Whitney class
wq—1(M). Hence, it follows from Lemma 14.5 that the reduction of
L1(p) + c(e) is the zero element of Hy(M,Zs). q.e.d.

The equality (14.176) defines (. modulo two-torsion elements in
Hy(M,Z). We fix a solution of (14.176) and for the rest of the paper (.
denotes this solution.
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14.7. Comparison between the Turaev and the refined analytic
torsions. To simplify the notation let us denote by L(p) € Hy(M,Z)
the Poincaré dual of the cohomology class [L(p)]. Let L, € H\(M,Z)
denote the component of L(p) in Hy(M,Z). Then

([L(p)] U Arg,, [M]) = (Arg,, L1) € C/Z.
Recall that the neighborhood V' of Repg(m1 (M), C™) was defined in
Subsection 14.1. If & € V' then by Theorem 12.8 and (14.172)
|Ta
T (e, o)
=7 (Im Arg,, c(e) + Zl>
=27 < Im Argav ﬁs>7

where 8. € H1(M,Z) is the homology class defined in (14.176).

Let ¥ denote the set of singular points of the complex analytic set
Rep(m1(M),C™). By Corollary 13.11, the refined analytic torsion Ty, is
a non-vanishing holomorphic function of @ € V\X. By the very con-
struction [42, 43, 20| the Turaev torsion is a non-vanishing holomorphic
function of a € Repg(m1 (M), C™). Hence,

Ty
TEm (e, o)
is a holomorphic function on V'\X.

By construction of the cohomology class Arg,, for every homology
class z € Hi(M,Z), the expression

T
14.1 log————— =1
( 77) Re log Teomb (2. o) og

e2mi (Arg,,,z)

is a holomorphic function on Rep(m (M), C").
Now the expression (14.177) can be rewritten as

_Ta
Teom (2, o)

If the absolute values of two non-vanishing holomorphic functions are
equal on a connected open set then the functions must be equal up to
a factor a € C with |a| = 1. Hence, on each connected component
C C V'\X, there exists a constant ¢c(e,0) € R, depending on ¢ and o,
so that

‘ _ ‘627ri<AI'gmﬁs> , aeV.

(14.178) _Ja_iseeo) _ 2ritArg, ) aeC
' Tomb (e, o) ’ '

Note that the constants ¢¢ (e, 0) are defined up to an additive multiple
of 2. Since T, T<°™ (e, 0), and e?™{Ar8a.0) depend continuously on
a € V', we can choose these constants so that

¢Cl (5> 0) = ¢C2 (57 0)
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whenever C7 and Cy are contained in the same connected component of
V’. Thus (14.178) remains valid if C' is a connected component of V.

Thus we have proven the following extension of the Cheeger-Miiller
theorem about the equality between the Reidemeister and the Ray-
Singer torsions.

Theorem 14.8. Suppose M is a closed oriented odd dimensional
manifold. Let € be an Fuler structure on M and let 0 be a cohomological
orientation of M. Let V' C Repo(m1(M),C™) be as in Subsection 14.1.
Then, for each connected component C of V', there exists a constant
oo = ¢c(e,0) € R, depending on € and o, such that

1o

— eid)g eQm‘(Arga Be) .
Tomb (2, o)

(14.179)

Remark 14.9. It would be very interesting to calculate the con-
stant ¢c(e,0). In particular, it would be interesting to know whether
it actually depends on the connected component C of V’. Another
interesting question is for which acyclic representations « one can find

an Fuler structure € and a cohomological orientation o such that T, =
Tcomb(5 0) 15
« ? N

14.10. Comparison with the Farber-Turaev absolute torsion.
An immediate application of Theorem 14.8 concerns the notion of the
absolute torsion introduced by Farber and Turaev in [19]. Suppose that
the Stiefel-Whitney class wq_1 (M) € HY~Y(M, Z5) vanishes, a condition
always satisfied if dim M = 3(mod 4), cf. [32]. Then, by [19, §3.2], there
exists an Euler structure ¢ such that c¢(¢) = 0. Assume, in addition,
that the first Stiefel-Whitney class wq(Eq ), viewed as a homomorphism
H(M,Z) — Zg, vanishes on the 2-torsion subgroup of Hy(M,Z). In
this case there is also a canonical choice of the cohomological orientation
0, cf. [19, §3.3]. Then the Turaev torsion T<°™P(g, 0) corresponding to
any ¢ with ¢(¢) = 0 and the canonically chosen o will be the same.

If the above assumptions on wg—1(M) and wq(E,) are satisfied, then
the number

(14.180) T3> =T (e,0) € C,  (c(e) = 0),

is canonically defined, i.e., is independent of any choices. It was intro-
duced by Farber and Turaev, [19], who called it the absolute torsion.'6

15 Added in proof: Recently, Rung-Tzung Huang [27] showed by an explicit calcu-
lation for lens spaces that, in general, the constant ¢¢ (e, 0) depends on the connected
component C. He also showed that it is independent of the Euler structure e.

SFarber and Turaev, [19], also defined the absolute torsion in the case when the
representation « is not acyclic, in which case the absolute torsion is not a number
but an element of the determinant line Det(H® (M, E4) of the cohomology of M with
coefficients in F,.
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Using (14.176) and the fact that L; vanishes if dim M = 3 (mod 4),
Theorem 14.8 leads to the following

Corollary 14.11. In addition to the assumptions made in Theo-
rem 14.8 suppose that dim M = 3 (mod4) and that the 2-torsion sub-
group of Hy(M,Z) is trivial. Then the ratio Tn/T2P® is locally constant
on V' and its absolute value is equal to 1. 17

14.12. Phase of the Turaev torsion of a unitary representation.
As an application of our study of the refined analytic torsion we obtain
a result about the phase of the Turaev torsion which improves and
generalizes a theorem of Farber [17], cf. Remark 14.16 below.

We denote the phase of a complex number z by Ph(z) € [0,27) so
that z = |z|e!PR(),

Suppose « € Repg(m1 (M), C™) is a unitary representation. Then the
number &, = £(Va, g™, 0), defined in (7.79), is real (in fact, in this case,
¢, coincides with log TRS, cf. (8.98)). Moreover, the n-invariant 7, is
real, cf. Subsection 4.8. Thus, (7.80) and the definition of the refined
analytic torsion (Definition 10.1) imply

(14.181) Ph(T,) = — 114 + 7 (rank ) irivial mod 27 Z.

The second term on the right hand side of (14.181) vanishes if dim M =
1 (mod4).
Combining (14.181) with Theorem 14.8 we obtain the following

Theorem 14.13. Under the assumptions of Theorem 14.8 suppose
that a1, aa € Repg(m1 (M), C™) are unitary representations which lie in
the same connected component of V'. In particular, they have the same
rank. Then, modulo 2w Z,

(14.182) Ph(T™(e,0)) + 770, + 27 ( Arg,,, 5:)
= Ph(T2™(c,0)) + 710, + 27 ( Arg,,, B-).

14.14. Sign of the absolute torsion. Suppose that the Stiefel-Whit-
ney class wg_1(M) = 0 and that the first Stiefel-Whitney class w1 (Ey),
viewed as a homomorphism Hy(M,Z) — Zsg, vanishes on the 2-torsion
subgroup of Hy(M,Z). Then the Farber-Turaev absolute torsion
(14.180) is defined. If o € Repg (71 (M), C"), then T2 is real, cf. The-
orem 3.8 of [19] and, hence,

; abs . -
¢! PRTE™) — s1gn(T§b5).
From Theorem 14.8 and Theorem 14.13 we now obtain the following
1"Added in proof: Recently, Huang [27] proved that, under the assumptions of

Corollary 14.11, Ta/Tgbs = +e ™o where po = Mo — (rank @)nirivial is the p-
invariant of E,.
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Theorem 14.15. Under the assumptions of Theorem 14.8 suppose
that a1, ag € Repg(m1 (M), C™) are unitary representations which lie in
the same connected component of V.

1) Let dim M = 3 (mod 4). Assume that the first Stiefel-Whitney
class wi(Eqy,) = wi(E,,) vanishes on the 2-torsion subgroup of
H(M,Z). Then

sign (TgllaS) . eiwnal = sign (TSES) . eiwn%'

2) Let dim M =1 (mod 4). Assume that wy_1(M) = 0 and the group
H{(M,Z) has no 2-torsion. Then

sign (T;‘ﬂ’s) e (77&1—<[L(p)]UArga1 ,[M}))

— sign (T2bs) . ¢ (oo ~(L(IVATEL, (M),
Remark 14.16. Note that the unitary representations a; and a9 in
Theorem 14.15 are assumed to be connected by a path in V’. For the
special case when there is a real analytic path «; of unitary represen-
tations connecting a1 and ag such that the twisted deRham complex
(6.63) is acyclic for all but finitely many values of ¢, Theorem 14.15 was
established by Farber, using a completely different method.

Appendix A. Determinant of an Operator with the
Spectrum Symmetric about the Real Axis

In this appendix we show that for a wide and important class of dif-
ferential operators, including the self-adjoint ones, formula (4.34) rep-
resents LDetg(D) as a sum of its real and imaginary parts.

Definition A.1. The spectrum of D is symmetric with respect to the
real axis if the following condition holds: if A is an eigenvalue of D, then
A also is an eigenvalue of D and has the same algebraic multiplicity as
A

Note that every operator with real coefficients has this property. See
[1] for examples of other interesting operators with symmetric spec-
trum.'®

Theorem A.2. Let D : C°(M,E) — C*°(M,E) be an injective
elliptic differential operator of order m with self-adjoint leading symbol,

whose spectrum is symmetric about the real axis. Let § € (—m/2,0)
be an Agmon angle for D. Then the numbers (29(0, D?), n(D), and

'8 All the operators considered in [1] have spectrum symmetric about the imagi-
nary azis. However, the spectrum of the operator considered in Section 5 of [1] is
also symmetric about the real axis. Further, the spectrum of the operator I'z, - Dyn,
discussed at the end of Section 6.8 of [1], is symmetric about the real axes.
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Detgg(D?) = e=%560.D%) gre real. In particular, the following analogue
of (4.45) and (4.46) holds:

(A.183) Detg(D) = (—1)" - /| Detog(D?)| -eiiﬂ(ﬂ(D)f%CW(OﬂD%),

where m_ = rank P_ is the number of the eigenvalues of D (counted
with their algebraic multiplicities) on the negative part of the imaginary
axis, cf. Subsection 4.1.

Corollary A.3. If, in addition to the assumptions of Theorem A.2,
D is self-adjoint, then m_ = 0 and Detog(D?) is real and positive.
Hence, as expected, formulas (4.45) and (4.46) hold.

Proof of Corollary A.3. If D is self-adjoint, the spectrum of D lies on

the real line. Hence, in particular, m_ = 0. It follows from (4.41) to-
gether with (A.184) and (A.186) below that Im (¢},(0, D?)) = 0. Hence,
Detoy(D?) > 0. q.e.d.

Remark A.4. It is interesting to compare (A.183) with Theorem 3.2
of [1]. Suppose that the spectrum of D is also symmetric about the
imaginary axis. Then n(D) = 0. If, in addition, dim M is odd, then
(20(0,D?) = 0, cf. Remark 4.7.c. Hence, (A.183) imply that, in this
case, Dety(D) is real and its sign is equal to (—1)™-. Theorem 3.2 of
[1] states that this is true without the assumption that the spectrum of
D is symmetric about the real axis!® (i.e., for every invertible elliptic
operator with self-adjoint leading symbol, whose spectrum is symmetric
about the imaginary axis).

Proof of Theorem A.2. In view of (3.26), it is enough to consider the
case when 6 is sufficiently close to —7/2 so that there are no eigen-
values of D in the solid angles L(_r /29 and Lz /3 g4x], which we will
henceforth assume. By (4.41), (4.42), and (4.44) it suffices to show that
the numbers
p(0,111,D) £ ¢(0,11_,-D)
= (C@(Oa H+7 D) + C@(()? H—a _D))
+ (C@(O7P+a D) + C@(Ov P_, _D))
are real and that the imaginary part of the number
(0,104, D) + ¢y(0,11-, —D)
= (¢4(0, 11y, D) + (0,11, - D))
+ (Cé(ov PJr’ D) + Cé(ov P,, *D))

is equal to —7mm_.

19Tn [1] the spectral cut was taken in the upper half-plane. Consequently, m_ is
replaced there by m.
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Since the projections Py have finite rank, one has
CQ(O, P:t, :i:D) = rank Pj:.

Thus these numbers are real.
Because the spectrum of D is symmetric about the real axis,

rank P, =rank P_.

As, for every r > 0 one has
d —S8

. o
Jals=0 (ir)g" = —logr — iz,

we conclude that
Im ¢)(0, Py, D) = Im ¢4(0, P_, —D) = —g rank P_.
Hence,
(A.184) Im (gg(o, P., D)+ (0, P, —D)) — —rrank P_ € 7 Z.
It remains to show that
Cp(0,11, £D), ¢5(0,4,£D) € R.

We will show that the numbers (y(0,111, D) and ¢)(0,1I, D) are real.
The fact that the other two numbers are real as well follows then by
replacing D with —D.
Let
Aj >0, jeh CN
be all the positive real eigenvalues of D and let
)\j = pjemj, je€l CN

be all the eigenvalues of D which lie in the solid angle Lg r/2). Let m;
denote the algebraic multiplicity of A;, cf. Subsection 3.9. Since the
spectrum of D is symmetric about the real axis,

pje_iaja J € I,
are all the eigenvalues of D in the solid angle L(_; /¢y and
C9(87 H+7 D)
_ Z mj )\;s + Z m; p;s (e—isaj + eisaj)
JEN JEI2
dim M
= Z m; A%+ 2 Z m; p;° cos(sa), Res > —n
jeh JEl2
Hence,
— dim M
(A.185)  Co(s,I04, D) = Go(5, 10y, D), Res > ——
m

Since both sides of (A.185) are holomorphic functions of s, the equal-
ity (A.185) holds for all regular points of (y(s,I1;, D). In particular,
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Co(s, 114, D) is real for all real regular points. Hence, (y(0,114, D) € R.
Since (A.185) implies

(A.186) G)(s, 114, D) = (5, 11, D),
we conclude that the number ((0,11, D) is also real. q.e.d.

Appendix B. Families of flat connections

In this appendix we review some of the results of [23] and reformulate
them in a form convenient for our purposes. These results are used in
Section 13.

B.1. Connections flat modulo lower order terms. First, we in-
troduce some definitions from [23], but we formulate them in a slightly
different form which is more convenient for our purposes.

Let k[t] = k[t1,...,t,] denote the polynomial ring in r variables over
a field k. Let m C k[t] denote the unique maximal ideal of k[t] (the
augmentation ideal), i.e., the ideal generated by t¢i,...,t.. Let A,, =
k[t]/m™*L. We denote by G, = GL(n, A,,,) the group of matrices with
entries in A,,.

Let M be a manifold and let E be a complex vector bundle over M.
Suppose V is a flat connection on E. Let

(B.187) V) =V+ > wat®  LEFW,

0<|a|<m

be a family of connections. Here a € (Z>)" is a multi-index, |a| =
a4 Fay, t* =715 - 18, and w, are smooth 1-forms with values
in End E. We say that the family V(¢) is flat modulo t™+1 if V(t)?

m™ L

1]
)t
s flat
)

gl

Fix a base point z, € M. Given a continuous path ¢ : [0,
M, ¢(0) = ¢(1) = x4, for any ¢t € k", we denote by Mony)(
monodromy of V(¢) along ¢, cf. (12.153). If the family V( ) i
modulo ™! then, for any homotopic paths ¢; : [0,1] — M, ¢;(0
bi1) = . (i = 1,2),

Mony ;) (¢1) = Mong ) (¢2) mod m™ !,

Hence, we have a well defined representation
(B.188) Mong ) : m1 (M, 7)) — G-

One says that two families of connections Vi (¢) and Va(t), which are
flat modulo ™1, are A,,-gauge equivalent if there exists a family of
gauge transformations

(B.189) gt)=go+ D gat”

0<|a|<m
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where each g, is a gauge transformation of F, such that
Va(t) = g(t) - Vi(t) - g(t) ! mod m™*1!,

B.2. Relationship between families of connections and fami-
lies of representations of the fundamental group in G,,. Propo-
sition 6.3 of [23] states that there is a one-to-one correspondence be-
tween the A,,-gauge equivalence classes of connections V(t) and the
isomorphism classes of representations v(t) of 71 (M) in G, given by
the monodromy representation (B.188). In other words, we have the
following

Lemma B.3.
(i) For every family of representations
y(t): m(M,z.) — G,
there exists a flat modulo t™ ' family of connections V(t) such
that
(B.190) Mong ) = ~(t) mod m™ "L,

(ii) Every two connections V1(t) and Va(t) which are of the form
(B.187), are flat modulo t™*1, and satisfy (B.190) are A,,-gauge
equivalent, i.e., there exists a family of gauge transformations
(B.189) such that

(B.191) Va(t) = g(t) - Vi(t) - g(t)~? mod m™ 1,
Moreover, if V1(0) = V2(0), then one can choose
t) =go+ Z gata
0<|a|<m
so that go = Id.

B.4. The case when k = C or R. Suppose now that £ = C or R and
T € Z>1. Let O C k" be an open set and let V,, (1 € O) be a family of
connections such that for some A € O we have

(B192) V,=Va+ > walp—N*+o(u—A"), peoO,
0<|a|<m

where o(|p — A|™) is understood in the sense of the Fréchet topology on
C(FE) introduced in Subsection 13.1.
Denote t = 1 — A and set

(B.193) V) =Vat Y wat™

0<|a|<m
Then V,, = V(u — A) + o(|p — A|™). Hence, for every closed path
¢:[0,1] — M, ¢(0) = (1) x4 we have

(B.194) Mony, (¢) = Mongy, _y(6) +o(|u — A™),
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where o(|u — A|"™) is understood in the sense of the Fréchet topology
introduced in Subsection 5.3. If the family V(¢) is flat modulo ™1
we will view Mony, as a map m1(M,z.) — Gy, by identifying it with
Mong(#_ NE

B.5. Application to real differentiable families of flat connec-
tions. Let O C C be an open set. A family V, (x € O) of flat
connections on FE is called real differentiable at A € O if there exist
w1,wy € Ql(M, End E) with

(B.195) Vi=Va+Re(p—A) -wi+Im(p—X)-wr+o(p—N).

(Again, o(pt — A) is understood in the sense of the Fréchet topology on
C(FE) introduced in Subsection 13.1.)

Lemma B.6. Let A € C and let O C C be an open neighborhood of
X in C. Suppose that V,, (n € O) is a family of flat connections which
is real differentiable at A, cf. (B.195). Assume that the map

O — Rep(m(M),C"), p +— Mony,
is a holomorphic curve in Rep(mi(M),C™). Then the following state-

ments hold:

(i) There exists a smooth form w € QY(M,End E) such that Vyw = 0
and

(B196) MODVA-I-(,LL—)\)w(qS) = MODV# (¢) + O(lu’ - )‘)a

for every closed path ¢ : [0,1] — M, ¢(0) = ¢(1) = z,.
(ii) There ezists a family of gauge transformations G(p) € End E
(1 € O) such that G(A\) =1d and

(B.197) Vat (p=Nw=G(u) V-G~ +o(u—A).

Proof. To prove part (i) of the lemma we apply Lemma B.3 with
k=C,t=t (ie,7=1),m=1,and t = u— \. Since y — Mony, is
a holomorphic curve, its Taylor expansion at A up to first order, y(t),
defines a map O — G1. Then

(B.198) Monvy, ., = 7(t) +o(t).

By Lemma B.3(i), there exists a flat modulo t? family of connections
V(t) = V(0) + tw such that

(B.199) Mong,y =7(t)  mod 1%
Since Mong ) = ~(0) there exists a gauge transformation g € End F
such that its restriction to the fiber of E over the base point z, is the

identity map and
Va=g"'-V(0)-g.
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Then w := g~ ' @ g is a smooth End E-valued 1-form and (B.199) takes
the form

(B.200) Mony, 41, = () mod #%,

which together with (B.198) implies (B.196). Note that V) + tw is a
flat modulo ? connection and, hence, V w = 0.

For part (ii) let us set k = R, t = (t1,t2) (i.e., r = 2), and m = 1.
Denote t1 := Re( — \), to := Im(p — A\). Then, by the assumption of
real differentiability, V,, is of the form

v>\+t1wl+t2L¢J2:VM+O(u—>\).

Note that both Vy +t1wy + tows and Vy + (1 +ite)w are flat modulo ¢2
connections which, by (B.198), induce the same monodromy representa-
tion y(¢) : m1 (M, z«) — G;1. Hence, (B.197) follows from Lemma B.3(ii).

q.e.d.
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