ERRATUM TO "GRAFTING, PRUNING, AND THE ANTIPODAL MAP ON MEASURED LAMINATIONS"

DAVID DUMAS

Theorem 9.3 of $[\mathbf{D}]$ is incorrect; in the proof, the quadrilateral comparison cannot be applied directly to estimate the integral (7). However a weaker estimate follows by correcting the proof: one must use $||f_*v||^2 - ||h_*v||^2| = ||f_*v|| - ||h_*v|| + ||h_*v|| + ||h_*v||$ and the Cauchy-Schwarz inequality, bounding the resulting terms by the energy difference and the total energy of f and h, respectively. This method was used by Korevaar-Schoen in $[\mathbf{KS}]$ (see the proof of Proposition 2.6.3) to obtain a more general estimate of the difference of pullback metrics for maps to NPC spaces, from which the following replacements for Theorem 9.3 and Corollary 9.4 of $[\mathbf{D}]$ follow:

Theorem 9.3. Let $f \in W^{1,2}(X,Y)$ where $X,Y \in \mathcal{T}(S)$ and Y is given the hyperbolic metric ρ . Let h be the harmonic map homotopic to f. Then

$$||f^*(\rho) - h^*(\rho)||_1 \le \sqrt{2} \left(\mathscr{E}(f) - \mathscr{E}(h) \right)^{\frac{1}{2}} \left(\mathscr{E}(f)^{\frac{1}{2}} + \mathscr{E}(h)^{\frac{1}{2}} \right)$$

and in particular

$$\|\Phi(f) - \Phi(h)\|_1 \le \sqrt{2} \left(\mathscr{E}(f) - \mathscr{E}(h) \right)^{\frac{1}{2}} \left(\mathscr{E}(f)^{\frac{1}{2}} + \mathscr{E}(h)^{\frac{1}{2}} \right).$$

Theorem 9.4. Let $f \in W^{1,2}(\tilde{X}, T_{\lambda})$ be a π_1 -equivariant map, where $X \in \mathcal{F}(S)$ and $\lambda \in \mathcal{ML}(S)$. Then

$$\|\Phi(f) + \frac{1}{4}\phi_X(\lambda)\|_1 \le \sqrt{2} \left(\mathscr{E}(f) - \mathscr{E}(\pi_\lambda)\right)^{\frac{1}{2}} \left(\mathscr{E}(f)^{\frac{1}{2}} + \mathscr{E}(\pi_\lambda)^{\frac{1}{2}}\right)$$

The main results of $[\mathbf{D}]$ are unaffected by these changes, since they are asymptotic in nature and the proofs only require bounds that are $o(\mathscr{E}(h))$ when $\mathscr{E}(f) - \mathscr{E}(h) = O(1)$ and $\mathscr{E}(h) \to \infty$. Only Theorem 10.1 must be revised; we have instead:

Theorem 10.1. Let $X \in \mathcal{T}(S)$ and $\lambda \in \mathcal{ML}(S)$. Then the Hopf differential $\Phi_X(\lambda)$ of the collapsing map $\kappa : X \to \operatorname{pr}_{\lambda} X$ and the Hubbard-Masur differential $\phi_X(\lambda)$ satisfy

$$||4\Phi_X(\lambda) - \phi_X(\lambda)||_1 \le C\left(1 + E(\lambda, X)^{\frac{1}{2}}\right)$$

where $E(\lambda, X)$ is the extremal length of λ on X and C is a constant depending only on $\chi(S)$.

Received 11/2006, revised 06/27/2007.

176 D. DUMAS

References

- [D] D. Dumas, Grafting, pruning, and the antipodal map on measured laminations,
 J. Differential Geom. 74(1) (2006) 93–118, MR 2260929.
- [KS] N.J. Korevaar & R.M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561–659, MR 1266480, Zbl 0862.58004.

DEPARTMENT OF MATHEMATICS BROWN UNIVERSITY PROVIDENCE, RI 02912 $\emph{E-mail address:}$ ddumas@math.brown.edu