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CONCENTRATED, NEARLY MONOTONIC,

EPIPERIMETRIC MEASURES

IN EUCLIDEAN SPACE

Thierry De Pauw

Abstract

We characterize Hölder continuously differentiable m dimen-
sional submanifolds of Euclidean space among m rectifiable sets
S in terms of growth conditions on the m density ratios of the
Hausdorff measure Hm S.

À ma maman

1. Foreword

We consider an m dimensional differentiable submanifold S ⊂ Rn,
0 < m < n, whose tangent spaces Tan(S, x) vary Hölder continuously
with respect to x ∈ S. In other words there are 0 < α ≤ 1 and C1 > 0
such that

dist(Tan(S, x1), Tan(S, x2)) ≤ C1|x1 − x2|α

whenever x1, x2 ∈ S. Here dist(W1, W2) measures the distance between
two m dimensional vector subspaces of Rn; for instance we may set it
equal to the Hilbert-Schmidt norm of PW1 −PW2 where PW denotes the
nearest point projection on W . Our purpose is to study the measure of
area on S, that is the Radon measure φ = Hm S defined as follows:

(Hm S)(A) = Hm(S ∩ A)

whenever A ⊂ Rn. We have denoted by Hm the m dimensional Haus-
dorff measure on S, see e.g., [10, 2.10.2], so that φ “coincides with the
Lebesgue measure in coordinate charts” according to the area theorem,
[10, 3.2.3]. We observe (Proposition 3.6.1) that each x0 ∈ S has a
neighborhood U with the following property (here spt(φ) = S).

(A) For every x ∈ spt(φ)∩U and every 0 < r < R such that B(x, R) ⊂
U one has: ∣∣∣∣

φ(B(x, r))

α(m)rm
− φ(B(x, R))

α(m)Rm

∣∣∣∣ ≤ C2R
2α.
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(B) For every x ∈ U and every 0 < r < R such that B(x, R) ⊂ U , one
has:

φ(B(x, r))

α(m)rm
− φ(B(x, R))

α(m)Rm
≤ C2R

α.

We notice that condition (B) guarantees the existence of a limit of the
density ratios for each x ∈ U :

Θm(φ, x) := lim
r→0+

φ(B(x, r))

α(m)rm
.

The normalizing constant α(m) is chosen in order that:

(C) Θm(φ, x) = 1 whenever x ∈ spt(φ) ∩ U .

Inequality (A) is a simple consequence of the area theorem together
with the Taylor expansion of the area integrand in coordinates (Lemma
2.3.4). Inequality (B) follows from (A) by comparing φ(B(x, r)) (where
possibly x 6∈ S) to φ(B(x′, r′)) for some x′ ∈ S and r′ > 0.

Our main result is the reciprocal of the above stated observation.

Theorem. Assume φ is a Radon measure in Rn verifying conditions
(A), (B) and (C) above in some open set U ⊂ Rn. Then spt(φ) ∩ U is
a Hölder continuously differentiable submanifold of Rn.

In case m = n − 1 the same conclusion holds without assuming (B)
according to the work of G. David, C. Kenig and T. Toro, [6]. For the
purpose of proving such results it seems important that the testing balls
B(x, r) be Euclidean. Regarding Lipschitzian regularity implied by the
controlled behavior of density ratios computed with respect to (very)
non Euclidean balls, see the recent account [13] by A. Lorent.

We will refer to condition (A) as the epiperimetry of φ near x0, to
condition (B) as its nearly monotonicity near x0, and to condition (C)
as to its density 1 property near x0. These three conditions are met
by measures φ corresponding to solutions of some variational problems
including soap films and soap bubbles. Specifically let S ⊂ Rn be
(Hm, m) rectifiable ([10, 3.2.14]) and (M, ε, δ) minimal in the sense
introduced by F.J. Almgren in [2]; then φ = Hm S meets these three
requirements in a neighborhood of Hm almost every point x0 ∈ S (for
a definition of (M, ε, δ) almost minimality in the setting of currents see
subsection 3.4). The near monotonicity property (near every x0 ∈ S)
is a classical consequence of almost minimality (see Proposition 3.4.5
for the analogous result in the setting of currents). Nevertheless, to the
author’s knowledge it doesn’t seem to have been written up so far in
the context of sets (see the forthcoming [9]). The epiperimetry property
near Hm almost every x0 ∈ S has been proved by E.R. Reifenberg
[19] in the context of minimal sets. The density 1 property near Hm

almost every x0 ∈ S follows simply from (Hm, m) rectifiability, [10,
3.2.19], together with the epiperimetry property. Epiperimetry is the
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most important property needed to prove the regularity theorem. It
says that the density ratios α(m)−1r−mφ(B(x, r)) decrease sufficiently
fast to their limit when r ↓ 0 for most x ∈ spt(φ). Assuming that
S ∩ B(x0, r0) is sufficiently close to being a graph with small Lipschitz
constant parametrized on some m dimensional affine subspace x0 + W ,
the epiperimetry property is proved by comparing the area of S inside
B(x0, r0) to that of the graph of the solution of the Dirichlet problem
with boundary data close to S∩Bdry B(x0, r0) — however, the length of
this brief description is no indication of the technical complications that
arise when carrying out the actual proof. Adapting E.R. Reifenberg’s
proof of epiperimetry to the case of almost minimality together with the
main result of the present paper yields another proof of F.J. Almgren
almost everywhere regularity theorem in [2]. Regarding F.J. Almgren’s
memoir one may also consult E. Bombieri’s different proof in the setting
of currents [4] as well as G. David and S. Semmes’ account [7] on the
uniform rectifiability of the so-called restricted sets introduced in [2].

We now turn to giving a general idea of the methods used in this
paper (which are inspired in part by D. Preiss’ moments computations
in [17]). Assume φ verifies conditions (A), (B) and (C) above. It is
first observed (see also [8]) that (B) and (C) imply the following. For
every ε > 0 there exists r = r(x0, ε) > 0 and an m dimensional vector
subspace W (depending on x0 and also possibly on r > 0 and ε > 0)
such that

(1) distH
[
spt(φ) ∩ B(x0, γr), (x0 + W ) ∩ B(x0, γr)

]
≤ εγr

where distH denotes the Hausdorff distance and γ = γ(n, m, ε) > 0.
This can be seen as follows. There exists δ = δ(n, m, ε) > 0 such that if
φ verifies (B) and (C) and if r > 0 is such that

(2) φ(B(x0, r)) ≤ (1 + δ)α(m)rm,

then (1) holds for some W (see Lemma 4.5.5). For if this were not
true, a compactness argument would yield a weakly converging sequence
φ1, φ2, . . . with a limit φ verifying (C) and (B) with C2 = 0 and U = Rn.
Such a measure φ would be necessarily of the type Hm W according
to a theorem of O. Kowalski and D. Preiss (see e.g., Theorem 4.5.4),
therefore contradicting the convergence in (local) Hausdorff distance of
spt(φj), j = 1, 2, . . ., to spt(φ) (Corollary 3.3.5). One also notices that
inequality (2) is inherited by neighbooring points of x0 and persists at
smaller scales according to condition (B). Therefore E.R. Reifenberg’s
topological disk theorem (see Theorem 2.5.10) applies, asserting that
spt(φ) contains a neighborhood of x0 which is homeomorphic to an m
dimensional ball. This consequence of (2) will be used repeatedly in the
present work, for instance for finding orthonormal families e1, . . . , em

such that x0 + ρej ∈ spt(φ), j = 1, . . . , m, for 0 < ρ < r small enough.
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The remaining part of the proof consists in controlling the distance
between m dimensional subspaces Wx1,r1 and Wx2,r2 which approximate
spt(φ) in the sense of (1) at different points xi and different scales ri,
i = 1, 2. The reason for doing this is twofold. On the one hand we
want to estimate dist(Wx,r, Wx,2r) by a quantity ε(r) with the property
that

∑∞
j=1 ε(2−j) < ∞ — this implies that a limit Wx = limr→0+ Wx,r

exists, therefore providing us with a tangent space of spt(φ) at x. On
the other hand, we want to estimate dist(Wx1,r, Wx2,r) by a multiple of

rβ, for some 0 < β ≤ 1, whenever r = 2|x1 − x2| — this shows that the
tangent spaces Wx vary Hölder continuously with respect to x. In order
to derive such estimates from information regarding the growth of φ in
Euclidean balls, we start by replacing the balls themselves by “smooth”
balls; specifically we introduce the quantity

V̂ (φ, x, r) =

∫

B(x0+x,r)

(
r2 − |x − (y − x0)|2

)2
dφ(y).

It is a plain consequence of Cavalieri’s principle (see e.g., [15, 1.15])

that conditions (A) and (B) remain valid with r−4V̂ (φ, x, r) replacing
φ(B(x, r)) (for condition (A) to hold we obviously assume that x0 +x ∈
spt(φ)). Next we consider the quantity

V (φ, x, r) =

∫

B(x0,r)

(
r2 − |x − (y − x0)|2

)2
dφ(y)

and we estimate |V̂ (φ, x, r)−V (φ, x, r)| in terms partly of the error term

C2r
2α appearing in (A) (Lemma 4.2.1), whereas V̂ (φ, x, r)− V̂ (φ, x0, r)

has a positive part controlled partly in terms of the error term C2r
α ap-

pearing in (B) (Lemma 4.2.3), x ∈ U arbitrary. The reason for studying
V (φ, x, r) lies in its geometrical significance. To see this we split the in-
tegrand into homogeneous polynomials of the variable x:

V (φ, x, r) =
4∑

k=0

Pk(φ, x, r)

=

∫

B(x0,r)

(
r2 − |y − x0|2

)2
dφ(y)

+ 4

〈
x,

∫

B(x0,r)
y

(
r2 − |y − x0|2

)
dφ(y)

〉

+ 4

∫

B(x0,r)
〈x, y − x0〉2dφ(y)

− 2|x|2
∫

B(x0,r)

(
r2 − |y − x0|2

)2
dφ(y)

+ O(rm+1|x|3).
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If normalized properly the term of degree 0 can be thought of as a
density ratio of φ at the point x0, at scale r, with respect to our “smooth
ball”. The term of degree 1 is associated with a vector

b(φ, r) =

∫

B(x0,r)
y

(
r2 − |y − x0|2

)
dφ(y)

whose proper normalization can be thought of as a “smoothly weighted”
center of mass of φ in B(x0, r). Most importantly we abbreviate

Q(φ, r)(x) =

∫

B(x0,r)
〈x, y − x0〉2dφ(y),

which is a positive semi-definite quadratic form appearing in the term of
degree 2. To appreciate the meaning of Q(φ, r) think of φ = Hm S, S
being a differentiable submanifold, x0 ∈ S and r being sufficiently small.
In that case Q(φ, r)(x) is close to rm+2|PTan(S,x0)(x)|2 (whenever |x| is
small). The justification for the computations involving the comparison

of V (φ, x, r) and V̂ (φ, x, r) is the following. After normalizing properly
all the quantities introduced so far (we divide them by some multiple of
rm+2 in order that the term of degree 2 in the above expansion becomes
dimensionless) we show that if we are in the “close to flat” situation
described in the preceding paragraph then the normalized Q(φ, r) has
a trace close to m and there is an orthogonal family e1, . . . , em so that
x0 + ei ∈ spt(φ) and Q(φ, r)(ei) = |ei|2, i = 1, . . . , m. In other words,
Q(φ, r)(x) is close to |PWx0,r

(x)|2 where Wx0,r is the subspace generated
by e1, . . . , em. In fact we show that the following is small:

r−m−2

∫

B(x0,r)
dist(y − x0, Wx0,r)

2dφ(y).

It then follows that

spt(φ) ∩ B(x0, r/2) ⊂ B(x0 + Wx0,r, εr)

for some small ε > 0. In turn, arguing that spt(φ)∩B(x0, r) is essentially
a topological disk we obtain that (1) is satisfied for Wx0,r. Of course the
whole point is that we now have gained information about the error ε: it
has been controlled at each stage of the computation by the error terms
C2r

α appearing in conditions (A) and (B), i.e., ε . rβ (our estimates
give β = α/8(m + 2), which is not optimal). Since we can repeat the
whole construction at smaller scales r this is enough to complete the
proof of the theorem.

2. Notations and preliminaries

Given x ∈ Rn and A ⊂ Rn nonempty, we let dist(x, A) = inf{|x−y| :
y ∈ A} where | · | is the Euclidean norm. To a nonempty set A ⊂ Rn

and r > 0 we associate the closed r neighborhood of A defined by

B(A, r) = Rn ∩ {x : dist(x, A) ≤ r}
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and we often write B(a, r) instead of B(A, r) in case A = {a} is a
singleton. We define open balls as U(a, r) = Rn ∩{x : |x−a| < r}. The
closure, interior and boundary of A ⊂ Rn are denoted respectively by
Clos A, Int A and Bdry A.

Linear subspaces and orthogonal maps. In this subsection we are
given two integers 0 ≤ m ≤ n and two finite dimensional real Hilbert
spaces V and W , their inner products being denoted respectively by
〈 . , . 〉V and 〈 . , . 〉W . A linear map L ∈ Hom(V, W ) is an orthogonal in-
jection if 〈L(v1), L(v2)〉W = 〈v1, v2〉V whenever v1, v2 ∈ V ; notice that L
need indeed be injective, and therefore dim(W ) ≥ dim(V ). The adjoint
of a linear map L ∈ Hom(V, W ) is the only linear map L∗ ∈ Hom(W, V )
such that 〈v, L∗(w)〉V = 〈L(v), w〉W , v ∈ V , w ∈ W . We let O(n, m) be
the collection of orthogonal injections Rm → Rn. Elements belonging
to O∗(n, m) := Hom(Rn,Rm) ∩ {p : p∗ ∈ O(n, m)} are called orthog-
onal projections. Furthermore, we denote by G(n, m) the collection of
m dimensional linear subspaces of Rn. Given W ∈ G(n, m) we let
iW ∈ Hom(W,Rn) be the orthogonal injection such that iW (w) = w,
w ∈ W , and we define PW ∈ Hom(Rn,Rn) by PW := iW ◦ i∗W . Note
also that i∗W ◦ iW = idW .

We consider two norms on Hom(V, W ). For L ∈ Hom(V, W ) we
let ‖L‖ := sup{|L(v)| : v ∈ V and |v| = 1}. Next we define the inner
product L1 ·L2 := trace L∗

2◦L1, L1, L2 ∈ Hom(V, W ), as well as the cor-

responding norm ‖L‖2 :=
√

L · L, L ∈ Hom(V, W ). One readily checks
that ‖L‖2

2 =
∑

i∈I |L(ei)|2 whenever {ei : i ∈ I} is an orthonormal

base of V . It follows that ‖L‖ ≤ ‖L‖2 ≤
√

dimV ‖L‖. Next we endow
G(n, m) with the distance defined by dist(W1, W2) := ‖PW1 − PW2‖2.

We recall that if W ∈ G(n, m) then W⊥ ∈ G(n, n − m) is defined by
W⊥ := Rn ∩ {v : 〈v, w〉 = 0 for every w ∈ W}. The following is in-
tended for estimating the “angles” between tangent planes to a graph.

Lemma 2.1.1. Let W ∈ G(n, m), L1, L2 ∈ Hom(W, W⊥) and let
Wj ∈ G(n, m) be such that Wj := im (iW + iW⊥ ◦ Lj), j = 1, 2. Then

(A) dist(W1, W2) ≤ 2m‖L1 − L2‖;
(B) ‖L1 − L2‖ ≤ 2

√
1 + ‖L1‖2

√
1 + ‖L2‖2 dist(W1, W2).

Proof. We define Kj := iW + iW⊥ ◦ Lj , j = 1, 2. Fix e ∈ W2 with
|e| = 1 and let w1, w2 ∈ W be such that PW1(e) = K1(w1) and e =
PW2(e) = K2(w2). Notice that 〈e − PW1(e), K1(w2)〉 = 0. Therefore

〈PW1(e), e〉 = 1 − 〈e − PW1(e), e〉(3)

= 1 − 〈PW2(e) − PW1(e), K2(w2) − K1(w2)〉.
Moreover one checks that |w2| ≤ 1 so that
(4)
|〈PW2(e) − PW1(e), K2(w2) − K1(w2)〉| ≤ ‖PW1 − PW2‖2 ‖L1 − L2‖.
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On letting e1, . . . , en be an orthonormal base of Rn such that e1, . . . , em

span W2, we use (3) and (4) to infer that

‖PW1 − PW2‖2
2 = 2m − 2

n∑

j=1

〈PW1(ej), PW2(ej)〉

= 2m − 2

m∑

j=1

〈PW1(ej), ej〉

≤ 2m ‖PW1 − PW2‖2 ‖L1 − L2‖,
which proves conclusion (A).

Next we choose e ∈ W with |e| = 1 and ‖L1 −L2‖ = |L1(e)−L2(e)|.
Let w ∈ W be such that PW1(K2(e)) = K1(w). Observe that

|e − w|2 ≤ |e − w|2 + |L2(e) − L1(w)|2

= |K2(e) − K1(w)|2

= |PW2(K2(e)) − PW1(K2(e))|2

≤ ‖PW1 − PW2‖2
2 ‖K2‖2;

therefore,

‖L1 − L2‖ = |K1(e) − K2(e)|
≤ |K1(e) − K1(w)| + |K1(w) − K2(e)|
≤ ‖K1‖|e − w| + ‖PW1 − PW2‖2 ‖K2‖
≤ 2‖K1‖ ‖K2‖ ‖PW1 − PW2‖2 ,

and it remains to observe that ‖Kj‖ ≤
√

1 + ‖Lj‖2, j = 1, 2. q.e.d.

C1,α functions and submanifolds. Given two metric spaces X and
Y , a function f : X → Y , and 0 < α ≤ 1, we denote by hα(f) the
smallest 0 ≤ C ≤ ∞ such that distY (f(x1), f(x2)) ≤ C distX(x1, x2)

α

for every x1, x2 ∈ X. If hα(f) < ∞ we say that f is Hölder continuous
with exponent α. Given an open set U ⊂ Rm, a differentiable function
f : U → Rn and 0 < α ≤ 1, we say that f is of class C1,α whenever its
derivative Df : U → Hom(Rm,Rn) is Hölder continuous of exponent
α. Therefore it follows from the mean value theorem that |f(z + h) −
f(z) − Df(z)(h)| ≤ hα(Df)|h|1+α whenever z, z + h ∈ U , in case U is
convex.

Definition 2.2.2. Given A ⊂ Rn and 0 < α ≤ 1, we say that A is
an m dimensional C1,α submanifold of Rn whenever it is a submanifold
of class 1 and

A → G(n, m) : x 7→ Tan(A, x)

is locally Hölder continuous with exponent α.
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The definition of submanifold of class 1 can be found in [10, 3.1.19],
whereas tangent spaces are defined in [10, 3.1.21]. The following lemma
is obtained by applying uniformly the inverse mapping theorem. To
state it we need to recall that the graph of a function u : W ∩B → W⊥,
W ∈ G(n, m), B ⊂ W , is defined by

graph(u) := Rn ∩ {iW (w) + iW⊥(u(w)) : w ∈ W} .

Lemma 2.2.3. Let A ⊂ Rn and 0 < α ≤ 1. The following conditions
are equivalent.

(A) A is an m dimensional C1,α submanifold of Rn.
(B) For every a ∈ A there exist r > 0, 0 < C < ∞ and an open

neighborhood U ⊂ Rn of a with the following property. For each
x ∈ A ∩ U there are Wx ∈ G(n, m) and ux : Wx ∩ U(0, r) → W⊥

x

such that
(B.1) ux is of class C1,α and hα(Dux) ≤ C;
(B.2) ux(0) = 0 and Dux(0) = 0;
(B.3) A ∩ U = (x + graph(ux)) ∩ U .

Proof. Assume (A) holds true and fix a ∈ A. One infers from the
definition of submanifold of class 1 that there exist 0 < ε0 < 1, Wa ∈
G(n, m), an open neighborhood Ua ⊂ Rn of a, and ua : Wa∩U(0, ε0) →
W⊥

a of class 1 such that Lip(ua) < ∞ and conclusions (B.2) and (B.3)
are verified for x = a. We define fa : Wa ∩ U(0, ε0) → Rn by fa :=
iWa

+ iW⊥
a

◦ ua, and Wx := imDfa(PWa
(x)) for each x ∈ A ∩ Ua ∩

P−1
Wa

(U(PWa
(a), ε0)). One readily checks that Wx = Tan(A, x). Lemma

2.1.1 (B) now implies that

‖Dua(z1) − Dua(z2)‖(5)

≤ 2
(
1 + Lip(ua)

2
)
dist (Tan(A, fa(z1)), Tan(A, fa(z2)))

≤ 2
(
1 + Lip(ua)

2
)1+α

hα (Tan(A, . ) ↾ Ua) |z1 − z2|α,

for z1, z2 ∈ Wa∩U(0, ε0)∩PWa
(Ua−a), so that ua is C1,α in this domain.

For x ∈ A∩U ∩P−1
Wa

(U(PWa
(a), ε0)) we now define hx : Wa∩U(0, ε0) →

Wx by the formula hx := i∗Wx
◦ fa so that

(6) Dhx(z) = i∗Wx
◦ iWa

+ i∗Wx
◦ iW⊥

a
◦ Dua(z) , z ∈ Wa ∩ U(0, ε0).

It is easy to check that for every w ∈ Wa one has

(7)
∣∣(i∗Wx

◦ iWa

)
(w)

∣∣ ≥ |w|√
1 + ‖Dua(PWa

(x))‖2
.

Therefore

(8) 1 ≤
∥∥Dhx(0)−1

∥∥ =
∥∥∥
(
i∗Wx

◦ iWa

)−1
∥∥∥ ≤

√
1 + hα(Dua)2ε2α

whenever |PWa
(x)| ≤ ε, 0 < ε ≤ ε0. For such 0 < ε ≤ ε0, on set-

ting δ(ε) :=
(
ε max{1,hα(Dua)}−1

) 1
α ≤ ε it follows from the inverse
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mapping theorem (see [10, 3.1.1], second half of page 210) that

h−1
x : Wx ∩ B

(
0,

δ(ε)(1 + ε)√
1 + hα(Dua)2ε2α

)
→ Wa ∩ B(0, δ(ε))

is well-defined and a homeomorphism onto its image. Next, if z ∈
Wa ∩ B(0, δ(ε)) and w ∈ Wa then

|Dhx(z)(w)| ≥ |w|
((

1 + ‖Dua(PWa
(x))‖2

)− 1
2 − ‖Dua(z)‖

)
(9)

≥ |w|
((

1 + hα(Dua)
2ε2α

)− 1
2 − hα(Dua)δ(ε)

α
)

≥ µ|w|
for some µ > 0 provided 0 < ε ≤ ε0 is chosen small enough. Therefore
there exists r > 0, independent of x, such that h−1

x : Wx∩U(0, r) → Wa

is a diffeomorphism of class 1 onto its image, and Lip(h−1
x ) is bounded

above uniformly in x. Finally we define ux : Wx∩U(0, r) → W⊥
x by the

formula

ux := i∗W⊥
x
◦ τ−x ◦ fa ◦ τPWa (x) ◦ h−1

x .∗

It is obvious that ux(0) = 0. Moreover,

Dux(0) = i∗W⊥
x
◦ Dfa(PWa

(x)) ◦
(
i∗Wx

◦ iW
)−1

= 0

because Wx = imDfa(PWa
(x)). On choosing a small enough neighbor-

hood of a, U ⊂ Ua, conclusion (B.3) is clearly verified. One checks that
ux, x ∈ A ∩ U , are uniformly Hölder continuous with a formula analo-
gous to (5). This finishes the proof that (A) implies (B). The proof that
(B) implies (A) is similar, shorter, and left to the reader. q.e.d.

Jacobians. Given W ∈ G(n, m), a map f : W → Rn and z ∈ W
such that f is differentiable at z, we recall that the m jacobian of f
at z is defined by Jmf(z) :=

√
det(Df(z)∗ ◦ Df(z)). The following

well-known lemma is useful for estimating the measure of a graph.

Lemma 2.3.4. For each m = 1, 2, . . . there exists 0 < c2.3.4(m) < ∞
with the following property. Whenever

(A) 1 ≤ m < n, W ∈ G(n, m), u : W → W⊥;
(B) z ∈ W , u is differentiable at z and ‖Du(z)‖ ≤ 1;
(C) f : W → Rn and f = iW + iW⊥ ◦ u;

there exists σ ∈ R such that |σ| ≤ c2.3.4(m) and

Jmf(z) = 1 +
1

2
‖Du(z)‖2

2 + σ‖Du(z)‖4
2.

∗Here and in the remaining part of this paper τ z(v) = z + v.
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Proof. Set L := Du(z) ∈ Hom(W, W⊥) and notice that

Jmf(z)2 = det
(
(iW + iW⊥ ◦ L)∗ ◦ (iW + iW⊥ ◦ L)

)

= det(idW + L∗ ◦ L).

On letting λ1, . . . , λm be the eigenvalues of L∗ ◦L, we readily check that
1 + λ1, . . . , 1 + λm are the eigenvalues of idW + L∗ ◦ L, whence

Jmf(z)2 =

m∏

i=1

(1 + λi) = 1 +

m∑

i=1

λi + R

where R is a sum of products involving at least two eigenvalues. Since
λj ≥ 0, j = 1, . . . , m, we see that R ≥ 0. Now

∑m
i=1 λi = trace L∗ ◦L =

‖L‖2
2; in particular R ≤ c(m)‖L‖4

2 because λi ≤ ‖L‖2
2, i = 1, . . . , m, and

‖L‖2 ≤ 1. The intermediate value theorem then shows that

Jmf(z)2 = 1 + ‖L‖2
2 + σ0‖L‖4

2

for some 0 ≤ σ0 ≤ c(m). It now suffices to plug in the Taylor expansion
of order 2 of

√
1 + t with t := ‖L‖2

2 + σ0‖L‖4
2. q.e.d.

Radon measures. A Radon measure is a Borel regular measure φ on
Rn such that φ(C) < ∞ whenever C ⊂ Rn is compact, [10, 2.2.5].
According to Riesz’s representation theorem they correspond biunivo-
quely to nonnegative linear functionals on the space Cc(R

n) of com-
pactly supported continuous real-valued functions on Rn, [10, 2.5.13].
The weak convergence of Radon measures φj ⇀ φ is then defined as the
weak convergence of the corresponding linear functionals (see also [15,
1.24] for testing weak convergence at the level of sets). Together with
the Banach-Alaoglu theorem [20, 3.15], Riesz’s representation theorem
implies de la Vallée Poussin’s compactness theorem [15, 1.23]. The
support of a Radon measure φ is the smallest closed set C such that
φ(Rn

∼ C) = 0. We will also use the following trivial result.

Lemma 2.4.5. Let φ, φ1, φ2, . . . be Radon measures in an open set
U ⊂ Rn and assume that φj ⇀ φ as j → ∞. Then for every compact
K ⊂ U and every ε > 0 there is an integer j0 such that

spt(φ) ∩ K ⊂ U ∩ {x : dist(x, spt(φj)) ≤ ε}
whenever j ≥ j0.

Proof. Suppose instead that there is a compact set K ⊂ U , ε > 0 and
a sequence k(1), k(2), . . . as well as xk(j) ∈ spt(φ)∩K such that for every
integer j one has dist(xk(j), spt(φk(j))) > ε. Choose x ∈ spt(φ)∩K and a
subsequence l(1), l(2), . . . of k(1), k(2), . . . such that xl(j) → x as j → ∞.
When j is sufficiently large for |xl(j) − x| ≤ ε/2 we have B(x, ε/2) ⊂
B(xl(j), ε) so that U(x, ε/2)∩spt(φl(j)) = ∅. Therefore φl(j)(U(x, ε/2)∩
U) = 0, hence φ(U(x, ε/2) ∩ U) = 0 as well, in contradiction with
x ∈ spt(φ). q.e.d.
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Reifenberg flatness. Given two nonempty bounded sets A1, A2 ⊂ Rn

we define their Hausdorff distance as follows:

distH(A1, A2) = inf{r > 0 : A1 ⊂ B(A2, r) and A2 ⊂ B(A1, r)}.
We readily check that

distH(A1, A2) = max

{
sup

x1∈A1

dist(x1, A2), sup
x2∈A2

dist(x2, A1)

}
.

The following lemma is proved for instance in [5].

Lemma 2.5.6. Let 0 ≤ m ≤ n be integers and W1, W2 ∈ G(n, m).
The following holds:

‖PW1 − PW2‖ = distH(W1 ∩ B(0, 1), W2 ∩ B(0, 1))

as well as

‖PW1 − PW2‖ = max{dist(z, W2) : z ∈ W1 ∩ B(0, 1)} .

We now turn to defining Reifenberg flat sets.

Definition 2.5.7. Let 0 < m < n be integers, S ⊂ Rn, x ∈ S,
r > 0 and ε > 0. We say that S is (ε, m) flat at (x, r) if there exists
W ∈ G(n, m) such that

dH (S ∩ B(x, r), (x + W ) ∩ B(x, r)) ≤ εr.

Given ε > 0 we also define

G(S, x, r, ε) = G(n, m)∩{W : dH(S∩B(x, r), (x+W )∩B(x, r)) ≤ εr}.
The following two easy lemmas are proved for instance in [5].

Lemma 2.5.8 (Same center, different scales). Assume that

(A) S ⊂ Rn, x ∈ S, ε > 0, 0 < r < R and εR ≤ r;
(B) Wx,r ∈ G(S, x, r, ε) and Wx,R ∈ G(S, x, R, ε).

Then Wx,R ∈ G(S, x, r, 2εRr−1) and

‖PWx,r
− PWx,R

‖ ≤ ε(1 + 2Rr−1).

Lemma 2.5.9 (Different centers, same scale). Assume that

(A) S ⊂ Rn, x1, x2 ∈ S, ε > 0, ν > 1, R > 0, 0 < λ < 1, |x1 − x2| ≤
(1 − λ)R;

(B) 1 − λ + ε + ν−1 ≤ 1;
(C) Wxi,R ∈ G(S, xi, R, ε), i = 1, 2.

Then
‖PWx1,R

− PWx2,R
‖ ≤ 6εν.

The following is usually referred to as Reifenberg’s topological disk
theorem. Indeed E.R. Reifenberg proved it in [18]. Later C.B. Morrey
extended the result, replacing the ambient space Rn by a Riemannian
manifold, see [16]. For recent developments see [5].
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Theorem 2.5.10. Let n > 0 be an integer. There exist constants
0 < ε2.5.10(n) < ∞ and 0 < c2.5.10(n) < ∞ with the following property.
Assume that

(A) 0 < m < n is an integer, S ⊂ Rn is closed, x0 ∈ S, r0 > 0;
(C) 0 < ε ≤ ε2.5.10(n);
(D) for every x ∈ S ∩ B(x0, 2r0) and every 0 < r ≤ 2r0, S is (ε, m)

flat at (x, r);
(E) W0 ∈ G(S, x0, r0, ε).

Then there exists a continuous map

τ : (x0 + W0) ∩ B(x0, r0) → S

such that:

(F) |τ(x) − x| ≤ c2.5.10(n)εr0 for every x ∈ (x0 + W0) ∩ B(x0, r0);
(G) τ is Hölder bicontinuous: for every x, y ∈ (x0 + W0) ∩ B(x0, r0)

one has

[1 − c2.5.10(n)ε]|y − x|1+c2.5.10(n)ε

≤ |τ(y) − τ(x)|
≤ [1 + c2.5.10(n)ε]|y − x|1−c2.5.10(n)ε;

(H) τ is one-to-one;
(I) S ∩ B(x0, r0/2) ⊂ im τ .

3. Monotonicity and epiperimetry

3.1. Spherical excess.

Definition 3.1.1. Given an open set U ⊂ Rn, a Radon measure
φ on U , x ∈ U and R > 0 such that B(x, R) ⊂ U , and an integer
m ∈ {0, . . . , n}, we define the lower spherical excess and upper spherical
excess of (φ, x, R, m) as follows:

excm
∗ (φ, x, R)

:= sup

{(
φ(B(x, ρ2))

α(m)ρm
2

− φ(B(x, ρ1))

α(m)ρm
1

)−

: 0 < ρ1 ≤ ρ2 ≤ R

}

and

excm ∗(φ, x, R)

:= sup

{(
φ(B(x, ρ2))

α(m)ρm
2

− φ(B(x, ρ1))

α(m)ρm
1

)+

: 0 < ρ1 ≤ ρ2 ≤ R

}
.

We also put

‖excm‖(φ, x, R) := max{excm
∗ (φ, x, R), excm ∗(φ, x, R)}.
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Remark 3.1.2. It is clear that excm
∗ (φ, x, R)<∞ and excm ∗(φ, x, R)

< ∞ whenever Θ∗m(φ, x) < ∞. The definitions are so that

−excm
∗ (φ, x, R) ≤ φ(B(x, R))

α(m)Rm
− φ(B(x, r))

α(m)rm
≤ excm ∗(φ, x, R)

whenever 0 < r ≤ R.

Lemma 3.1.3. Asume that

(A) U ⊂ Rn is open, R > 0, B(0, 2R) ⊂ U , 0 < η ≤ 1;
(B) φ is a Radon measure in U ;

then for every x ∈ B(0, ηR) and every 0 < r ≤ R the following holds:

φ(B(x, r))

α(m)rm
≤ (Θm ∗(φ, 0) + excm ∗(φ, 0, 2R)) (1 + η)m + excm

∗ (φ, x, R).

Proof. It suffices to observe that

φ(B(x, r))

α(m)rm
≤ φ(B(x, R))

α(m)Rm
+ excm

∗ (φ, x, R)

≤ φ(B(0, R + |x|))
α(m)(R + |x|)m

(
1 +

|x|
R

)m

+ excm
∗ (φ, x, R)

≤ (Θm ∗(φ, 0) + excm ∗(φ, 0, R)) (1 + η)m + excm
∗ (φ, x, R).

q.e.d.

3.2. Nearly monotonic measures.

Definition 3.2.1. A gauge ξ is a nondecreasing function of r > 0,
such that ξ(r) → 0 as r → 0.

Definition 3.2.2. Given an open set U ⊂ Rn, a Radon measure φ on
U , a gauge ξ and an integer m ∈ {0, . . . , n}, we say that φ is (ξ, m) nearly
monotonic in U if for every x ∈ U and every 0 < r < dist(x,Bdry U)
one has

excm
∗ (φ, x, r) ≤ ξ(r).

Furthermore, if φ is (ξ, m) nearly monotonic in U and ξ vanishes iden-
tically we say that φ is m monotonic in U .

Lemma 3.2.3. Let U ⊂ Rn be open, let ξ be a gauge and let φ be
a (ξ, m) nearly monotonic measure on U . Then Θm(φ, x) exists and is
finite for every x ∈ U , and the function U → R : x 7→ Θm(φ, x) is upper
semicontinuous.

Proof. For B(x, r)⊂U we abbreviate ϕx(r) :=α(m)−1r−mφ(B(x, r)).
By definition one has

−ξ(R) ≤ ϕx(R) − ϕx(r)

whenever B(x, R) ⊂ U and 0 < r ≤ R. Therefore,

−ξ(R) ≤ lim inf
r↓0

(ϕx(R) − ϕx(r)) = ϕx(R) − lim sup
r↓0

ϕx(r)
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and, in turn,

0 ≤ lim inf
R↓0

ϕx(R) − lim sup
r↓0

ϕx(r).

Next we let x, x1, x2, . . . ∈ U be such that xj → x as j → ∞, and we let
r > 0 be such that B(xj , 2r) ⊂ U , j = 1, 2, . . ., and ρ 7→ φ(B(x, ρ)) is
continuous at r. The above implies that

Θm(φ, xj) ≤ ϕxj
(r) + ξ(r)

≤ ϕx(r + |xj − x|)
(

1 +
|xj − x|

r

)m

+ ξ(r)

for each j = 1, 2, . . .. Consequently,

lim sup
j→∞

Θm(φ, xj) ≤ ϕx(r) + ξ(r)

and the conclusion follows on letting r tend to 0. q.e.d.

Remark 3.2.4. We could have possibly allowed, in the above defi-
nition, for any real number m > 0. However since the density Θm(φ, x)
exists at every x ∈ U whenever φ is a nearly monotonic measure, mak-
ing the further assumption that φ (U ∩ {x : 0 < Θm(φ, x) < ∞}) 6= 0 —
as we will —forces m to be an integer in the range 0, . . . , n (a theorem
of J.M. Marstrand, see [14], [15, Theorem 14.10] or [12]). In the sequel
we will in fact assume for m to be within the range 1, . . . , n − 1: the
case m = 0 is irrelevant (every Radon measure φ in U is 0 monotonic
in U) and the case m = n and ξ = 0 corresponds to φ = Ln u where
u ∈ L∞(Ln U), u ≥ 0 and △u ≥ 0 weakly, i.e., u is subharmonic (see
[8, Example 3.9, Proposition 5.7]).

Lemma 3.2.5. Let φj be a (ξj , m) nearly monotonic measure in an
open set U ⊂ Rn, j = 1, 2, . . ., and let φ be a Radon measure in U and
ξ a gauge. If φj ⇀ φ as j → ∞ and ξj → ξ (pointwise) as j → ∞, then
φ is (ξ, m) nearly monotonic in U .

Proof. For B(x, R) ⊂ U , 0 < ρ̂ < ρ2 < R and j = 1, 2, . . ., the
following holds:

−ξj(R) ≤ φj(B(x, ρ2))

α(m)ρm
2

− φj(U(x, ρ̂))

α(m)ρ̂m
.

Therefore,

−ξ(R) ≤ lim sup
j→∞

φj(B(x, ρ2))

α(m)ρm
2

− lim inf
j→∞

φj(U(x, ρ̂))

α(m)ρ̂m
(10)

≤ φ(B(x, ρ2))

α(m)ρm
2

− φ(U(x, ρ̂))

α(m)ρ̂m
.

Given 0 < ρ1 < ρ2 < R we pick a decreasing sequence ρ1 < ρ̂k < ρ2, k =
1, 2, . . ., such that ρ̂k → ρ1 when k → ∞. Since B(x, ρ1) = ∩∞

k=1U(x, ρ̂k)
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it follows readily from (10) that

−ξ(R) ≤ φ(B(x, ρ2))

α(m)ρm
2

− φ(B(x, ρ1))

α(m)ρm
1

.

The lemma is proved. q.e.d.

3.3. Concentrated measures.

Definition 3.3.1. Let U ⊂ Rn be open, 0 ≤ m ≤ n and let φ
be a Radon measure in U . We say that φ is m concentrated in U if
Θm

∗ (φ, x) ≥ 1 for φ almost every x ∈ U . We also define the m set of φ
as follows:

setm(φ) = U ∩ {x : Θm
∗ (φ, x) ≥ 1}.

Remark 3.3.2. Notice that setm(φ) ⊂ spt(φ) but equality need not
hold (it does not for instance if n = 2, m = 1 and

φ =

∞∑

j=1

H1 Bdry B(aj , 2
−j)

where a1, a2, . . . is a dense sequence in R2 – the next lemma shows this
measure is not nearly monotonic).

Lemma 3.3.3. Let U ⊂ Rn be open, 0 ≤ m ≤ n, let ξ be a gauge
and let φ be a Radon measure in U . If φ is m concentrated and (ξ, m)
nearly monotonic in U then Θm(φ, x) ≥ 1 for every x ∈ spt(φ).

Proof. Since φ is m concentrated we have φ(spt(φ) ∼ setm(φ)) = 0,
therefore setm(φ) is relatively dense in spt(φ). It then follows from the
(ξ, m) near monotonicity of φ and Lemma 3.2.3 that setm(φ) = spt(φ).

q.e.d.

Lemma 3.3.4. Let φj be an m concentrated (ξj , m) nearly monotonic
measure in an open set U ⊂ Rn, j = 1, 2, . . ., and let φ be a Radon
measure in U and ξ a gauge. If φj ⇀ φ as j → ∞ and ξj → ξ (pointwise)
as j → ∞, then φ is m concentrated and (ξ, m) nearly monotonic in U .
Furthermore, for every compact K ⊂ U and every ε > 0, there is an
integer j0 such that

spt(φ) ∩ K ⊂ U ∩ {x : dist(x, spt(φj)) ≤ ε}
as well as

spt(φj) ∩ K ⊂ U ∩ {x : dist(x, spt(φ)) ≤ ε}
whenever j ≥ j0. In particular, if x0 ∈ spt(φj) for every j = 1, 2, . . .
then x0 ∈ spt(φ).

Proof. That φ is (ξ, m) nearly monotonic in U is the conclusion of
Lemma 3.2.5. We turn to proving that φ is m concentrated in U . Let
x ∈ spt φ. It suffices to show that Θm(φ, x) ≥ 1. Suppose instead that
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Θm(φ, x) < 1 − δ for some 0 < δ < 1. We choose r0 > 0 so that
ξ(r0) < δ/3, and 0 < r ≤ r0 so that B(x, r) ⊂ U ,

(11)
φ(B(x, r))

α(m)rm
< 1 − δ

as well as φ(Bdry B(x, r)) = 0. Next we choose an integer j0 such that
ξj(r) ≤ ξj(r0) < δ/3 whenever j ≥ j0. Referring to (11) we also choose
an integer j1 such that

(12)
φj(B(x, r))

α(m)rm
< 1 − δ

whenever j ≥ j1. We select ε > 0 sufficiently small for

(13) (1 − δ)

(
r

r − ε

)m

< 1 − δ

3

and finally we refer to Lemma 2.4.5 (applied for instance with K =
{x}) to choose an integer j ≥ max{j0, j1} such that x ∈ B(spt(φj), ε).
Therefore there exists y ∈ spt(φj) with |x − y| ≤ ε. Now we have

φj(B(y, r − ε))

α(m)(r − ε)m
≤ φj(B(x, r))

α(m)rm

(
r

r − ε

)m

< 1 − δ

3

according to (12) and (13). Whence

Θm(φj , y) ≤ φj(B(y, r − ε))

α(m)(r − ε)m
+ excm

∗ (φj , y, r − ε)

≤ 1 − δ/3 + ξj(r)

≤ 1 − 2δ/3,

in contradiction with Lemma 3.3.3.
In view of Lemma 2.4.5 it remains only to show that for every compact

K ⊂ U and ε > 0 there exists an integer j0 such that spt(φj) ∩ K ⊂
U∩{x : dist(x, spt φj) ≤ ε} whenever j ≥ j0. Suppose instead that there
is a compact set K ⊂ U , ε > 0 and a sequence k(1), k(2), . . . as well as
xk(j) ∈ spt(φk(j)) ∩ K such that dist(xk(j), spt φ) ≥ ε for every integer
j. Choose x ∈ K and a subsequence l(1), l(2), . . . of k(1), k(2), . . . such
that xl(j) → x as j → ∞. Let ε′ > 0 be sufficiently small for ε′ < ε,
B(x, ε′) ⊂ U and ξ(ε′) < 1/2. If j is large enough for |x − xl(j)| ≤ ε′/4
then referring to Lemma 3.3.3 we obtain

φl(j)(B(x, ε′/2)) ≥ φl(j)(B(xl(j), ε
′/4))

≥ α(m)(ε′/4)m
(
Θm(φl(j), xl(j))

− excm
∗ (φl(j), xl(j), ε

′/4)
)

≥ α(m)(ε′/4)m
(
1 − ξl(j)(ε

′/4)
)
.

Letting j → ∞ in the above inequality yields

φ(B(x, ε′/2)) ≥ α(m)(ε′/4)m(1 − ξ(ε′/4)) > 0
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in contradiction with dist(x, spt φ) ≥ ε > ε′.
Finally, if x0 ∈ spt(φj) for every j = 1, 2, . . . we apply the inclusion

we just proved to K = {x0} and we infer that x0 ∈ spt(φ). q.e.d.

Corollary 3.3.5. Let φj be an m concentrated (ξj , m) nearly mono-
tonic measure in an open set U ⊂ Rn, j = 1, 2, . . ., and let φ be a Radon
measure in U and ξ a gauge. Assume there exists a cone C ⊂ Rn such
that spt φ = C ∩ U . If φj ⇀ φ as j → ∞ and ξj → ξ (pointwise) as
j → ∞, then

distH(spt(φ) ∩ B(0, r), spt(φj) ∩ B(0, r)) → 0 as j → ∞
whenever r > 0 is such that B(0, r) ⊂ U .

Proof. Let 0 < ε < r. According to Lemma 2.4.5 there is an integer
j0 such that if j ≥ j0 then

spt(φ) ∩ B(0, r) ⊂ U ∩ {x : dist(x, spt(φj)) ≤ ε}.
Fix j ≥ j0 and let x ∈ spt(φ) ∩ B(0, r). If |x| ≤ r − ε there exists
y ∈ spt(φj) such that |y − x| ≤ ε, whence y ∈ spt(φj) ∩ B(0, r). If
|x| > r−ε then referring to the coneness of spt(φ) we choose x′ ∈ spt(φ)
such that |x′ − x| ≤ ε and |x′| = r − ε. We find y′ ∈ spt(φj) ∩ B(0, r)
such that |y′ − x′| ≤ ε, so that |y′ − x| ≤ 2ε. Therefore

sup{dist(x, spt(φj) ∩ B(0, r)) : x ∈ spt(φ) ∩ B(0, r)} ≤ 2ε.

According to Lemma 3.3.4 there is an integer j1 such that

spt(φj) ∩ B(0, r) ⊂ U ∩ {y : dist(y, spt(φ)) ≤ ε}
whenever j ≥ j1. Fix j ≥ j1 and let y ∈ spt(φj) ∩ B(0, r). There exists
x ∈ spt(φ) such that |y−x| ≤ ε. Therefore |x| ≤ r + ε. Referring to the
coneness of spt(φ) we find x′ ∈ spt(φ) ∩ B(0, r) such that |x′ − x| ≤ x.
It follows that |x′ − y| ≤ 2ε and, in turn,

sup{dist(y, spt(φ) ∩ B(0, r)) : y ∈ spt(φj) ∩ B(0, r)} ≤ 2ε.

If j ≥ max{j0, j1} then

distH(spt(φ) ∩ B(0, r), spt(φj) ∩ B(0, r)) ≤ 2ε

and the proof is complete. q.e.d.

3.4. Examples of concentrated nearly monotonic measures. We
start by proving a useful criterion for near monotonicity.

Lemma 3.4.1. Let U0 and U be bounded open sets such that Clos U0

⊂ U . Let ξ be a gauge and φ a Radon measure in U such that for every
x ∈ U the function

(0, dist(x,Bdry U)) → R : r 7→ exp[ξ(r)]
φ(B(x, r))

α(m)rm

is increasing. Then there exists a constant 0 < c3.4.1(U0, U, φ, ξ, m) < ∞
such that φ is (c3.4.1ξ, m) nearly monotonic in U0.
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Proof. For B(x, r)⊂U we abbreviate ϕx(r) :=α(m)−1r−mφ(B(x, r)).
On letting r(U0, U) := inf{dist(x,Bdry U) : x ∈ U0} > 0 we observe
that

ϕx(r) ≤ c1 := exp[ξ(diamU)]
φ(U)

α(m)r(U0, U)m

whenever x ∈ U0 and B(x, r) ⊂ U . Next choose c2 such that exp[t] ≤
1 + c2t whenever 0 ≤ t ≤ ξ(diam U). It remains to notice that for
B(x, R) ⊂ U0 and 0 < ρ1 < ρ2 < R one has

ϕx(ρ1) ≤ exp[ξ(ρ1)]ϕx(ρ1) ≤ exp[ξ(ρ2)]ϕx(ρ2)

≤ (1 + c2ξ(R))ϕx(ρ2)

≤ ϕx(ρ2) + c2c1ξ(R),

which proves the lemma. q.e.d.

The assumption of the preceding lemma leads to our next definition.

Definition 3.4.2. Given an open set U ⊂ Rn, a Radon measure φ
on U , a gauge ξ and an integer m ∈ {0, . . . , n} we say that φ is (ξ, m)
almost monotonic in U if for every x ∈ U the function

(0, dist(x,Bdry U)) → R : r 7→ exp[ξ(r)]
φ(B(x, r))

α(m)rm

is increasing.

We now turn to giving a family of examples of nearly monotonic
measures. Along with the concept of mass of an integral current, we
will need the notion of size of such a current, introduced by F.J. Almgren
in [3] (see also the work of H. Federer, [11]). In the remaining part of
this section we will use some specific notations borrowed from [10] (see
pp. 670–671 Ibid).

Definition 3.4.3. Let U ⊂ Rn be open and T ∈ Im(U). The size of
T is the defined as follows:

S(T ) := Hm(setm(‖T‖)).
The almost minimal currents were introduced by E. Bombieri in [4],

after F.J. Almgren defined and proved the regularity of minimal sets in
his memoir [2].

Definition 3.4.4. Let U ⊂ Rn be open, ε a gauge, 0 < δ ≤ ∞ and
T ∈ Im(U). We say that T is (M, ε, δ) minimal (resp. (S, ε, δ) minimal)
whenever the following holds: for every compact set C ⊂ U and for
every X ∈ Im(U), if

(A) sptX ⊂ C;
(B) ∂X = 0;
(C) r := diam sptX ≤ δ;
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then

M(T C) ≤ (1 + ε(r))M(T C + X)

(resp. S(T C) ≤ (1 + ε(r))S(T C + X) ).

The following proposition and its proof are more or less classical (see
e.g., [10, 5.4.3; 5.4.4]). As a particular case we notice that if T ∈ Im(U)
is absolutely mass minimizing then ‖T‖ is m monotonic (take ε = 0 in
the proposition). This generalizes to stationary currents (see [10, 5.4.2])
and for that matter to stationary varifolds (see [1, 5.1(2)]).

Proposition 3.4.5. Assume that

(A) U0 ⊂ U ⊂ Rn are open, ε is a gauge and 0 < δ ≤ ∞;
(B) ξ is a gauge and

ξ(r) = m

∫ r

0

ε(2ρ)

ρ
dL1(ρ) < ∞

for every 0 ≤ r ≤ δ
2 ;

(C) T ∈ Im(U) is (M, ε, δ) minimal (resp. (S, ε, δ) minimal );
(D) diam U0 ≤ δ and spt(∂T ) ∩ Clos U0 = ∅.

Then the measure ‖T‖ (resp. Hm setm(‖T‖)) is (ξ, m) almost mono-
tonic in U0.

Proof. We let φ = ‖T‖ in case T is (M, ε, δ) minimal, whereas in case
T is (S, ε, δ) minimal we put φ = Hm setm(‖T‖) . For each B(x, r) ⊂
U we abbreviate fx(r) := φ(B(x, r)). Next we let C := Clos U0, we fix
B(x, r) ⊂ U0 and we define

X := δx ×× 〈T, u, r+〉 − T B(x, r)

where u(y) = |y − x|, y ∈ Rn. We observe that sptX ⊂ C, 2r =
diam sptX ≤ δ, and ∂X = 0 (the latter follows from [10, 4.1.11; 4.2.1],
and the fact that spt(∂T ) ∩ B(x, r) = ∅). Therefore

(14) M(T B(x, r)) ≤ (1 + ε(2r))M(δx ×× 〈T, u, r+〉)

or

(15) S(T B(x, r)) ≤ (1 + ε(2r))S(δx ×× 〈T, u, r+〉),

according to whether T is (M, ε, δ) minimal or (S, ε, δ) minimal. It
follows from [10, 4.2.1; 4.1.11] that

M(δx ×× 〈T, u, r+〉) ≤ r

m
M(〈T, u, r+〉)(16)

≤ r

m
lim sup
h→0+

fx(r + h) − fx(r)

h
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in case T is (M, ε, δ) minimal. In the other case we deduce from [10,
4.3.8, 3.2.22] that

S(δx ×× 〈T, u, r+〉) ≤ r

m
S(〈T, u, r+〉)(17)

≤ r

m
lim sup
h→0+

fx(r + h) − fx(r)

h
.

Plugging (16) into (14) (resp. (17) in (15)) yields

(18) fx(r) ≤ (1 + ε(2r))
r

m
f ′

x(r)

whenever fx is differentiable at r. Since fx is increasing, so is log ◦fx

and, according to (18), one has

(log ◦fx)′(r) =
f ′

x(r)

fx(r)
≥ m

r

(
1

1 + ε(2r)

)

≥ m

r
(1 − ε(2r))

for L1 almost every 0 ≤ r ≤ δ
2 . From this we infer that the function

r 7→ exp[ξ(r)]r−mfx(r), 0 ≤ r ≤ δ
2 , is increasing. The conclusion follows

at once. q.e.d.

Remark 3.4.6. In case S ⊂ Rn is an (M, ε, δ) minimal set in Rn

with respect to some closed set B ⊂ Rn (in the sense of F.J. Almgren,
see [2]) and ε verifies the integrability condition (B) of Proposition 3.4.5,
the measure φ = Hm S is (ξ, m) nearly monotonic as well. Proving this
is slightly more difficult than proving the above proposition because the
cut and paste procedure is no more available: comparison surfaces have
to be Lipschitzian deformations of the original surface. For a full proof
see [9] (notice J. Taylor [21, II.1] infers such a monotonicity formula
from [2] for balls centered on the set S).

3.5. Epiperimetric measures.

Definition 3.5.1. Given an open set U ⊂ Rn, a Radon measure φ
on U , a gauge ξ, an integer m ∈ {0, . . . , n}, an open set U0 ⊂ U and
a Borel set B ⊂ U0, we say that φ is (ξ, m) epiperimetric in (B, U0)
whenever for every x ∈ B and every r > 0 such that B(x, r) ⊂ U0 the
following holds:

excm ∗(φ, x, r) ≤ ξ(r).

In the sequel we will require that a measure φ be epiperimetric in
(B, U0) only in case φ is m concentrated and B ⊂ setm φ.

Remark 3.5.2. The following comments are in order.

(A) The proof of the so-called epiperimetric inequality uses compar-
ison surfaces which are obtained by solving a Dirichlet problem
together with a priori estimates on the rate of decrease of the
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Dirichlet energy on balls. In case ε = 0 and δ = ∞ this is essen-
tially the content of E.R. Reifenberg’s paper [19].

(B) The cases of epiperimetry alluded to so far are particular to the
following geometrical situation: one assumes that spt(T ) is suffi-
ciently close (in Hausdorff distance and in density) to some “mul-
tiplicity one” m dimensional affine subspace. Epiperimetry is also
known for mass minimizing currents in case m = 2 and spt(T ) is
sufficiently close to an integer multiplicity plane (see [22]), as well
as for (M, ε, δ) minimal sets when m = 2 and n = 3 (see [21]).

3.6. C1,α embedded submanifolds. In this subsection we show that
the Hausdorff measures carried by C1,α submanifolds are locally nearly
monotonic and epiperimetric (on their support).

Proposition 3.6.1. Let 0 < α ≤ 1 and let S ⊂ Rn be an m di-
mensional C1,α embedded submanifold of Rn. For each a ∈ S one has
Θm(Hm S, a) = 1 and there exists a neighborhood U ⊂ Rn of a such
that the following holds.

(A) The restriction of the measure Hm S to U is (ξ2, m) epiperimet-
ric in (S, U) with ξ2(r) = c2 r2α for some c2 > 0 depending only
upon m, S, a and U .

(B) The restriction of the measure Hm S to U is (ξ1, m) nearly
monotonic with ξ1(r) = c1 rα for some c1 > 0, depending only
upon m, S, a and U .

Proof. Given a ∈ S we choose U and 0 < C < ∞ as in Lemma
2.2.3(B).

We first proceed to prove (A). Fix x ∈ S ∩ U and set W := Wx,
u := ux and f := iW + iW⊥ ◦ u where Wx and ux are as in Lemma
2.2.3(B). Next fix r > 0 such that B(x, r) ⊂ U . In order to keep the
notation short we will assume that x = 0. We claim that

(19) f (B(0, r∗)) ⊂ S ∩ B(0, r) ⊂ f (B(0, r))

where

(20) r∗ = r
√

1 − C2r2α.

The second inclusion above is obvious. For proving the first one we let
z ∈ W ∩ B(0, r∗) and we observe that

|f(z)|2 = |z|2 + |u(z)|2

≤ |z|2
(
1 + C2|z|2α

)

≤ r2
∗

(
1 + C2r2α

)

≤ r2.



98 T. DE PAUW

Next we infer from Lemma 2.3.4 that for every z ∈ W ∩B(0, r) one has:

(21) |Jmf(z) − 1| ≤ C ′ r2α

where C ′ = 1
2C2 + c2.3.4(m)C4. This, together with (19) and the area

theorem [10, 3.2.3(1)], yields on the one hand

Hm (S ∩ B(0, r)) − α(m)rm ≤
∫

W∩B(0,r)
(Jmf(z) − 1) dHm(z)(22)

≤ C ′ r2αα(m)rm,

and on the other hand (recalling (20))

Hm (S ∩ B(0, r)) − α(m)rm(23)

≥
∫

W∩B(0,r∗)
Jmf(z)dHm(z) − α(m)rm

≥
(
1 − C ′ r2α

)
α(m)rm

∗ − α(m)rm

= α(m)rm
((

1 − C ′ r2α
) (

1 − C2 r2α
)m

2 − 1
)

≥ −α(m)rm
(
1 +

m

2

)
max{C2, C ′}r2α.

Conclusion (A) as well as the fact that Θm(Hm S, x) = 1 now easily
follow from inequalities (22) and (23).

We turn to the proof of conclusion (B). We start by defining δ(x0) :=
inf{|x0 − x| : x ∈ S ∩ U} for each x0 ∈ U . Since S is locally compact
the set C(x0) := S ∩ Clos U ∩ {x : |x0 − x| = δ(x0)} is nonempty. It is

easily seen that Ũ := U ∩ {x0 : C(x0) ∩ U 6= ∅} is a neighborhood of a.
We will prove that conclusion (B) holds true when Hm S is restricted

to that possibly smaller set Ũ . We now fix some x0 ∈ Ũ ∼ S, we set
δ := δ(x0) > 0 and we choose x ∈ C(x0) ∩ U . We let W , u and f be
as before and, in order to keep the notation short, we will assume that
x = 0 (so that δ = |x0|). We readily check that x0 ∈ W⊥. Let r > δ be
such that B(x0, r) ⊂ U . We claim that

(24) f (B(0, r∗)) ⊂ S ∩ B(x0, r) ⊂ f (B(0, r∗))

where

r∗ =

√
max

{
0, r2 − (δ + C r1+α)2

}
(25)

r∗ =

√
r2 − (δ − C r1+α)2.(26)
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In order to prove the first inclusion we let z ∈ W ∩ B(0, r∗) and we
simply observe that (if r∗ > 0)

|f(z) − x0|2 = |f(z)|2 + |x0|2 − 2〈x0, f(z)〉

= |z|2 + |u(z)|2 + δ2 − 2〈x0, u(z)〉

≤ r2
∗ + |u(z)|2 + δ2 + 2δ|u(z)|

≤ r2
∗ +

(
δ + C r1+α

)2

≤ r2.

In order to prove the second inclusion we let y ∈ S∩B(x0, r), we choose
z ∈ W with y = f(z) and we compute, as above,

|z|2 ≤ r2 − |u(z)|2 − |x0|2 + 2〈x0, u(z)〉

≤ r2 − |u(z)|2 − δ2 + 2δ|u(z)|

= r2 − (δ − |u(z)|)2

≤ r2 −
(
δ − C r1+α

)2
.

Next we claim that, on letting ρ :=
√

r2 − δ2, the following holds:

rm
∗ − ρm ≥ −C∗r

mrα(27)
r∗
r

≤ 1(28)

(r∗)m − ρm ≤ C∗rmrα(29)

r∗

r
≤ 1,(30)

where 0 < C∗, C
∗ < ∞ depend only upon m and C. We start by proving

(27) in case r∗ = 0, that is when r2 −
(
δ + C r1+α

)2 ≤ 0. Expanding
the square and recalling that δ < r ≤ 1 we find that

ρ2 = r2 − δ2 ≤ 2δCr1+α + C2r2(1+α)

≤
(
2C + C2

)
r2+α ,

and it suffices to raise this inequality to the power m
2 and to recall that

m ≥ 2. In case r∗ > 0 the analogous computation yields

(31) r2
∗ = r2 −

(
δ + C r1+α

)2
= ρ2 − ε,

where

(32) ε := 2δCr1+α + C2r2(1+α) ≤
(
2C + C2

)
r2+α.

Furthermore, one easily checks that if b ≥ a ≥ 0 then

am − bm ≥ c(m)bm−2(a2 − b2),
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where c(m) = m
2 if m is even, and c(m) = m+1

2 + 2
m−3

2 if m is odd.
Applying this inequality to a = r∗ and b = ρ, and referring to (31) and
(32), we obtain

rm
∗ − ρm ≥ c(m)ρm−2(r2

∗ − ρ2)

≥ −εc(m)rm−2

≥ −c(m)(C2 + 2C)rm+α

which finishes the proof of (27). In order to prove (29) we recall from
(26) and the definition of ρ that

(r∗)2 = r2 − (δ − Cr1+α)2(33)

= ρ2 + ε

where

(34) ε := 2δCr1+α − C2r2(1+α) ≤ (2C + C2)r2+α.

If ε ≤ 0 then r∗ ≤ ρ and (29) is obvious; therefore, we subsequently
assume that ε > 0. It is an easy matter to check that if a ≥ b ≥ 0 then

am − bm ≤ c(m)am−2(a2 − b2).

Applied to a = r∗ and b = ρ, this inequality together with (33) and (34)
yields the following:

(r∗)m − ρm ≤ c(m)(r∗)m−2((r∗)2 − ρ2)

≤ c(m)rm−2ε

≤ c(m)(2C + C2)rm+α,

which proves (29). Inequalities (28) and (30) are obvious consequences
of (25) and (26). We now use (24), (21), (26), (29), (30) together with
the area theorem [10, 3.2.3(1)] and we find that

Hm(S ∩ B(x0, r)) − α(m)ρm(35)

≤ Hm (f (B(0, r∗)) − α(m)ρm

=

∫

W∩B(0,r∗)
Jmf(z) dHm(z) − α(m)ρm

≤
(
1 + C ′ (r∗)2α

)
α(m) (r∗)m − α(m)ρm

= α(m)
(
(r∗)m − ρm

)
+ α(m)C ′ (r∗)m (r∗)2α

≤ α(m)rm
(
C∗rα + C ′r2α

)
.
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On the other hand, using (24), (21), (25), (27), (28) and the area theo-
rem, we obtain

Hm(S ∩ B(x0, r)) − α(m)ρm(36)

≥ Hm (f (B(0, r∗))) − α(m)ρm

=

∫

W∩B(0,r∗)
Jmf(z) dHm(z) − α(m)ρm

≥
(
1 − C ′r2α

∗

)
α(m)rm

∗ − α(m)ρm

= α(m)
(
rm
∗ − ρm

)
− C ′α(m)rm

∗ r2α
∗

≥ −α(m)rm
(
C∗r

α + C ′r2α
)
.

Define

ξ(r) := max
{
C∗ + C ′, C∗ + C ′

}
rα .

Now on letting ϕ(r) := α(m)−1r−mHm(S ∩ B(x0, r)) and g(r) :=

r−m
(
r2 − δ2

)m
2 whenever r ≥ δ and B(x0, r) ⊂ U we infer from (35)

and (36) that

ϕ(R) − ϕ(r) = (ϕ(R) − g(R)) + (g(R) − g(r)) + (g(r) − ϕ(r))

≥ −ξ(R) − ξ(r)

whenever R ≥ r ≥ δ and B(x0, R) ⊂ U . This is because g is in-
creasing, as can be checked easily (in fact g(r) can be thought of as
α(m)−1r−mHm(W ∩ B(x0, r)), and Hm W is an m monotonic mea-
sure). Consequently we obtain that exc∗(Hm S, x0, R) ≤ 2ξ(R), from
which conclusion (B) follows at once. q.e.d.

4. First and second moments computations

In this section we are given the following data: an open set U ⊂ Rn

such that 0 ∈ U and a Radon measure φ on U such that Θm(φ, 0) exists.

4.1. Definitions and normalization. For x ∈ U and r > 0 such that
B(x, r) ⊂ U we define

V (φ, x, r) :=

∫

B(0,r)

(
r2 − |x − y|2

)2
dφ(y),

which we develop into successive homogeneous polynomials of x:

V (φ, x, r) =
4∑

k=0

Pk(φ, x, r).
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It is a simple matter to check that

P0(φ, x, r) =

∫

B(0,r)

(
r2 − |y|2

)2
dφ(y)

P1(φ, x, r) = 4

〈
x,

∫

B(0,r)
y(r2 − |y|2) dφ(y)

〉

P2(φ, x, r) = 4

∫

B(0,r)
〈x, y〉2 dφ(y) − 2|x|2

∫

B(0,r)
(r2 − |y|2) dφ(y)

P3(φ, x, r) = −4|x|2
∫

B(0,r)
〈x, y〉 dφ(y)

P4(φ, x, r) = |x|4φ(B(0, r)).

We single out two quantities because of their geometric significance:

b(φ, r) :=

∫

B(0,r)
y(r2 − |y|2) dφ(y),

Q(φ, r)(x) :=

∫

B(0,r)
〈x, y〉2 dφ(y).

If “normalized properly”, b(φ, r) may be thought of as a weighted center
of mass of φ in B(0, r), whereas Q(φ, r)(x) should be thought of (as a
function of x) being close to |PW (x)|2 for some W ∈ G(n, m) approxi-
mating spt(φ) in B(0, r), provided of course that we make assumptions
assuring that spt(φ) is sufficiently close to flat in B(0, r). One trou-
ble is that b(φ, r) and Q(φ, r) do not normalize simultaneously to being
“dimensionless”. We choose to normalize V and each polynomial Pk,
k = 0, . . . , 4, dividing them by arp where a and p are as follows: p is
chosen in order that the normalized version of P2 be “dimensionless”,
and a is chosen so that the normalized version of Q has trace close to
m.

In order to describe the normalization we introduce the following
constants

ω(m, q) :=

∫

Rm∩B(0,1)

(
1 − |y|2

)q
dLm(y), q = 0, 1, 2, . . .

For instance ω(m, 0) = α(m) and ω(m, 1) = 2(m + 2)−1α(m). The
significance of these constants is indicated in the following lemma.

Lemma 4.1.1. Let x ∈ U and r > 0 be such that B(x, r) ⊂ U . Let
also θ > 0 and ε > 0 be such that

∣∣∣∣
φ(B(x, ρ))

α(m)ρm
− θ

∣∣∣∣ ≤ ε
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for every 0 < ρ < r. Then for each q = 0, 1, 2, . . . one has
∣∣∣∣∣

∫

B(x,r)

(
r2 − |x − y|2

)q
dφ(y) − θω(m, q)r2q+m

∣∣∣∣∣ ≤ εω(m, q)r2q+m.

Proof. It suffices to observe that
∫

B(x,r)

(
r2 − |x − y|2

)q
dφ(y)

=

∫ r

0
φ

(
B

(
x,

√
r2 − q

√
t

))
dL1(t)

≤ (θ + ε)

∫ r

0
Lm

(
B

(
0,

√
r2 − q

√
t

))
dL1(t)

= (θ + ε)

∫

B(0,r)

(
r2 − |y|2

)q
dLm(y)

= (θ + ε)ω(m, q)r2q+m.

The other inequality is proved exactly the same way. q.e.d.

Finally we define

ν(m) :=
ω(m, 0) − ω(m, 1)

m
=

α(m)

m + 2

for a reason that will be transparent in the next lemma. We are now
able to define the normalized versions of the various integrals intro-
duced so far. We adopt the convention that boldface indicates that
the corresponding quantity is normalized, i.e., divided by ν(m)rm+2:

V(φ, x, r) := ν(m)−1r−m−2V (φ, x, r)

Pk(φ, x, r) := ν(m)−1r−m−2Pk(φ, x, r), k = 0, . . . , 4

b(φ, r) := ν(m)−1r−m−2b(φ, r)

Q(φ, r) := ν(m)−1r−m−2Q(φ, r).

Lemma 4.1.2. Let r > 0 be such that B(0, r) ⊂ U , and ε > 0 be
such that ∣∣∣∣

φ(B(0, ρ))

α(m)ρm
− Θm(φ, 0)

∣∣∣∣ ≤ ε

for every 0 < ρ < r. Then

|traceQ(φ, r) − mΘm(φ, 0)| ≤ ε(m + 4).

Proof. If e1, . . . , en is an orthonormal basis of Rn then

trace Q(φ, r) =

n∑

i=1

Q(φ, r)(ei) =

∫

B(0,r)
|y|2 dφ(y).
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Therefore, on letting θ := Θm(φ, 0), we have
∣∣θmν(m)rm+2 − traceQ(φ, r)

∣∣

=

∣∣∣∣∣θmν(m)rm+2 −
∫

B(0,r)
|y|2 dφ(y)

∣∣∣∣∣

≤
∣∣∣∣∣θω(m, 1)rm+2 −

∫

B(0,r)
(r2 − |y|2) dφ(y)

∣∣∣∣∣

+
∣∣θω(m, 0)rm+2 − r2φ(B(0, r))

∣∣

≤ εω(m, 1)rm+2 + εω(m, 0)rm+2

according to Lemma 4.1.1. The proof is completed on dividing both
sides by ν(m)rm+2. q.e.d.

4.2. Two estimates. In order to deduce some relevant geometric in-
formation from the moments, we will need two basic estimates. These
involve comparing V (φ, x, r) and V(φ, x, r) to the following:

V̂ (φ, x, r) :=

∫

B(x,r)

(
r2 − |x − y|2

)2
dφ(y) ,

V̂(φ, x, r) := ν(m)−1r−m−2V̂ (φ, x, r).

Lemma 4.2.1. There exists a constant 0 < c4.2.1(m) < ∞ with the
following property. Whenever

(A) U ⊂ Rn is open, φ is a Radon measure in U , 0 ∈ U and Θm(φ, 0)
exists;

(B) x ∈ U , r > 0, B(0, 2r) ⊂ U and 2|x| < r;

one has:
∣∣∣V (φ, x, r) − V̂ (φ, x, r)

∣∣∣ ≤ c4.2.1(m)ν(m)rm
(
r|x|3

(
r−mφ(B(0, r)

)

+ r2|x|2excm ∗ (φ, 0, 2r)
)
.

Proof. We first claim that if x ∈ Rn, r > 0 and 2|x| < r then

(a)
(
B(x, r) ∼ B(0, r)

)
∪

(
B(0, r) ∼ B(x, r)

)
⊂ B(x, r+|x|) ∼ B(x, r−

|x|);
(b) if y ∈

(
B(x, r) ∼ B(0, r)

)
∪

(
B(0, r) ∼ B(x, r)

)
then one has∣∣r2 − |x − y|2

∣∣ ≤ 3r|x|;
(c) B(0, r − 2|x|) ⊂ B(x, r − |x|);
(d) B(x, r + |x|) ⊂ B(0, r + 2|x|).

These are rather obvious statements and we leave the proof of (a), (c)
and (d) to the reader. For proving (b), in view of (a) we have that

0 ≤ r − |x| ≤ |x − y| ≤ r + |x|
whence

r2 − 2r|x| + |x|2 ≤ |x − y|2 ≤ r2 + 2r|x| + |x|2



EPIPERIMETRIC MEASURES 105

and in turn

−|x|2 − 2r|x| ≤ r2 − |x − y|2 ≤ 2r|x| − |x|2 .

Since |x| ≤ r, one has |x|2 ≤ r|x| and (b) follows immediately.
Using these four properties we now see that

∣∣V (φ, x, r) − V̂ (φ, x, r)
∣∣(37)

≤ 9r2|x|2φ
[(

B(0, r) ∼ B(x, r)
)
∪

(
B(x, r) ∼ B(0, r)

)]

≤ 9r2|x|2
(
φ
(
B(x, r + |x|)

)
− φ

(
B(x, r − |x|)

))

≤ 9r2|x|2
(
φ
(
B(0, r + 2|x|)

)
− φ

(
B(0, r − 2|x|)

))
.

Since r + 2|x| < 2r we have that

φ(B(0, r + 2|x|))
α(m)(r + 2|x|)m

≤ φ(B(0, r))

α(m)rm
+ excm ∗ (φ, 0, 2r)

so that

φ(B(0, r + 2|x|)) ≤
(

1 +
2|x|
r

)m

φ(B(0, r))

+ α(m)(r + 2|x|)mexcm ∗ (φ, 0, 2r) ,

as well as

φ(B(0, r − 2|x|))
α(m)(r − 2|x|)m

≥ φ(B(0, r))

α(m)rm
− excm ∗ (φ, 0, r)

whence

φ(B(0, r − 2|x|)) ≥
(

1 − 2|x|
r

)m

φ(B(0, r))

− α(m)(r − 2|x|)mexcm ∗ (φ, 0, r) .

From this we deduce that

φ(B(0, r + 2|x|)) − φ(B(0, r − 2|x|))(38)

≤ φ(B(0, r))

((
1 +

2|x|
r

)m

−
(

1 − 2|x|
r

)m)

+ (1 + 2m)α(m)rmexcm ∗ (φ, 0, 2r)

≤ φ(B(0, r))m2m 2|x|
r

+ (1 + 2m)α(m)rmexcm ∗ (φ, 0, 2r)

because on letting f(t) := (1 + t)m − (1 − t)m, 0 < t < 1, it is easily
checked that f(t) ≤ m2mt. Plugging (38) into (37) proves the lemma.

q.e.d.
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Definition 4.2.2. Given x1, x2 ∈ U and r > 0 such that B(x1, r) ∪
B(x2, r) ⊂ U , as well as an integer m ∈ {0, . . . , n}, we define the devia-
tion relative to (φ, x1, x2, r, m) as follows:

devm(φ, x1, x2, r) :=
φ(B(x1, r)) − φ(B(x2, r))

rm
.

Lemma 4.2.3. There exists a constant 0 < c4.2.3(m) < ∞ with the
following property. Whenever

(A) U ⊂ Rn is open and φ is a Radon measure in U ;
(B) 0, x ∈ U , r > 0, B(0, r) ∪ B(x, r) ⊂ U ;

one has

V̂ (φ, x, r) − V̂ (φ, 0, r) ≤ c4.2.3(m)ν(m)rm+4
(
devm(φ, x, 0, r)

+ excm
∗ (φ, x, r) + excm ∗(φ, 0, r)

)
,

as well as
∣∣∣V̂ (φ, x, r) − V̂ (φ, 0, r)

∣∣∣ ≤ c4.2.3(m)ν(m)rm+4
(
|devm(φ, x, 0, r)|

+ ‖excm‖(φ, x, r) + ‖excm‖(φ, 0, r)
)
.

Proof. We observe that

V̂ (φ, x, r) =

∫

B(x,r)

(
r2 − |x − y|2

)2
dφ(y)

=

∫ r2

0
φ

(
B

(
x,

√
r2 −

√
t

))
dL1(t)

=

∫ r

0
φ(B(x, ρ))4ρ(r2 − ρ2) dL1(ρ);

similarly,

V̂ (φ, 0, r) =

∫ r

0
φ(B(0, ρ))4ρ(r2 − ρ2) dL1(ρ) ,

so that
(39)

V̂ (φ, x, r)− V̂ (φ, 0, r) =

∫ r

0

(
φ(B(x, ρ))−φ(B(0, ρ))

)
4ρ(r2−ρ2) dL1(ρ).

For 0 < ρ < r we have on the one hand

φ(B(x, ρ))

α(m)ρm
≤ φ(B(x, r))

α(m)rm
+ excm

∗ (φ, x, r)

so that

(40) φ(B(x, ρ)) ≤ ρm φ(B(x, r))

rm
+ α(m)ρmexcm

∗ (φ, x, r),
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and on the other hand

−φ(B(0, ρ))

α(m)ρm
≤ −φ(B(0, r))

α(m)rm
+ excm ∗(φ, 0, r),

hence

(41) −φ(B(0, ρ)) ≤ −ρm φ(B(0, r))

rm
+ α(m)ρmexcm ∗(φ, 0, r).

One also checks that

(42)

∫ r

0
4ρm+1(r2 − ρ2) dL1(ρ) = 8(m + 2)−1(m + 4)−1rm+4.

Plugging (40) and (41) into (39), and using (42) yields the first required
estimate. In order to prove the second conclusion it suffices to apply
the first one with 0 and x swapped. q.e.d.

4.3. Controlling the length of the first moment. In this subsec-
tion we obtain some estimates about |b(φ, r)|. The first one is a trivial
bound O(r) due to the normalization we have chosen.

Lemma 4.3.1. Let U ⊂ Rn be open, 0 ∈ U , and let φ be a Radon
measure on U so that Θm(φ, 0) exists. For each r > 0 such that
B(0, r) ⊂ U one has

|b(φ, r)| ≤ 2r (Θm(φ, 0) + ‖excm‖(φ, 0, r)) .

Proof. It suffices to apply Lemma 4.1.1:

|b(φ, r)| ≤
∫

B(0,r)
|y|

(
r2 − |y|2

)
dφ(y)

≤ r (Θm(φ, 0) + ‖excm‖(φ, 0, r)) ω(m, 1)rm+2,

and divide by ν(m)rm+2. q.e.d.

We will also need to control the deviation in the following way.

Lemma 4.3.2. Assume that

(A) U ⊂ Rn is open, 0 ∈ U and φ is a Radon measure on U so that
Θm(φ, 0) exists;

(B) 0 < r ≤ R and B(0, 2R) ⊂ U ;
(C) ε is a gauge, ε(R) ≤ 1, x ∈ U and |x| = ε(R)R.

Then,

α(m)−1devm(φ, x, 0, r) ≤ m2m−1ε(R)
(
Θm(φ, 0) + ‖excm‖(φ, 0, 2R)

)

+ excm ∗(φ, 0, 2R) + excm
∗ (φ, x, R) .
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Proof. It suffices to compute:

α(m)−1devm(φ, x, 0, r)

=
φ(B(x, r))

α(m)rm
− φ(B(0, r))

α(m)rm

≤ φ(B(x, R))

α(m)Rm
+ excm

∗ (φ, x, R) − φ(B(0, r))

α(m)rm

≤ (R + |x|)m

Rm

φ(B(0, R + |x|))
α(m)(R + |x|)m

− φ(B(0, r))

α(m)rm

+ excm
∗ (φ, x, R)

≤
(
(1 + ε(R))m − 1

)φ(B(0, R + |x|))
α(m)(R + |x|)m

+
φ(B(0, R + |x|))
α(m)(R + |x|)m

− φ(B(0, r))

α(m)rm
+ excm

∗ (φ, x, R)

≤ m2m−1ε(R)
(
Θm(φ, 0) + ‖excm‖(φ, 0, R + |x|)

)

+ excm ∗(φ, 0, R + |x|) + excm
∗ (φ, x, R).

q.e.d.

We are now able to improve on Lemma 4.3.1.

Proposition 4.3.3. There exists a constant 0 < c4.3.3(m) < ∞ with
the following property. Whenever

(A) U ⊂ Rn is open, 0 ∈ U , φ is a Radon measure on U so that
Θm(φ, 0) = 1, and ξ is a continuous gauge;

(B) φ is (ξ, m) nearly monotonic in U and is (ξ, m) epiperimetric in
({0}, U);

(C) 0 < r ≤ 1, ξ(2
√

r) ≤ 1, B(0, 2
√

r) ⊂ U ;

the following holds:

|b(φ, r)| ≤ c4.3.3(m)r max

{
4
√

r,

√
ξ(2

√
r)

}
.

Proof. We start by choosing 0 < γ(m) ≤ 1
8 and η(m) such that

(43) η(m) := 4γ(m) − γ(m)2 (2 c4.2.1(m) + 8 + 8(m + 2)) > 0.

We define a gauge ε by the formula ε(ρ) := max{ρ, ξ(ρ)}, ρ > 0. Now

either |γ(m)b(φ, r)| ≤ r
√

ε(
√

r) or |γ(m)b(φ, r)| > r
√

ε(
√

r): we will
subsequently derive an estimate for |b(φ, r)| in the latter case. We first
observe that

(44) rε(r) ≤ rε(
√

r) ≤ r

√
ε(
√

r) < |γ(m)b(φ, r)|.
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Since |b(φ, r)| ≤ 4r (according to Lemma 4.3.1), |γ(m)b(φ, r)| ≤ r
2 ≤ r

as well, and we see that

(45) |γ(m)b(φ, r)| ≤ r ≤ √
rε(

√
r).

According to (44) and (45), the intermediate value theorem applied to
the function

[r,
√

r] → R : ρ 7→ ρε(ρ)

ensures that there exists some R > 0 with

r ≤ R ≤ √
r

and
Rε(R) = |γ(m)b(φ, r)| .

Let x := γ(m)b(φ, r). Since P0(φ, x, r) = V (φ, 0, r) = V̂ (φ, 0, r) we
deduce from Lemma 4.2.1, Lemma 4.2.3, and Lemma 4.3.2 together
with (45) that

P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)

= V (φ, x, r) − P0(φ, x, r)

≤
∣∣∣V (φ, x, r) − V̂ (φ, x, r)

∣∣∣ + V̂ (φ, x, r) − V̂ (φ, 0, r)

≤ c4.2.1(m)ν(m)rm
(
2r|x|3 + r2|x|2

)

+ c4.2.3(m)ν(m)rm+4
(
2α(m)m2m−1ε(R)

+ (α(m) + 1)
(
excm ∗(φ, 0, 2R) + excm

∗ (φ, x, R)
))

.

Dividing by ν(m)rm+2 and recalling the definition of ε, hypothesis (B)
and relation (44), we obtain

P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)

(46)

≤ |x|2 c4.2.1(m)

(
2|x|
r

+ 1

)

+ c4.2.3(m)3−1c(m)r2
(
ε(R) + excm ∗(φ, 0, 2R) + excm

∗ (φ, x, R)
)

≤ |x|22 c4.2.1(m) + c4.2.3(m)c(m)r2ε(2R),

where
c(m) := 3 max {α(m)m2m, α(m) + 1} .

We further observe that (according to Lemma 4.1.1)

P2(φ, x, r) ≥ −2|x|2ν(m)−1r−m−2

∫

B(0,r)

(
r2 − |y|2

)
dφ(y)

≥ −8|x|2,
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as well as

|P3(φ, x, r)| ≤ 4|x|2ν(m)−1r−m−2

∫

B(0,r)
|x| |y| dφ(y)

≤ 8(m + 2)|x|2

and

P4(φ, x, r) ≥ 0,

which together with (46) yields
(47)
P1(φ, x, r) ≤ |x|2 (2 c4.2.1(m) + 8 + 8(m + 2))+c4.2.3(m)c(m)r2ε(2R).

Finally recall that x = γ(m)b(φ, r) so that

P1(φ, x, r) = 4γ(m)|b(φ, r)|2,
|x|2 = γ(m)2|b(φ, r)|2.

Therefore, by (43), (47) becomes

η(m)|b(φ, r)|2 ≤ c4.2.3(m)c(m)r2ε(2R),

and in turn:

(48) |b(φ, r)| ≤
√

η(m)−1c4.2.3(m)c(m) r

√
ε(2

√
r).

We recall that according to the initial dichotomy either (48) holds true
or

(49) |b(φ, r)| ≤ γ(m)−1r

√
ε(
√

r).

This readily proves the proposition. q.e.d.

4.4. Controlling the large eigenvalues of the second moment.

Proposition 4.4.1. There exists a constant 0 < c4.4.1(m) < ∞ with
the following property. Whenever

(A) U ⊂ Rn is open, 0 ∈ U , φ is a Radon measure in U and ξ is a
continuous gauge;

(B) 0 < r ≤ 1, B(0, 2
√

r) ⊂ U , ξ(2
√

r) ≤ 1, x ∈ U and

|x| = r max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

;

(C) φ is (ξ, m) nearly monotonic in U and (ξ, m) epiperimetric in
({0, x}, U);

(D) Θm(φ, 0) = Θm(φ, x) = 1;

the following holds true:

∣∣Q(φ, r)(x) − |x|2
∣∣ ≤ c4.4.1(m)|x|2 max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

.
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Proof. We first notice, as in the proof of Proposition 4.3.3, that Lem-
mas 4.2.1 and 4.2.3 imply the following:

∣∣P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)
∣∣(50)

≤ c4.2.1(m)ν(m)rm
(
2r|x|3 + r2|x|2excm ∗(φ, 0, 2r)

)

+ c4.2.3(m)ν(m)rm+4
(
|devm(φ, x, 0, r)| + ‖excm‖(φ, 0, r)

+ ‖excm‖(φ, x, r)
)
.

Next we estimate |devm(φ, x, 0, r)|:

∣∣α(m)−1devm(φ, x, 0, r)
∣∣ =

∣∣∣∣
φ(B(0, r))

α(m)rm
− φ(B(x, r))

α(m)rm

∣∣∣∣(51)

≤
∣∣∣∣
φ(B(0, r))

α(m)rm
− Θm(φ, 0)

∣∣∣∣

+

∣∣∣∣Θ
m(φ, x) − φ(B(x, r))

α(m)rm

∣∣∣∣

≤ ‖excm‖(φ, 0, r) + ‖excm‖(φ, x, r)

≤ 2 ξ(r).

In order to simplify the writings we introduce the following notation:

η(r) = max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

.

Dividing (50) by ν(m)rm+2 and using (51) and hypothesis (B), we ob-
tain the following:

∣∣P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)
∣∣(52)

≤ c4.2.1(m)|x|2
( |x|

r
(1 + ξ(r)) + ξ(2r)

)

+ c4.2.3(m)r2 (|devm(φ, x, 0, r)| + 2 ξ(r))

≤ c4.2.1(m)|x|2 (η(r)(1 + ξ(r)) + ξ(2r))

+ c4.2.3(m)|x|24 η(r)−2ξ(r).

According to Proposition 4.3.3 we also also have that

|P1(φ, x, r)| = 4 |〈x,b(φ, r)〉|(53)

≤ 4 c4.3.3(m)|x|r max

{
4
√

r,
√

ξ
(
2
√

r
)}

= 4 c4.3.3(m)|x|2η(r).
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Furthermore,

|P3(φ, x, r)| ≤ 4 |x|2ν(m)−1r−m−2

∫

B(0,r)
|x| |y| dφ(y)(54)

≤ 4 |x|2ν(m)−1r−m−2rη(r)rφ(B(0, r))

≤ 4(m + 2)|x|2η(r)(1 + ξ(r)),

as well as

|P4(φ, x, r)| = |x|4ν(m)−1r−m−2φ(B(0, r))(55)

≤ |x|2η(r)2r2ν(m)−1r−m−2φ(B(0, r))

≤ (m + 2)|x|2η(r)2(1 + ξ(r)).

Plugging (53), (54), and (55) into (52), and observing that η(r)−2ξ(r) ≤√
ξ(r), we find that

|P2(φ, x, r)| ≤ c4.2.1(m)|x|2 (η(r)(1 + ξ(r)) + ξ(2r))(56)

+ 4 c4.2.3(m)|x|2
√

ξ(r)

+ 4 c4.3.3(m)|x|2η(r)

+ 5(m + 2)|x|2η(r)2(1 + ξ(r))

≤ c(m)|x|2η(r),

for some c(m) > 0 depending only upon m. Finally, recalling the defi-
nition of P2(φ, x, r) and referring to Lemma 4.1.1, it is an easy matter
to check that

(57) 4
∣∣Q(φ, r)(x) − |x|2

∣∣ ≤ 4‖exc‖(φ, 0, r)|x|2 + |P2(φ, x, r)| .
Plugging (56) into (57) yields the expected estimate. q.e.d.

4.5. Closeness to flat.

Definition 4.5.1. Let U ⊂ Rn be open, let φ be a Radon measure in
U , A ⊂ U , R > 0 and let m be a nonnegative integer. We say that φ is
(m, A, R) uniform if there exists C > 0 such that for every x ∈ A∩spt φ
and every 0 < r ≤ R with B(x, r) ⊂ U one has φ(B(x, r)) = Crm. In
case U = Rn and φ is (m, A, R) uniform for every A ⊂ Rn and every
R > 0 we simply say that φ is m uniform.

The following are two easy lemmas.

Lemma 4.5.2. Assume that:

(A) φ is an m uniform measure in Rn;
(B) 0 < q < m is an integer, W ∈ G(n, q), and spt φ ⊂ W .

Then φ = 0.
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Proof. Let U ⊂ Rn be open and bounded, and ε > 0. Referring to
Besicovitch’s covering theorem [10, 2.8.15], find a disjointed family of
closed balls B(xj , rj) contained in U , such that xj ∈ spt φ and rj ≤ ε,
j = 1, 2, . . ., as well as

φ
(
U ∩ spt φ ∼ ∪∞

j=1B(xj , rj)
)

= 0.

Notice that

φ(U ∩ spt φ) =
∞∑

j=1

Crm
j ≤ Cα(q)−1εm−qHq(W ∩ U).

The conclusion follows from the arbitrariness of ε > 0 and U . q.e.d.

Lemma 4.5.3. Assume that:

(A) U ⊂ Rn is open, φ is a nonzero Radon measure in U ;
(B) A ⊂ U is open, R > 0 and φ is (m, A, R) uniform;
(C) W ∈ G(n, m) and A ∩ spt φ ⊂ W .

Then there exists C > 0 such that φ A = C Hm W ∩ A.

Proof. In order to keep the notations short we put ψ = Hm W ∩A.
We first observe that Besicovitch’s covering theorem [10, 2.8.14] implies
that φ ≪ ψ spt φ. Indeed let C ⊂ W∩A∩spt φ be a compact such that
ψ(C) = 0, let ε > 0, and select a bounded open set V ⊂ U containing
C such that ψ(V ) < ε. Find disjointed families of balls, B1, . . . ,BΓ(n),

such that C ⊂ ∪Γ(n)
i=1 ∪ Bi, ∪Bi ⊂ V , i = 1, . . . ,Γ(n), and each B ∈ Bi is

centered in C. Then

φ(C) ≤
Γ(n)∑

i=1

∑

B∈Bi

φ(B) =

Γ(n)∑

i=1

C α(m)−1
∑

B∈Bi

ψ(B) ≤ Γ(n)C α(m)−1ε.

The absolute continuity follows from the arbitrariness of ε > 0.
Next we will show that W ∩ A ∩ spt φ = W ∩ A. Suppose instead

that V = W ∩ A ∼ spt φ 6= ∅ and pick x ∈ Bdry V (relative to W ∩ A).
Choose 0 < r ≤ R such that B(x, r) ⊂ A and φ(B(x, r)) = φ(U(x, r)).
Again referring to Besicovitch’s covering theorem (see e.g., [15, Theorem
2.8]), find a finite or countable disjointed family of closed balls B(xj , rj),
j = 1, 2, . . ., contained in U(x, r) and centered in sptφ, such that

(ψ spt φ)
(
U(x, r) ∼ ∪∞

j=1B(xj , rj)
)

= 0.
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This implies that

ψ(spt φ ∩ U(x, r)) =
∞∑

j=1

ψ(B(xj , rj))

=

∞∑

j=1

C−1α(m)φ(B(xj , rj))

= C−1α(m)φ(B(x, r))

= ψ(U(x, r)).

The last equality follows from the fact that x ∈ A ∩ spt φ and the next
to last from that φ ≪ ψ sptφ. The above relation yields in turn
ψ(V ∩ U(x, r)) = 0. Since V ∩ U(x, r) is open relative to W , and
contained in A, this clearly implies that V ∩U(x, r) = ∅, contradicting
the fact that x ∈ Bdry V .

We now know that W ∩ A ∩ spt φ = W ∩ A and that φ ≪ ψ. The
conclusion becomes an easy consequence of the differentiation theory of
Radon measures, [10, 2.9]. q.e.d.

The following is due to D. Preiss; see the argument starting near the
second third of page 541 in [17].

Theorem 4.5.4. Let φ be an m uniform and m monotonic Radon
measure in Rn such that 0 ∈ spt φ. Then there exists W ∈ G(n, m)
such that

φ = α(m)−1φ(B(0, 1))Hm W.

Proof. We observe that for each x ∈ Rn and r > 0 such that 2|x| < r
one has

|P3(φ, x, r)| ≤ 4 |x|2ν(m)−1r−m−2

∫

B(0,r)
|x||y|dφ(y)(58)

≤ 4 |x|3r−1ν(m)−1φ(B(0, 1))

as well as

0 ≤ P4(φ, x, r) ≤ |x|4ν(m)−1r−m−2φ(B(0, r))(59)

≤ |x|3r−1ν(m)−1φ(B(0, 1)).

We observe next that for each x ∈ Rn and r > 0,

V̂ (φ, x, r) − V̂ (φ, 0, r) ≤ 0,
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with equality if x ∈ spt φ. This follows from writing V̂ (φ, x, r) in terms
of φ(B(x, ρ)) (as in the proof of Lemma 4.2.3) and the following com-
putation:

φ(B(x, ρ))

ρm
≤ φ(B(0, ρ + |x|))

ρm

≤ lim sup
r→∞

φ(B(0, r + |x|))
rm

= lim sup
r→∞

(
1 +

|x|
r

)m φ(B(0, r + |x|))
(r + |x|)m

= φ(B(0, 1)) =
φ(B(0, ρ))

ρm
.

Therefore, referring to Lemma 4.2.1 we see that for every x ∈ Rn and
r > 0 such that 2|x| < r one has

P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)(60)

= V (φ, x, r) − P0(φ, x, r)

≤
∣∣∣V (φ, x, r) − V̂ (φ, x, r)

∣∣∣ + V̂ (φ, x, r) − V̂ (φ, 0, r)

≤ c4.2.1(m)ν(m)rm+1|x|3φ(B(0, 1)).

If moreover x ∈ spt φ then
∣∣P1(φ, x, r) + P2(φ, x, r) + P3(φ, x, r) + P4(φ, x, r)

∣∣(61)

≤ c4.2.1(m)ν(m)rm+1|x|3φ(B(0, 1)).

Dividing (60) and (61) by ν(m)rm+2 and plugging (58) and (59) into
the resulting inequalities yields

(62) 〈x,b(φ, r)〉 + Q(φ, r)(x) − |x|2 ≤ c(φ, m)
|x|3
r

whenever x ∈ Rn,

and
(63)

∣∣〈x,b(φ, r)〉 + Q(φ, r)(x) − |x|2
∣∣ ≤ c(φ, m)

|x|3
r

whenever x ∈ spt φ,

provided that r > 2|x|, where c(φ, m) = φ(B(0, 1))(c4.2.1(m) +
5ν(m)−1). According to Lemma 4.1.2 we also have that

0 ≤ Q(φ, r)(x) ≤ |x|2trace Q(φ, r) = m|x|2, x ∈ Rn.

Therefore there exists a sequence rj → ∞ as j → ∞ and a quadratic
polynomial Q(φ) on Rn such that Q(φ, rj)(x) → Q(φ)(x) as j → ∞,
x ∈ Rn. Clearly Q(φ) ≥ 0 and trace Q(φ) ≤ m. It now follows from
(63) that

∣∣〈x,b(φ, rj)〉 + Q(φ)(x) − |x|2
∣∣ → 0 as j → ∞



116 T. DE PAUW

whenever x ∈ spt φ. Since clearly b(φ, rj) ∈ span spt φ, j = 1, 2, . . ., we
infer that there exists b(φ) ∈ spt φ such that b(φ, rj) → b(φ) as j → ∞.
Next we infer from (62) that

〈x,b(φ)〉 ≤ |x|2 − Q(φ)(x) ≤ |x|2, x ∈ Rn.

Applying this inequality with x = 1
2b(φ) we obtain b(φ) = 0. Inequali-

ties (62) and (63) now read as follows:

(64) Q(φ)(x) ≤ |x|2, x ∈ Rn

and

(65) Q(φ)(x) = |x|2, x ∈ spt φ.

Let e1, . . . , en be an orthonormal family of eigenvectors of Q(φ) and let
λ1, . . . , λn be their corresponding eigenvalues. Recall that 0 ≤ λi ≤ 1,
i = 1, . . . , n, and define W = span{ei : λi = 1}. Then clearly Q(φ)(x) <
|x|2 whenever x ∈ Rn

∼ W , whence (65) implies that spt φ ⊂ W . Now
either φ = 0 and the theorem is obviously verified, or else φ 6= 0 and then
Lemma 4.5.2 implies that dimW ≥ m. The equation trace Q(φ) = m
yields in turn dimW = m and the proof is completed upon reference to
Lemma 4.5.3. q.e.d.

The following two lemmas are taken from [8].

Lemma 4.5.5. For every ε > 0 there exists 0 < δ4.5.5(n, m, ε) < ∞
such that whenever

(A) U ⊂ Rn is open, φ is a Radon measure in U , 0 ∈ spt φ, r > 0,
B(0, r) ⊂ U , ξ is a gauge;

(B) φ is m concentrated and (ξ, m) nearly monotonic in U ;
(C) φ(B(0, r)) ≤ (1 + δ4.5.5(n, m, ε))α(m)rm;
(D) ξ(r) ≤ δ4.5.5(n, m, ε);

there exists W ∈ G(n, m) with

dH (spt φ ∩ B(0, δ4.5.5(n, m, ε)r), W ∩ B(0, δ4.5.5(n, m, ε)r))

≤ εδ4.5.5(n, m, ε)r.

Proof. Assume if possible that there exists ε > 0 and for every j =
1, 2, . . . an open set Uj ⊂ Rn, a Radon measure φj in Uj such that
0 ∈ spt(φj), a gauge ξj and rj > 0 with the following properties: φj

is m concentrated and (ξj , m) nearly monotonic in Uj , φj(B(0, rj)) ≤
(1 + j−1)α(m)rm

j , ξj(rj) ≤ j−1, yet

distH(spt(φj) ∩ B(0, j−1rj), W ∩ B(0, j−1rj)) ≥ εj−1rj

for each W ∈ G(n, m).
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We define ψj = jmr−m
j µjr−1

j #
φj

† as well as ζj(r) = ξj(rj
−1rj), j =

1, 2, . . .. We check that: ψj is an m concentrated (ζj , m) nearly mono-
tonic measure in U(0, j), 0 ∈ spt(ψj), ψj(U(0, j)) ≤ (1 + j−1)α(m)jm

and ζj(j) ≤ j−1, j = 1, 2, . . ., yet

(66) distH(spt(ψj) ∩ B(0, 1), W ∩ B(0, 1)) ≥ ε

whenever W ∈ G(n, m). We notice that if j ≥ k then

ψj(U(0, k))

α(m)km
≤ ψj(U(0, j))

α(m)jm
+ excm

∗ (ψj , 0, j)

so that

(67) ψj(U(0, k)) ≤ (1 + 2j−1)α(m)km .

Set k0(j) = j, j = 1, 2, . . .. Referring to (67) and de la Vallée
Poussin’s compactness theorem we define inductively for l ≥ 1 a sub-
sequence kl(1), kl(2), . . . of kl−1(1), kl−1(2), . . . and a Radon measure ψl

in U(0, l) such that ψkl(j) ⇀ ψl as j → ∞. Observe that ψl1 = ψl2

on U(0, l1) whenever l1 ≤ l2 so that, according to Riesz’s representa-
tion theorem, there exists a Radon measure ψ in Rn with ψ = ψl on
U(0, l) for each l = 1, 2, . . .. Since ζj(r) → 0 as j → ∞ for every r > 0
we infer from Lemma 3.3.4 that ψ is m concentrated and m mono-
tonic in Rn, and that 0 ∈ spt(ψ). Notice that (67) also implies that
ψ(U(0, k)) = α(m)km for every k = 1, 2, . . .. This shows that ψ is m
uniform: if x ∈ spt(ψ) and r > 0 then

1 ≤ ψ(B(x, r))

α(m)rm
≤ lim

R→∞

ψ(B(x, R))

α(m)Rm

≤ lim
R→∞

ψ(B(0, |x| + R))

α(m)(|x| + R)m

(
1 +

|x|
R

)m

= 1.

Theorem 4.5.4 now implies that ψ = Hm W for some W ∈ G(n, m).
Finally we see that (67) would be in contradiction with Corollary 3.3.5.

q.e.d.

Lemma 4.5.6. For every ε > 0 there exists 0 < δ4.5.6(n, m, ε) < ∞
such that if

(A) U ⊂ Rn is open, φ is a Radon measure in U , 0 ∈ sptφ, R > 0,
B(0, R) ⊂ U , ξ is a gauge;

(B) φ is m concentrated and (ξ, m) nearly monotonic in U ;
(C) φ(B(0, R)) ≤ (1 + δ4.5.6(n, m, ε))α(m)Rm;
(D) ξ(R) ≤ δ4.5.6(n, m, ε);

†Here and in the remaining part of this paper µε(x) = εx.



118 T. DE PAUW

then for every x ∈ spt φ ∩ B(0, δ4.5.6(n, m, ε)R) and every 0 < r ≤ R/2
there exists W ∈ G(n, m) with

dH (spt φ ∩ B(x, δ4.5.6(n, m, ε)r), (x + W ) ∩ B(x, δ4.5.6(n, m, ε)r))

≤ εδ4.5.6(n, m, ε)r.

Proof. We first choose η(n, m, ε) > 0 sufficiently small for

(1 + η(n, m, ε))m(1 + δ4.5.5(n, m, ε)/2) ≤ 1 + δ4.5.5(n, m, ε).

We claim that the lemma holds with

δ4.5.6(n, m, ε) = min

{
1

4
δ4.5.5(n, m, ε), η(n, m, ε),

1

2

}
.

Indeed let x ∈ B(0, δ4.5.6(n, m, ε)R) ∩ spt(φ) and 0 < r ≤ R/2. Then
|x| + r ≤ R and

φ(B(x, r))

α(m)rm
≤ φ(B(0, |x| + r))

α(m)(|x| + r)m

(
1 +

|x|
r

)m

≤
(

φ(B(0, R))

α(m)Rm
+ excm

∗ (φ, 0, R)

) (
1 +

|x|
r

)m

≤ (1 + 2δ4.5.6(n, m, ε))(1 + δ4.5.6(n, m, ε))m

≤ 1 + δ4.5.5(n, m, ε),

so that Lemma 4.5.5 applies to the measure τ−x #φ in the open set
τ−x(U), the scale r > 0 and the gauge ξ. q.e.d.

4.6. Finding orthogonal families in Reifenberg flat sets.

Lemma 4.6.1. Let g : B(0, 1) → B(0, 1) and 0 < ρ < 1. Assume
that

(A) g is continuous;
(B) |g(x) − x| < 1 − ρ whenever x ∈ Bdry B(0, 1).

Then B(0, ρ) ⊂ im g.

Proof. We let i : Bdry B(0, 1) → B(0, 1) be the canonical injection
and P : B(0, 1) ∼ {0} → Bdry B(0, 1) be defined by P (x) = x|x|−1. We
first claim that P ◦ g ◦ i is homotopic to the identity of BdryB(0, 1). It
follows indeed from hypothesis (B) that tx+(1− t)g(x) ∈ B(0, 1) ∼ {0}
whenever 0 ≤ t ≤ 1 and x ∈ Bdry B(0, 1), whence H(t, x) = P (tx +
(1− t)g(x)) is a homotopy witnessing our claim. Therefore the induced
homomorphism in m − 1 dimensional homology (m is the dimension of
the ball B(0, 1)), Hm−1(P ◦ g ◦ i), is the identity of Z.

On the other hand |g(x)−x| ≤ 1−ρ−ε, x ∈ Bdry B(0, 1), for some 0 <
ε < 1−ρ. If the conclusion were not true there would exist x0 ∈ B(0, 1)
such that x0 6∈ im g. On letting r : B(0, 1) ∼ {x0} → Bdry B(0, 1) be
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a retraction with the property that r(x) = P (x) if ρ + ε ≤ |x| ≤ 1, one
would infer that r ◦ g ◦ i = P ◦ g ◦ i and, in turn,

idZ = Hm−1(P ◦ g ◦ i) = Hm−1(r) ◦ Hm−1(g) ◦ Hm−1(i)

in contradiction with the equation Hm−1(g) = 0. q.e.d.

Proposition 4.6.2. Let n > 0 be an integer. There exists a constant
0 < ε4.6.2(n) < ∞ with the following property. Assume that

(A) 0 < m < n is an integer, S ⊂ Rn is closed, x0 ∈ S and r0 > 0;
(C) for every x ∈ S ∩ B(x0, 2r0) and every 0 < r ≤ 2r0, S is

(ε4.6.2(n), m) flat at (x, r);
(D) 0 < ρ ≤ r

2 .

Then there exists an orthonormal family e1, . . . , em of Rn such that
x0 + ρei ∈ S, i = 1, . . . , m.

Proof. We set

ε4.6.2(n) = min

{
1

8.3n−1
, ε2.5.10(n),

1

100c2.5.10(n)

}
.

In order to keep the notation short we abbreviate

η = c2.5.10(n)ε4.6.2(n) .

It readily suffices to prove the proposition under the additional as-
sumption x0 = 0, r0 = 1. We start with the case ρ = 1/2. Let
W0 ∈ G(S, 0, 1, ε4.6.2(n)) and let τ be associated with S as in The-
orem 2.5.10. First we claim that

S ∩ Bdry B(0, 1/2) 6= ∅.
We notice indeed that Z = R ∩ {|x| : x ∈ im τ} is connected, and that
Z ∩ [0, η] 6= ∅ as well as Z ∩ [1 − η, 1 + η] 6= ∅. Since η ≤ 1/4 and since
im τ ⊂ S it becomes obvious that S ∩ Bdry B(0, 1/2) 6= ∅.

Pick x1 ∈ S ∩ Bdry B (0, 1/2), so that if m = 1 the proof of the
case ρ = 1/2 is completed; we will subsequently assume that m ≥ 2.
Put x∗

1 = PW0(x1), and observe that x∗
1 6= 0. Let e∗2, . . . , e

∗
m ∈ Rn be

such that x∗
1, e

∗
2, . . . , e

∗
m is an orthogonal family spanning W0, and define

W1 = span{x1, e
∗
2, . . . , e

∗
m}. It is easily checked that

dH(W0 ∩ B(0, 1), W1 ∩ B(0, 1)) ≤ 2ε4.6.2(n).

We will define inductively a family of pairs (x1, W1), . . . , (xm, Wm)
verifying the following conditions. For each j = 1, . . . , m:

(1) xj ∈ S ∩ Bdry B (0, 1/2);
(2) 〈xj , xi〉 = 0 for every i = 0, . . . , j − 1;
(3) x1, . . . , xj ∈ Wj ∈ G(n, m);
(4) dH (Wj−1 ∩ B(0, 1), Wj ∩ B(0, 1)) ≤ 2.3j−1ε4.6.2(n).
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The pair (x1, W1) defined above clearly verifies these conditions for j =
1. Assume that (x1, W1), . . . , (xj , Wj) have been defined for some j =
1, . . . , m − 1. We set Ej = span{x1, . . . , xj} and we aim to show that

(68) S ∩ E⊥
j ∩ Bdry B (0, 1/2) 6= ∅.

For this purpose we define fj : B(0, 1)∩B (Wj , 1/4) → B(0, 1)∩Wj by
the following formula:

fj(x) =






PWj
(x)

|PWj
(x)|

√
∣∣PWj

(x)
∣∣2+

∣∣∣PW⊥
j

(x)
∣∣∣
2
χ

(∣∣PWj
(x)

∣∣) if PWj
(x) 6= 0

0 if PWj
(x) = 0

where χ : [0, 1] → [0, 1] is given by χ(t) = 4t/
√

3 if 0 ≤ t ≤
√

3/4
and χ(t) = 1 if

√
3/4 ≤ t ≤ 1. It is not too hard to check that fj is

continuous and that
(69)

f−1
j

(
Wj ∩ E⊥

j ∩ Bdry B (0, 1/2)
)

= B (Wj , 1/4)∩E⊥
j ∩Bdry B (0, 1/2) .

It follows from the choice of W0 and condition (D) above that

dH (S ∩ B(0, 1), Wj ∩ B(0, 1))(70)

≤ dH (S ∩ B(0, 1), W0 ∩ B(0, 1))

+

j−1∑

k=0

dH (Wk ∩ B(0, 1), Wk+1 ∩ B(0, 1))

≤
(

1 +

j−1∑

k=0

2.3k

)
ε4.6.2(n)

= 3jε4.6.2(n).

Therefore our choice of ε4.6.2(n) readily implies that S ∩ B(0, 1) ⊂
B(Wj , 1/4). This means that a map gj : Wj ∩B(0, 1) → Wj ∩B(0, 1) is
well-defined by the relation gj = fj ◦τ ◦h◦PW0 where h : W0∩B(0, 1) →
W0 ∩ B(0, 1 − η) is given by h(x) = (1 − η)x, x ∈ W0 ∩ B(0, 1). It is
obvious that gj is continuous. If (68) were not valid then there would
exist zj ∈ Wj ∩ Bdry B(0, 1/2) such that zj 6∈ im gj . This, however,
would be in contradiction with Lemma 4.6.1, provided we show that

(71) |gj(ζ) − ζ| < 1/2

whenever ζ ∈ Wj ∩ Bdry B(0, 1). We now turn to establishing this
inequality for such ζ. We first notice that

|ζ − PW0(ζ)| ≤ ‖PW0 − PWj
‖ ≤ 1/8

(recall (70) and the definition of ε4.6.2(m, κ)), that

|PW0(ζ) − h(PW0(ζ))| ≤ η
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and that
|h(PW0(ζ)) − τ(h(PW0(ζ)))| ≤ η .

Therefore

(72) |ζ − τ(h(PW0(ζ)))| ≤ 1/8 + 2η

and in turn |τ(h(PW0(ζ)))| ≥
√

3/4. Notice that

sup{|fj(z) − z| : z ∈ Wj ∩ B(Wj , 1/4) ∩ B(0, 1) ∼ B(0,
√

3/4)} ≤ 1√
8
.

Therefore

|τ(h(PW0(ζ))) − fj(τ(h(PW0(ζ))))| ≤ 1√
8

and (72) yields (recall that η ≤ 1/100)

|ζ − gj(ζ)| ≤ 1

8
+

1

50
+

1√
8

<
1

2

so that (71) is proved and (68) follows at once from Lemma 4.6.1 as
explained above.

Now pick xj+1 ∈ S ∩ E⊥
j ∩ Bdry B(0, 1/2), so that conditions (A)

and (B) are verified. In order to define Wj+1 we put x∗
j+1 = PWj

(xj+1)
and we choose e∗j+2, . . . , e

∗
m so that x1, . . . , xj , x

∗
j+1, e

∗
j+2, . . . , e

∗
m is an

orthogonal family spanning Wj , and we define

Wj+1 = span{x1, . . . , xj , xj+1, e
∗
j+2, . . . , e

∗
m}.

Condition (C) is now trivially verified, whereas (D) is easy to check with
help of (70). The validity of (A) and (B) when j = m completes the
proof in case ρ = 1/2.

If ρ < 1/2 we check that the previous case applies to the set (2ρ)−1S.
q.e.d.

4.7. Controlling the mean squared distance to flat.

Definition 4.7.1. Let U ⊂ Rn be open, let x ∈ U and r > 0 be such
that B(x, r) ⊂ U , let φ be a Radon measure in U , let Z ⊂ Rn be closed
and 1 ≤ q < ∞. We define

βq(φ, x, r, Z) = q

√
r−m−q

∫

B(x,r)
distq(y − x, Z)dφ(y)

as well as

β∞(φ, x, r, Z) = r−1 sup {dist(y − x, Z) : y ∈ spt(φ) ∩ B(x, r)} .

Lemma 4.7.2. There exists a constant 0 < c4.7.2(m) < ∞ with the
following property. Assume that

(A) U ⊂ Rn is open, x ∈ U , r > 0, B(x, r) ⊂ U , φ is a Radon measure
in U , ξ is a gauge, Z ⊂ Rn is closed;

(B) φ is m concentrated and (ξ, m) nearly monotonic in U ;
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(C) ξ(r) ≤ 1
2 .

Then

β∞

(
φ, x,

r

2
, Z

)
≤ c4.7.2(m)βq(φ, x, r, Z)

q

m+q .

Proof. In order to keep the notations short we set pq,m = m(m+q)−1.
Notice that 1 − pq,m = q(m + q)−1. We define

c1(m) = 1 + m
√

4 α(m)−1 ,

and

δq,m =
1−pq,m

√
1

2
(c1(m) − 1)−1

as well as

c4.7.2(m) = max

{
c1(m), δ

− q

m+q
q,m

}
= max {c1(m), 2(c1(m) − 1)} .

We abbreviate

δ = βq(φ, x, r, Z).

Avoiding a triviality, we may assume that δ > 0. If δ > δq,m then

β∞(φ, x, r, Z) ≤ 1 ≤
(
δ−1

q,mδ
) q

m+q ≤ c4.7.2(m)δ
q

m+q ;

therefore we will subsequently assume that δ ≤ δq,m. Define

B = spt(φ) ∩ B(x, r) ∩
{
y : dist(y − x, Z) ≥ δ1−pq,mr

}

and observe that

δq = r−m−q

∫

B(x,r)
distq(y − x, Z)dφ(y)

≥ r−m−qφ(B)δq(1−pq,m)rq ,

whence

(73) φ(B) ≤ rmδqpq,m .

Now assume that there exists y ∈ spt(φ) ∩ B
(
x, r

2

)
such that

(74) dist(y − x, Z) ≥ c1(m)δ1−pq,mr.

Put ρ = (c1(m) − 1)δ1−pq,mr and notice that the choice of c1(m), δm

and the relation δ ≤ δm implies ρ ≤ r
2 , so that B(y, ρ) ⊂ B(x, r). This

in turn implies that

spt(φ) ∩ B(y, ρ) ⊂ B

and, according to (73),

(75) φ(B(y, ρ)) ≤ φ(B) ≤ δqpq,mrm .

Hypotheses (B) and (C) yield

(76)
φ(B(y, ρ))

α(m)ρm
≥ Θm(φ, y) − ξ(ρ) ≥ 1

2
.
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Combining (75) and (76) we obtain

α(m)

2
(c1(m) − 1)mδm(1−pq,m)rm ≤ δqpq,mrm.

Since the choice of pq,m is so that m(1−pq,m) = qpq,m, this is in contra-
diction with the definition of c1(m). This shows that (74) cannot hold
for y ∈ spt(φ) ∩ B

(
x, r

2

)
, and therefore

β∞

(
φ, x,

r

2
, Z

)
≤ c1(m)βq(φ, x, r, Z)1−pq,m .

q.e.d.

Proposition 4.7.3. There exist constants 0 < δ4.7.3(n, m) < 1 and
0 < c4.7.3(m) < ∞ with the following property. Assume that

(A) U ⊂ Rn is open, 0 ∈ U , 0 < R < 2−8, B(0, R) ⊂ U , φ is a Radon
measure in U , 0 ∈ spt φ, ξ is a continuous gauge;

(B) for every x ∈ spt(φ) ∩ B(0, R), Θm(φ, x) = 1;
(C) φ is (ξ, m) nearly monotonic in U and (ξ, m) epiperimetric in

(spt(φ) ∩ B(0, R), U);

(D) φ(B(0, R)) ≤ (1+δ4.7.3(n, m))α(m)Rm and ξ(
√

R) ≤ δ4.7.3(n, m).

Then for every 0 < r ≤ δ4.7.3(n, m)R there exists W ∈ G(n, m) such
that

β2(φ, 0, r, W )2 ≤ c4.7.3(m)max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

.

Proof. We let

δ4.7.3(n, m) = min
{
2−4, δ4.5.6(n, m, ε4.6.2(n)).

}

It follows from Lemma 4.5.5 and Proposition 4.6.2 that with each 0 <
r ≤ δ4.7.3(n, m)R we can associate an orthogonal family x1, . . . , xm ∈
spt φ with |xi| = rη(r), i = 1, . . . , m, where we have put

η(r) = max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

≤ 1

2
.

We define W = span{x1, . . . , xm} and we observe that
∫

B(0,r)
dist2(y, W )dφ(y)

=

∫

B(0,r)
|y|2dφ(y) −

∫

B(0,r)
|PW (y)|2 dφ(y)

=

∫

B(0,r)
|y|2dφ(y) −

m∑

i=1

|xi|−2

∫

B(0,r)
〈y, xi〉2dφ(y)

= trace Q(φ, r) −
m∑

i=1

|xi|−2Q(φ, r)(xi).
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Dividing by ν(m)rm+2 and referring to Lemma 4.1.2 and Proposition
4.4.1 we obtain

ν(m)−1r−m−2

∫

B(0,r)
dist2(y, W )dφ(y)

= trace Q(φ, r) −
m∑

i=1

|xi|−2Q(φ, r)(xi)

≤ m + ξ(r)(m + 4) −
m∑

i=1

(1 − c4.4.1(m)η(r))

≤ (m + 4 + mc4.4.1(m))η(r).

q.e.d.

4.8. A regularity theorem.

Lemma 4.8.1. There exist 0 < δ4.8.1(n, m) < ∞, 0 < c4.8.1(n, m) <
∞ and 0 < γ4.8.1(n, m) < ∞ with the following property. Whenever

(A) U ⊂ Rn is open, φ is a Radon measure in U , x ∈ spt φ, r > 0,
B(x, r) ⊂ U , ξ is a gauge;

(B) φ is m concentrated and (ξ, m) nearly monotonic in U ;
(C) φ(B(x, r)) ≤ (1 + δ4.8.1(n, m))α(m)rm;
(D) ξ(r) ≤ δ4.8.1(n, m);
(E) W ∈ G(n, m) and β∞(φ, x, r, W ) ≤ δ4.8.1(n, m);

the following holds:

distH (spt(φ) ∩ B(x,γ4.8.1(n, m)r), (x + W ) ∩ B(x,γ4.8.1(n, m)r))

≤ c4.8.1(n, m)β∞(φ, x, r, W )γ4.8.1(n, m)r

as well as

W ∩ B(0, γ4.8.1(n, m)r) ⊂ PW

[
τ−x(spt φ) ∩ B(0, r)

]
.

Proof. First notice that it suffices to prove the lemma for x = 0 and
r = 1. We define

ε = min

{
1

3
ε2.5.10(n),

1

24c2.5.10(n)
,

1

25

}

and
δ4.8.1(n, m) =

ε

2
min{δ4.5.6(n, m, ε), 1}.

We also let r0 = 1
2 min{δ4.5.6(n, m, ε), 1}. Our first goal is to prove

that

(77) W ∈ G(spt(φ), 0, 2r0, 3ε).

For that purpose we select W0 ∈ G(spt(φ), 0, 2r0, ε) (the existence of
such W0 follows from Lemma 4.5.6). Let w0 ∈ W0 ∩ B(0, 1). There
exists x ∈ spt(φ) ∩ B(0, 2r0) such that

(78) |x − 2r0w0| ≤ ε2r0.
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According to hypothesis (D) there exists w ∈ W with

(79) |x − w| ≤ δ4.8.1(n, m) ≤ ε2r0.

Now (78) and (79) yield |w0 − (2r0)
−1(2r0w0)| ≤ 2ε and, in turn,

sup {dist(w0, W ) : w0 ∈ W0 ∩ B(0, 1)} ≤ 2ε.

According to Lemma 2.5.6 this implies

distH(W0 ∩ B(0, 1), W ∩ B(0, 1)) ≤ 2ε .

We infer from the triangle inequality for the Hausdorff distance that

distH(spt(φ) ∩ B(0, 2r0), W ∩ B(0, 2r0))

≤ distH(spt(φ) ∩ B(0, 2r0), W0 ∩ B(0, 2r0))

+ distH(W0 ∩ B(0, 2r0), W ∩ B(0, 2r0))

≤ 3ε2r0;

this completes the proof of (77).
Now we observe that G(spt(φ), x, r, ε) 6= ∅ whenever x ∈ spt(φ) ∩

B(0, 2r0) and 0 < r ≤ 2r0, according to Lemma 4.5.6. Therefore Theo-
rem 2.5.10 applies: our choice of ε and relation (77) ensure the existence
of a continuous map τ : W ∩ B(0, r0) → spt(φ) such that

|τ(y) − y| ≤ c2.5.10(n)3εr0(80)

≤ (1/8)r0.

We claim that

(81) PW (spt(φ) ∩ B(0, r0)) ⊃ W ∩ B(0, r0/2).

In order to prove this we let π : W → W ∩B(0, r0) be the nearest point
projection on W ∩ B(0, r0) and we define a continuous map

g : W ∩ B(0, r0) → W ∩ B(0, r0)

by the relation g = π ◦ PW ◦ τ . Let y ∈ W ∩ Bdry B(0, r0). We infer
from (80) that

(82) |τ(y)| ≤ (1 + 1/8)r0,

therefore |PW (τ(y))| ≤ (1 + 1/8)r0 as well. Hence

(83) |π(PW (τ(y))) − PW (τ(y))| ≤ (1/8)r0.

It also follows from (82) that τ(y) ∈ spt(φ) ∩ B(0, 2r0), and in turn we
deduce from (77) that

(84) |PW (τ(y)) − τ(y)| ≤ 3ε2r0.
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Putting together (80), (83) and (84) we obtain

|g(y) − y| ≤ |π(PW (τ(y))) − PW (τ(y))|
+ |PW (τ(y)) − τ(y)|
+ |τ(y) − y|

≤ (1/8)r0 + 6εr0 + (1/8)r0

< r0/2,

according to our choice of ε. It now follows from Lemma 4.6.1 that
W ∩ B(0, r0/2) ⊂ im g. Therefore

(85) W ∩ B(0, r0/2) ⊂ PW (im τ) ⊂ PW (spt(φ) ∩ B(0, 9r0/8)).

Notice our choices of δ4.8.1(n, m) and ε together with hypothesis (D)
imply that β∞(φ, 0, 1, W ) < r0/2. Choose 0 < s < 1 such that
β∞(φ, 0, 1, W ) = sr0/2 and define t =

√
1 − s. Pick y ∈ W ∩B(0, r0/2)

and refer to (85) to choose x ∈ spt(φ)∩B(0, 9r0/8) such that PW (x) =
ty. Notice that |x| ≤ 1. We observe that

dist(ty, spt(φ)) ≤ |ty − x|
= |PW⊥(x)|
≤ dist(x, W )

≤ β∞(φ, 0, 1, W ),

and

|x|2 = |PW⊥(x)|2 + |PW (x)|2

≤ dist(x, W )2 + |ty|2

≤ β∞(φ, 0, 1, W )2 + t2(r0/2)2

= (s2 + t2)(r0/2)2,

so that in fact x ∈ spt(φ) ∩ B(0, r0/2). On the other hand,

|y − ty| ≤ (1 − t)r0/2 ≤ sr0/2 = β∞(φ, 0, 1, W ) .

We conclude that

sup{dist(y, spt(φ)∩B(0, r0/2)) : y ∈ W∩B(0, r0/2)} ≤ 2β∞(φ, 0, 1, W ).

We see that the conclusion of the proposition holds with γ4.8.1(n, m) =
r0/2 and c4.8.1(n, m) = r0. q.e.d.

Next we recall a (very) classical method for producing Lipschitz
graphs.

Definition 4.8.2. Let S ⊂ Rn, r > 0, σ > 0 and W ∈ G(n, m). We
define

G(S, r, σ, W ) = S ∩ B(0, r/2) ∩
{
x : S ∩ B(x, ρ) ⊂ B(x + W, σρ)

for every 0 < ρ ≤ r
}
.
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Lemma 4.8.3. Assume that S ⊂ Rn, r > 0, 0 < σ < 1 and W ∈
G(n, m). Then there exists a Lipschitzian map

u : PW (G(S, r, σ, W )) → W⊥

such that Lipu ≤ σ/
√

1 − σ2 and graph(u) = G(S, r, σ, W ).

Proof. We abbreviate G = G(S, r, σ, W ). Let x, y ∈ G and put ρ =
|x− y|, so that ρ ≤ r. Therefore y ∈ S ∩B(x, ρ) ⊂ B(x + W, σρ), which
means that

(86) |PW⊥(y − x)| ≤ σρ = σ|y − x|.
Since also |y − x|2 = |PW (y − x)|2 + |PW⊥(y − x)|2, (86) becomes

(87) (1 − σ2) |PW⊥(y − x)|2 ≤ σ2 |PW (y − x)|2 .

Observe that (87) implies that the restriction PW : G → PW (G) is
injective. Let f : PW (G) → G be its inverse and u = PW⊥ ◦ f . Clearly
graph(u) = G and (87) readily yields the claimed estimate of Lipu.
q.e.d.

We are now ready to prove the first version of our main result.

Theorem 4.8.4. For every 0 < α ≤ 1 and every 0 < m < n there
exist 0 < δ4.8.4(n, m) < ∞, 0 < δ∗

4.8.4(n, m, α) < ∞, 0 < γ4.8.4(n, m) <
∞ and 0 < c4.8.4(n, m, α) < ∞ with the following property. Assume
that

(A) U ⊂ Rn is open, φ is a Radon measure in U , 0 ∈ spt φ, C ≥ 1,
ξ(t) = Ctα;

(B) 0 < R < δ∗
4.8.4(n, m, α)C−2/α, B(0, R) ⊂ U ;

(C) φ is (ξ, m) nearly monotonic in U ;
(D) φ is (ξ, m) epiperimetric in (U ∩ spt(φ), U);
(E) Θm(φ, x) = 1 for every x ∈ spt(φ) ∩ U ;
(F) φ(B(0, R)) ≤ (1 + δ4.8.4(n, m))α(m)Rm;

(G) ξ(
√

R) ≤ δ4.8.4(n, m);
(H) W ∈ G(n, m) and β∞(φ, 0, R, W ) ≤ δ4.8.4(n, m).

Then there exists a map u : W ∩ B(0, γ4.8.4(n, m)R) → W⊥ such that

(I) u is continuously differentiable and

‖Du(z1) − Du(z2)‖ ≤ c4.8.4(n, m, α)C|z1 − z2|
α

8(m+2)

whenever z1, z2 ∈ W ∩ B(0, γ4.8.4(n, m)R);
(J) spt(φ) ∩ B(0, γ4.8.4(n, m)R) = graph(u) ∩ B(0, γ4.8.4(n, m)R).

Proof. We start by defining all the necessary constants. For further
reference in Claims 2 and 3 below we put

c2(n, m) := 2c4.7.2(n, m)c4.7.3(n, m)
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and

c3(n, m) :=
2c2(n, m)c4.8.1(n, m)

γ4.8.1(n, m)
1

8(m+2)

.

Next we choose 0 < η(n, m) < 2−8 small enough for
(

1 +
1

2
δ4.7.3(n, m)

)
(1 + 2η(n, m))m ≤ 1 + δ4.7.3(n, m)

as well as
(

1 +
1

2
δ4.8.1(n, m)

)
(1 + 2η(n, m))m ≤ 1 + δ4.8.1(n, m).

In order to keep the notations short we also set

β =
α

8(m + 2)
.

We claim that the theorem holds with δ4.8.4(n, m), δ∗
4.8.4(n, m, α),

c4.8.4(n, m) and γ4.8.4(n, m) defined as follows:

δ4.8.4(n, m) := min

{
1

4
δ4.7.3(n, m),

1

4
δ4.8.1(n, m),

δ4.7.3(n, m)η(n, m)

4c4.8.1(n, m)
,

1

16c4.8.1(n, m)

(
1 + 8

δ4.7.3(n,m)η(n,m)

)
}

,

δ∗
4.8.4(n, m, α) := min

{ (
δ4.8.1(n, m)

c2(n, m)

)β−1

,

(
1

384c3(n, m)

)β−1

,

(
1 − 2−β

160c3(n, m)

)β−1

,

(
δ4.7.3η(n, m)

4c3(n, m)

)β−1

,




1

16c3(n, m)

(
1 + 8

δ4.7.3(n,m)η(n,m)

)





β−1

}
,
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and

c4.8.4(n, m, α) =
256c3(n, m)

1 − 2−β
,

as well as

γ4.8.4(n, m) =
δ4.7.3(n, m)η(n, m)γ4.8.1(n, m)2

8
.

The proof is subdivided into several claims as follows.

Claim 1. For every x ∈ spt(φ) ∩ B(0, η(n, m)R) and every 0 < r ≤
δ4.7.3(n, m)η(n, m)R there exists W ∗

x,r ∈ G(n, m) such that

β2(φ, x, r, W ∗
x,r)

2 ≤ 2c4.7.3(n, m)C
1
4 r

α
8 .

Since

max

{
8
√

r, 4

√
ξ
(
2
√

r
)}

= 2C
1
4 r

α
8

we need only to check that Proposition 4.7.3 applies to τ−x #φ at the
scale R/2. Observe that hypothesis (D) of this proposition is verified:

φ(B(x, R/2))

α(m)(R/2)m
≤ φ(B(0, |x| + R/2))

α(m)(|x| + R/2)m
(1 + 2η(n, m))m

≤
(

φ(B(0, R))

α(m)Rm
+ ξ(R)

)
(1 + 2η(n, m))m

≤ 1 + δ4.7.3(n, m).

Claim 2. For every x ∈ spt(φ) ∩ B(0, η(n, m)R) and every 0 < r ≤
δ4.7.3(n, m)η(n, m)R one has

β∞

(
φ, x,

r

2
, W ∗

x,r

)
≤ c2(n, m)C

1
4(m+2)

(r

2

)β
.

This is a straightforward consequence of Claim 1 and Lemma 4.7.2.

Claim 3. For every x ∈ spt(φ) ∩ B(0, η(n, m)R) and every 0 < r ≤
δ4.7.3(n, m)η(n, m)R/2 one has

distH
[
spt(φ)∩B(0, γ4.8.1(n, m)r/2), (x+W ∗

x,r)∩B(0, γ4.8.1(n, m)r/2)
]

≤ c3(n, m)C
1

4(m+2)

(
γ4.8.1(n, m)r

2

)1+β

.

This follows from Claim 2 together with Lemma 4.8.1. One checks
that hypothesis (C) of this lemma is verified as in the proof of Claim 1.
Regarding hypothesis (E) of this lemma we infer from Claim 2 that

β∞(φ, x, r, W ∗
x,r) ≤ c2(n, m)C

1
4(m+2) rβ ≤ δ4.8.1(n, m);

the latter holds because r ≤ R is sufficiently small according to hypoth-
esis (B) of the present theorem.
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In order to keep the notations short in the remainder of this proof we
put

r0 =
δ4.7.3(n, m)η(n, m)γ4.8.1(n, m)R

4
,

as well as

rj = 2−jr0 , j = 1, 2, . . . .

We also set

Wx,r = W ∗
x,2r/γ4.8.1(n,m)

whenever the right member is defined.

Claim 4. For every x ∈ spt(φ)∩B(0, η(n, m)R) and every 0 < r ≤ r0

one has

distH
[
spt(φ) ∩ B(x, r), (x + Wx,r) ∩ B(x, r)

]
≤ c3(n, m)C

1
4(m+2) r1+β .

This is merely a reformulation of Claim 3.

Claim 5. For every x ∈ spt(φ)∩B(0, η(n, m)R), every j = 0, 1, 2, . . .
and every rj+1 ≤ r ≤ rj one has

dist(Wx,r, Wx,rj
) ≤ 5c3(n, m)C

1
4(m+2) rβ

j .

This is a consequence of Lemma 2.5.8 applied with R (there) equal to

rj (here) and ε = c3(n, m)C
1

4(m+2) rβ
j . One checks that ε ≤ 1/2 because

rj ≤ r0 ≤ R is sufficiently small.
We infer from Claim 5 that for such x and k > j the following holds:

dist(Wx,rk
, Wx,rj

) ≤ 5c3(n, m)C
1

4(m+2)

∞∑

l=j

rβ
l(88)

≤ 5c3(n, m)C
1

4(m+2) (1 − 2−β)−1rβ
j .

Therefore Wx,r0 , Wx,r1 , . . . is a Cauchy sequence in G(n, m). We let Wx

denote its limit.

Claim 6. For every x ∈ spt(φ)∩B(0, η(n, m)R), every j = 0, 1, 2, . . .
and every rj+1 ≤ r ≤ rj one has

dist(Wx, Wx,r) ≤ 10c3(n, m)C
1

4(m+2) (1 − 2−β)−1rβ
j .

This readily follows from (88) and Claim 5.

Claim 7. For every x ∈ spt(φ)∩B(0, r0/2) and every 0 < r ≤ r0 one
has

dist(Wx,r, W0) ≤
1

4
.
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In order to prove this we first apply Lemma 2.5.9 to the points 0
and x, with R (there) equal to r0 (here), λ = 1/2, ν = 4 and ε =

c3(n, m)C
1

4(m+2) rβ
0 (recall Claim 4). Notice that r0 ≤ R has been chosen

so small that ε ≤ 1/384. It now follows from Lemma 2.5.9 that

dist(Wx,r0 , W0,r0) ≤
1

16
.

This, together with three applications of Claim 6, yields

dist(Wx,r, W0) ≤ dist(Wx,r, Wx) + dist(Wx, Wx,r0)

+ dist(Wx,r0 , W0,r0) + dist(W0,r0 , W0)

≤ 1

16
+ 30c3(n, m)C

1
4(m+2) (1 − 2−β)−1rβ

0

≤ 1

4
,

where the last inequality is again a consequence of r0 being small enough.

Claim 8. One has dist(W, W0) ≤ 1
8 (recall W is as in hypothesis

(H)).

Hypothesis (H) and Lemma 4.8.1 yield

W ∈ G(spt(φ), 0, γ4.8.1(n, m)R, ε1)

where

ε1 = c4.8.1(n, m)δ4.8.4(n, m).

On the other hand we infer from Claim 4 that W0,r0 ∈ G(spt(φ), 0, r0, ε2)
where

ε2 = c3(n, m)C
1

4(m+2) rβ
0 .

Let ε= max{ε1, ε2} and apply Lemma 2.5.8 at scale r0 <γ4.8.1(n, m)R.
Notice that our choice of δ4.8.4(n, m) and the smallness of r0 implied
by hypothesis (B) guarantee that εγ4.8.1(n, m)R ≤ r0 as well as

ε

(
1 +

8

δ4.7.3(n, m)η(n, m)

)
≤ 1

16
.

Therefore it follows from Lemma 2.5.8 that

dist(W, W0,r0) ≤
1

16
.

On the other hand Claim 6 implies that

dist(W0, W0,r0) ≤ 10c3(n, m)C
1

4(m+2) (1 − 2−β)−1rβ
0 ≤ 1

16

again because r0 is small enough. The proof of Claim 8 is complete.

Claim 9. For every x ∈ spt(φ)∩B(0, r0/2) and every 0 < r ≤ r0 one
has

spt(φ) ∩ B(x, r) ⊂ B(x + W, r/2).
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We first infer from Claim 4 and the smallness of r0 that

distH
[
spt(φ) ∩ B(x, r), (x + Wx,r) ∩ B(x, r)

]
≤ c3(n, m)C

1
4(m+2) rβ

0 r

≤ r

8
.

Furthermore, we deduce from Claims 7 and 8 that

distH
[
(x + W ) ∩ B(x, r), (x + Wx,r) ∩ B(x, r)

]
≤ 3

8
r.

The conclusion follows from the triangle inequality for the Hausdorff
distance.

Claim 10. There exists a Lipschitzian map

u : W ∩ B(0, γ4.8.1(n, m)r0/2) → W⊥

such that Lipu ≤ 1 and

graph(u) ∩ B(0, γ4.8.1(n, m)r0/2) = spt(φ) ∩ B(0, γ4.8.1(n, m)r0/2).

On letting G = G(spt(φ), r0, 1/2, W ) we infer from Lemma 4.8.3 that
there exists a Lipschitzian map

ũ : PW (G) → W⊥

so that graph(ũ) = G. It also follows from Claim 9 that G = spt(φ) ∩
B(0, r0/2). Next we apply Lemma 4.8.1 at the scale r0/2 and we obtain

W ∩ B(0, γ4.8.1(n, m)r0/2) ⊂ PW (spt(φ) ∩ B(0, r0/2))

= PW (G).

Therefore, on letting u = ũ ↾ B(0, γ4.8.1(n, m)r0/2) we see our conclu-
sion holds.

Claim 11. Let z1, z2 ∈ W ∩B(0, γ4.8.1(n, m)r0/2) be such that u is
differentiable at z1 and z2. Then

‖Du(z1) − Du(z2)‖ ≤ 256c3(n, m)C
1

4(m+2) (1 − 2−β)−1|z1 − z2|β.

Set xi = u(zi), i = 1, 2, and r = 2|x1−x2| ≤ r0. We infer from Claim
6 that

dist(Wxi
, Wxi,r) ≤ 20c3(n, m)C

1
4(m+2) (1 − 2−β)−1rβ.

Next we apply Lemma 2.5.9 at the scale r with λ = 1/2, ν = 4 and

ε = c3(n, m)C
1

4(m+2) rβ < 1/4 (recall Claim 4). We obtain

dist(Wx1,r, Wx2,r) ≤ 24c3(n, m)C
1

4(m+2) rβ.

Adding these inequalities yields

dist(Wx1 , Wx2) ≤ 64c3(n, m)C
1

4(m+2) (1 − 2−β)−1rβ

≤ 64c3(n, m)C
1

4(m+2) (1 − 2−β)−1|z1 − z2|β .
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It is not hard to check that Wxi
= im(iW + iW⊥ ◦ Du(zi)), i = 1, 2, so

that our conclusion becomes a consequence of Lemma 2.1.1(B).
According to Rademacher’s theorem, [10, 3.1.6], u is differentiable

Hm almost everywhere. Therefore the estimate of Claim 11 remains
valid with the smoothing u ∗ Φε replacing u. This implies in turn that
D(u ∗ Φε) converges uniformly so that u is differentiable everywhere.
The proof of the theorem is now complete. q.e.d.

The following immediate consequence of Theorem 4.8.4 is perhaps
more user-friendly.

Corollary 4.8.5. Let S ⊂ Rn and 0 < m < n an integer. The
following conditions are equivalent.

(1) S is an m dimensional Hölder continuously differentiable subman-
ifold.

(2) S = spt(Hm S) and each x ∈ S has a neighborhood U verifying
the following conditions:

(A) Hm S is (ξ, m) epiperimetric in (U ∩ S, U);
(B) Hm S is (ξ, m) nearly monotonic in U ;
for some gauge ξ of the type ξ(t) = Ctα, 0 < α ≤ 1, C ≥ 1.

Proof. That (1) implies (2) is the content of Proposition 3.6.1. With
regard to the reverse implication we infer from Theorem 4.8.4 that one
needs only to check that Θm(Hm S, x) = 1 for every x ∈ S ∩ U . This
readily follows from the (ξ, m) epiperimetry of Hm S on S∩U together
with [10, 3.2.19]. q.e.d.
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