ERRATUM TO "GRAFTING, PRUNING, AND THE ANTIPODAL MAP ON MEASURED LAMINATIONS"

David Dumas

Theorem 9.3 of $[\mathbf{D}]$ is incorrect; in the proof, the quadrilateral comparison cannot be applied directly to estimate the integral (7). However a weaker estimate follows by correcting the proof: one must use $\left|\left\|f_{*} v\right\|^{2}-\left\|h_{*} v\right\|^{2}\right|=\left|\left\|f_{*} v\right\|-\left\|h_{*} v\right\|\right|| |\left\|f_{*} v\right\|+\left\|h_{*} v\right\| \mid$ and the CauchySchwarz inequality, bounding the resulting terms by the energy difference and the total energy of f and h, respectively. This method was used by Korevaar-Schoen in $[\mathbf{K S}]$ (see the proof of Proposition 2.6.3) to obtain a more general estimate of the difference of pullback metrics for maps to NPC spaces, from which the following replacements for Theorem 9.3 and Corollary 9.4 of [D] follow:

Theorem 9.3. Let $f \in W^{1,2}(X, Y)$ where $X, Y \in \mathscr{T}(S)$ and Y is given the hyperbolic metric ρ. Let h be the harmonic map homotopic to f. Then

$$
\left\|f^{*}(\rho)-h^{*}(\rho)\right\|_{1} \leq \sqrt{2}(\mathscr{E}(f)-\mathscr{E}(h))^{\frac{1}{2}}\left(\mathscr{E}(f)^{\frac{1}{2}}+\mathscr{E}(h)^{\frac{1}{2}}\right)
$$

and in particular

$$
\|\Phi(f)-\Phi(h)\|_{1} \leq \sqrt{2}(\mathscr{E}(f)-\mathscr{E}(h))^{\frac{1}{2}}\left(\mathscr{E}(f)^{\frac{1}{2}}+\mathscr{E}(h)^{\frac{1}{2}}\right) .
$$

Theorem 9.4. Let $f \in W^{1,2}\left(\tilde{X}, T_{\lambda}\right)$ be a π_{1}-equivariant map, where $X \in \mathscr{T}(S)$ and $\lambda \in \mathscr{M} \mathscr{L}(S)$. Then

$$
\left\|\Phi(f)+\frac{1}{4} \phi_{X}(\lambda)\right\|_{1} \leq \sqrt{2}\left(\mathscr{E}(f)-\mathscr{E}\left(\pi_{\lambda}\right)\right)^{\frac{1}{2}}\left(\mathscr{E}(f)^{\frac{1}{2}}+\mathscr{E}\left(\pi_{\lambda}\right)^{\frac{1}{2}}\right)
$$

The main results of $[\mathbf{D}]$ are unaffected by these changes, since they are asymptotic in nature and the proofs only require bounds that are $o(\mathscr{E}(h))$ when $\mathscr{E}(f)-\mathscr{E}(h)=O(1)$ and $\mathscr{E}(h) \rightarrow \infty$. Only Theorem 10.1 must be revised; we have instead:

Theorem 10.1. Let $X \in \mathscr{T}(S)$ and $\lambda \in \mathscr{M} \mathscr{L}(S)$. Then the Hopf differential $\Phi_{X}(\lambda)$ of the collapsing map $\kappa: X \rightarrow \operatorname{pr}_{\lambda} X$ and the HubbardMasur differential $\phi_{X}(\lambda)$ satisfy

$$
\left\|4 \Phi_{X}(\lambda)-\phi_{X}(\lambda)\right\|_{1} \leq C\left(1+E(\lambda, X)^{\frac{1}{2}}\right)
$$

where $E(\lambda, X)$ is the extremal length of λ on X and C is a constant depending only on $\chi(S)$.

[^0]
References

[D] D. Dumas, Grafting, pruning, and the antipodal map on measured laminations, J. Differential Geom. 74(1) (2006) 93-118, MR 2260929.
[KS] N.J. Korevaar \& R.M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561-659, MR 1266480, Zbl 0862.58004.

Department of Mathematics
Brown University
Providence, RI 02912
E-mail address: ddumas@math.brown.edu

[^0]: Received 11/2006, revised 06/27/2007.

