
j. differential geometry

78 (2008) 1-12

DETERMINANTS OF ZEROTH ORDER OPERATORS

Leonid Friedlander & Victor Guillemin

Abstract

For compact Riemannian manifolds all of whose geodesics are
closed (aka Zoll manifolds) one can define the determinant of a
zeroth order pseudodifferential operator by mimicking Szego’s def-
inition of this determinant for the operator: multiplication by a
bounded function, on the Hilbert space of square-integrable func-
tions on the circle. In this paper we prove that the non-local
contribution to this determinant can be computed in terms of a
much simpler “zeta-regularized” determinant.

1. Introduction

In this paper we will compare two techniques for defining regularized
determinants of zeroth order pseudodifferential operators and show that,
modulo local terms, they give the same answer. To illustrate these two
techniques let f be a C∞ function on the circle with f − 1 ≈ 0. Szegő
proves that if Pn is the orthogonal projection to the space spanned by
eikθ, −n ≤ k ≤ n, then for n large

(1.1) log detPnMfPn = 2nl̂og f(0)+
∑

kl̂og f(k)l̂og f(−k)+O
(

n−∞
)

where Mf is the operator of multiplying by f and l̂og f(k) is the k-th
Fourier coefficient of log f . Hence by subtracting off the “counterterm”

2nl̂og f(0) one gets for the Szegő-regularized determinant of Mf :

(1.2) log detMf =
∑

kl̂og f(k)l̂og f(−k).

An alternative way of regularizing this determinant is by zeta function
techniques. Namely, let Qz : L2(S1) → L2(S1) be the operator

Qzeinθ =

{

|n|zeinθ, if n 6= 0;

0, if n = 0.

Then

trace(log Mf )Qz = traceMlog fQz = 2l̂og f(0)
∞

∑

n=1

nz = 2l̂og f(0)ζ(−z).
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Since ζ(z) is regular at z = 0 and ζ(0) = −1/2, zeta-function regular-
ization gives one, for the regularized “log det” of Mf

(1.3) trace log Mf = −l̂og f(0),

i.e., the zeta-regularized determinant of Mf is proportional to the coun-
terterm one had to subtract off in order to obtain the Szegő-regularized
determinant of Mf .

This does not bode well for comparing these two methods of regu-
larization in a more general setting; however, the right hand sides in
(1.2) and (1.3) are local expressions of the symbol of Mf , and for both
these methods of regularization the non-local contributions are zero. In
the paper we will show that if one replaces Mf by a zeroth order pseu-
dodifferential operator, B, then (1.2) and (1.3) are non-symbolic (i.e.,
non-local) functions of B; however, their difference is symbolic. In other
words, modulo local terms, they give the same answer.

This is a special case of a more general result about “Zoll operators”.
Let Xd be a compact manifold and Q : C∞(X) → C∞(X) a self-adjoint
first order elliptic pseudodifferential operator. Q is a Zoll operator if
the bicharacteristic flow on T ∗X \X generated by its symbol is periodic
of period 2π. (To simplify the statements of some of the results below
we will strengthen this assumption and assume the bicharacteristic flow
strictly periodic of period 2π: if the initial point of a bicharacteristic is
(x, ξ), the bicharacteristic returns for the first time to (x, ξ) at t = 2π.)
If Q is a Zoll operator, the operator

W = −
1

2πi
log exp 2πiQ,

with 0 < Im log z ≤ 2π, is a zeroth order pseudodifferential operator,
and the spectrum of the operator Q + W consists of positive integers.
We will henceforth subsume this property into the definition of “Zoll”,
and assume specQ = Z+. (The standard example of a Zoll operator is
the operator

(

∆Sd +

(

d − 1

2

)2)1/2

−
d − 1

2
;

however, there are a lot of non-standard examples as well. See, for
instance [CV].)

Let πk be the orthogonal projection of L2(X) onto the k-th eigenspace
of Q and let Pn = π1 + · · · + πn. If B : L2(X) → L2(X) is a zeroth
order pseudodifferential operator and I −B is small then by a theorem
of Guillemin and Okikiolu [GO]

(1.4) log detPnBPn ∼ b +
−∞
∑

k=d,k 6=0

bkn
k + b0 log n
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and, as above, one can define the Szegő regularized determinant of B
to be eb. On the other hand, the expression

(1.5) trace log BQz

is a meromorphic function in z with simple poles at z = −d + k, k =
0, 1, . . ., and one can define the zeta function regularization of log det B
to be the finite part of this function at z = 0.

In Section 2 we will compare these two definitions and show that, as
above, they differ by an expression that is local in B and only involves
integrals of terms in the symbolic expansion of B of degree ≥ −d. Then
in Section 3 we will examine zeta regularization in more detail, allowing
the “regularizer” Q to be any positive definite self-adjoint first order
elliptic pseudodifferential operator (i.e., not necessarily a Zoll operator
as above) and prove a number of results about the “log det”:

(1.6) wQ(B) = (f.p.)z=0trace(log B)Qz

for zeroth order pseudodifferential operators, B. For instance we will
show that the variation, δwQ, of this functional is local and that if Q
and Q′ are two regularizers, wQ(B) − wQ′(B) is local. (In other words,
modulo local terms, the regularization of log detB defined by (1.6) is
independent of the choice of Q.) We will also compute the multiplicative
anomaly of the regularized log detB1B2 defined by (1.6) and show that
it is also given by expressions which are local in the symbols of B1 and
B2.

2. Szegő regularized determinants

We will give a brief sketch of how (1.4) was derived in [GO] and show
how the zeroth order term in this expression is related to (1.6). Letting
B = I − A the left hand side of (1.4) becomes

(2.1) −

∞
∑

k=1

1

r
trace(PnAPn)r,

so to study the asymptotic behavior of (1.4) it suffices to study the
asymptotic behavior as n tends to infinity of each of the summands in
(2.1). To do this we will decompose the operator A into its “Fourier
coefficients” as in the example discussed in Section 1. More explicitly,
let U(t) = exp(itQ) and let

(2.2) Ak =
1

2π

∫ 2π

0
eiktU(−t)AU(t)dt.

By Egorov’s theorem the Ak’s are zeroth order pseudodifferential oper-
ators, and the sum

A =
∞

∑

k=−∞

Ak
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is the “Fourier series” of A. It is shown in [GO] that this series converges
and that the operator norms of Ak’s are rapidly decreasing in k as
k tends to infinity. Hence for deriving asymptotic expansions for the
summands in (2.1) we can assume that

(2.3) A =

N
∑

k=−N

Ak, N large.

Also, since U(t) =
∑

eintπn,

(2.4) Ak =
1

2π

∑

m,n

∫ 2π

0
eiktei(n−m)tπmAπndt =

∑

n

πn+kAπn.

Plugging (2.3) into the rth summand of (2.1) and replacing each term
in the product by the sum (2.4) one gets:

(2.5) trace(PnAPn)r =
∑

j1+···+jr=0

trace
∑

k+σ(j)≤n

πkAjr
· · ·Aj1πk

where j = (j1, . . . , jr),

(2.6) σ(j) = max(0, j1, j1 + j2, . . . , j1 + · · · + jr),

and the number of summands in j is finite. We will use the notation
Aj = Ajr

· · ·Aj1 . The asymptotics of each of the summands in (2.5) can
be read off from a theorem of Colin de Verdiere [CV] which says that

(2.7) traceπnAjπn ∼
∑

cl(Aj)n
l.

Moreover, Colin’s theorem asserts that the terms on the right are local
functionals of A and are given explicitly by the non-abelian residues

(2.8) cl(Aj) = resQ−(l+1)Aj .

Finally, by plugging (2.8) into (2.7) we obtain an asymptotic expansion

(2.9) trace(PnAPn)r ∼ ar +
−∞
∑

k=d,k 6=0

ar,kn
k + ar,0 log n

in which all terms except the constatnt term, ar, are local functions of
A.

The same argument can also be used to compute trace(PnAPn)rQz.
Namely, by (2.5),

(2.10) trace(PnAPn)rQz =
∑

j1+···+jr=0

trace
∑

k+σ(j)≤n

πkAjr
· · ·Aj1πkk

z,

and by combining this with (2.7) we will prove
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Theorem 2.1. For z 6= −d+k, k = 0, 1, 2, . . ., there is an asymptotic

expansion

(2.11) trace(PnAPn)rQz ∼ ar(z) +
−∞
∑

k=d

ar,k(z)nk+z.

Moreover, the coefficients in this expansion depend meromorphically on

z and, except for ar(z), are symbolic functions of A. In addition, ar,k(z)
has a simple pole at z = −k and is holomorphic elsewhere, and ar(z) is

meromorphic with simple poles at z = −d + k, k = 0, 1, 2, . . ..

Proof. The j-th summand above is equal to

trace

n−σ(j)
∑

k=1

(

πkAjπk

)

kz

and by (2.7)

trace

n−σ(j)
∑

k=1

(

πkAjπk

)

kz ∼ b(z) +
−∞
∑

l=d

cl−1

(

Aj

)

n−σ(j)
∑

k=1

kl−1+z.

By a theorem of Hardy (see [Ha], §13.10, p. 338),
m

∑

k=1

kl−1+z ∼ C(−z − l + 1) +
ml+z − 1

l + z
+

ml+z−1

2

+
∞

∑

p=1

(−1)p(−z − l + 1)(2p−2) Bp

(2p)!
ml+z−2p

where C(s) = ζ(s) − 1/(s − 1), Bp is the p-th Beroulli number, and

s(r) = s(s + 1) · · · (s + r). Plugging this (with m = n − σ(j)) into
(2.10) we get an expression of the form (2.11) where the coefficients are
holomorphic in z and ar,k(z) is holomorphic except of z = −k where it
has a simple pole. Moreover, if Rez < −d one can take the limit of both
sides of (2.11) as n tends to infinity to obtain

(2.12) traceArQz = ar(z),

and since traceArQz is meromorphic with simple poles at z = −d + k,
k = 0, 1, 2, . . ., the same is true of ar(z). q.e.d.

If we rewrite the right hand side of (2.11) in the form

ar(z) − ar,0(z) +
−∞
∑

k=d,k 6=0

ar,k(z)nk+z + zar,0(z)
nz − 1

z

and let z tend to zero we recapture (2.9) with ar,k = ar,k(0) for k 6= 0,
ar,0 = Resz=0ar,0(z), and, by (2.12),

(2.13) ar = (f.p.)z=0traceArQz − (f.p.)z=0ar,0(z).
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However, (f.p.)z=0ar,0(z) is a local function of A depending only on the
first d terms in its asymptotic expansion; hence the same is true of
ar − (f.p.)z=0traceArQz.

Finally, by applying this argument to each summand in the series

trace log(PnBPn)Qz = −
∞

∑

r=1

1

r
trace

(

PnAPn

)r
Qz,

we conclude that the constant term, b, in the expansion (1.4) differs
from the zeta regularized “log det” of B

(f.p.)z=0trace(log B)Qz

by a term which is local in B and only depends on the first d terms in
its symbolic expansion.

3. Zeta regularized determinants

In this section we relax assumptions on a zeroth order pseudodiffer-
ential operator B and on a regularizer Q. We will assume that the
spectrum of B lies in a domain D of the complex plane where the log-
arithm is defined; Γ is the boundary of D oriented counterclockwise.
Then log B is defined by the formula

log B =
1

2πi

∫

Γ
(λI − B)−1dλ,

and it is a zeroth order PDO. A regularizer Q will be a positive elliptic
PDO of order 1. The zeta regularized “log det” of B is defined by the
formula (1.6). To compare regularizations of “log det” of B for two
different regularizers, Q and Q′, we compute their difference:

wQ(B) − wQ′(B) = (f.p.)z=0trace log B · (Qz − (Q′)z)

= resz=0trace log B
Qz − (Q′)z

z
= res

(

log B(log Q − log Q′)
)

.

Notice that log B(log Q− log Q′) is a zeroth order pseudodifferential op-
erator. The last formula shows that wQ(B)−wQ′(B) is a local quantity;
it depends on the first d + 1 terms in the symbolic expansions of B, Q,
and Q′.

In the remaining part of this section we will be computing the mul-
tiplicative anomalies for the “log det”, namely, wQ(AB)−wQ(BA) and
wQ(AB)−wQ(A)−wQ(B). We will show that both are local quantities
and in the case when d = 2 we will obtain explicit formulas for them that
involve principal symbols of the operators A, B, and Q. Clearly, locality
of wQ(AB) − wQ(A) − wQ(B) implies locality of wQ(AB) − wQ(BA).
However, we present both calculations, since the latter is simpler. The
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main tool for computing multiplicative anomalies is the variational for-
mula for “log det”. Let δA be a variation of an operator and let

σQ(A, δA) = δwQ(A) −
1

2
(f.p.)z=0trace{δAA−1 + A−1δA}Qz.

Proposition 3.1. σQ(A, δA) is a local quantity that depends on d−1
terms in the symbolic expansions of A, δA, and Q. If d = 2 then

(3.1) σQ(A, δA) =
1

6
res(δ log a{log a, {log a, log q}}),

where a(x, ξ) is the principal symbol of A, q(x, ξ) is the principal symbol

of Q, {·, ·} is the Poisson bracket, and res is the symbolic residue (see
[Gu]).

Proof. One has

σQ(A, δA)

=
1

2πi

∫

Γ
(f.p.)z=0trace[log λ(λI − A)−1δA(λI − A)−1Qz]dλ

−
1

4πi

∫

Γ
(f.p.)z=0trace

[

1

λ

(

δA(λI − A)−1 + (λI − A)−1δA

)

Qz

]

dλ

=
1

4πi

∫

Γ
log λdλ(f.p.)z=0trace[2(λI − A)−1δA(λI − A)−1

− δA(λI − A)−2 − (λI − A)−2δA]Qz

=
1

4πi
(f.p.)z=0trace

{
∫

Γ
log λ[[(λI − A)−1, δA], (λI − A)−1]dλQz

}

.

Notice that

trace[[(λI − A)−1, δA], (λI − A)−1]Qz

= trace[(λI − A)−1, δA][(λI − A)−1, Qz],

and

(f.p.)z=0trace[(λI − A)−1, δA][(λI − A)−1, Qz]

= resz=0trace
[(λI − A)−1, δA][(λI − A)−1, Qz]

z

= res[(λI − A)−1, δA][(λI − A)−1, log Q].

The operator on the right is of order d−2, so its residue depends on d−1
terms in the symbolic expansions of A, δA, and Q. For the variation of
“log det” we obtain:

(3.2) σQ(A, δA) =
1

4πi

∫

Γ
log λres[(λI−A)−1, δA][(λI−A)−1, log Q]dλ.
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In the case d = 2,

(f.p.)z=0trace[(λI − A)−1, δA][(λI − A)−1, Qz]

= −res({(λ − a)−1, δa}{(λ − a)−1, log q})

= −res((λ − a)−4{a, δa}{a, log q}),

and

σQ(A, δA) = −
1

6
res(a−3{a, δa}{a, log q})

=
1

6
res({a−1, δa}{log a, log q})

= −
1

6
res(δa{a−1, {log a, log q}})

=
1

6
res(δ log a{log a, {log a, log q}}).

q.e.d.

The variation of wQ(AB)−wQ(BA) with respect to A (the operator
B is fixed) equals the sum of

(3.3) σQ(AB, δAB) − σQ(BA, BδA)

and

1

2
(f.p.)z=0(δAA−1 + B−1A−1(δA)B − A−1δA − B(δA)A−1B−1)Qz

(3.4)

=
1

2
resz=0

(

(δA)A−1 Qz − B−1QzB

z
− A−1δA

Qz − BQzB−1

z

)

=
1

2
res((δA)A−1(log Q − B−1 log QB) − A−1δA(log Q − B log QB−1))

=
1

2
res((δA)A−1B−1[B, log Q] + A−1δA[B, log Q]B−1).

Both the expressions (3.3) and (3.4) are local and depend on a finite
number of terms in the symbolic expansions of A, B, δA, and Q. Let
A(t) = At. Then the t-derivative of wQ(A(t)B) − wQ(BA(t)) is a local
quantity. Clearly, wQ(A(0)B) − wQ(BA(0)) = 0; hence wQ(AB) −
wQ(BA) is a local quantity.

The above derivation is valid if there exists a domain in the complex
plane where log is defined and that contains the spectrum of A(t)B (and,
therefore, of BA(t)) for all t, 0 ≤ t ≤ 1. One can replace the family At by
any family of zeroth order pseudodifferential operators that connects A
with the identity. We will operate under this assumption. It is satisfied
if, for example, operators A and B are close to identity or if both of
them are positive.
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In the case d = 2, the quantity (3.3) vanishes because by (3.1) it
depends on the principal symbols of the operators A and B only and
on the level of principal symbols they commute. Therefore,

d

dt

(

wQ(AtB) − wQ(BAt)
)

=
1

2
res(log A(B−1[B, log Q] + [B, log Q]B−1))

=
1

2
res(log A(B log QB−1 − B−1 log QB)),

and

(3.5) wQ(AB) − wQ(BA) =
1

2
res(log A(B log QB−1 − B−1 log QB)).

Now, we fix A and take the family B(t) = Bt. Let

g(t) = wQ(ABt) − wQ(BtA).

From (3.5),

g′(t) =
1

2
res

(

log A(Bt[log B, log Q]B−t + B−t[log B, log Q]Bt)
)

,

and

g′′(t) =
1

2
res

(

log A(Bt[log B, [log B, log Q]]B−t

− B−t[log B, [log B, log Q]]Bt)
)

= −
1

2
res(log a({log b, {log b, log q}} − {log b, {log b, log q}})) = 0;

here b(x, ξ) is the principal symbol of B. In the last equality, we used
the fact that the non-abelian residue of an operator of order −2 on a
two-dimensional manifold is the residue of the principal symbol. Hence,

g′(t) = g′(0) = res(log A[log B, log Q]).

Clearly, g(0) = 0, so

(3.6) wQ(AB) − wQ(BA) = res(log A[log B, log Q]).

The expression (3.6) is of the same form as the Kravchenko–Khesin
cocycle in dimension 1 [KrKh].

The variation of

(3.7) κQ(A, B) = wQ(AB) − wQ(A) − wQ(B)

with respect to A is the sum of

(3.8) σQ(AB, δAB) − σQ(A, δA)
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and

1

2
(f.p.)z=0trace((δAB)(AB)−1 + (AB)−1δ(AB)(3.9)

− (δA)A−1 − A−1δA)Qz + σQ(AB, δAB) − σQ(A, δA)

=
1

2
(f.p.)z=0trace(B−1A−1(δA)B − A−1δA)Qz

=
1

2
(f.p.)z=0trace(A−1(δA)BQzB−1 − A−1δAQz)

=
1

2
resz=0trace

A−1(δA)BQzB−1 − A−1δAQz

z

=
1

2
res(A−1(δA)B log QB−1 − A−1δA log Q)

=
1

2
res(A−1δA[B, log Q]B−1).

Both (3.8) and (3.9) are local expressions and depend on a finite num-
ber of terms in the symbolic expansions of A, B, δA, and Q. By tak-
ing a family A(t) that connects A with the identity, we conclude that
κQ(A, B) is a local quantity (κQ(I, B) = 0.)

We will next make these computations more explicit in the two-
dimensional situation. It is covenient to deal with the symmetrized
multiplicative anomaly (κQ(A, B) + κQ(B, A))/2. In a similar way to
(3.8), (3.9), one derives

δκQ(B, A)

= −
1

2
res((δA)A−1B−1[B, log Q]) + σQ(BA, BδA) − σQ(A, δA),

and, therefore,

δ
κQ(A, B) + κQ(B, A)

2
(3.10)

=
1

4
res(A−1δA[B, log Q]B−1 − (δA)A−1B−1[B, log Q])

+
1

2
σQ(AB, (δA)B) +

1

2
σQ(BA, BδA) − σQ(A, δA)

=
1

4
res(δA[B, log Q][B−1, A−1] + δA[[B, log Q], A−1B−1])

+
1

2
σQ(AB, (δA)B) +

1

2
σQ(BA, BδA) − σQ(A, δA).

The first term, T1, on the right in (3.10) equals

−
1

4
res(δa{b, log q}a−2b−2{b, a})

= −
1

4
res(δ log a{log b, log q}{log b, log a}).
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The second term, T2, equals

−
1

4
res(δa{{b, log q}, a−1b−1}) = −

1

4
res(δ log a{{b, log q}, b−1})

+
1

4
res(b−1δa{{b, log q}, a−1}) =

1

4
res(b−1δ log a{{b, log q}, log b})

+
1

4
res(b−1δ log a{{b, log q}, log a}).

One uses identities

{{b, log q}, log b} = {b, {log q, log b}}

and

b−1{{b, log q}, log a} = −{log a, {log b, log q}}+{log b, log q}{log b, log a}

to get

T2 = −
1

4
res(δ log a{log(ab), {log b, log q}})

+
1

4
res(δ log a{log b, log q}{log b, log a})

and

T1 + T2 = −
1

4
res(δ log a{log(ab), {log b, log q}}).

By (3.1),

T3 =
1

2
σQ(AB, (δA)B) +

1

2
σQ(BA, BδA) − σQ(A, δA)

=
1

6
res(δ log a{log(ab), {log(ab), log q}})

−
1

6
res(δ log a{log a, {log a, log q}})

=
1

6
res(δ log a{log a, {log b, log q}})

+
1

6
res(δ log a{log b, {log a, log q}})

+
1

6
res(δ log a{log b, {log b, log q}}).

Finally,

δ
κQ(A, B) + κQ(B, A)

2
= −

1

12
res(δ log a{log b, {log b, log q}})

−
1

12
res(δ log a{log a, {log b, log q}})

+
1

6
res(δ log a{log b, {log a, log q}}).
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Consider now the family A(t) = At, the operator B being fixed. Then
log a(t) = t log a, and

d

dt

(

κQ(A(t), B) + κQ(B, A(t))

2

)

(3.11)

= −
1

12
res(log a{log b, {log b, log q}})

−
t

12
res(log a{log a, {log b, log q}})

+
t

6
res(log a{log b, {log a, log q}}).

The second term on the right in (3.11) vanishes because

res(log a{log a, {log b, log q}}) =
1

2
res({log2 a, {log b, log q}}) = 0.

One integrates (3.11) from 0 to 1:

κQ(A, B) + κQ(B, A)

2
=

1

12
res(log a{log b, {log(a/b), log q}})(3.12)

=
1

12
res({log a, log b}{log(a/b), log q}}).

(Note that the expression on the right in (3.12) is symmetric in (a, b),
as it should be.)
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