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ON THE CLASSIFICATION OF LORENTZIAN
HOLONOMY GROUPS

Thomas Leistner

Abstract

If an (n + 2)-dimensional Lorentzian manifold is indecompos-
able, but non-irreducible, then its holonomy algebra is contained
in the parabolic algebra (R⊕so(n))⋉R

n. We show that its projec-
tion onto so(n) is the holonomy algebra of a Riemannian manifold.
This leads to a classification of Lorentzian holonomy groups and
implies that the holonomy group of an indecomposable Lorentzian
spin manifold with parallel spinor equals to G ⋉ R

n where G is a
product of SU(p), Sp(q), G2 or Spin(7).

1. Introduction

Holonomy groups. An important tool to study the geometric struc-
ture of a smooth manifold M equipped with a linear connection ∇ is its
holonomy group. Parallel sections in geometric vector bundles, such as
tensor products of the tangent bundle or the spin bundle, correspond
to invariant objects under the holonomy representation. By a result
of J. Hano and H. Ozeki [22] any closed subgroup of Gl(m, R) can be
obtained as a holonomy group of a connection, but possibly a connec-
tion with torsion. By imposing conditions on the torsion there arises a
classification problem of possible holonomy groups. In order to tackle
such a classification problem one usually assumes that the connection
is torsion free and that holonomy group acts irreducibly. If the connec-
tion is torsion free, its curvature satisfies the Bianchi-identity imposing
algebraic constraints to the holonomy algebra via the Ambrose-Singer
holonomy theorem [3]. By evaluating these constraints M. Berger clas-
sified the irreducible semi-Riemannian holonomy groups (see [6] for not
locally symmetric semi-Riemannian manifolds, [7] for symmetric spaces,
and [35], [2], [10] and [11] for simplifications, corrections and existence
results in the Riemannian case), while L. Schwachhöfer and S. Merkulov
([31], [32], [33]) classified irreducible holonomy groups of torsion free
connections which are not necessarily compatible with a metric.
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Due to the de Rham splitting theorem, which asserts that any sim-
ply connected, complete Riemannian manifold is isometric to a product
of simply connected, complete Riemannian manifolds with trivial or ir-
reducible holonomy representation, the Berger-classification leads to a
classification of possible holonomy groups of simply connected complete
Riemannian manifolds. The generalisation of the de Rham theorem to
semi-Riemannian manifolds is due to H. Wu [38] assuring a decompo-
sition into manifolds with indecomposable holonomy groups, instead of
irreducible ones. Thus, in order to classify holonomy groups of pseudo-
Riemannian manifolds, one has to determine the holonomy groups which
act indecomposably, but not necessarily irreducibly.

In one of his articles about open problems in geometry S.-T. Yau
referred to this situation and related it to the problem of the existence
of parallel spinors [39]: “Berger has classified holonomy groups for Rie-
mannian manifolds. If the metric is not Riemannian but allows differ-
ent signature, the corresponding theorem of Berger should exist. More
importantly, we would like to find a complete connection whose holo-
nomy group is the given Lie group. In particular, classify complete
Lorentzian manifolds with parallel spinors.” In the present article we
shall deal with two questions which are subsidiary to the questions posed
by Yau. Firstly, we restrict ourselves to Lorentzian manifolds and study
the problem, which Lie groups might occur as their holonomy groups.
We shall show that the screen holonomy group of an indecomposable,
non-irreducible Lorentzian manifold is always a Riemannian holonomy
group. Secondly, we show which of the groups we found are holonomy
groups of Lorentzian spin manifolds with a parallel spinor field. Both
questions should reasonably be answered before tackling the complete-
ness problem in Yau’s quote.

Lorentzian holonomy groups and results of the paper. For a
simply connected and complete semi-Riemannian manifold (M, h) of
Lorentzian signature (−+ · · ·+) the de Rham/Wu decomposition leads
to the following isometry:

(M, h)
isometric

≃ (M ′, h′) × (N1, g1) × . . . (Nk, gg),

where (Ni, gi) are Riemannian manifolds which are flat or with irre-
ducible holonomy representation and (M ′, h′) is a simply-connected,
complete Lorentzian manifold. Then three cases arise:

1) (M ′, h′) is flat, i.e., the holonomy representation is trivial.
2) (M ′, h′) is irreducible. In this case its holonomy group is the full

SO0(1, m − 1) where m = dim M ′. This follows from Berger’s
classification, but it was also proven directly in [17].

3) (M ′, h′) is indecomposable, but non-irreducible. We will treat this
case in the present article.
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Since we shall work on the level of Lie algebras, in the following we

always assume that our manifold is simply connected or that the re-

sults are true only for the restricted holonomy group, i.e., the connected

component of the holonomy group. We consider an (n + 2)-dimensional
Lorentzian manifold. If the holonomy representation is indecompos-
able and non-irreducible it admits a one-dimensional, light-like holo-
nomy invariant subspace. Thus the holonomy group is contained in the
isotropy group of this subspace, which is equal to the parabolic group
(R+ × SO(n)) ⋉ R

n. Its projection onto SO(n) is called screen holo-

nomy, since it is the holonomy of the so-called screen bundle (see [29]
and [30]). If the screen holonomy and the projection onto R are trivial,
i.e., if the holonomy is Abelian, then the manifold is a pp-wave [26]. L.
Berard-Bergery and A. Ikemakhen proved in [5] a Borel-Lichnerowicz-
type decomposition property for the screen holonomy. This property
is satisfied for holonomy groups of Riemannian manifolds and these
were the only examples of such a projection. In their paper they posed
the question whether the so(n)-projection of an indecomposable, non-
irreducible Lorentzian holonomy algebra is always the holonomy algebra
of a Riemannian manifold. We show that this is the case:

Theorem 1.1. Let (M, h) be a Lorentzian manifold of dimension

n + 2 > 2 with an indecomposable, non-irreducible restricted holonomy

group H. Then the SO(n)-projection of H is the holonomy group of an

n-dimensional Riemannian manifold.

We will explain shortly how this result can be used for a classification
of indecomposable, non-irreducible Lorentzian holonomy groups. First
of all, there is no further obstruction on a Lie group to be the screen ho-
lonomy of a Lorentzian manifold, i.e., any Riemannian holonomy group
can be realised as screen holonomy of a certain indecomposable, non-
irreducible Lorentzian manifold. This is due to a simple construction
method which we shall not prove in the present article (see [27] for a
proof and [29] for a slight generalisation).

Secondly one has to recall that in [5] four different types of indecom-
posable subalgebras of the parabolic algebra are distinguished. For two
of these types the algebra has the shape (R⊕g)⋉R

n resp. g⋉R
n with a

subalgebra g ⊂ so(n) — we call these uncoupled types — while two fur-
ther types show a coupling between the centre of the so(n)-projection
and the R- resp. the R

n-projection. As the mentioned construction
method leads to Lorentzian manifolds with holonomy of uncoupled type,
there are no further obstrucions on a Riemannian holonomy group to
be the screen holonomy of a Lorentzian holonomy group of uncoupled
type. For the coupled types A. Galaev showed recently [20] the fol-
lowing: If h is an indecomposable subalgebra of the parabolic algebra
(possibly of coupled type) and with a Riemannian holonomy algebra
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as so(n)-projection, then there is a Lorentzian metric with restricted
holonomy h. Using this we can summarise the results as follows.

Corollary 1.2. Let H ⊂ (R+ × SO(n)) ⋉ R
n ⊂ SO(1, n + 1) be an

indecomposable subgroup and G = prSO(n)H. Then H is the restricted

holonomy group of a Lorentzian manifold if and only if G is the holo-

nomy group of a Riemannian manifold.

Regarding the existence of parallel spinors fields on a semi-Riemann-
ian spin manifold, one has to recall that a parallel spinor field on a
simply-connected manifold corresponds to a spinor which is annihilated
under the spin representation of the holonomy algebra. As soon as one
knows the holonomy algebra one may calculate if the manifold admits a
parallel spinor field. In the case of Riemannian manifolds this was done
by M. Wang [37] and for irreducible pseudo-Riemannian manifolds by
H. Baum and I. Kath [4]. Since for the Lorentzian manifolds the only
irreducible holonomy group is the full SO0(1, m − 1), the existence of
a parallel spinor field immediately leads to the non-irreducible case.
In other words: On a Lorentzian manifold, the existence of a parallel
spinor field implies the existence of a parallel vector field. If this vector
field is time-like, the Lorentzian part in the Wu-decomposition is flat; if
it is light-like, we are in the case of an indecomposable, non-irreducible
Lorentzian manifold. From Theorem 1.1 and the fact that the holonomy
of a Lorentzian manifold with parallel spinor cannot be of coupled type
one can deduce the following consequence.

Corollary 1.3. Let (M, h) be an indecomposable Lorentzian spin

manifold of dimension (n + 2) > 2 with restricted holonomy group H
admitting a parallel spinor field. Then it is H = G ⋉ R

n where G is

the restricted holonomy group of an n-dimensional Riemannian mani-

fold with parallel spinor, i.e., G is a product of SU(p), Sp(q), G2 or

Spin(7).

This generalises a result of R. L. Bryant in [12] (see also [18]) where
it is shown up to n ≤ 9 that the maximal subalgebras of the parabolic
algebra admitting a trivial subrepresentation of the spin representation
are of type (Riemannian holonomy)⋉R

n. We conclude:

Theorem 1.4. Let (M, h) be a simply connected Lorentzian spin

manifold which admits a parallel spinor. Then (M, h) is isometric to a

product (M ′, h′) × (N1, g1) × . . . (Nk, gg), where the (Ni, gi) are flat or

irreducible Riemannian manifolds with a parallel spinor and (M ′, h′) is

either (R,−dt) or it is an indecomposable, non-irreducible Lorentzian

manifold of dimension (n + 2) > 2 with holonomy G ⋉ R
n where G is

the holonomy group of a Riemannian manifold with parallel spinor.

Finally one should remark that the question for the general form of
the metric having a prescribed holonomy is still open (up to n ≤ 9 see
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[12], for more detailed results about the local form of the metric in any
dimension see [8]). Of course, the question of completeness, which was
part of Yau’s problem, is not touched yet. We should remark that the
result of Theorem 1.1 up to n ≤ 9 was obtained in [19], by using some
of our results of [26]. Finally, it would be interesting to have a more
conceptual proof of Theorem 1.1.

Methods of the proof and structure of the paper. In Section 2
we recall basic properties of indecomposable, non-irreducible Lorentzian
holonomy groups, in particular the results of [5]. We introduce the
notion of a weak-Berger algebra, in contrast to a Berger algebra, and
show that the so(n)-projection g of an indecomposable, non-irreducible
Lorentzian holonomy algebra is a weak-Berger algebra, as well as all its
irreducibly acting components. As a consequence, we have to classify
all irreducibly acting, real weak-Berger algebras. A real Lie algebra is
weak-Berger if and only if its complexification is weak-Berger, but in
order to switch to the complex situation we have to distinguish two
cases: the Lie algebra acts irreducibly on the complexified module (the
representation is of real type) or it acts reducibly on the complexified
module (the representation is of non-real type). Since the Lie algebra
we start with acts completely reducibly it has to be reductive. Thus, in
the first case the Lie algebra has to be semisimple. In the second case
the complexified module splits into two irreducible submodules which
are conjugate to each other.

In Section 3 we classify weak-Berger algebras of non-real type. Using
a classification of complex Lie algebras with non-vanishing first prolon-
gation by S. Kobayashi and T. Nagano [25] we show that any weak-
Berger algebra which is unitary is a Berger algebra, i.e., the holonomy
algebra of a Riemannian Kähler manifold.

In Section 4 we consider the case where the representation is of real
type. Because of the semisimplicity we can use the methods of root
space and weight space decomposition and transform the weak-Berger
property in the language of roots and weights. In Section 5 we classify
irreducible, complex, simple weak-Berger algebras and in Section 6 the
semisimple, non-simple ones. We show for both that they are Berger
algebras, i.e., that they are complexifications of Riemannian holonomy
algebras.

2. Lorentzian holonomy and weak-Berger algebras

2.1. Indecomposable, non-irreducible Lorentzian holonomy al-
gebras. Let (M, h) be an indecomposable, non-irreducible Lorentzian
manifold with dim M = n + 2 > 2. The holonomy group at a point
p ∈ M acting on TpM has a degenerate invariant subspace. Intersect-
ing this subspace with its orthogonal complement yields a light-like,
one-dimensional invariant subspace Ξp which is the fibre of a parallel
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distribution Ξ. This distribution corresponds to a light-like recurrent
vector field X. The subspace Ξ⊥

p is holonomy invariant too and the fibre

of a parallel distribution Ξ⊥ of co-dimension 1.
The Lie algebra of the isotropy group of Ξp can be identified with the

parabolic algebra (R⊕ so(n)) ⋉ R
n ⊂ so(Rn+2, η), and by fixing a basis

of TpM of the form

(1)
(x, e1, . . . en, z) with x ∈ Ξp, ei ∈ Ξ⊥

p such that h(ei, ej) = δij

h(z, z) = h(z, ei) = h(x, ei) = 0 and h(x, z) = 1,

it can be written in matrices as follows:

(R ⊕ so(n)) ⋉ R
n =











a vt 0
0 A −v
0 0t −a





∣
∣
∣
∣
∣
∣

a ∈ R, v ∈ R
n, A ∈ so(n)






.

The holonomy algebra of an indecomposable, non-irreducible Lorentzian
manifold, denoted by holp(M, h), is contained in this Lie algebra. If the
manifold admits not only a recurrent but also a parallel light-like vector
field, then the projection of holp(M, h) on R vanishes.

We set E := span(e1, . . . , en) and write so(n) = so(E, (hp)|E). The
main ingredient of such a holonomy algebra is the so(n)-projection.
We call this projection g := prso(n)(holp(M, h) the screen holonomy

of an indecomposable, non-irreducible Lorentzian manifold, because it
is equal to the holonomy of the so-called screen bundle Ξ⊥/Ξ → M
(see [29] and [30]). Since g ⊂ so(n) acts completely reducibly, g is
reductive, i.e., its Levi decomposition is g = z + d, where z is the centre
of g and d = [g, g] the derived Lie algebra, which is semisimple [15].
Choosing a different basis of type (1) corresponds to conjugation in the
parabolic group. Hence, the so(n)-component is uniquely defined up to
conjugation in O(n). For the screen holonomy L. Berard-Bergery and
A. Ikemakhen proved the following Borel-Lichnerowicz-type property.

Theorem 2.1 ([5]). Let h ⊂ (R⊕ so(n)) ⋉ R
n be an indecomposably

acting Lie algebra, g := prso(n) (h), and E = E0 ⊕ E1 ⊕ · · · ⊕ Er the

complete decomposition of E, i.e., g acts trivially on E0 and irreducibly

on each Ei. If h is the holonomy algebra of an indecomposable, non-

irreducible Lorentzian manifold, then also g decomposes into ideals

g = g1 ⊕ · · · ⊕ gr

such that each gi acts irreducibly on Ei and trivially on Ej for i 6= j.

This theorem has two important consequences making a further al-
gebraic investigation of g possible. Irreducibly acting, connected sub-
groups of SO(n) are closed and therefore compact. Now, by the theorem
the group G := prSO(n)Hol0p(M, h) decomposes into irreducibly acting
subgroups. Thus we have as a first consequence that G is compact,
although the whole holonomy group must not be compact (for such
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examples see also [5]). The second consequence is, that it suffices to
study irreducibly acting groups or algebras g, a fact which is necessary
for trying a classification. We shall see this in detail in the following
section.

A further result of [5] is the distinction of indecomposable subalgebras
of the parabolic algebra into four types.

Theorem 2.2 ([5]). Let h be a subalgebra of the parabolic algebra

which acts indecomposably on R
n+2, g := prso(n)(h) = z ⊕ d as above.

Then h belongs to one of the following types.

1) If h contains R
n, then there are three types:

Type 1: h contains R. Then h = (R ⊕ g) ⋉ R
n.

Type 2: prR(h) = 0, i.e., h = g ⋉ R
n.

Type 3: Neither Type 1 nor Type 2. In this case there exists a

epimorphism ϕ : z → R, such that

h = (l ⊕ d) ⋉ R
n,

where l := graph ϕ = {(ϕ(T ), T )|T ∈ z} ⊂ R ⊕ z. Or written

in matrix form:

h =











ϕ(A) vt 0
0 A + B −v
0 0 −ϕ(A)





∣
∣
∣
∣
∣
∣

A ∈ z, B ∈ d, v ∈ R
n






.

2) In the case where h does not contain R
n we have Type 4: There

exists a non-trivial decomposition R
n = R

k ⊕ R
l, 0 < k, l < n

and a a epimorphism ϕ : z → R
l, such that g ⊂ so(k) and h =

(d ⊕ l)⋉R
k ⊂ p where l := {(ϕ(T ), T ) |T ∈ z} = graph ϕ ⊂ R

l⊕z.

Or written in matrix form:

h =













0 ϕ(A)t vt 0
0 0 0 −ϕ(A)
0 0 A + B −v
0 0 0 0







∣
∣
∣
∣
∣
∣
∣
∣

A ∈ z, B ∈ d, v ∈ R
k







.

These four algebraic types give four types of indecomposable, non-
irreducible Lorentzian holonomy groups with the same properties. These
types are independent of conjugation within the parabolic group.

2.2. Berger algebras and weak-Berger algebras. Here we will re-
call the notion of weak-Berger algebras which we have introduced in
[26]. We derive some basic properties, in particular a decomposition
property and the behaviour under complexification. Let E be a vector
space over the field K. For a subalgebra g ⊂ gl(E) we set

K(g) := {R ∈ Λ2E∗ ⊗ g | R(x, y)z + R(y, z)x + R(z, x)y = 0},

g := span {R(x, y) | x, y ∈ E, R ∈ K(g)},
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and for g ⊂ so(E, h), where h is a quadratic form, not necessarily posi-
tive definite, we set

Bh(g) := {Q ∈ E∗ ⊗ g | h(Q(x)y, z) + h(Q(y)z, x) + h(Q(z)x, y) = 0},

gh := span {Q(x) | x ∈ E, Q ∈ Bh(g)}.

Both, K(g) and Bh(g) are spaces of curvature endomorphisms. For
distinction, one may call Bh(g) the space of weak curvature endomor-

phisms. Both are g-modules. g and gh are ideals in g (for the weak
curvature endomorphisms see [26]).

Definition 2.3. Let g ⊂ gl(E) be a subalgebra. Then g is is called
Berger algebra if g = g. If g ⊂ so(E, h) with gh = g, then we call it
weak-Berger algebra.

Equivalent to the (weak-)Berger property is the fact that there is no
proper ideal h in g such that K(h) = K(g) (resp. Bh(h) = Bh(g)). The
following lemma relates both curvature endomorphism modules to each
other. Its proof is straightforward and can be found in [26].

Lemma 2.4. The vector space R(g) spanned by {R(x, .) ∈ B(g) | R ∈
K(g), x ∈ E} is a g-submodule of Bh(g).

This implies g ⊂ gh, so we get a justification of the nomenclature:

Proposition 2.5. A Berger algebra in so(E, h) is a weak-Berger al-

gebra.

The lemma also implies the following property which we will need
later on:

(2) span {R(x, y) + Q(z)|R ∈ K(g), Q ∈ Bh(g), x, y, z ∈ E} ⊂ gh

for g ⊂ so(E, h). For a weak Berger algebra we obtain a statement
similar to the Borel-Lichnerowicz property of Theorem 2.1.

Proposition 2.6. Let g ⊂ so(E, h) be a subalgebra, h being positive

definite, and E = E0 ⊕ E1 ⊕ · · · ⊕ Er the complete decomposition of E,

i.e., E0 is a trivial submodule and the Ei are irreducible for i = 1, . . . , n.

If g is a weak-Berger algebra, then it decomposes into commuting ideals

g = g1 ⊕ · · · ⊕ gr such that gi acts irreducibly on Ei and trivially on Ej.

Each of the gi ⊂ so(Ei, h|Ei
) is a weak Berger algebra.

Proof. Since h is positive definite, E is completely reducible and de-
composes into irreducible and a trivial subspace as in the proposition.
Then we consider for i = 0, . . . , r the subalgebras gi := span{Q(xi)|Q ∈
Bh(g), xi ∈ Ei}. gi is by definition a weak Berger algebra, and since g is
a weak-Berger algebra it is g =

∑r
i=0 gi. Now we show that for xi ∈ Ei

and xj ∈ Ej for i 6= j it holds that Q(xi)xj = 0 and Q(x0) = 0 for any
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Q ∈ Bh(g). By the Bianchi identity and by the invariance of Ej we get
for any y, z ∈ E:

h(Q(xi)y, z) = h(Q(y)xi, z) − h(Q(z)xi, y).

This gives Q(x0) = 0. Setting z = xj and y = yj also shows that
Q(xj)xi = 0. Hence gi annihilates Ej , which implies gi ∩ gj = {0} for
i 6= j, and acts irreducibly on Ei, for i > 0. q.e.d.

By the Ambrose-Singer holonomy theorem holonomy algebras of tor-
sion free connections — in particular of a Levi-Civita-connection — are
Berger algebras. The list of all irreducible Berger algebras is known ([6]
for orthogonal, non-symmetric Berger algebras, [7] for orthogonal sym-
metric ones, and [31] in the general affine case). The so(n)-projection
of an indecomposable, non-irreducible Lorentzian manifold a priori is
no holonomy algebra, and therefore not necessarily a Berger algebra.
But we can show that it is a weak-Berger algebra.

Theorem 2.7. Let h ⊂ (R⊕ so(n))⋉R
n be an indecomposable, non-

irreducible subalgebra with g = prso(n)(h). Then h is a Berger algebra if

and only if g is a weak-Berger algebra. In particular, if h is the holonomy

algebra of an indecomposable, non irreducible Lorentzian manifold, then

g is a weak-Berger algebra and it decomposes into irreducibly acting

ideals which are weak-Berger algebras.

Proof. First we suppose that h is a Berger algebra. Hence it is gen-
erated by endomorphisms of the form A = R(U, V ), with U, V ∈ R

n+2

and R ∈ K(h). Fixing a basis (X, E1, . . . En, Z) in R
n+2 of the form (1)

and setting E := span(E1, . . . , En) we obtain for an A ∈ h that

prso(n)A = prE ◦ R(U, V )∣∣E
for arbitrary U, V ∈ R

n+2,

i.e., for an Y ∈ E it is

(
prso(n)A

)
Y = prE (R(U, V )Y ) =

n∑

k=1

h(R(U, V )Y, Ek)Ek.

With respect to the above basis we can write U = ξ1X + Y1 + ζ1Z and
V = ξ2X + Y2 + ζ2Z with Yi ∈ E, ξi, ζi ∈ R, i = 1, 2. Using the
symmetries of the R we obtain for U, V as above and Y ∈ E:

h(R(U, V )Y, Ek)

= h (R (Y1, Y2) Y, Ek) + h (R (Z, ζ1Y2 − ζ2Y1)Y, Ek) .
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Finally it is

(
prso(n)A

)
Y =

n∑

k=1

h([R(Y1, Y2) + R(Z, ζ1Y2 − ζ2Y1)]Y, Ek)Ek

= prE (R(Y1, Y2)Y ) + prE (R(Z, ζ1Y2 − ζ2Y1)Y )

= R(Y1, Y2)Y + Q(ζ1Y2 − ζ2Y1)Y,

with

R(., .) := prE ◦ R(., .)∣∣E×E×E
∈ ∧2E∗ ⊗ g

Q(.) := prE ◦ R(Z, .)∣∣E×E
∈ E∗ ⊗ g.

The Bianchi identity implies R ∈ K(g) and Q ∈ Bh(g). Hence, the gen-
erators of g, which are so(n)-projections of the generators of holp(M, h),
are of the form R(Y1, Y2) + Q(Y3) with Yi ∈ E, R ∈ K(g), Q ∈ Bh(g).
By (2) we obtain g ⊂ gh, i.e., g is a weak-Berger algebra.

For the other direction we refer to the result of [19] who proved that
h ⊂ (R⊕so(n))⋉R

n is a Berger algebra if g := prso(n)(h) is weak Berger
algebra and satisfies the Borel-Lichnerowicz decomposition property of
Theorem 2.1. But Proposition 2.6 shows that this property is satisfied
for weak-Berger algebras. Hence, this is no additional condition and
we get the other direction. The remaining statements follow from the
Ambrose-Singer holonomy theorem [3] and Proposition 2.6. q.e.d.

The ‘only if’-direction of this theorem we proved in [26]. It ensures
that we are at a similar point as in the Riemannian situation, but reach-
ing it in a different way. This is shown schematically in the following
diagram:

Geometric level:
g = hol

g =
prso(n)hol

-
de Rham g = g1 ⊕ · · · ⊕ gr,

with gi = holi

and Bianchi id.
Ambrose-Singer

? ?

Thm. 2.7

?

Algebraic level:
g weak- Berger

-
Thm. 2.7

gi irreducible
Bergergi irred.

weak-Berger

2.3. Real and complex weak-Berger algebras. Because of the
above result we have to classify real weak-Berger algebras. Since we will
use representation theory of complex semisimple Lie algebras we have
to describe the transition of a real weak-Berger algebra to its complex-
ification. First we note that the spaces K(g) and Bh(g) for g ⊂ so(E, h)
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can be described by the following exact sequences:

0 → K(g) →֒ ∧2E∗ ⊗ g
λ
→ ∧3E∗ ⊗ E

0 → Bh(g) →֒ E∗ ⊗ g
λh→ ∧3E∗,

where the map λ is the skew-symmetrisation and λh the dualisation by h
and the skew-symmetrisation. If we consider a real Lie algebra g acting
orthogonally on a real vector space E, then h extends by complexifi-
cation to a non-degenerate complex-bilinear form hC which is invariant
under gC, i.e., gC ⊂ so(EC, hC). The complexification of the above exact
sequences gives

K(g)C = K(gC)(3)

(Bh(g))C = BhC(gC)(4)

and leads to the following statement.

Proposition 2.8. g ⊂ so(E, h) is a (weak-) Berger algebra if and

only if gC ⊂ so(EC, hC) is a (weak-) Berger algebra.

Thus complexification preserves the weak-Berger as well as the Berger
property. But irreducibility is a property which is not preserved under
complexification. In order to deal with this problem one recalls the
following definition, distinguishing two cases for an irreducible module
of a real Lie algebra.

Definition 2.9. Let g be a real Lie algebra. Irreducible real g-
modules E for which EC is irreducible and irreducible complex modules
V for which VR is reducible are called of real type. Irreducible real g-
modules E for which EC is reducible and irreducible complex modules
V for which VR is irreducible are called of non-real type.

In the original papers of Cartan [14] and Iwahori [23], see also [21],
where these distinction is introduced, a representation of real type is
called “representation of first type” and a representation of non-real
type is called of “second type”. The above notation makes sense because
the complexification of a real module of real type is of real type — recall
that (EC)R is a reducible g-module — and the reellification of a complex
module of non-real type is of non-real type. The notation corresponds
to the distinction of complex irreducible g-modules into real, complex
and quaternionic ones: A complex g module V is of real type if and only
if it is self-conjugate and the invariant anti-linear bijection J satisfies
J2 = id. V is called of quaternionic type if and only if it is self-conjugate
with J2 = −id, and it is called of complex type if V is not self conjugate.
Obviously, a complex g-module is of non-real type if and only if it is
of complex or quaternionic type. For unitary g we recall the following
equivalences [9].
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Proposition 2.10. If g ⊂ gl(V ) is unitary w.r.t. a positive definite

form, then V is

1) of real type if and only if it is orthogonal,

2) of complex type if and only if it is not self-dual,

3) of quaternionic type if and only if it is symplectic.

Before we make further remarks on real and non-real type modules,
we consider the transition from the real Lie algebra g ⊂ gl(E) to the
complexified Lie algebra gC ⊂ gl(EC) represented on the complex mod-
ule W := EC. Obviously, this transition preserves irreducibility:

Lemma 2.11. Let gC ⊂ gl(W ) be the complexification of g ⊂ gl(W )
with a complex g-module W . Then it holds that:

1) g is irreducible if and only if gC is irreducible.

2) g ⊂ so(W, H) if and only if gC ⊂ so(W, H), where H is a symmet-

ric bilinear form.

2.3.1. Representations of non-real type. (See again [14], [23], also
[21] and the appendix of [28] or [29] for more details.) Suppose that
g ⊂ so(E) is of non-real type. In this case the complexified module
EC splits into two submodules EC = V ⊕ V , where V is the g-module
which is conjugated to V according to the conjugation induced by the
real subspace E ⊂ EC. Of course, E is isomorphic to the g-module VR

which is the reellification of V or of V . If we start with g ⊂ so(E, h),
where h is positive definite, the fact that V is a g-module which is of
non-real type implies by Proposition 2.10 the following result, which
will be of importance later on.

Proposition 2.12. Let g ⊂ so(E, h) be a real Lie algebra, E a g-

module of non-real type, i.e., EC = V ⊕V , and suppose that h is positive

definite. Then g ⊂ gl(V ) is unitary with respect to a positive definite

Hermitian form and not orthogonal.

This means that the complexified symmetric form hC gives a pairing
between V and V and vanishes on V × V . Since we shall switch to the
complex Lie algebra we should remark that the decomposition EC =
V ⊕ V is also gC-invariant.

2.3.2. Weak-Berger algebras of real type. Before we start to clas-
sify weak-Berger algebras of real type in Section 4, 5 and 6 we have to
make some observation and remarks.

Let g0 be a real Lie algebra and E a real irreducible module of real
type. Furthermore we suppose g0 ⊂ so(E, h), now h not necessarily
positive definite. Then EC is an irreducible g0-module (also of real
type) and g0 ⊂ so(EC, hC). Now we may extend h to a Hermitian form
θh on EC, which is invariant under g0. Thus, g0 ⊂ u(V, θh) and θh has
the same signature as h.



ON THE CLASSIFICATION OF LORENTZIAN HOLONOMY GROUPS 435

Subalgebras of so(E, h) which act completely reducibly are reductive
[15]. If h is positive definite, then g0 is even compact. In any case
its Levi-decomposition is g0 = z0 ⊕ d0, with centre z0 and semisimple
derived algebra d0. Thus gC

0 = z ⊕ d is also reductive. But since it is
irreducible by assumption, the Schur lemma implies that the centre z is
C Id or zero, and by gC

0 ⊂ so(EC, hC) it is zero. Hence g is semisimple.
Resuming all this, Proposition 2.8 can be reformulated as follows.

Proposition 2.13. If g0 ⊂ so(E, h) is a weak-Berger algebra of real

type, then gC
0 ⊂ so(EC, hC) is an irreducible complex weak-Berger alge-

bra. EC is a g0-module of real type and gC
0 is semisimple.

Let g ⊂ so(V, H) be a semisimple complex Lie algebra with a complex

g-module V of real type. Then g has a real form g0, V = EC with a real

g0-module E of real type, g0 is unitary with respect to a Hermitian form

θ and g0 ⊂ so(E, h) where the signatures of h and θ are equal. For the

compact real form of g the quadratic form h is positive definite. If g is

in addition a weak-Berger algebra, then g0 is a weak-Berger too.

Proof. The first direction follows directly from Proposition 2.8 and
the above definitions. Since g is semisimple it has a compact real form
g0. If V is a g0-module of real type then it is V = EC, and g0 ⊂ gl(V )
is unitary since it is orthogonal, both w.r.t. the same signature. Then
the proposition follows by Proposition 2.8. (For details of the proof see
appendix of [29] or [28].) q.e.d.

Considering the four different types of indecomposable, non-irreduc-
ible holonomy algebras from Theorem 2.2, the above proposition already
yields the following observation.

Corollary 2.14. Let g ⊂ so(n) be the so(n)-projection of an inde-

composable, non-irreducible Lorentzian holonomy algebra, which is sup-

posed to be of coupled type 3 or 4. Then at least one of the irreducibly

acting ideals of g ⊂ so(n) is of non-real type.

Remark 2.15. We have to make a remark about the definition of
holonomy up to conjugation. The SO(n)-component of an indecompos-
able, non-irreducible Lorentzian manifold was defined modulo conjuga-
tion in O(n). Hence we shall not distinguish between subalgebras of
gl(n, C) which are isomorphic under Adϕ where ϕ is an element from
O(n, C) and Ad the adjoint action in of Gl(n, C) on gl(n, C). We say that
an orthogonal representation κ1 of a complex semisimple Lie algebra g

is congruent to an orthogonal representation κ2 if there is an element
ϕ ∈ O(n, C) such that the following equivalence of g–representations is
valid: κ1 ∼ Adϕ ◦κ2. Hence we have to classify semisimple, orthogonal,
irreducibly acting, complex weak-Berger algebras of real type up to this
congruence of representations.
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If the automorphism Adϕ is inner, then the representations are equiv-
alent; if it is outer then only congruent. For semisimple Lie algebras
it holds that Out(g) := Aut(g)/Inn(g) counts the connection compo-
nents of Aut(g), and Out(g) is isomorphic to the automorphism of the
fundamental system, i.e., symmetries of the Dynkin diagram (see for
example [36]). This will become relevant in case of so(8, C) where the
symmetries of the Dynkin diagram generate the symmetric group S3,
i.e., Out(so(8, C)) = S3 and it contains the so-called “triality automor-
phism” which interchanges vector and spin representations of so(8, C)
without fixing one. We shall use that the automorphism which inter-
changes the vector representation with one spinor representation and
fixes the second spinor representation resp. interchanges the spinor rep-
resentations and fixes the vector representation comes from Adϕ with
ϕ ∈ O(n, C). Hence the vector and the spinor representations of so(8, C)
are congruent to one another.

Finally, we should remark that compact real forms equivalent to a
given one correspond to inner automorphism of g. Hence the corre-
sponding representations are equivalent.

3. Weak-Berger algebras of non-real type

In this section we shall classify real weak-Berger algebras (w.r.t. a
positive definite quadratic form h) of non-real type, by showing that
they are Berger algebras. We will use the classification of first pro-
longations of irreducible complex Lie algebras and shall show that the
complexification of the space Bh(g0) is isomorphic to the first prolonga-
tion of the complexified Lie algebra.

Throughout this section g0 is a real Lie algebra and E a real g0-
module of non-real type, i.e., W := EC = V ⊕ V is not irreducible.
Furthermore we assume g0 ⊂ so(E, h) with h positive definite and set
H := hC.

We define the following complex Lie algebra:

(5) g :=
{

A|V

∣
∣
∣ A ∈ gC

0 ⊂ so(V ⊕ V , hC)
}

⊂ gl(V ).

Since the symmetric bilinear form we start with is positive definite,
g ⊂ gl(V ) is unitary but not orthogonal by Proposition 2.12.

In gC
0 as well as in g we have a conjugation with respect to g0 and

(g0)|V respectively. Since A ∈ g0 acts on V ⊕V by A(v +w) = Av +Aw

we have for iA ∈ gC
0 that iA(v + w) = i(Av + Aw) = (iAv +−iAw). So

we write the action of A ∈ gC
0 with the help of the conjugation in g:

(6) A(v + w) = Av + Aw.
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This gives the following Lie algebra isomorphism

ϕ : gC
0 ≃ g

A 7→ A|V .

It is injective because for A|V = B|V it holds that A(v+w) = Av+Aw =

Bv + Bw = B(v + w) for all v, w ∈ V , i.e., A = B. By definition it is
surjective and ϕ−1 is given by

(7) ϕ−1(A) : v + w 7−→ Av + Aw for all A ∈ g.

These notations are needed to show the relation to the first prolongation.

3.1. The first prolongation of a weak-Berger algebra of non-
real type. Given a Lie algebra g ⊂ gl(V ), the g-module

g(1) := {Q ∈ V ∗ ⊗ g | Q(u)v = Q(v)u}.(8)

is called first prolongation of g ⊂ gl(V ). Furthermore we set

g̃ := span{Q(u) ∈ g | Q ∈ g(1), u ∈ V } ⊂ g.

Now we describe the space BH(gC
0 ) with the help of g(1).

Proposition 3.1. Let E be a g0-module of non-real type, orthogonal

with respect to a positive definite scalar product h, EC = V ⊕ V the

corresponding gC
0 invariant decomposition, and g defined as in (5). Then

there is an isomorphism

φ : BH(gC
0 ) ≃ g(1)

Q 7→ Q|V ×V .

Proof. For the proof we will use the g0–invariant Hermitian form θ
on V which is given by θ(u, v) = hC(u, v), where is the conjugation in
EC = V ⊕ V with respect to E. The linearity of φ is clear. We have to
show the following:

φ is well-defined, i.e., for Q ∈ BH(gC
0 ) it is Q|V ×V ∈ g(1): For every

u, v, w ∈ V and H = hC it holds

θ(Q(u)v, w) = hC(Q(u)v, w)

= −hC(Q(v)w, u) − hC(Q(w)u, v)
︸ ︷︷ ︸

= 0

since hC

V ×V
= 0 (Proposition 2.12)

= hC(Q(v)u, w)

= θ(Q(v)u, w),

i.e., Q(u)v = Q(v)u which means that Q|V ×V ∈ g(1).

The homomorphism φ is injective: Let Q1 and Q2 be in BH(gC
0 ) with

(Q1)|V ×V = (Q2)|V ×V . Then
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a) (Q1)|V ×V = (Q2)|V ×V , since Q1(u)v = Q1(u)v = Q2(u)v =

Q2(u)v,
b) (Q1)|V ×V = (Q2)|V ×V , since

θ(Q1(u)v, w) = hC(Q1(u)v, w) = −hC(v, Q1(u)w) =
= hC(v, Q2(u)w) = hC(Q2(u)v, w) = θ(Q2(u)v, w).

c) (Q1)|V ×V = (Q2)|V ×V , by b) with the same argument as in a).

The homomorphism φ is surjective: For Q ∈ g(1) we define φ−1 using ϕ,

(φ−1Q)(u) := ϕ−1(Q(u)) and (φ−1Q)(u) := ϕ−1
(

Q(u)
)

∈ gl(EC).

It is (φ−1Q)(u, v) = (φ−1Q)(u, v). Then obviously φ ◦ φ−1 = id, since
φ

(
φ−1(Q)

)
= φ−1(Q)|V ×V = Q. By the symmetry of Q and recalling

that H|V ×V = 0, a direct calculation gives (φ−1Q) ∈ BH(gC
0 ). q.e.d.

The proof of this proposition relies on the fact that V is not orthog-
onal, which was due to Proposition 2.12. An analogous result can be
proven for the space K(g) (see [26]). We obtain two corollaries.

Corollary 3.2. Let h0 ⊂ g0 ⊂ so(EC, hC) be subalgebras of non-real

type, h and g defined as above. If h(1) = g(1), then (hC
0 )H = (gC

0 )H .

i.e., if in g there exists a proper subalgebra which has the same first

prolongation and a compact real form in g0 of non-real type, then gC
0

and therefore g0 cannot be weak-Berger algebras.

Proof. Because of Q ∈ BH(hC
0 ) ≃ h(1) = g(1) ≃ BH(gC

0 ) we have
Q(u) ∈ (gC

0 )H if and only if Q(u) ∈ (hC
0 )H . q.e.d.

Corollary 3.3. Let g0 ⊂ so(EC, H) be a Lie algebra of non-real type,

and g defined as above. Then (gC
0 )H = gC

0 (i.e., gC
0 is a weak-Berger-

algebra) if and only if g = g̃.

Proof. First we show the sufficiency: Let A ∈ gC
0 be arbitrary. g = g̃

gives w.l.o.g. that ϕ(A) = Q(u) with Q ∈ g(1) and u ∈ V . But then:

(φ−1Q)(u)
per def.

= ϕ−1(Q(u)) = ϕ−1(ϕ(A)) = A,

with (φ−1Q) ∈ BH(gC
0 ), i.e., A ∈ (gC

0 )H .
Now we show the necessity: If A ∈ g, the assumption gC

0 = (gC
0 )H

gives w.l.o.g. that ϕ−1(A) = Q̂(u + v) with Q̂ ∈ BH(gC
0 ), u ∈ V and

v ∈ V . By Proposition 3.1 there is a Q ∈ g(1) such that

ϕ−1(A) = Q̂(u + v) = (φ−1Q)(u + v) = ϕ−1(Q(u)) + ϕ−1(Q(v)).

But this means that A = Q(u)
︸ ︷︷ ︸

∈g̃

+ Q(v)
︸ ︷︷ ︸

∈g̃

∈ g̃, i.e., g ⊂ g̃. q.e.d.
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Analogous results can be obtained for Berger algebras leading — with
the same reasoning as below — to a classification of irreducible Berger
algebras of non-real type [26].

As a result of the previous and this section we have to investigate
complex irreducible representations of complex Lie algebras with non-
vanishing first prolongation. Only their real forms of non-real type may
be candidates for weak-Berger algebras.

3.2. Lie algebras with non-trivial first prolongation. There are
only a few complex Lie algebras irreducibly contained in gl(V )which
have non vanishing first prolongation. The classification can be found
in [13] and [25]. We collect them in two tables, following [33].

Table 1. Complex Lie-groups and algebras with g(1) 6= 0 and
g(1) 6= V ∗:

G g V g(1)

1. Sl(n, C) sl(n, C) C
n, n ≥ 2 (V ⊗⊙2V ∗)0

2. Gl(n, C) gl(n, C) C
n, n ≥ 1 V ⊗⊙2V ∗

3. Sp(n, C) sp(n, C) C
2n, n ≥ 2 ⊙3V ∗

4. C
∗ × Sp(n, C) C ⊕ sp(n, C), C

2n, n ≥ 2 ⊙3V ∗

Table 2. Complex Lie-groups and algebras with first prolongation
g(1) = V ∗:

G g V

1. CO(n, C) co(n, C) C
n, n ≥ 3

2. Gl(n, C) gl(n, C) ⊙2
C

n, n ≥ 2

3. Gl(n, C) gl(n, C) ∧2
C

n, n ≥ 5

4. Gl(n, C) · Gl(m, C) sl(gl(n, C) ⊕ gl(m, C)) C
n ⊗ C

m, m, n ≥ 2

5. C
∗ · Spin(10, C) C ⊕ spin(10, C) ∆+

10 ≃ C
16

6. C
∗ · E6 C ⊕ e6 C

27

For a details of these representations see [1].

3.2.1. The algebras of Table 1. Regarding Table 1, its first three en-
tries are complexifications of the Riemannian holonomy algebras su(n),
u(n) acting on R

2n and sp(n) acting on R
4n, which are Berger algebras.

The fourth has the compact real form so(2) ⊕ sp(n) acting irreducibly
on R

4n. Since the representation of sp(n) on R
4n is of non-real type,

we are in the situation of Corollary 3.2, because (CId ⊕ sp(n, C))(1) =

sp(n, C)(1). Hence so(2) ⊕ sp(2n) is not a weak-Berger algebra.

3.2.2. The algebras of Table 2. Looking at the unique compact real
form of the Lie algebras and the reellification of the representations in
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Table 2, one sees that they correspond to the holonomy representations
of Riemannian symmetric spaces which are Kählerian (for a detailed
proof see the appendix of [26]).

Proposition 3.4. The compact real forms of the algebras in Table 2
and the reellification of the representations are equivalent to the holo-

nomy representations of the Riemannian, Kählerian symmetric spaces,

i.e., the symmetric spaces of type BDI, CI, DIII, AIII, EIII and

EV II.

3.3. The result for weak-Berger algebras of non-real type. The
conclusion from the previous section is: every real Lie algebra g0 of non-
real type, i.e., contained in u(n), which is a weak-Berger algebra is a
Berger algebra. Furthermore, each of these Lie algebras is the holonomy
algebra of a Riemannian manifold, the first three entries of Table 1 of
non-symmetric ones, and the entries of Table 2 of symmetric ones.

Theorem 3.5. Let g be a Lie algebra and E an irreducible g–module

of non-real type. If g ⊂ so(E, h) is a weak-Berger algebra, where h is

positive definite, then it is a Berger algebra, in particular a Riemannian

holonomy algebra.

Before we we apply this to the irreducible components of the screen
holonomy algebra of an indecomposable, non-irreducible Lorentzian
manifold, we prove a lemma to get the result in full generality.

Lemma 3.6. Let g ⊂ u(n) ⊂ so(2n) be a Lie algebra with the de-

composition property of Theorem 2.1, i.e., there exist decompositions of

R
2n into orthogonal subspaces and of g into ideals

R
2n = E0 ⊕ E1 ⊕ · · · ⊕ Er and g = g1 ⊕ · · · ⊕ gr

where g acts trivially on E0, gi acts irreducibly on Ei and gi(Ej) = {0}
for i 6= j. Then g ⊂ u(n) implies dim Ei = 2ki and gi ⊂ u(ki) for

i = 1, . . . , r.

Proof. Let R
2n = C

n and θ be the positive definite Hermitian form
on C

n. Let Ei be an invariant subspace on which g acts irreducibly.
If Ei = V i

R
for a complex vector space V i, then we can restrict θ to

V i. Because θ is positive definite it is non-degenerate on V i — since
θ(v, v) > 0 for v 6= 0 — we get that gi ⊂ u(V i, θ), i.e., g ⊂ u(ki). Hence,
we have to consider a subspace Ei which is not the reellification of a
complex vector space. Let J be the complex structure on R

2n. We
consider the real vector space JEi, which is invariant under g, since J
commutes with g. Then the space JEi ∩Ei is contained in Ei as well as
in JEi and invariant under g. Because g acts irreducibly on Ei we get
two cases. The first is Ei∩JEi = Ei = JEi, but this was excluded since
Ei was not a reellification. The second is Ei ∩ JEi = {0}. So we have
two invariant irreducible subspaces on which g acts simultaneously, i.e.,
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A(x, Jy) = (Ax, AJy), but this is not possible because of the Borel-
Lichnerowicz decomposition property from Theorem 2.1. q.e.d.

By this lemma and by Theorem 3.5 we get the conclusion.

Theorem 3.7. Let (M, h) be an indecomposable, non-irreducible

(n+2)-dimensional Lorentzian manifold and set g := prso(n)holp(M, h).
Then every irreducible component gi of g (due to Theorem 2.1) which is

unitary, i.e., gi ⊂ u(di/2), for di the dimension of Ei, is the holonomy

algebra of a Riemannian manifold. In particular, if g ⊂ u(n) ⊂ so(2n),
then g is the holonomy algebra of a Riemannian manifold.

4. Semisimple complex weak-Berger algebras

Due to the arguments of Section 2.3.2, in order to classify real weak-
Berger algebras of real type we have to classify irreducible, complex,
semisimple weak-Berger algebras. The tools for doing this we will ex-
plain in this section. The argumentation here and in the following sec-
tions is analogous to the reasoning in [33], [32] and [31].

4.1. Irreducible, complex, orthogonal, semisimple Lie alge-
bras. In the following, V will be a complex vector space equipped with
a non-degenerate symmetric bilinear 2–form H. g is an irreducibly act-
ing, complex, semisimple subalgebra of so(V, H). Thus, we may use all
the tools provided by roots and weights. Let t be the Cartan subalgebra
of g, ∆ ⊂ t∗ be the roots of g, and set ∆0 := ∆ ∪ {0}. g decomposes
into its root spaces gα := {A ∈ g|[T, A] = α(T ) · A for all T ∈ t} 6= {0}:

g =
⊕

α∈∆0

gα, where g0 = t.

Let Ω ⊂ t∗ be the weights of g ⊂ so(V, H). Then V decomposes into
weight spaces Vµ := {v ∈ V |T (v) = µ(T ) · v for all T ∈ t} 6= {0},

V =
⊕

µ∈Ω

Vµ.

As g ⊂ so(V, H), the weight spaces are related as follows.

Proposition 4.1. Let g ⊂ so(V, H) be a complex, semisimple Lie

algebra with weight space decomposition. Then Vµ⊥Vλ if and only if

λ 6= −µ. In particular, if µ is a weight, then −µ too.

Proof. For any T ∈ t, u ∈ Vµ and v ∈ Vλ we have

0 = H(Tu, v) + H(u, Tv) = (µ(T ) + λ(T )) H(u, v).

If λ 6= −µ, there is a T such that µ(T ) + λ(T ) 6= 0. But this implies
Vλ⊥Vµ. On the other hand Vµ⊥V−µ would imply Vµ⊥V , which contra-
dicts the non-degeneracy of H. This also implies that µ ∈ t∗ is a weight
if and only if −µ is a weight. q.e.d.
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4.2. Irreducible complex weak-Berger algebras. If g is a weak-
Berger algebra, then Bh(g) is a non-zero g–module. If we denote by Π
its weights, it decomposes into weight spaces

BH(g) =
⊕

φ∈Π

Bφ.

Now we define a subset of t∗,

Γ :=

{

µ + φ

∣
∣
∣
∣
∣

µ ∈ Ω, φ ∈ Π and there is an u ∈ Vµ

and a Q ∈ Bφ such that Q(u) 6= 0

}

⊂ t∗,

which is contained in ∆0:

Lemma 4.2. Γ ⊂ ∆0.

Proof. For µ ∈ Ω and φ ∈ Π we consider weight elements Qφ ∈ Bφ

and uµ ∈ Vµ with 0 6= Qφ(uµ). Then, by recalling how g acts on BH(g),

[T, Qφ(uµ)] = (TQφ)(uµ) + Qφ(T (uµ))

= (φ(T ) + µ(T )) Qφ(uµ)

for every T ∈ t. i.e., φ + µ is a root or zero. q.e.d.

For weak-Berger algebras the other inclusion is true.

Proposition 4.3. If g ⊂ so(V, h) is an irreducible, semisimple Lie

algebra which is weak-Berger, then Γ = ∆0.

Proof. The decomposition of BH(g) and V into weight spaces and the
fact that Qφ(uµ) ∈ gφ+µ imply the following inclusion:

gH = span{Qφ(uµ) | φ + µ ∈ Γ} ⊂
⊕

β∈Γ

gβ .

But if g =
⊕

α∈∆0
gα is weak-Berger it follows that g ⊂ gH and thus

⊕

α∈∆0

gα ⊂
⊕

β∈Γ

gβ ⊂
⊕

α∈∆0

gα.

This implies Γ = ∆0. q.e.d.

For a root α ∈ ∆ we denote by Ωα the following subset of Ω:

Ωα := {λ ∈ Ω | λ + α ∈ Ω} .

Then α + Ωα are the weights of gαV .

Proposition 4.4. Let g be a semisimple Lie algebra with roots ∆
and ∆0 = ∆ ∪ {0}. Let g ⊂ so(V, H) be irreducible, weak-Berger with

weights Ω. Then the following properties are satisfied:

(PI): There is a µ ∈ Ω and a hyperplane U ⊂ t∗ such that

(9) Ω ⊂ {µ + β | β ∈ ∆0} ∪ U ∪ {−µ + β | β ∈ ∆0} .
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(PII): For every α ∈ ∆ there is a µα ∈ Ω such that

(10) Ωα ⊂ {µα − α + β | β ∈ ∆0} ∪ {−µα + β | β ∈ ∆0} .

Proof. If g is a weak-Berger algebra, then Γ = ∆0. We use this
property for 0 ∈ ∆0 as well as for every α ∈ ∆.

(PI): By Γ = ∆0 there are φ ∈ Π and µ ∈ Ω such that 0 = φ + µ
with Q ∈ Bφ and u ∈ Vµ such that 0 6= Q(u) ∈ t, i.e., φ = −µ ∈ Π. We
fix such u, Q and µ. For arbitrary λ ∈ Ω the following case may occur:

Case 1. There is a v+ ∈ Vλ such that Q(v+) 6= 0 or a v− ∈ V−λ

such that Q(v−) 6= 0. This implies −µ + λ ∈ ∆0 or −µ − λ ∈ ∆0, i.e.,
λ ∈ {µ + β | β ∈ ∆0} ∪ {−µ + β | β ∈ ∆0}.

Case 2. For all v ∈ Vλ ⊕ V−λ it holds Q(v) = 0. Then the Bianchi
identity implies for v+ ∈ Vλ and v− ∈ V−λ that 0 = λ(Q(u))H(v+, v−).
Now one can choose v+ and v− such that H(v+, v−) 6= 0. This implies
λ ∈ Q(u)⊥ =: U and we get (PI).

(PII): Let α ∈ ∆. Γ = ∆0 implies the existence of φ ∈ Π and µα ∈ Ω
such that α = φ+µα with Q ∈ Bφ and u ∈ Vµα such that 0 6= Q(u) ∈ gα.
We fix Q and u for α. Hence α − µα = φ ∈ Π is a weight of BH .

Now, let λ be a weight in Ωα, i.e., λ+α is also a weight. Hence −λ−α
is a weight. If v ∈ Vλ then Q(u)v ∈ Vλ+α. Since H is non-degenerate,
there is a w ∈ V−λ−α such that H(Q(u)v, w) 6= 0. Since Q ∈ BH(g), the
Bianchi identity gives

0 = H(Q(u)v, w) + H(Q(v)w, u) + H(Q(w)u, v),

i.e., at least one of Q(v) or Q(w) has to be non-zero. Hence we have
two cases for λ ∈ Ωα:

Case 1. Q(v) 6= 0. This implies −µα + α + λ ∈ ∆0, and thus λ ∈
{µα − α + β | β ∈ ∆0}.

Case 2. Q(w) 6= 0. This implies −µα + α − λ − α = −µα − λ ∈ ∆0,
i.e., λ ∈ {−µα + β | β ∈ ∆0}. q.e.d.

Of course, it is desirable to find weights µ and µα which are extremal
in order to handle criteria (PI) and (PII).

Lemma 4.5. Let g ⊂ so(V, H) be an irreducible, complex semisimple

Lie algebra with BH(g) 6= 0. Then for any extremal weight vector u ∈ VΛ

there is a weight element Q ∈ BH(g) such that Q(u) 6= 0.

Proof. Let u ∈ VΛ be extremal with Q(u) = 0 for every weight ele-
ment Q. Since BH(g) =

⊕

φ∈Π Bφ, the assumption implies Q(u) = 0 for

all Q ∈ BH(g). This gives for every A ∈ g and every weight element Q
that

Q(Au) = [A, Q(u)] − (A · Q)
︸ ︷︷ ︸

∈BH(g)

(u) = 0.
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On the other hand, V is irreducible and thus generated as vector space
by elements of the form A1 · . . . · Ak · u with Ai ∈ g and k ∈ N (see
for example [34]). Successive application of g to u yields Q(v) = 0 for
every weight element Q and every weight vector v. Hence Q(v) = 0 for
all Q ∈ BH(g) and every v ∈ V , i.e., BH(g) = 0. q.e.d.

Proposition 4.6. Let g ⊂ so(V, H) be an irreducibly acting, semisim-

ple weak-Berger algebra with roots ∆, ∆0 = ∆∪{0} and weights Ω. Then

there is a partial order of ∆ (i.e., a set of simple roots) such that the

following holds: If Λ is the highest weight of g ⊂ so(V, H) with respect

to this partial order, then

(QI): There is a δ ∈ ∆+ ∪ {0} and a hyperplane U ⊂ t∗ such that

(11) Ω ⊂ {Λ − δ + β | β ∈ ∆0} ∪ U ∪ {−Λ + δ + β | β ∈ ∆0} .

If δ cannot be chosen to be zero, then

(QII): There is an α ∈ ∆ such that

(12) Ωα ⊂ {Λ − α + β | β ∈ ∆0} ∪ {−Λ + β | β ∈ ∆0} .

Proof. We consider the extremal weights of the representation. Since
these cannot lie in the same hyper plane, by (PI) of Proposition 4.4,
there is a µ ∈ Ω and an extremal weight Λ with Λ+µ ∈ ∆0 or Λ−µ ∈ ∆0.
We fix Λ and choose a fundamental root system, i.e., a partial order
on the roots, such that Λ is the highest weight. With respect to this
fundamental root system the roots split into positive and negative roots
∆ = ∆+ ∪ ∆−. This implies

(13) µ = ε(Λ − δ) with δ ∈ ∆+ and ε = ±1.

Then for arbitrary λ ∈ Ω it holds λ ∈ U = Q(u)⊥ or λ + µ ∈ ∆0 or
λ−µ ∈ ∆0. But with (13) this implies that we find a β ∈ ∆0 such that
λ = ±(Λ− δ) + β with β ∈ ∆0. This is (QI). Note that we are still free
to choose Λ or −Λ as highest weight.

Now we suppose that δ cannot be chosen to be zero. Let v ∈ VΛ or
v ∈ V−Λ be a highest weight vector. By the proof of Proposition 4.4, for
all weight elements Q ∈ Bh(g) it holds Q(v) ∈ gα for an α ∈ ∆. Since
g is weak-Berger BH(g) is non-zero. Thus we get by Lemma 4.5 that
there is a weight element Q such that 0 6= Q(v) ∈ gα and we are done
(possibly by making −Λ to the highest weight). q.e.d.

Example 4.7. Representations of sl(2, C). To illustrate how these
criteria will work we apply them to irreducible representations of
sl(2, C).

Proposition 4.8. Let V be an irreducible, complex, orthogonal

sl(2, C)–module of highest weight Λ. If it is weak-Berger, then Λ ∈
{2, 4}.
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Proof. Let sl(2, C) ⊂ so(N, C) be an irreducible representation of
highest weight Λ. I.e., Λ(H) = l ∈ N for sl(2, C) = span(H, X, Y )
where X has the root α. Since the representation is orthogonal, l must
be even (see for example [36]) and 0 is a weight. The hypersurface U
is the point 0. Now property (9) ensures that l ∈ {2, 4, 6}. If µ = Λ
we obtain l ∈ {2, 4}. If µ 6= Λ we can apply (QII): We have that
Ωα = Ω \ {Λ} and Ω−α = Ω \ {−Λ}. Then (QII) implies l ∈ {2, 4}.
q.e.d.

So we get the first result:

Corollary 4.9. Let su(2) ⊂ so(E, h) be a real irreducible weak-Berger

algebra of real type. Then it is a Berger algebra. In particular it is

equivalent to the Riemannian holonomy representations of so(3, R) on

R
3 or of the symmetric space of type AI, i.e., su(3)/so(3, R) in the

compact case or sl(3, R)/so(3, R) in the non-compact case.

4.3. Berger algebras, weak-Berger algebras, and spanning
triples. In this section we shall describe a result of [32], [33], where
holonomy groups of torsion free connections are classified. Sometimes
we shall we refer to the unpublished [32], since some of its results are
not contained in the published [33]. We shall describe our results in
their language such that we can use a partial result of [33].

For a Berger algebra it holds that for every α ∈ ∆0 there is a weight
element R ∈ K(g) and weight vectors u1 ∈ Vµ1 and u2 ∈ Vµ2 such that
0 6= R(u1, u2) ∈ gα. Choosing u1, u2 such that 0 6= R(u1, u2) ∈ t, by the
Bianchi identity one gets for any λ ∈ Ω and v ∈ Vλ that

λ(R(u1, u2))v = R(v, u2)u1 + R(u1, v)u2.

This implies λ ∈ (R(u1, u2))
⊥ ⊂ t∗ or Vλ ⊂ gVµ1 ⊕ gVµ2 , and hence

(RI): There are weights µ1, µ2 ∈ Ω such that

Ω ⊂ {µ1 + β | β ∈ ∆0} ∪ U ∪ {µ2 + β | β ∈ ∆0}.

If one chooses u1, u2 such that 0 6= R(u1, u2) = Aα ∈ gα with α ∈ ∆,
for λ ∈ Ω we get that AαVλ ⊂ gVµ1 ⊕ gVµ2 . Hence, the weights of AαVλ

are contained in {µ1 + β|β ∈ ∆0} ∪ {µ2 + β|β ∈ ∆0}:

(RII): For every α ∈ ∆ there are weights µ1, µ2 ∈ Ω such that

Ωα ⊂ {µ1 − α + β | β ∈ ∆0} ∪ {µ2 − α + β | β ∈ ∆0}.

Of course (PI) is a special case of (RI) with µ1 = −µ2. (PII) is not a
special case of (RII) since µα + α is not a weight, a priori.

To describe this situation further, in [32] and [33] the following defini-
tions are made. We point out that here Ωα does not denote the weights
of gαV but the weights λ of V such that λ + α is a weight.

Definition 4.10. Let g ⊂ End(V ) be an irreducibly acting complex
Lie algebra, ∆0 be the roots and zero of the semisimple part of g, Ω the
weights of g and Ωα as above.
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1) A triple (µ1, µ2, α) ∈ Ω × Ω × ∆ is called spanning triple if

Ωα ⊂ {µ1 − α + β | β ∈ ∆0} ∪ {µ2 − α + β | β ∈ ∆0} .

2) A spanning triple (µ1, µ2, α) is called extremal if µ1 and µ2 are
extremal.

3) A triple extremal weights µ1 and µ2, and an affine hyperplane
U ⊂ t∗ is called planar spanning triple if every extremal weight
different from µ1 and µ2 is contained in U and

Ω ⊂ {µ1 + β | β ∈ ∆0} ∪ U ∪ {µ2 + β | β ∈ ∆0} .

In [32] the following conclusion is deduced from (RI) and (RII).

Proposition 4.11 ([32, Proposition 3.13]). Let g ⊂ End(V ) be an

irreducible complex Berger algebra. Then, for every root α ∈ ∆ there is

a spanning triple. Furthermore there is an extremal spanning triple or

a planar spanning triple.

Returning to weak-Berger algebras we reformulate Proposition 4.6:

Proposition 4.12. Let g ⊂ so(V, H) be an irreducible complex weak-

Berger algebra. Then there is an extremal weight Λ such that one of the

following properties is satisfied.

(SI): There is a planar spanning triple of the form (Λ,−Λ, U).
(SII): There is an α ∈ ∆ such that Ωα ⊂ {Λ − α + β | β ∈ ∆0} ∪

{−Λ + β | β ∈ ∆0} .

There is a fundamental system such that the extremal weight in (SI) and

(SII) is the highest weight.

Proof. The proof is analogous the one of Proposition 4.6. If there
is an α ∈ ∆ such that the corresponding µα is extremal we are done.
Otherwise it is Q(u) ∈ t∗ for every extremal weight vector u ∈ VΛ and
every weight element Q ∈ Bφ. By Lemma 4.5 there is a Q such that
0 6= Q(u) ∈ t∗. As before this implies

Ω ⊂ {Λ + β | β ∈ ∆0} ∪ U ∪ {−Λ + β | β ∈ ∆0}.

To ensure that (Λ,−Λ, U) is a planar spanning triple we have to verify
that every extremal weight λ different from Λ and −Λ is contained in
U = Q(u)⊥. Let λ be extremal and different from Λ and −Λ, v± ∈ V±λ

and u ∈ VΛ. Since Q(v±) ∈ t∗, the Bianchi identity gives

0 = H(Q(u)v+, v−) + H(Q(v+)v−, u) + H(Q(v−)u, v+)

= λ (Q(u)) H(v+, v−)
︸ ︷︷ ︸

6=0

−λ (Q(v+)) H(v−, u) + Λ ((Q(v−)) H(u, v+)
︸ ︷︷ ︸

= 0 since u is neither in Vλ nor in V−λ

.

Hence, λ ∈ U . q.e.d.

Obviously we are in a slightly different situation than in the Berger
case since −Λ + α is not necessarily a weight and in case it is a weight,
it is not necessarily extremal.
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5. Classification of simple complex weak-Berger algebras

In this section we apply the result of Proposition 4.12 to simple com-
plex irreducibly acting Lie algebras. We shall do this step by step under
the following special conditions:

1) The highest weight of the representation is a root.
2) The representation satisfies (SI), i.e., admits a planar spanning

triple (Λ,−Λ, U).
3) The representation satisfies (SII) and has weight zero.
4) The representation satisfies (SII) and does not have weight zero.

Throughout this section the considered Lie algebra is supposed to be
different from sl(2, C). Before we start with this approach we have to
recall some basic properties of root systems. Let ∆ be a root system in
the Euclidean vector space (E, 〈., .〉), i.e., ∆ spans E, for any α, β ∈ ∆,

the number 2〈α,β〉
‖α‖2 is an integer, and the reflection sα : ϕ 7→ ϕ − 2〈α,ϕ〉

‖α‖2

maps ∆ onto itself. For root systems, the following properties hold true
(for a proof, see [24, pp. 149]).

Proposition 5.1. Let ∆ be a reduced root system in (E, 〈., .〉).

1) If α ∈ ∆, then the only root which is proportional to α is −α.

2) If α, β ∈ ∆, then
2〈β,α〉
‖α‖2 ∈ {0,±1,±2,±3}. If ∆ is one of the

indecomposable root systems, ±3 occurs only for the root system

G2. If both roots are non proportional, then ±2 only occurs for

Bn, Cn, F4 or G2.

3) If α and β are non proportional in ∆ and ‖β‖ ≤ ‖α‖, then
2〈β,α〉
‖α‖2 ∈

{0,±1}.
4) Let be α, β ∈ ∆. If 〈α, β〉 > 0, then α − β ∈ ∆. If 〈α, β〉 < 0,

then α + β ∈ ∆. I.e., if neither α − β ∈ ∆ nor α + β ∈ ∆, then

〈α, β〉 = 0.
5) The subset of ∆ defined by {β + kα ∈ ∆ ∪ {0}|k ∈ Z} is called α–

string through β. It has no gaps, i.e., β + kα ∈ ∆ for −p ≤ k ≤ q

with p, q ≥ 0 and it holds p − q = 2〈β,α〉
‖α‖2 . The maximal length of

such a string is given by maxα,β∈∆
2〈β,α〉
‖α‖2 + 1, i.e., it contains at

most four roots.

5.1. Representations with roots as highest weight.

Proposition 5.2. Let g ⊂ so(N, C) be an irreducibly acting, complex

simple Lie algebra, different from sl(2, C) and satisfying (SI) or (SII). If

we suppose in addition that there is an extremal weight Λ with Λ = aη
for a root η ∈ ∆ and a > 0, then the following holds true:

1) If η is a long root, then a = 1, i.e., the representation is the adjoint

one.

2) If ∆ has roots of different length and η is a short root, then:
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a) If ∆ = Bn or G2 then a = 1, 2.
b) If ∆ = Cn or F4 then a = 1.

Proof. Let Λ = aη with η ∈ ∆, a ∈ R. W.l.o.g. we may suppose that
Λ is the extremal weight in the properties (SI) and (SII). First we show
that a ∈ N. If we chose an fundamental system (π1, . . . , πn) such that
Λ = aη is the highest weight we get that 〈Λ, πi〉 = a〈η, πi〉 ∈ N for all i.
a 6∈ N would imply that 〈η, πi〉 ≥ 2 for all i with 〈η, πi〉 6= 0. This holds
only for the root system Cn where Λ = ω1 = 1

2η. But this representa-
tion is symplectic, not orthogonal. (For an explicit formulation of this
criterion see [36].) So we get a ∈ N. Now we consider two cases.

Case 1: η is a long root. In this case the root system of long roots,
denoted by ∆l is the orbit of η under the Weyl group. Hence a · ∆l are
the extremal weights and ∆ ⊂ Ω. This implies 0 ∈ Ωα for every α ∈ ∆.

Furthermore, it holds that a ·∆ ⊂ Ω. This is true because we can find

a short root such that η − β ∈ ∆s. On the other hand it is 2〈aη,β〉
‖β‖2 ≥ a,

i.e., a(η − β) ∈ Ω. Applying the Weyl group to this weight we get the
property for all short roots. Now we check (SI) and (SII).

(SI) Let Λ satisfy (SI), i.e., Λ and −Λ define a planar spanning triple
(Λ,−Λ, U). This would imply that every long root different from η lies
in the hyperplane U . This is only possible for the the root system Cn,
because all other root systems have an indecomposable system of long
roots. For Cn holds that ∆l = A1 × · · ·×A1. But we have still a root β
— possibly a short one — such that β 6∈ U and β not proportional to η.
This implies Ω ∋ aβ = Λ + γ = aη + γ or Ω ∋ aβ = −Λ + γ = −aη + γ
with γ ∈ ∆0. Then Proposition 5.1 implies a = 1.

(SII) Let us suppose that Λ satisfies (SII), i.e., there is an α ∈ ∆ such
that Ωα ⊂ {Λ − α + β|β ∈ ∆0} ∪ {−Λ + β|β ∈ ∆0}. 0 ∈ Ωα implies
0 = Λ − α + β = aη − α + β or 0 = −Λ + β = −aη + β with β ∈ ∆0.
The second is not possible and the first implies by Proposition 5.1 that
a = 1 or a = 2 and η = α. In the second case we find a root γ 6∼ α
such that 〈γ, α〉 < 0, hence 2γ ∈ Ωα. Since 2γ − 2α 6∈ ∆ it has to be
2γ = α + β, but this is prevented by 〈γ, α〉 < 0 and Proposition 5.1.

Of course, if η is a long root the representation is the adjoint one.

Case 2: η is a short root. Let us denote by ∆s the root system of short
roots. Clearly, ∆s ⊂ Ω and a ·∆s are the extremal weights in Ω. For the
root system Bn the root system of short roots ∆s equals A1 × · · · ×A1,
otherwise it is indecomposable. Furthermore, the following holds: If
a ≥ 2 then ∆ ⊂ Ω. To verify this, we consider a long root β ∈ ∆l

with the property that 〈β, η〉 > 0. Such a β always exists. Then we

have 2〈η,β〉
‖η‖2 > 2〈η,β〉

‖β‖2 ≥ 1. This implies 2η − β ∈ ∆ (see Proposition 5.1).

On the other hand, a ≥ 2 ensures that Ω ∋ sβ(2η) = 2
(

η − 2〈η,β〉
‖β‖2 β

)

.
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Hence the long root 2η − β is a weight. Applying the Weyl group to β
shows that every long root is a weight.

(SI) We suppose that there is a planar spanning triple (Λ,−Λ, U), i.e.,
aβ lies in the hyperplane U if β is a short root. This is only possible
for Bn because all other systems of short roots are indecomposable. In
case of Bn we can at least find a long root α which is not in U . Since
the long roots are weights, we have α = aη + γ or α = −aη + γ with
γ ∈ ∆0. But this implies for Bn that a ≤ 2.

(SII) Since ∆ ⊂ Ω, it is 0 ∈ Ωα for all α. 0 = −aη + γ with γ ∈ ∆0

would give a = 1. Hence, a ≥ 2 implies

(14) 0 = aη − α + γ.

Thus we have to deal with the following cases:

(a) α = η and a = 2.

(b) α 6∼ η and by 5 of Proposition 5.1 a ≤ 2〈η,α〉
‖η‖2 ≤ 3. I.e., if a ≥ 2, α

is a long root.

We exclude the first case for any root system different from Bn. Set
a = 2 and α = η. If ∆ 6= Bn the short roots are indecomposable, i.e.,
there is a short root β such that β 6∼ η and 〈β, η〉 < 0. Hence, 2β ∈ Ωη

and β + η ∈ ∆.
The existence of a spanning triple implies 2β = η+γ or 2β = −2η+γ

with γ ∈ ∆0. The second case is impossible because of Proposition 5.1.
The first implies 2β − η ∈ ∆. Again, this is not possible by Proposition
5.1 and 〈β, η〉 < 0. Hence case (a) is excluded.

Now we consider case (b). First we show that a = 3 is not possible.

Set a = 3. We notice that 〈η, α〉 > 0 implies 2〈η,α〉
‖α‖2 ≥ 1 and hence

3η − 3α ∈ Ωα. Thus we have the alternative 3η − 3α = 3η − α + γ or
3η − 3α = −3η + γ with γ ∈ ∆0. The first implies 2α ∈ ∆ and the
second 6η − 3α ∈ ∆. Both are not true, hence a = 3 is impossible.

We continue with case (b) and have that α is a long root with

2〈η, α〉

‖η‖2
≥ 2, i.e., 2η − α ∈ ∆.

From now on we suppose that the root system is different from G2.
Then we have

(15)
2〈η, α〉

‖η‖2
= 2.

In a next step we show that under these conditions there is no short
root β with

(16) β ∈ ∆s with 〈α, β〉 < 0 , 〈β, η〉 < 0 and β 6∼ η.

Suppose that there is such a β. Then the first condition implies that
2β ∈ Ωα and hence 2β = 2η−α + γ or 2β = −2η + γ with γ ∈ ∆0. The
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latter is not possible. The second implies the following using (15):

−2 ≥ 2 ·
2〈β, η〉

‖η‖2
=

2〈2η − α, η〉

‖η‖2
+

2〈γ, η〉

‖η‖2
= 2 +

2〈γ, η〉

‖η‖2
.

Hence, −4 ≥ 2〈γ,η〉
‖η‖2 which is impossible.

Now by the Proposition 5.1 there is such a β. Hence, for every re-
maining root system different from G2 and different from Bn we have
that a = 1.

All in all we have shown, that for a long root it holds a = 1 and that
for a short root a = 2 implies ∆ = Bn or G2. q.e.d.

Corollary 5.3. Let g ⊂ so(N, C) be an irreducible complex simple

weak-Berger algebra different from sl(2, C) and with the additional prop-

erty that the highest weight is of the form Λ = aη for a root η ∈ ∆. Then

g is complexification of a holonomy algebra of a Riemannian manifold

or the representation with highest weight 2ω1 of G2.

Proof. If η is a long root the representation is the adjoint one, i.e.,
the complexification of a holonomy representation of a Lie group with
positive definite bi-invariant metric. For a short root η we get the
following:

Bn, a = 1 : This is the standard representation of so(2n + 1, C)
on C

2n+1, and hence the complexification of the generic Riemannian
holonomy representation.

Bn, a = 2 : This is the representation of highest weight 2ω1. This is
the complexified isotropy representation of the Riemannian symmetric
space of type AI, i.e., of the symmetric spaces SU(2n+1)/SO(2n+1, R),
respectively SL(2n + 1, R)/SO(2n + 1, R).

Cn, a = 1 : (for n ≥ 3) This is the representation of highest weight ω2.
It is the complexified isotropy representation of the Riemannian sym-
metric space of type AII, i.e., of the symmetric spaces SU(2n)/Sp(n),
respectively SL(2n, R)/Sp(n).

F4, a = 1 : This is the representation of highest weight ω1. It is
the complexified isotropy representation of the Riemannian symmetric
space of type EIV , i.e., of the symmetric spaces E6/F4, respectively
E6(−26)/F4.

G2, a = 1 : This is the representation of highest weight ω1. It is the
representation of G2 on C

7, i.e., the complexification of the holonomy
representation of a Riemannian G2–manifold.

G2, a = 2 : This is the representation 2ω1 of G2. It is a 27-
dimensional representation of G2 isomorphic to Sym2

0C
7, where C

7 de-
notes the standard module of G2 and Sym2

0C
7 its symmetric, trace free

(2, 0)–tensors. This is the exception, because there is no Riemannian
manifold with this complexified holonomy representation. q.e.d.
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5.2. Representations with planar spanning triples. Now we con-
sider representations of a simple Lie algebra under the condition that
there is a planar spanning triple. For these we get the following proposi-
tion, its proof follows the proof of a similar proposition in [32, Proposi-
tion 3.20] under usage of the additional properties of our planar spanning
triple.

Proposition 5.4. Let g ⊂ so(N, C) be an irreducibly acting, complex

simple Lie algebra different from sl(2, C) and satisfying (SI), i.e., with

a planar spanning triple of the form (Λ,−Λ, U). If there is no root α
with Λ = aα, then g is of type Dn with n ≥ 3 and the representation is

congruent to the one with highest weight ω1 or 2ω1.

Proof. Since Λ 6= aα there is no root such that −Λ = sα(Λ). Hence,
the existence of a planar spanning triple implies sα(Λ) ∈ U , for any
α ∈ ∆ such that 〈Λ, α〉 6= 0. If we set U = T⊥, then

(17) for α ∈ ∆ with 〈α,Λ〉 6= 0 it holds 〈α, T 〉 =
‖α‖2

2〈Λ, α〉
〈Λ, T 〉 6= 0.

Following the lines of reasoning in [32], we prove various claims to get
the wanted result.

Claim 1. For any non-proportional α, β ∈ ∆ with 〈Λ, α〉 6= 0 and
〈Λ, β〉 6= 0 it holds that 〈α, β〉 = 0 or both have the same length.

To show this we prove that two such roots are orthogonal or 〈Λ, sαβ〉
= 〈Λ, sβα〉 = 0. Suppose 〈Λ, sαβ〉 6= 0. Then by (17):

‖β‖2 = ‖sαβ‖2

=
2

〈Λ, T 〉
· 〈Λ, sαβ〉 · 〈sαβ, T 〉

=
2

〈Λ, T 〉
·

(

〈Λ, β〉 −
2〈α, β〉

‖α‖2
〈Λ, α〉

)

·

(

〈β, T 〉 −
2〈α, β〉

‖α‖2
〈α, T 〉

)

= 2 ·

(

〈Λ, β〉 −
2〈α, β〉

‖α‖2
〈Λ, α〉

)

·

(
‖β‖2

2〈Λ, β〉
−

〈α, β〉

〈Λ, α〉

)

= 2 ·

(
‖β‖2

2
− 〈α, β〉

〈Λ, β〉

〈Λ, α〉
− 〈α, β〉

〈Λ, α〉

〈Λ, β〉

‖β‖2

‖α‖2
+

2〈α, β〉2

‖α‖2

)

.

Subtracting ‖β‖2 and multiplying by the denominators gives

0 = 〈α, β〉
(
‖β‖2〈Λ, α〉2 + ‖α‖2〈Λ, β〉2 − 2〈β, α〉〈Λ, α〉〈Λ, β〉

)
.

This gives the following pair of equations

0 = 〈α, β〉
(

(‖β‖〈Λ, α〉 + ‖α‖〈Λ, β〉)2
︸ ︷︷ ︸

≥0

−2 (‖α‖‖β‖ + 〈β, α〉)
︸ ︷︷ ︸

>0

〈Λ, α〉〈Λ, β〉
)
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0 = 〈α, β〉
(

(‖β‖〈Λ, α〉−‖α‖〈Λ, β〉)2
︸ ︷︷ ︸

≥0

+2 (‖α‖‖β‖−〈β, α〉)
︸ ︷︷ ︸

>0

〈Λ, α〉〈Λ, β〉
)

.

This implies 〈α, β〉 = 0 or 〈Λ, α〉〈Λ, β〉 = 0, but this was excluded. This
argument is symmetric in α and β hence we get the same result for sβα.
Thus we have proved that 〈Λ, sαβ〉 = 〈Λ, sβα〉 = 0 or 〈α, β〉 = 0.

Now 〈Λ, sαβ〉 = 〈Λ, sβα〉 = 0 implies 〈Λ, α〉 = 2〈α,β〉
‖α‖2 · 2〈α,β〉

‖β‖2 · 〈Λ, α〉.

Since 〈Λ, α〉 was supposed to be non zero we have that 2〈α,β〉
‖α‖2 · 2〈α,β〉

‖β‖2 = 1

which implies — since both factors are in Z — that ‖α‖2 = ‖β‖2. This
holds if 〈α, β〉 6= 0.

Claim 2. All roots in ∆ have the same length.

Suppose we have short and long roots. Then we can write a long
root α as the sum of two short ones, let’s say α = β + γ. This implies
〈α, β〉 6= 0 and 〈α, γ〉 6= 0. Since α is long and β and γ are short, we
have by the first claim that 〈Λ, α〉 · 〈Λ, β〉 = 0 and 〈Λ, α〉 · 〈Λ, γ〉 = 0.
Now 〈Λ, α〉 = 〈Λ, β〉 + 〈Λ, γ〉 gives that 〈Λ, α〉 = 0 for every long root.
But this is impossible. Hence all roots have the same length and w.l.o.g.
we can suppose for non-proportional roots that

(18)
2〈α, β〉

‖α‖2
∈ {0, 1,−1}.

Claim 3. There is an a ∈ R such that for any root α it holds 〈Λ, α〉 ∈
{0,±a}. a is less or equal than the square of the length of the roots.

We consider α ∈ ∆ with 〈Λ, α〉 6= 0 and set a := 〈Λ, α〉. Then we
define the vector space A := span{β ∈ ∆ | 〈Λ, β〉 = ±a} ⊂ t∗. We show
that every root γ with 〈Λ, γ〉 6∈ {0,±a} is orthogonal to A and hence
that A = t∗. To verify A = t∗ we show that every root is either in A
or in A⊥. First consider γ ∈ ∆ with 〈Λ, γ〉 = 0. If it is not in A⊥ then
there are roots β ∈ A and δ 6∈ A such that γ = β + δ. But this implies
0 = 〈Λ, γ〉 = 〈Λ, β〉 + 〈Λ, δ〉 = ±a + 〈Λ, δ〉. Hence δ ∈ A and therefore
γ ∈ A which is a contradiction. Thus γ ∈ A⊥. Now we consider a root
γ with 〈Λ, γ〉 6∈ {0,±a}. Then for any β with 〈Λ, β〉 = ±a we have
because of (18) that 〈Λ, sβγ〉 = 〈Λ, γ〉 ± a 6= 0. Because of the proof of

Claim 1 this gives 〈β, γ〉 = 0. Hence γ ∈ A⊥. Since the root system is
indecomposable we have that A = t∗. Furthermore we have shown that
any root with 〈Λ, γ〉 6∈ {0,±a} is orthogonal to A = t∗. Thus, the first
part of Claim 3 is proved.

Now we suppose that a > c where c denotes the square of the length
of the roots. We consider an α ∈ ∆ with 〈Λ, α〉 = a. sα(Λ) = Λ − 2a

c
α

is an extremal weight in U . Then a > c implies Λ − 2α ∈ Ω but not in
U . Then the existence of the planar spanning triple (Λ,−Λ, U) implies
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Λ − 2α = −Λ + β for a β ∈ ∆. Hence,

2〈Λ, β〉

c
= 1 +

2〈α, β〉

c
= 2

and therefore 〈Λ, β〉 = a and a = c which is a contradiction.

Now we consider for any α ∈ ∆ the set ∆⊥
α := {β ∈ ∆ | 〈α, β〉 = 0} ⊂

∆. This set is a root system, reduced but not necessarily indecompos-
able. But we can make the following claim.

Claim 4. Let α ∈ ∆ with 〈Λ, α〉 6= 0. Then one of the following
cases holds:

1) ∆⊥
α is orthogonal to Λ or

2) there is a unique β ∈ ∆⊥
α with 〈Λ, β〉 6= 0 such that

a) Λ = ±a
c
(α + β) where c is the lengths of the roots, and

b) ∆⊥
α is decomposable with a direct summand A1 = {±β}.

Suppose that the first alternative is false, i.e., there is a β ∈ ∆⊥
α

with 〈Λ, β〉 6= 0. W.l.o.g. we can suppose that 〈Λ, β〉 = 〈Λ, α〉 = ±a.
〈α, β〉 = 0 then implies

sαsβ(Λ) = Λ ∓
2a

c
(α + β).

Now we show with the help of (17) that sαsβ(Λ) is not in U :

〈sαsβ(Λ), T 〉 = 〈Λ, T 〉 ∓
2〈Λ, α〉

‖α‖2
〈α, T 〉 ∓

2〈Λ, β〉

‖β‖2
〈β, T 〉

= ∓〈Λ, T 〉 6= 0.

But this implies −Λ = sαsβ(Λ) = Λ ± 2a
c

(α + β). By this equation α
determines β uniquely.

We still have to show that such β is orthogonal to all other roots in
∆⊥

α . For γ 6∼ β in ∆⊥
α uniqueness of β implies 〈Λ, γ〉 = 0, and hence

〈Λ, sβγ〉 = 〈Λ, γ〉
︸ ︷︷ ︸

=0

−
2〈β, γ〉

‖β‖2
〈Λ, β〉.

Again the uniqueness of β implies that β is orthogonal to ∆⊥
α .

Claim 5. The root system of g is of type An or Dn.

The only root system with roots of equal length where the root system
∆⊥

α is decomposable for a root α is Dn. Hence for every root system
different from Dn we have that ∆⊥

α⊥ Λ by Claim 4. Any root system
different from An satisfies that span(∆⊥

α ) = α⊥. Both together imply
that for any root system different from Dn and An we have that α = Λ
but this was excluded.

To find the representations of An and Dn which obey the above claims
we introduce a fundamental system Π = (π1, . . . , πn) which makes Λ
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to the highest weight of the representation. Then we have that Λ =
∑n

k=1 mkωk with mk ∈ N∪{0} and ωk the fundamental representations.
〈ωi, πj〉 = δij implies mi = 〈Λ, πi〉 ∈ {0, a}. Then we get

Claim 6. The root system is of type Dn and the representation has
highest weight Λ = aωi.

Applying Λ to the root
∑n

k=1 πk gives
∑n

k=1 mk = a. Applying Λ to
any of the πi gives that

∑n
k=1 mk = mi for any i.

Now we consider the root system An. n = 1 was excluded from the
beginning. Recalling A3 ≃ D3 we can also exclude A3. Now we impose
the condition that the representation is orthogonal. This forces n to be
odd and Λ = aωn+1

2
where a has to be 2 when n+1

2 is odd. Thus we can

suppose that n > 3. Now we consider the root
∑n

k=1 πk = e1 − en+1

for which holds that 〈Λ, η〉 = a. Hence, by Claim 4 we have that ∆⊥
η is

orthogonal to Λ. On the other hand ∆⊥
η = {±(ei − ej) | 2 ≤ i < j ≤ n}

with n > 3 is not orthogonal to aωn+1
2

= a
(

e1 + · · · + en+1
2

)

. This

yields a contradiction.
Finally, we show that only the representations of Dn given in the

proposition satisfy the derived properties. The fundamental represen-
tations of Dn are given by ωi = e1 + · · · + ei for i = 1 . . . n − 2 and
ωi = 1

2(e1 + · · · + en−1 ± en) for i = n − 1, n. Then 〈aωi, πi〉 = a. On
the other hand, for the largest root η = e1 + e2 it holds

〈aωi, η〉 =

{

a : i = 1, n − 1, n

2a : 2 ≤ i ≤ n − 2.

Hence, the representation of aωi with 2 ≤ i ≤ n − 2 does not satisfy
Claim 3. Now we consider for n > 4 the representations Λ = 1

2(e1+· · ·+
en−1±en). For the root α = en−1±en it holds that 〈Λ, α〉 = a 6= 0. The
roots β := e1 − e2 and γ := e1 + e3 both satisfy 〈Λ, β〉 = 〈Λ, γ〉 = a and
〈α, β〉 = 〈α, γ〉 = 0. But this is a violation of the uniqueness property
in Claim 4. Hence n = 4. For D4 it holds that ω3 and w4 are congruent
to ω1, i.e., there is an involutive automorphism of the Dynkin diagram
which interchanges ω1 with ω3 respectively ω1 with ω4. For D3 ≃ A3

only the representations ω2 and 2ω2 are orthogonal. q.e.d.

Corollary 5.5. Every representation of a Lie algebra which satisfies

the conditions of Proposition 5.4 is the complexification of a Riemannian

holonomy representation.

Proof. The representation with highest weight ω1 of Dn is the stan-
dard representation of so(2n, C) on C

2n. Hence it is the holonomy
representation of a generic Riemannian manifold. The representa-
tion with highest weight 2ω1 is the complexified holonomy represen-
tation of a symmetric space of type AI for even dimensions, i.e., of
SU(2n)/SO(2n, R) respectively Sl(2n, R)/SO(2n, R). q.e.d.
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5.3. Representations with the property (SII) and weight zero.
First we have to find out which representations admit zero as a weight.

Lemma 5.6. Let g ⊂ so(N, C) be a irreducible representation of a

simple Lie algebra with weights Ω. If 0 ∈ Ω then either

1) ∆ ⊂ Ω, or

2) the extremal weights are short roots, or

3) ∆ = Cn and the representation has highest weight ω2k for k ≥ 2.

Proof. 0 ∈ Ω implies that there is a λ ∈ Ω and an η ∈ ∆ such that
0 = λ − η, i.e λ = η. If η is a long root, the long and the short roots
are weights. Thus, let us suppose that η is a short root. In this case we
have to show that one long root is a weight if η is not extremal or that
we are in the case of the Cn with the above representations. If η is not
extremal then there exists an α ∈ ∆ such that η +α ∈ Ω and η−α ∈ Ω.
We fix this α and consider the following cases.

Case A: α = η, i.e., 2η ∈ Ω. If ∆ 6= G2 we find a long root β such

that 2〈η,β〉
‖η‖2 = −2. This implies that β + 2η is a long root but also a

weight. In case of G2 we find a short root β with 〈η, β〉 < 0 and such
that 2η +β ∈ ∆ a long root. This long root is also in Ω since 〈η, β〉 < 0.

Case B: α 6∼ η and 〈α, η〉 6= 0. W.l.o.g. we suppose that 〈α, η〉 < 0.

First we consider the case where α is a long root, i.e., 2〈α,η〉
‖η‖2 = −2.

Then α + η is a short root and by assumption a weight. One easily
verifies that α + 2η is a long root, but also a weight: Since η − α is a
weight and

2〈η − α, η + α〉

‖η + α‖2

︸ ︷︷ ︸

=‖η‖2

= 2 − 2
‖α‖2

‖η‖2
≤ −1,

we get that η − α + η + α = 2η is a weight. Hence 2η + α is a weight.
Now we consider the case where α is a short root too. α+η is a root.

If it is long, we are done, because its a weight. If it is short we are left
with the cases where the root system is Cn, F4 or G2 (see the appendix
of [24]). For G2 this implies that η − α is a root which is long, and we
are done in this case. For Cn and F4 one easily sees that there is a root
γ such that η − α + γ is a weight and a long root.

Case C: 〈α, η〉 = 0 and ∆ 6= Cn. For G2 this implies that α is a long
root and that η + α is two times a short root. Then we can proceed as
above to get the result.

If ∆ is different from G2 we consider the root system ∆⊥
η of roots

orthogonal to η which contains α. In case of Cn this root system is
equal to A1 × Cn−2 and in the cases we are considering — Bn and F4

— it is equal to Bn−1 resp. B3. Now we show that there is a short root
α1 in ∆⊥

η such that η + α1 ∈ Ω. If α is short this is trivial and if α is
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long we write α = α1 + α2 with two orthogonal short roots from ∆⊥
η .

Then 〈η + α, α2〉 > 0 and thus η + α1 ∈ Ω. On the other hand there is
a short root γ ∈ ∆⊥

η such that η + γ is a long root. Applying the Weyl

group of ∆⊥
η on η + γ we get that η + α1 is a long root. In case of Cn

this argument does not apply since γ spans the A1 factor of ∆⊥
η .

Hence we have verified ∆ ⊂ Ω in the cases A, B and C. For ∆ = Cn

and 〈α, η〉 = 0 one verifies directly that, if η is not an extremal weight,
it holds that either ∆ ⊂ Ω, or the representation of Cn is the one with
highest weight ω2k with k ≥ 2. q.e.d.

Proposition 5.7. Let g ⊂ so(N, C) be an irreducibly acting, complex

simple Lie algebra different from sl(2, C) and satisfying (SII). If 0 ∈ Ω,

then there is a root α such that for the extremal weight from property

(SII) it holds Λ = aα or the representation is congruent to one of the

following:

1) ∆ = C4 with highest weight ω4.

2) ∆ = Dn with highest weight 2ω1.

Proof. Let Λ and α be the extremal weight and the root from property
(SII). We suppose that Λ is not the multiple of a root, i.e., case (2)
of the previous lemma, where the extremal weight were short roots is
excluded. Hence, in this situation the only case where 0 6∈ Ωα occurs
when ∆ = Cn, Λ = ω2k with k ≥ 2 and α is a long root. We shall treat
this case at the end of the proof and suppose now that 0 ∈ Ωα. (SII)
gives that 0 = −Λ + β — which was excluded — or 0 = Λ−α−β. The
latter gives that α + β is not a root which implies that 〈α, β〉 ≥ 0. We
consider three cases.

Case 1: ∆ = G2. In this case the fact that Λ is not proportional to a
root implies 〈α, β〉 > 0 and α and β must have different length. Thus,
we can chose a long root γ not proportional neither to α nor to β and
such that 〈α, γ〉 < 0 and 〈β, γ〉 < 0 which implies γ ∈ Ωα as well as
γ ∈ Ωβ . (SII) implies γ − β ∈ ∆ or γ − α ∈ ∆ or γ + α + β ∈ ∆. The
first two cases are not possible because of Proposition 5.1. For the third

case we suppose that α is the long root and get that 2〈γ+β,α〉
‖α‖2 = 0 by

analyzing the root diagram of G2. Hence, γ + α + β cannot be a root.

Case 2: ∆ 6= G2 and 〈α, β〉 > 0. This implies α−β ∈ ∆. We consider

the number k := 2〈α,α+β〉
‖α‖2 = 2 + 2〈α,β〉

‖α‖2 ≥ 3. Since G2 was excluded we

have that k ∈ {3, 4}. Hence α + β − kα = β − (k − 1)α ∈ Ωα. Then
property (SII) implies β − (k − 1)α = −α − β + γ with γ ∈ ∆0, i.e.,

2β − (k − 2)α ∈ ∆. At first this implies k = 3 and thus 2〈α,β〉
‖α‖2 = 1.

Secondly we must have 2〈α,β〉
‖β‖2 = 2, therefore ‖α‖2 = 2‖β‖2, i.e., α as

well as 2β − α are long roots while β and β − α are short ones.
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This implies 2〈β−α,α+β〉
‖β−α‖2 = 2(‖β‖2−‖α‖2)

‖β‖2 = −2. Hence α+β+2(β−α) =

3β − α ∈ Ω and since 2〈α,α−3β〉
‖α‖2 = 2 − 3 = −1 it holds α − 3β ∈ Ωα.

Then (SII) gives α − 3β = β − γ or α − 3β = −β − α + γ with γ ∈ ∆0.
But none of these equations can be true.

Case 3: 〈α, β〉 = 0 and ∆ 6= G2. Since α + β is not the multiple of
a root, the rank of ∆ has to be greater than 3 or it is ∆ = Dn and
Λ = 2ei, i.e., Λ = 2w1. In the second case we are done and we exclude
this representation in the following. We can suppose rk∆ ≥ 4. Recall
that the weight Λ and the root α were defined by the property (SII). In
this situation we prove the following lemma.

Lemma 5.8. Let rk∆ ≥ 4 and let Λ = α + β be an extremal weight

of a representation satisfying property (SII) with Λ and α, and let be a

root such that 〈α, β〉 = 0 and α + β not the multiple of a root. Then ∆
is a root system with roots of the same length or ∆ = Cn and α and β
are two short roots.

Proof. Suppose that ∆ has roots of different length. First we assume
that β is a long root. We consider the root system ∆⊥

α , which contains
β. We note that β lies not in the A1 factor of ∆⊥

α because otherwise
α + β would be the multiple of a root. Since β is long we find a short

root γ ∈ ∆⊥
α such that 2〈β,γ〉

‖γ‖2 = −2. Hence α + β + 2γ ∈ Ω and —

since 2〈α,α+β+2γ〉
‖α‖2 = 2 — it is −α − β − 2γ ∈ Ωα. But this contradicts

property (SII).
Now we suppose that α is a long root. Here we consider the root

system ∆⊥
β which contains α. Again α lies not in the A1 factor of ∆⊥

β

because otherwise α+β would be the multiple of a root. Since α is long

we find a short root γ ∈ ∆⊥
β such that 2〈α,γ〉

‖γ‖2 = −2. Hence, α+β +2γ ∈

Ω. Now we have that 2〈α,γ〉
‖α‖2 = −1 and therefore 2〈α,α+β+2γ〉

‖α‖2 = 2−1 = 1.

Thus −α − β − 2γ ∈ Ωα. Again this contradicts (SII).
If α and β are short and orthogonal and the root system is not Cn,

i.e., it is Bn or F4, then the sum of two orthogonal short roots is the
multiple of a root. q.e.d.

Now we prove a second claim.

Lemma 5.9. The assumptions of the previous lemma imply that there

is no γ ∈ ∆ such that

(19) 〈α, γ〉 = 0 and
2〈β, γ〉

‖γ‖2
= 1.

Proof. Let us suppose that there is a γ ∈ ∆ such that 〈α, γ〉 = 0 and
2〈β,γ〉
‖γ‖2 = 1. In case of Cn γ is a short root. We note that both together
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imply that neither α+γ nor α−γ is a root. But γ−β is a root, in case
of Cn a short one. Furthermore Λ − γ ∈ Ω. Hence,

2〈Λ − γ, γ − β〉

‖γ − β‖2
=

2〈α + β − γ, γ − β〉

‖γ − β‖2
= −2,

and thus Λ − γ + 2(γ − β) = α − β + γ ∈ Ω. Now 2〈α−β+γ,α〉
‖α‖2 = 2,

i.e., −α + β − γ ∈ Ωα. (SII) implies that −α + β − γ = β + δ or
−α + β − γ = −α−β + δ for δ ∈ ∆0. But both options are not possible
since α + γ is not a root and because γ is short. q.e.d.

We conclude that Lemma 5.8 leaves us with representations of An,
Dn, E6, E7, E8 or Cn where Λ is the sum of two orthogonal (short)
roots but not a root.

Now one easily verifies that Lemma 5.9 implies n ≤ 4 and ∆ 6= A4.
Hence the remaining representations are 2ω1, 2ω3 and 2ω4 of D4, which
are congruent to each other, and w4 of C4.

To finish the proof we have to consider the representation of highest
weight ω2k (with k ≥ 2) of Cn supposing α is a long root. 0 ∈ Ω implies
that the short roots are weights. Let β be a short root with 〈α, β〉 < 0,
i.e., β ∈ Ωα. (SII) then gives β = ω2k − α + δ or β = ω2k − δ for a
δ ∈ ∆0. Analysing roots and fundamental weights of Cn we get that
(SII) implies k = 2 and α = 2ei for 1 ≤ i ≤ 4. But for n > 4 Lemma 5.9
applies analogously. The remaining representation is ω4 of C4. q.e.d.

Corollary 5.10. Let g ⊂ so(N, C) be an orthogonal algebra of real

type different from sl(2, C) and satisfying (SII). If 0 ∈ Ω, in particular

if ∆ = G2, F4 or E8, then it is the complexification of a Riemannian

holonomy representation with the exception of G2 in Corollary 5.3.

Proof. If Λ is the multiple of a root then we are in the situation of
Corollary 5.3. For Dn the remaining representations are those which
appear in Corollary 5.5. The representation of highest weight ω4 of C4

is the complexification of the holonomy representation of the Riemann-
ian symmetric space of type EI, i.e., of E6/Sp(4) resp. E6(6)/Sp(4).
Analysing the roots and fundamental representations of the exceptional
algebras we notice that every representation of G2, F4 and E8 contains
zero as weight. q.e.d.

5.4. Representations with the property (SII) where zero is no
weight. Again we start with a lemma.

Lemma 5.11. If 0 6∈ Ω, then there is a weight λ 6= 0, such that∣
∣
∣
2〈λ,α〉
‖α‖2

∣
∣
∣ ≤ 1 for every root α.

Proof. In order to prove this indirectly, we fix a 0 6= λ ∈ Ω with
minimal length, i.e., ‖λ‖ ≤ ‖µ‖ for all 0 6= µ ∈ Ω. If the proposition were
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not true we could find a root α ∈ ∆ such that 2〈λ,α〉
‖α‖2 ≥ 2. Since 0 6∈ Ω,

it is λ 6= α, and we can consider the non-zero weight µ := λ − α 6= 0.
For the square of its length we get

0 < ‖µ‖2 = ‖λ‖2 − 2〈λ, α〉 + ‖α‖2 ≤ ‖λ‖2 − ‖α‖2 < ‖λ‖2.

This is a contradiction to the minimality of λ. q.e.d.

Proposition 5.12. Let g ⊂ so(N, C) be an irreducibly acting complex

simple Lie algebra different from sl(2, C), with 0 6∈ Ω and satisfying

(SII). Then
∣
∣
∣
2〈Λ,β〉
‖β‖2

∣
∣
∣ ≤ 3 for all roots β ∈ ∆.

Proof. Let α be in ∆ with the property (SII). By the previous lemma

there is a λ ∈ Ω such that
∣
∣
∣
2〈λ,β〉
‖β‖2

∣
∣
∣ ≤ 1 for all roots β ∈ ∆. Applying the

Weyl group one can choose λ such that 〈λ, α〉 < 0, i.e., λ ∈ Ωα. Hence
(SII) gives λ = Λ − α − γ or λ = −Λ + γ with γ ∈ ∆0. Since we have
excluded G2, the second case gives for every β ∈ ∆

∣
∣
∣
∣

2〈Λ, β〉

‖β‖2

∣
∣
∣
∣
≤

∣
∣
∣
∣

2〈λ, β〉

‖β‖2

∣
∣
∣
∣
+

∣
∣
∣
∣

2〈γ, β〉

‖β‖2

∣
∣
∣
∣
≤ 3.

Thus we have to consider the first case Λ = λ + α + γ with γ ∈ ∆0

and it is to verify that

(20)

∣
∣
∣
∣

2〈Λ, β〉

‖β‖2

∣
∣
∣
∣
=

∣
∣
∣
∣

2〈λ, β〉

‖β‖2
+

2〈α, β〉

‖β‖2
+

2〈γ, β〉

‖β‖2

∣
∣
∣
∣
≤ 3

for all roots β ∈ ∆.
For β = ±α this is satisfied:

2〈Λ, β〉

‖α‖2
= ±

2〈λ, α〉

‖α‖2
± 2 +

2〈γ, α〉

‖α‖2
= ∓1 ± 2 +

2〈γ, α〉

‖α‖2
≤ 3.

Hence, we have to show (20) for all β ∈ ∆ with β 6∼ α. For this we
consider three cases.

Case 1: All roots have the same length. This implies
∣
∣
∣
2〈γ,β〉
‖β‖2

∣
∣
∣ ≤ 1 for

all roots which are not proportional to each other. Thus we get (20) for
all β 6∼ γ:

∣
∣
∣
∣

2〈Λ, β〉

‖β‖2

∣
∣
∣
∣
≤

∣
∣
∣
∣

2〈λ, β〉

‖β‖2

∣
∣
∣
∣
+

∣
∣
∣
∣

2〈α, β〉

‖β‖2

∣
∣
∣
∣
+

∣
∣
∣
∣

2〈γ, β〉

‖β‖2

∣
∣
∣
∣
≤ 3.

For β = ±γ we have

2〈Λ, β〉

‖γ‖2
= ±

2〈λ, γ〉

‖γ‖2
±

2〈α, γ〉

‖γ‖2
± 2.

This has absolute value ≥ 4 only if 〈λ, γ〉 > 0 and 〈α, γ〉 > 0. This

implies that α − γ is a root. But for this root it holds 2〈λ,γ−α〉
‖γ−α‖2 =

2〈λ,γ〉
‖γ−α‖2 − 2〈λ,α〉

‖γ−α‖2 = 2 since all roots have the same length. This is a

contradiction to the choice of λ.
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Case 2: There are long and short roots and β is a long root. This

implies again
∣
∣
∣
2〈γ,β〉
‖β‖2

∣
∣
∣ ≤ 1 for all β which are not proportional to γ. This

implies (20) in this case.
For β = ±γ we argue as above, taking into account that ‖γ‖ ≥

‖γ−α‖ ≥ ‖α‖. We obtain 2〈λ,γ−α〉
‖γ−α‖2 = 2〈λ,γ〉

‖γ−α‖2 −
2〈λ,α〉
‖γ−α‖2 ≥ 2〈λ,γ〉

‖γ‖2 − 2〈λ,α〉
‖α‖2 ≥

2 which is a contradiction to the choice of λ

Case 3: There are long and short roots and β is a short root. First we
consider the case where β = ±γ. Again (20) is not satisfied only if 〈λ, γ〉
and 〈α, γ〉 are non zero and have the same sign, lets say +. If α is a short
root too, then, because of 〈α, γ〉 6= 0,1, Proposition 5.1 gives that α−γ is

also a short root. Hence, 2〈λ,γ−α〉
‖γ−α‖2 = 2〈λ,γ〉

‖γ−α‖2 −
2〈λ,α〉
‖γ−α‖2 = 2〈λ,γ〉

‖γ‖2 − 2〈λ,α〉
‖α‖2 = 2

yields a contradiction.
If α is a long root, then γ −α has to be a short one and we get again

a contradiction: 2〈λ,γ−α〉
‖γ−α‖2 = 2〈λ,γ〉

‖γ−α‖2 − 2〈λ,α〉
‖γ−α‖2 ≥ 2〈λ,γ〉

‖γ‖2 − 2〈λ,α〉
‖α‖2 ≥ 2.

Now suppose that β 6∼ γ. Then 2〈Λ,β〉
‖β‖2 = 2〈λ,β〉

‖β‖2 + 2〈α,β〉
‖β‖2 + 2〈γ,β〉

‖β‖2 has

absolute value ≥ 4 only if all three right hand side terms are ≥ 0 or
≤ 0 — lets say they are ≥ 0 — and at least one of the last two terms
has absolute value greater than one, i.e., γ or α is a long root. If α
is a long root then α − β is a short one and arguing as above gives

the contradiction. If α is a short root then 2〈λ,β〉
‖β‖2 > 0 and 〈α, β〉 > 0

implies by Proposition 5.1 that β − α is a short root. Again, we get a

contradiction: 2〈λ,β−α〉
‖β−α‖2 = 2〈λ,β〉

‖β−α‖2 − 2〈λ,α〉
‖β−α‖2 = 2〈λ,β〉

‖β‖2 − 2〈λ,α〉
‖α‖2 = 2. q.e.d.

Proposition 5.13. Under the same assumptions as in the previous

proposition it holds that
∣
∣
∣
2〈Λ,η〉
‖η‖2

∣
∣
∣ ≤ 2 for all long roots η.

Proof. Let Λ and α be the extremal weight and the root from property
(SII). We suppose that there is a long root η with

(21)
2〈Λ, η〉

‖η‖2
= −3

and derive a contradiction considering different cases.

Case 1: All roots have the same length. By applying the Weyl group

we find an extremal weight Λ′ such that a := 2〈Λ′,α〉
‖α‖2 = −3. Firstly, we

find a root β with

2〈α, β〉

‖β‖2
= 1 and

2〈Λ′, β〉

‖β‖2
≤ −2.

This is obvious: We find a β such that 2〈α,β〉
‖β‖2 = 1. If 2〈Λ′,β〉

‖β‖2 ≥ −1 then

we consider the root α − β. It satisfies 2〈α,α−β〉
‖α−β‖2 = 1 and we have

2〈Λ′, α − β〉

‖α − β‖2
= −3 −

2〈Λ′, β〉

‖α − β‖2
≤ −2.
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Hence we have Λ′ + kβ ∈ Ω for 0 ≤ k ≤ 2 and Λ′ + kα ∈ Ω for
0 ≤ k ≤ 3. Furthermore,

2〈Λ′ + lβ, α〉

‖α‖2
= −3 −

2〈Λ′, α〉

‖α‖2
= −3 + l.

But this gives

Λ′ + kα + lβ ∈ Ωα for 0 ≤ k ≤ 2, 0 ≤ k + l ≤ 2.

Among others (SII) implies the existence of γi and δi from ∆0 for i =
0, 1, 2 such that the following alternatives must hold:

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(22)

Λ′ + 3α = Λ + γ1 or Λ′ + 2α = −Λ + δ1(23)

Λ′ + α + 2β = Λ + γ2 or Λ′ + 2β = −Λ + δ2.(24)

First we suppose that the first alternative of (22) holds, i.e Λ′ + α =
Λ + γ0. Since a = −3 and both Λ and Λ′ are extremal we have that
α 6= −γ0. Hence the first case of (23) cannot be true and we have
Λ′ + 2α = −Λ + δ1. We consider now (24): The left side of (22) gives
that Λ′ + 2β + α = Λ + γ0 + 2β. If the left side of (24) were true,
we would have γ0 = −β. Hence Λ + β ∈ Ω and on the other hand
Ω ∋ Λ′ + α = Λ − β which contradicts the extremality of Λ. Thus the
right hand side of (24) must be satisfied. From Λ′+2α = −Λ+δ1 follows
Λ′ + 2β = −Λ + δ1 + 2(β − α) and therefore δ1 = −(β − α). Again we
have −Λ + (β − α) ∈ Ω and −Λ − (β − α) ∈ Ω which contradicts the
extremality of Λ.

If one starts with the right hand side of (22) one may proceed analo-
gously and get a contradiction in the case where all roots have the same
length.

Case 2. The roots have different length and α is a short root. On one
hand we find a short root β which is orthogonal to α and α+β is a long
root, and on the other we can find an extremal weight Λ′ such that

2〈Λ′, α + β〉

‖α + β‖2
= −3.

Since α⊥β we have

−3 =
2(〈Λ′, α〉 + 〈Λ′, β〉)

‖α‖2 + ‖β‖2
=

1

2

(
2〈Λ′, α〉

‖α‖2
+

2〈Λ′, β〉

‖β‖2

)

.

Because of the previous proposition we get

2(〈Λ′, α〉

‖α‖2
=

2(〈Λ′, β〉

‖β‖2
= −3.
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Hence Λ′ +kα+ lβ ∈ Ω for 0 ≤ k, l ≤ 3 and therefore Λ′ +kα+ lβ ∈ Ωα

for 0 ≤ k ≤ 2 and 0 ≤ l ≤ 3. (SII) implies the following alternatives:

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(25)

Λ′ + α + 3β = Λ + γ1 or Λ′ + 3β = −Λ + δ1(26)

Λ′ + 2α + 3β = Λ + γ2 or Λ′ + α + 3β = −Λ + δ2(27)

Λ′ + 3α + 2β = Λ + γ3 or Λ′ + 2(α + β) = −Λ + δ3(28)

Λ′ + 3α + 3β = Λ + γ4 or Λ′ + 2α + 3β = −Λ + δ4.(29)

If the left hand side of the first alternative is valid then the left hand
sides of the remaining four cannot be satisfied: For (26) we would have
3β = γ1 − γ0 which is not possible. (27) would imply 3β + α = γ2 − γ0

which is by Proposition 5.1 a contradiction since α 6= −β and γ0 6= −α.
(28) would imply 2(α+β) = γ3−γ0. Since α+β is a long root this would
give γ0 = −(α + β) and γ3 = α + β and thus Λ− (α + β) and Λ + α + β
would be weights. But this is a contradiction to the extremality of Λ,
(29) would give 2α + 3β = γ4 − γ0 which also is not possible.

Thus for the last four equations the right hand side must hold. Taking
everything together we would get α = δ2 − δ1 = δ4 − δ2 and β = δ4 − δ3.
This gives 2α = δ4 − δ1 and thus

2〈δ4, α〉

‖α‖2
−

2〈δ1, α〉

‖α‖2
=

4‖α‖2

‖α‖2
= 4.

The extremality of Λ prevents that α = δ4 = −δ1. Hence δ1 and δ4 are
long roots, in particular

2〈δ4, α〉

‖α‖2
= −

2〈δ1, α〉

‖α‖2
= 2.

For β again β = δ4 = −δ3 cannot hold by the extremality of Λ and we
have

0 =
2〈β, α〉

‖α‖2
=

2〈δ4, α〉

‖α‖2
−

2〈δ3, α〉

‖α‖2
= 2 −

2〈δ3, α〉

‖α‖2

which forces δ3 to be a long root too. Now we have a contradiction
because the short root β is the sum of two long roots. This is impossible.

If we start with the right hand side of the first alternative one proceeds
analogously.

Case 3. The roots have different length and α is a long root. In this

case we find an extremal weight Λ′ such that 2〈Λ′,α〉
‖α‖2 = −3. Now we can

write α = α1 + α2 with α1⊥α2 two short roots. As above we get

(30)
2〈Λ′, α1〉

‖α1‖2
=

2〈Λ′, α2〉

‖α2‖2
= −3.

Again this implies Λ′ + kα1 + lα2 ∈ Ω for 0 ≤ k, l ≤ 3 and therefore
Λ′ + kα1 + lα2 ∈ Ωα for 0 ≤ k, l ≤ 2. Now (SII) implies the existence of
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γi and δi from ∆0 for i = 0, . . . , 8 such that the following alternatives
have to be true:

(L) (R)

Λ′ + α1 + α2 = Λ + γ0 or Λ′ = −Λ + δ0(31)

Λ′ + 2α1 + α2 = Λ + γ1 or Λ′ + α1 = −Λ + δ1(32)

Λ′ + 3α1 + α2 = Λ + γ2 or Λ′ + 2α1 = −Λ + δ2(33)

Λ′ + α1 + 2α2 = Λ + γ3 or Λ′ + α2 = −Λ + δ3(34)

Λ′ + α1 + 3α2 = Λ + γ4 or Λ′ + 2α2 = −Λ + δ4(35)

Λ′ + 2α1 + 2α2 = Λ + γ5 or Λ′ + α1 + α2 = −Λ + δ5(36)

Λ′ + 2α1 + 3α2 = Λ + γ6 or Λ′ + α1 + 2α2 = −Λ + δ6(37)

Λ′ + 3α1 + 2α2 = Λ + γ7 or Λ′ + 2α1 + α2 = −Λ + δ7(38)

Λ′ + 3α1 + 3α2 = Λ + γ8 or Λ′ + 2α1 + 2α2 = −Λ + δ8.(39)

In the following we denote the left hand side formulas with an .L and
the right hand side formulas with an .R. Again we suppose that (31.L)
is satisfied, i.e., Λ′ + α1 + α2 = Λ + γ0. Under this assumption at first
(39.L) can be excluded: It would imply 2(α1 + α2) = 2α = γ8 − γ0.
Since α is a long root this is not possible for γ8 6= α. But if γ8 = α
then (39.L) is equivalent to Λ = Λ′ + 2α1 + 2α2. Hence Λ ± α would
be a weight, i.e., Λ would not be extremal. Secondly, (38.L) can not be
true: It implies 2α1 + α2 = γ7 − γ0. Recalling that we are dealing with
the root system Bn or Cn this can only be true if γ7 is equal to α or
equal to α1. Again one deduces a contradiction to the extremality of Λ.
Analogously (37.L) can be excluded.

Hence (31.L) implies (39.R),(38.R) and (37.R). Using these three rela-
tions one can exclude (32.R), (33.R), (34.R) and (35.R), e.g., (35.R) im-
plies 2α1−α2 = δ7−δ4, thus δ7 = α1 or δ7 = α1−α2, which contradicts
to the extremality of Λ. Hence we get that (32.L), (33.L), (34.L) and
(35.L) must hold true. But in this case (36.L) gives 2α1 +2α2 = γ2−γ4

which is again impossible because Λ is extremal.
Hence we conclude that (36.R) must be true implying α1 = δ7 − δ5 =

δ8 − δ6 and α2 = δ6 − δ5 = δ8 − δ7. But analysing the root systems Bn

and Cn one concludes that this is not possible.
If we start with the right hand side of the first alternative one proceeds

analogously.

All in all we have shown that the assumption of a long root with (21)
leads to a contradiction. q.e.d.

Now we are in a position that we can use results of [33] explicitly.
First we cite them.
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Proposition 5.14. [33, Propositions 3.16 and 3.17] Let g ⊂ so(N, C)
be an irreducible representation of real type of a complex simple Lie

algebra different from sl(2, C). Then it holds:

1) If there is an extremal spanning triple (Λ1, Λ2, α), then there is no

weight λ for which exists a pair of orthogonal long roots η1 and η2

such that
∣
∣
∣
2〈λ,ηi〉
‖ηi‖2

∣
∣
∣ = 2.

2) If furthermore all roots have the same length, then there is no

weight λ for which exists a triple of orthogonal roots η1⊥η2⊥η3⊥η1

such that
∣
∣
∣
2〈λ,η1〉
‖η1‖2

∣
∣
∣ = 2 and

∣
∣
∣
2〈λ,η2〉
‖η2‖2

∣
∣
∣ =

∣
∣
∣
2〈λ,η3〉
‖η3‖2

∣
∣
∣ = 1.

Now we shall show that the existence of such a pair or triple of roots
implies that (SII) defines an extremal spanning pair.

Proposition 5.15. Let g ⊂ so(N, C) be an irreducible representation

of real type of a complex simple Lie algebra different from sl(2, C), with

0 6∈ Ω and satisfying (SII). Then it holds: If there is a pair of orthogonal

long roots η1 and η2 such that
∣
∣
∣
2〈Λ,ηi〉
‖ηi‖2

∣
∣
∣ = 2 for the extremal weight Λ

from the property (SII), then Λ − α is an extremal weight, i.e., (SII)
defines an extremal spanning triple.

Proof. Again we argue indirectly considering three different cases for
the root α from the property (SII)

Case 1: All roots have the same length or α is a long root. Again
by applying the Weyl group the indirect assumption implies that there
is an extremal weight Λ′ and a root long β orthogonal to α such that
2〈Λ′,α〉
‖α‖2 = 2〈Λ′,β〉

‖β‖2 = −2. This gives that Λ′ + kα + lβ ∈ Ω for 0 ≤ k, l ≤ 2

and hence Λ′ + kα + lβ ∈ Ωα for 0 ≤ k ≤ 1, 0 ≤ l ≤ 2. Among others
(SII) implies the existence of γi and δi from ∆0 for i = 0, . . . , 3 such
that the following alternatives must hold true:

(L) (R)

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(40)

Λ′ + 2α = Λ + γ1 or Λ′ + α = −Λ + δ1(41)

Λ′ + α + 2β = Λ + γ2 or Λ′ + 2β = −Λ + δ2(42)

Λ′ + 2α + 2β = Λ + γ3 or Λ′ + α + 2β = −Λ + δ3.(43)

Supposing again (40.L) we conclude that (42.L) and (43.L) cannot hold
because β is long and the extremality of Λ. Hence (42.R) and (43.R)
must be satisfied. Again the extremality of Λ prevents that (41.R) can
be valid. Hence we have (41.L). Now (40.L) gives that

2〈Λ, α〉

‖α‖2
=

2〈Λ′, α〉

‖α‖2
+ 2 −

2〈γ0, α〉

‖α‖2
= −

2〈γ0, α〉

‖α‖2
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by assumption. On the other hand (40.L) together with (41.L) and
(42.R) and (43.R) implies α = γ1 − γ0 = δ3 − δ2. We note that γ0

cannot be equal to 0 and γ1 not equal to α. If γ0 = −α and γ1 = 0 then
Λ = Λ′ + 2α. Then (42.R) and (43.R) imply

〈δ2, α〉 = 2〈Λ′, α〉 + 2‖α‖2 = 0 and

〈δ3, α〉 = 2〈Λ′, α〉 + 3‖α‖2 = ‖α‖2.

Since α is long this entails δ2 = 0 and δ3 = α. Taking now (40.L) and
(42.R) together we get Λ = α − β. But this forces 0 ∈ Ω which was
excluded. Thus we have α = γ1 − γ0 with non-proportionality. But this

implies, since α is long, that 2〈γ0,α〉
‖α‖2 = −1 and hence 2〈Λ,α〉

‖α‖2 = 1. But

this means that Λ − α is an extremal weight.

Case 2: There are roots with different length and α is a short root. By
assumption there is a short root γ such that γ⊥α and η := α+γ is a long

root and an extremal weight Λ′ and a long root β such that 2〈Λ′,η〉
‖η‖2 =

2〈Λ′,β〉
‖β‖2 = −2. Analogously to the previous theorem the orthogonality of

α and γ gives

−2 =
1

2

(
2〈Λ′, α〉

‖α‖2
+

2〈Λ′, γ〉

‖γ‖2

)

.

Hence we have to consider three cases:

(a) 2〈Λ′,α〉
‖α‖2 = 2〈Λ′,γ〉

‖γ‖2 − 2,

(b) 2〈Λ′,α〉
‖α‖2 = −3 and 2〈Λ′,γ〉

‖γ‖2 − 1,

(c) 2〈Λ′,α〉
‖α‖2 = −1 and 2〈Λ′,γ〉

‖γ‖2 − 3.

Then an easy calculation shows that 〈α, β〉 = 〈γ, β〉 = 0 in each case.
We shall treat the cases (a),(b) and (c) separately.

Case (a): Here we can proceed completely analogously to the Case
1. We have that Λ′ + kα + lβ ∈ Ωα for 0 ≤ k ≤ 1, 0 ≤ l ≤ 2 leading
to the same set of equations (40) — (43) and the same implications
since β is long again. The proportional case is excluded as above and
we get that α = γ1 − γ0 non proportional. At least one has to be a
short root and 〈γ0, α〉 < 0 and 〈γ1, α〉 > 0. On the other hand we have
2〈Λ,α〉
‖α‖2 = −2〈γ0,α〉

‖α‖2 and 2〈Λ,α〉
‖α‖2 = −2〈γ1,α〉

‖α‖2 + 2 by (40.L) and (41.L). But

this implies that both are short and 2〈Λ,α〉
‖α‖2 = 1 which is the proposition.
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Case (b): 2〈Λ′,α〉
‖α‖2 = −3 implies that Λ′+kα+ lβ ∈ Ωα for 0 ≤ k, l ≤ 2.

(SII) then implies:

(L) (R)

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(44)

Λ′ + 2α = Λ + γ1 or Λ′ + α = −Λ + δ1(45)

Λ′ + 3α = Λ + γ2 or Λ′ + 2α = −Λ + δ2(46)

Λ′ + 2α + 2β = Λ + γ3 or Λ′ + α + 2β = −Λ + δ3(47)

Λ′ + 3α + 2β = Λ + γ4 or Λ′ + 2α + 2β = −Λ + δ3.(48)

Supposing (44.L) excludes (47.L) and (48.L) because β is long. Hence,
(47.R) and (48.R) are valid and exclude (45.R) and (46.L). Hence (45.L)
and (46.L) are satisfied. This gives α = γ2 − γ1 = γ1 − γ0 with γ0

different from 0 and −α, γ1 different from 0 and α and γ2 different
from ±α. Hence α + ±δ1 is a long root with α⊥δ1. But this gives
2〈Λ,α〉
‖α‖2 = 2〈Λ′,α〉

‖α‖2 + 4 = 1, i.e., Λ − α is an extremal weight.

Case (c): Here we have that Λ′ + kγ + lβ ∈ Ωα for 0 ≤ k ≤ 3 and

0 ≤ l ≤ 2 since 2〈Λ′+kγ+lβ,α〉
‖α‖2 = −1. The equations implied by (SII) lead

easily to a contradiction:

(L) (R)

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(49)

Λ′ + α + 3γ = Λ + γ1 or Λ′ + 3γ = −Λ + δ1(50)

Λ′ + α + 2β + 3γ = Λ + γ2 or Λ′ + 2β + 3γ = −Λ + δ2.(51)

Supposing (49.L) excludes (50.L) and (51.L). Hence (50.R) and (51.R)
are valid but contradict to each other because β is long. q.e.d.

Proposition 5.16. Let g ⊂ so(N, C) be an irreducible representa-

tion of real type of a complex simple Lie algebra different from sl(2, C),
with 0 6∈ Ω and satisfying (SII). If furthermore all roots have the same

length, and if there is a triple of orthogonal roots η1⊥η2⊥η3⊥η1 such

that
∣
∣
∣
2〈Λ,η1〉
‖η1‖2

∣
∣
∣ = 2 and

∣
∣
∣
2〈Λ,η2〉
‖η2‖2

∣
∣
∣ =

∣
∣
∣
2〈Λ,η3〉
‖η3‖2

∣
∣
∣ = 1, then either

1) Λ−α is an extremal weight, i.e., (SII) defines an extremal spanning

triple, or

2) Λ = α + 1
2(β + γ) with roots α⊥β⊥γ⊥α.

Proof. Let α be the root determined by (SII). The assumption implies
that there is an extremal weight Λ′ and roots β and γ such that

2〈Λ′, α〉

‖α‖2
= −2 and

2〈Λ, β〉

‖β‖2
=

2〈Λ, γ〉

‖γ‖2
= −1.
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Then Λ′+kα+ lβ+mγ ∈ Ω for k, l, m = 0, 1. Hence (SII) implies again:

(L) (R)

Λ′ + α = Λ + γ0 or Λ′ = −Λ + δ0(52)

Λ′ + 2α = Λ + γ1 or Λ′ + α = −Λ + δ1(53)

Λ′ + α + β = Λ + γ2 or Λ′ + β = −Λ + δ2(54)

Λ′ + 2α + β = Λ + γ3 or Λ′ + α + β = −Λ + δ3(55)

Λ′ + α + γ = Λ + γ4 or Λ′ + γ = −Λ + δ4(56)

Λ′ + 2α + γ = Λ + γ5 or Λ′ + α + γ = −Λ + δ5(57)

Λ′ + α + β + γ = Λ + γ6 or Λ′ + β + γ = −Λ + δ6(58)

Λ′ + 2α + β + γ = Λ + γ7 or Λ′ + α + β + γ = −Λ + δ7.(59)

Supposing (52.L) excludes (59.R) because the roots are orthogonal.
Thus (59.R) holds true. Now we consider two cases:

Case 1: 〈γ0, β〉 = 〈γ0, γ〉 = 0. This excludes (54.L), (56.L) and (58.L)
and implies therefore (54.R), (56.R) and (58.R). The latter together with
(59.R) gives α = δ7 − δ6. Since δ7 6= 0 this implies 〈α, δ7〉 > 0. On the

other hand (59.R) and the assumption gives that 2〈Λ,α〉
‖α‖2 = 2〈δ7,α〉

‖α‖2 > 0. If

α 6= δ7 we are done. But δ7 = α implies Λ′+β +γ = −Λ = −Λ′−α−γ0

and hence −2 = 2−2− 2〈α,γ0〉
‖α‖2 , i.e., γ0 = −α. Taking everything together

we get 2Λ = 2α − (β + γ).

Case 2: 〈γ0, β〉 or 〈γ0, γ〉 not equal to zero. This implies γ0 6= ±α

and thus 2〈Λ,α〉
‖α‖2 = −2〈γ0,α〉

‖α‖2 = ±1 or zero. Now (53.L) would imply

α = γ1 − γ0, i.e., 〈α, γ0〉 < 0 which is the proposition.
Hence we suppose (53.R). This together with the starting point (52.L)

gives

Λ =
1

2
(δ1 − γ0) and

Λ′ = −α +
1

2
(δ1 + γ0).

Using the assumption, the second equation implies 1 〈α, δ1 + γ0〉 = 0.
For the length of both extremal weights it holds then

‖Λ‖2 =
1

4

(
‖δ1‖

2 + ‖γ0‖
2 − 2〈δ1, γ0〉

)

‖Λ′‖2 = ‖α‖2 − 〈α, δ1 + γ0〉
︸ ︷︷ ︸

=0

+
1

4

(
‖δ1‖

2 + ‖γ0‖
2 + 2〈δ1, γ0〉

)
.

This gives 0 = ‖α‖2 + 〈δ1, γ0〉. Since all roots have the same length this
implies δ1 = −γ0. Hence Λ is a root. But this was excluded. q.e.d.

Now using the Proposition 5.14 of Schwachhöfer we get a corollary.
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Corollary 5.17. Let g ⊂ so(N, C) be an irreducible representation

of real type of a complex simple Lie algebra different from sl(2, C), with

0 6∈ Ω and satisfying (SII). Then it holds:

1) There is no pair of orthogonal long roots η1 and η2 such that
∣
∣
∣
2〈Λ,ηi〉
‖ηi‖2

∣
∣
∣ = 2 for the extremal weight Λ from the property (SII).

2) If furthermore all roots have the same length, and if there is a

triple of orthogonal roots η1⊥η2⊥η3⊥η1 such that
∣
∣
∣
2〈Λ,η1〉
‖η1‖2

∣
∣
∣ = 2

and
∣
∣
∣
2〈Λ,η2〉
‖η2‖2

∣
∣
∣ =

∣
∣
∣
2〈Λ,η3〉
‖η3‖2

∣
∣
∣ = 1 then Λ = α + 1

2(β + γ) with roots

α⊥β⊥γ⊥α.

Before we apply this corollary we have to deal with the remaining
exception in the second point.

Lemma 5.18. If the representation of a simple Lie algebra with roots

of the same length has an extremal weight Λ such that Λ = α+ 1
2(β +γ)

with roots α⊥β⊥γ⊥α, then it holds

1) There is no root δ such that 〈δ, β〉 = 0, 〈δ, γ〉 6= 0 and δ 6∼ γ, i.e.,

∆⊥
β has the direct summand {±γ}.

2) The root system is Dn and the representation has one of the fol-

lowing highest weights: ω3 for n > 3, or ω1 + ω3 or ω1 + ω4 for

n = 4.

Proof. The first point is easy to see: If there is such a δ then we have

2〈Λ, δ〉

‖δ‖2
=

2〈α, δ〉

‖δ‖2
+

1

2

2〈γ, δ〉

‖δ‖2
=

2〈α, δ〉

‖δ‖2
±

1

2
6∈ Z.

This is a contradiction.
For the second point one verifies directly that the fact that ∆⊥

β

contains a direct A1 summand leaves us with ∆ = Dn. Hence we
have to deal with representations of Dn. Now we consider the dif-
ferent root systems with roots of constant length. If α = ei ± ej ,
β = ep±eq and γ = er±es with all indices different from each other, then
2〈Λ,ei−ep〉
‖ei−ep‖2 is not an integer. Thus we are left with two cases. The first is

β +γ = ep + eq + ep − eq = 2ep and hence Λ = ei ± ej + ep. This leads to
Λ = ω3 for n > 3. The second is α = ei +ej , β = ei−ej and γ = ep±eq.
For n > 4 we found a root ep + es which leads to a contradiction by
applying the first point. For n = 4 we have Λ = 3

2ei + 1
2 (ej + ep ± eq).

But this yields the remaining representations. q.e.d.

Now using all these properties we find the representations without
weight zero and satisfying (SII).

Proposition 5.19. Let g ⊂ so(N, C) be an irreducibly acting complex

simple Lie algebra different from sl(2, C), with 0 6∈ Ω and satisfying
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(SII). Then the root system and the highest weight of the representation

is one of the following (modulo congruence):

1) An: ω4 for n = 7.
2) Bn: ωn for n = 3, 4, 7.
3) Dn: ω1, 2ω1 for arbitrary n and ω8 for n = 8.

Proof. We apply Proposition 5.13 and Corollary 5.17 to the remaining
representations with 0 6∈ Ω, i.e., representations of An, Bn, Cn, Dn, E6

and E7. We use a fundamental system such that the extremal weight
Λ determined by (SII) is the highest weight, i.e., Λ =

∑n
k=1 mkωk with

mk ∈ N ∪ {0}.

An: Proposition 5.13 gives for the largest root

2 ≥
2〈Λ, e1 − en+1〉

‖e1 − en+1‖2
=

n∑

k=1

mk〈ωk, e1 − en+1〉 =
n∑

k=1

mk.

Since the representation has to be self dual we have that mi = mn+1−i.
First we consider the case that Λ = ωi + ωn+1−i. For n > 2 we get in
case i > 1 that 〈Λ, e2 − en〉 = 2. But (e2 − en)⊥(e1 − en+1) gives a
contradiction to 1 of Corollary 5.17. For n ≥ 2 it has to be

Λ = ω1 + ωn = 2e1 + e2 + · · · en = e1 − en+1.

This is the adjoint representation with 0 ∈ Ω.
Now we consider the case that n + 1 is even. The case Λ = 2ωn+1

2

is excluded because of point 1 of Corollary 5.17: it is 〈Λ, e2 − en〉 =
〈Λ, e1 − en+1〉 = 2 for n > 2. Thus we have to study the case Λ = ωn+1

2
.

This representation is orthogonal if n+1
2 is even. The weights of this

representation are given by 1
2(±ek1±· · ·±ek n+1

2

) where the ±’s are meant

to be independent of each other. We show that (SII) implies n ≤ 7. We
have to consider two cases for α of (SII). The first is that α = ei − ej

with 1 ≤ i ≤ n+1
2 < j ≤ n + 1. W.l.o.g. we take α = en+1

2
− en+1

2
+1 and

consider the weight

λ := e1 + · · · en+1
2

−3 + en+1
2

+1 + en+1
2

+2 + en+1
2

+3.

〈λ, α〉 < 0 implies λ ∈ Ωα. Then λ − (Λ − α) ∈ ∆0 or λ + Λ ∈ ∆0. We
check the first alternative: Λ − α = e1 + · · · en+1

2
−1 + en+1

2
+1 implies

λ − (Λ − α) = en+1
2

−3 + en+1
2

−2 + en+1
2

+2 + en+1
2

+3.

But this is not a root. For the second alternative we get

λ + Λ = e1 + · · · + en+1
2

−3 − en+1
2

+4 − · · · − en+1.

This is not a root if n+1
2 > 4, i.e., n > 7.

For the second type of root α = ei − ej with 1 ≤ i < j ≤ n+1
2 and

n+1
2 < i < j ≤ n + 1 one derives analogously that n ≤ 5.
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Hence for Λ = ωn+1
2

the property (SII) can only be fulfilled if n ≤ 7.

These representations are orthogonal for n = 7 and n = 3. A3 is
isomorphic to D3 and the representation with highest weight ω2 of A3

is equivalent to the one with ω1 of D3.

Bn: Proposition 5.13 gives for the largest root

2 ≥
2〈Λ, e1 + e2〉

‖e1 + e2‖2
= m1 + 2m2 + · · · 2mn−1 + mn.

The only representations with 0 6∈ Ω have Λ = ω1 + ωn and the spin
representation Λ = ωn. There is no possibility to apply the first point of
Corollary 5.17. But we verify that for Λ = ω1 + ωn (SII) implies n ≤ 2,
and for the spin representation Λ = ωn (SII) implies n ≤ 7.

The spin representations: We show that (SII) implies n ≤ 7. The
spin representation has weights Ω =

{
1
2(ε1e1 + · · · + εnen)|εi = ±1

}
.

We have to consider three types for the root α: α = ei, α = ei + ej and
α = ei − ej .

For the first we can assume w.l.o.g. that α = e1. Then Ωα = {1
2(−e1+

ε2e2 + · · ·+ εnen)|ε = ±1}. It is Λ−α = 1
2(−e1 + e2 + · · ·+ en). Hence

for λ ∈ Ωα we have

Λ − α − λ =
1

2
((1 − ε2)e2 + · · · + (1 − εn)en) and

Λ + λ =
1

2
((1 + ε2)e2 + · · · + (1 + εn)en).

If (SII) is satisfied one of these expression has to be a root. But if n ≥ 7
we can choose (ε2, . . . εn) such that none of them is a root.

The second type of root is w.l.o.g. α = e1 − e2. In this case Ωα =
{1

2(−e1 + e2 + ε3e3 + · · · + εnen)|εi = ±1} and Λ − α = 1
2(−e1 + 2e2 +

e3 + · · ·+en). If n ≥ 4 we can choose λ ∈ Ωα such that neither Λ−α−λ
nor Λ + λ is a root.

Now we consider the last type of root, α = e1 + e2. Ωα = {1
2(−e1 −

e2 + ε3e3 + εnen)|εi = ±1} and Λ−α = 1
2(−e1− e2 + e3 + · · ·+ · · ·+ en).

If n ≥ 8 we can choose λ ∈ Ωα such that neither Λ−α− λ nor Λ + λ is
a root. Hence if (SII) is satisfied, it has to be n ≤ 7 and for n = 7 the
pair of property (SII) is of the shape (Λ, e1 + e2). But for n = 2, n = 5
and n = 6 the spin representations are symplectic but not orthogonal.

The representations of Λ = ω1 + ωn = 3
2e1 + 1

2(e2 + · · · + en). The

weights are given by 1
2(aek1 + ε2ek2 + · · · + εnekn

) with a ∈ {±1,±3}
and εi = ±1. For these one shows analogously that (SII) implies n ≤ 2.
For n = 2 this representation is symplectic.

Cn: For the largest root we get

2 ≥
2〈Λ, 2e1〉

‖2e1‖2
=

n∑

k=1

mk〈ωk, e1〉 =
n∑

k=1

mk.
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If mi = 2 and all others are zero then 0 ∈ Ω. Hence we suppose that
Λ = ωi+ωj for i 6= j. If i > 1 we get for the root 2e2 which is orthogonal

to 2e1 that 2〈Λ,2e2〉
‖2e2‖2 = 2. Thus by 1 of Corollary 5.17 we have i = 1.

Λ = ω1 + ωi is only orthogonal if i is odd, but if i is odd we have that
0 ∈ Ω. Hence Λ = ωi. This is orthogonal if i is even, but in this case it
is again 0 ∈ Ω.

Dn: Here we get for the largest root

2 ≥
2〈Λ, e1 + e2〉

‖e1 + e2‖2
= m1 + 2m2 + · · · + 2mn−2 + mn−1 + mn.

First we consider the representation where this number is equal to 2. For
the representations 2ωn and 2ωn−1 it is 0 ∈ Ω. For the representations
Λ = ω1 + ωn and Λ = ω1 + ωn−1 we get that n = 4 or there is no
triple as in the second point of Proposition 5.17. Thus suppose in this
case n > 4. We have that〈Λ, e1 + e2〉 = 2 and for the orthogonal roots
〈Λ, e1 − e2〉 = 〈Λ, e3 ± e4〉 = 1. But this contradicts Proposition 5.17,1.

For Λ = ωn−1 + ωn = e1 + · · · + en−1, 0 6∈ Ω implies n − 1 even. The
first point of Corollary 5.17 gives for n > 4 that 2 = 〈Λ, e3 +e4〉 which is
impossible. Hence n ≤ 4, and 1 = 〈Λ, e3 ± e4〉 together with the second
point of Corollary 5.17 implies n ≤ 3.

Now suppose that Λ = ωi for 2 ≤ i ≤ n− 2. We apply the first point
of Corollary 5.17. If n ≥ 4 we get that 〈ωi, e3+e4〉 = 2 for i ≥ 4 but this
was excluded. Hence i ≤ 3. In the case n = 3 only ω2 is an orthogonal
representation. But for this is 0 ∈ Ω.

Thus, to get the assertion of the proposition we have to show that

1) For the spin representations Λ = ωn−1 and Λ = ωn (SII) implies
n ≤ 8

2) Λ = ω3 does not satisfy (SII),
3) Λ = ω1 + ω3 and ω1 + ω4 for n = 4 do not satisfy (SII).

The spin representations: Because we are interested in the repre-
sentations modulo congruence it suffices to consider the spin repre-
sentation of highest weight Λ = 1

2(e1 + · · · + en) with weights Ω =
{

1
2(ε1e1 + · · · + εnen)|εi = ±1 and εi = −1 for an even number

}
. Ana-

logously as for Bn we get for two types of roots α = ei+ej and α = ei−ej

that (SII) implies n ≤ 8. (We have to admit one dimension higher be-
cause of the sign restriction of the weights.) Now for n odd the spin
representation is not self dual, and for n = 6 not orthogonal. For n = 4
it is congruent to ω1.

Λ = ω3 = e1+e2+e3: Here it is Ω = {(ε1ek1 +ε2ek2 +ε3ek3 |εi = ±1}∪
{±ei}. For n = 3 and n = 4 this is a spin representation. Hence suppose
n ≥ 5. For α = e1 + e2 we get Λ−α = e3. Set λ := −e1 + e4 + e5 ∈ Ωα.
Hence Λ−α−λ = e3 + e1 − e4 − e5 and Λ+λ = e2 + e3 + e4 + e5. None
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is a root, i.e., ω3 for n ≥ 5 does not satisfy (SII). For α = e1 − e2 we get
the same.

Λ = ω1 + ω3 and ω1 + ω4 for n = 4. These are congruent to each
other and as above it can be shown that they do not satisfy (SII).

E6 and E7: For these we refer to [33]. There is shown that under
the conclusions of Proposition 5.13 and 5.14 — which is our situation
because of Lemma 5.18 — the only remaining representations are the
standard representations of E6 and E7. But the first is not self dual and
the latter symplectic but not orthogonal. q.e.d.

5.5. Consequences for simple weak-Berger algebras of real
type. Before we get the result we have to exclude both exceptions.

Lemma 5.20. The spin representation of B7 and the representation

of G2 with two times a short root as highest weight are not weak-Berger.

Proof. 1) Suppose that the spin representation of B7 is weak-Berger.
We have shown that it does not satisfy the property (SI). Hence it obeys
(SII). Let (Λ, α) be the pair of (SII). We choose a fundamental system
such that Λ = ω7 is the highest weight. In the proof of Proposition 5.19
we have shown that in this case α = ei + ej .

Let now Qφ be the weight element from BH(g) and uΛ ∈ VΛ such
that Qφ(uΛ) = Aei+ej

∈ gei+ej
. Since Qφ(uΛ) ∈ gφ+Λ this implies that

φ = ei + ej − Λ is a weight of BH(g). Hence φ = −1
2(e1 + · · · + ei−1 −

ei + ei+1 + · · · + ej−1 − ej + ej+1 + · · · + e7) is also an extremal weight
of V and we can consider a weight vector u−φ ∈ V−φ. For this we
get Qφ(u−φ) ∈ t. In case it does not vanish it would define a planar

spanning triple (φ,−φ, (Qφ(u−φ))⊥), i.e., (SI) would be satisfied. But
this was not possible, and thus Qφ(u−φ) = 0.

On the other hand we have that 0 6= Qφ(uΛ)u−φ ∈ VΛ and thus there
is a v ∈ V−Λ such that H(Qφ(uΛ)u−φ, v) 6= 0. Now the Bianchi identity
gives

0 = H(Qφ(uΛ)u−φ, v) + H(Qφ(u−φ)v, uΛ))
︸ ︷︷ ︸

=0

+H(Qφ(v)uΛ, u−φ, v).

Hence 0 6= Qφ(v) ∈ gφ−Λ. But φ − Λ = −(e1 + · · · + ei−1 + ei+1 +
· · · + ej−1 + ej+1 + · · · + e7) is not a root, hence gφ−Λ = {0}. This is a
contradiction.

2) Suppose that the representation of G2 with two times a short root
as highest weight is weak-Berger. We shall argue analogously as for Bn.



ON THE CLASSIFICATION OF LORENTZIAN HOLONOMY GROUPS 473

In the picture we see the weight lat-
tice of this representation. Obvi-
ously there is no planar spanning
triple, because there is no hyper-
surface which contains all but two
extremal weight (see also proof of
Proposition 5.2). The weak-Berger
property implies that there is a pair
(Λ, α) such that (SII) is satisfied.
We choose a fundamental system
such that Λ = 2η is the maximal
weight.

η

Λ = 2η

Using the realisation of G2 from the appendix of [24] we have that
η = e3 − e2. Now we have to determine the roots for which (SII) is
satisfied.

Ωα

2η

2η − α

2η

−2η

0

η

α

β

In the picture one can see that
the long roots α and β sat-
isfy (SII). (We illustrate the
situation in detail only for α.)
Contemplating the picture for
a moment, one sees that there
are no short roots and no
other long root for which (SII)
can be valid.
Now α and β are the only
roots with 〈Λ, α〉 > 0 and
〈Λ, β〉 > 0. Hence α = 2e3 −
e1−e2 and β = −2e2+e1+e3.

We consider the case where (Λ, α) satisfies (SII). There is a weight
element Qφ from BH(g) such that Qφ(uΛ) = A2e3−e1−e2 , i.e., φ = 2e3 −
e1−e2−Λ = e2−e1. But this is a short root and therefore a weight. Thus
we consider u−φ ∈= V−φ. Then Qφ(u−φ) ∈ t. Since there is no planar
spanning triple it has to be zero. As above, the Bianchi identity gives
that φ−Λ has to be a root. But φ−Λ = e2−e1−2e3+2e2 = 3e2−2e3−e1

is no root. For β one proceeds analogously. q.e.d.

Now we can draw the conclusions from the previous sections. If a
Lie algebra acts irreducible of real type then it is semisimple and obeys
the properties (SI) or (SII). The simple Lie algebras with (SI) or (SII)
we have listed above. Thus we have proven that an irreducibly act-
ing, complex, simple weak-Berger algebra is the complexification of an
irreducible holonomy representation of a Riemannian manifold, which
implies Theorem 1.1 in the case that the irreducibly acting ideals are
simple and of real type.
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6. Classification of semisimple complex weak-Berger algebras

In this section we complete the proof of Theorem 1.1 by proving the
following statement. We shall use several results of the previous section.

Proposition 6.1. Any irreducibly acting, semisimple, non-simple

complex weak-Berger algebra of real type is the complexification of an

irreducible Riemannian holonomy algebra.

6.1. Semisimple, non-simple weak-Berger algebras. From now
on, let g be a complex semisimple, non-simple Lie algebra, irreducibly
represented on a complex vector space V . To a decomposition of g into
ideals g = g1⊕g2 corresponds a decomposition of the irreducible module
V into factors V = V1 ⊗ V2 which are irreducible g1- resp. g2-modules.
X = (X1, X2) ∈ g acts as follows: X · (v1 ⊗ v2) = (X1 · v1) ⊗ v2 +
v1 ⊗ X2 ⊗ v2. The Cartan subalgebra t of g is the sum of the Cartan
subalgebras of g1 and g2. If ∆ are the roots of g and ∆i the roots of gi

then ∆ = ∆1 ∪∆2. For the weights it holds Ω = Ω1 + Ω2. Analogously
we denote for α ∈ ∆i the set Ωi

α.

Lemma 6.2. Let g = g1 ⊕ g2 be a semisimple Lie algebra with an

irreducible module V = V1 ⊗ V2. If α ∈ ∆1, then

(60) Ωα = Ω1
α + Ω2.

Proof. For λ ∈ Ωα we have Ω ∋ λ + α = λ1 + α + λ2 with λi ∈ Ωi.
Hence λ1 + α ∈ Ω1. If otherwise λ1 + α ∈ Ω1 then λ1 + λ2 + α ∈ Ω, i.e.,
λ1 + λ2 ∈ Ωα. q.e.d.

Assuming the weak-Berger property this implies a second lemma.

Lemma 6.3. Let g = g1 ⊕ g2 be a semisimple Lie algebra with irre-

ducible module V = V1 ⊗ V2 which is weak-Berger. If the dimensions of

V1 and V2 are greater than 2, then for any α ∈ ∆i the set Ωi
α contains

at most 2 elements.

Proof. Suppose that dim V2 ≥ 3, i.e., #Ω2 ≥ 3. Let α ∈ ∆1, λ1 ∈ Ω1
α

and λ2 ∈ Ω2, i.e., λ1 + λ2 ∈ Ω1
α. Now, from the property (PII) follows

that there is a µα =: µ1
α + µ2

α ∈ Ω such that λ1 + λ2 = µα − α + β or
λ1 + λ2 = −µα + β with β ∈ ∆0 = ∆1 ∪∆2 ∪ {0}. If now #Ω2 ≥ 3 and
#Ω1

α ≥ 3, then we can choose λ1 6= µ1
α − α, λ1 6= −µ1

α and λ2 6= ±µ2
α.

This gives a contradiction. q.e.d.

Now we can use a result of [33].

Proposition 6.4 ([33, Lemma 3.22]). Let g ⊂ gl(n, C) be an irre-

ducibly acting, semisimple Lie algebra. If for some α the set Ωα contains

at most two elements, then g is conjugate to one of the following repre-

sentations:

1) sl(n, C) acting on C
n; in this case Ωα is a singleton for all α ∈ ∆.
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2) so(n, C) acting on C
n; in this case Ωα contains two elements for

all α ∈ ∆, and their sum equals to −α.

3) sp(n, C) acting on C
2n; in this case Ωα contains two elements if

α ∈ ∆ is short, and their sum equals to −α, and Ωα = {−1
2α} if

α is long.

From this result we obtain the following corollary, proving Proposition
6.1 if the dimensions of the factors of V are greater than 2.

Corollary 6.5. Let g ⊂ so(V, h) be a complex, semisimple, non-

simple, irreducibly acting weak-Berger algebra. If g decomposes into

g = g1⊕g2 such that for the corresponding decomposition of V = V1⊗V2

it holds that dim Vi ≥ 3 for i = 1, 2, then it holds: g = so(n, C) ⊕
so(m, C) acting on C

n ⊗ C
m, or g = sp(n, C) ⊕ sp(m, C) acting on

C
2n ⊗ C

2m. In particular g is the complexification of a Riemannian

holonomy representation of a symmetric space of type BDI resp. CII.

Proof. By Lemma 6.3 it must hold #Ωi
α ≤ 2 for both summands. So

we have to build sums of the Lie algebras of Proposition 6.4. But only
the sum of two orthogonal Lie algebras, or a sum of two symplectic Lie
algebras acts orthogonally. q.e.d.

By this result we are left with semisimple Lie algebras where the
irreducible representation of one summand is two-dimensional, i.e., g =
sl(2, C) ⊕ g2 and V = C

2 ⊗ V2. Since we are interested in g ⊂ so(V, h)
and sl(2, C) acts symplectically on C

2 the representation of g2 on V2 has
to be symplectic too. In this situation we prove the following fact.

Proposition 6.6. Let g = sl(2, C) ⊕ g2 be a semisimple, complex

weak-Berger algebra, acting irreducibly on C
2 ⊗ V2. Then g2 ⊂ sp(V2)

satisfies the following properties:

(PIII): There is a µ ∈ Ω2 and an affine hyperplane A ⊂ t∗2 such

that

(61) Ω2 ⊂
{
µ + β | β ∈ ∆2

0

}
∪ A ∪ {−µ} .

(PIV): There is a µ ∈ Ω2 such that

(62) Ω2 ⊂
{
µ + β | β ∈ ∆2

0

}
∪

{
−µ + β | β ∈ ∆2

0

}
.

Proof. Since g is weak-Berger it satisfies the properties (PI) and (PII).
We draw the consequences from both for g = sl(2, C) ⊕ g2. For the
representation of sl(2, C) on C

2 we have that Ω1 = {Λ,−Λ}. Let α ∈
∆1 = {α,−α} be the positive root of sl(2, C). Hence Ω1

α = {−Λ}, since
−Λ = Λ − α.

(PIII) g satisfies the property (PI) with a hyperplane U := (T1+T2)
⊥

and a weight µ = µ1 + µ2. Let λ = µ1 + λ2 ∈ Ω be a weight of g. If
λ lies in a hyperplane of t = t1 ⊕

⊥ t2, then 0 = 〈µ1, T1〉 + 〈λ2, T2〉, i.e.,
λ2 lies in an affine hyperplane of t. If λ = µ + β = µ1 + µ2 + β, then
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λ2 = µ2 + β with β ∈ ∆2. If λ = −µ + β = −µ1 − µ2 + β, then β has
to be in ∆1 and λ2 = µ2. Hence, g2 ⊂ sp(V2) satisfies (PIII).

(PIV) g satisfies the property (PII). Suppose that α is the positive
root of sl(2, C). Then Ω1

α = {−Λ} and Ωα = {−Λ} ∪ Ω2. Now let
λ ∈ Ω2, i.e., −Λ + λ ∈ Ωα. By (PII) there is a µα = µ1 + µ2 such that
−Λ+λ = µα−α+β or −Λ+λ = −µα +β with β ∈ ∆0 = ∆1∪∆2∪{0}.
Since µ1 = ±Λ this implies λ ∈ {µ2 + β|β ∈ ∆2

0} ∪ {−µ2 + β|β ∈ ∆2
0},

i.e., (PIV) is satisfied. q.e.d.

Example 6.7. We set g2 = sl(2, C) and check if g = sl(2, C)⊕sl(2, C)
acting on C

2 ⊗ V2 is a weak-Berger algebra. This is to check whether
sl(2, C) acting on V2 satisfies (PIII) and (PIV) and is symplectic. To
be symplectic means that the representation has an even number of
weights, (PIV) implies that V2 has at most 6 weights but (PIII) implies
that V2 has at most 4 weights. Hence the only weak-Berger algebras
with the structure of sl(2, C) ⊕ sl(2, C) are those acting on C

4 and on
C

2⊗sym3
0 C

2 = C
8. Both are of course complexifications of Riemannian

holonomy representations, the first of SO(4) on R
4 and the second of

the 8-dimensional symmetric space of type GI, i.e., G2/SU(2) · SU(2).

Now we try to reduce the problem in a way that we only have to deal
with simple Lie algebras.

Lemma 6.8. Let g ⊂ gl(V ) be a semisimple, complex Lie algebra

acting irreducibly on V , satisfying the property (PIV). Then g is simple

or there is a g2 acting on V2 such that g = sl(2, C)⊕g2 acting on C
2⊗V2.

Proof. Suppose that g = g1⊕g2 and that #Ω1 ≥ 3. Let µ = µ1+µ2 be
the weight from the property (PIV). We consider a weight λ = λ1+λ2 ∈
Ω = Ω1 + Ω2 with λ1 6= ±µ1. Then (PIV) implies that λ2 = µ2 or
λ2 = −µ2, i.e., #Ω2 ≤ 2. This implies the statement of the lemma.
q.e.d.

Lemma 6.9. Let g = sl(2, C)⊕sl(2, C)⊕g3 be a semisimple complex

Lie algebra, acting irreducibly on C
2⊗C

2⊗V3 and satisfying the property

(PII). Then for any root α ∈ ∆3 of g3 holds #Ω3
α ≤ 2.

Proof. Let α ∈ ∆3 and µ1
α +µ2

α +µ3
α be the weight from the property

(PII). Then Ωα = Ω1 + Ω2 + Ω3
α ∋ −µ1

α + µ2
α + λ with λ ∈ Ω3

α arbitrary.
Again (PII) implies λ = µ3

α − α or λ = −µ3
α, i.e., #Ω3

α ≤ 2. q.e.d.

Both lemmata give the following result.

Proposition 6.10. Let g = sl(2, C) ⊕ g2 be a semisimple, com-

plex Lie algebra, acting irreducibly on C
2 ⊗ V2 which is supposed to

be weak-Berger. Then g2 is simple, acts irreducibly and symplectic on

V2 satisfying (PIII) and (PIV), or g = sl(2, C) ⊕ sl(2, C) ⊕ so(n, C) =
so(4, C) ⊕ so(n, C) acting irreducibly on C

4 ⊗ C
n.
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Proof. The proof is obvious by Lemma 6.8 and Lemma 6.9 and the
result of Proposition 6.4 keeping in mind that g is orthogonal, hence g2

is symplectic and g3 has to be orthogonal again. q.e.d.

Of course, the representation of so(4, C) ⊕ so(n, C) on C
4 ⊗ C

n is
the complexification of a Riemannian holonomy representation of the
symmetric space of type BDI.

6.2. Simple Lie algebras satisfying (PIII) and (PIV). In this
section we deal with the remaining problem to classify complex, simple
irreducibly acting symplectic Lie algebras with the property (PIII) and
(PIV).

Proposition 6.11. Let g ⊂ sp(V ) be simple, irreducibly acting and

satisfying (PIV). Then it satisfies (SII).

Proof. First we note that the fact that the representation is symplec-
tic leaves us with the simple Lie algebras with root systems An, Bn, Cn,
Dn and E7. In particular, the Lie algebra of type G2 is excluded. This

implies that for two roots α and β it holds that
∣
∣
∣
〈α,β〉
‖α‖2

∣
∣
∣ ∈ {±1,±1

2 , 0}, a

fact which we shall use several times in the following proof.
Let µ be the weight from the property (PIV). We consider two cases.

Case 1: µ is not an extremal weight. In this case there is a root
α ∈ ∆ such that µ + α = Λ is extremal. We show indirectly that (SII)
is satisfied with the triple (Λ,−Λ, α), i.e., we suppose that there is a
λ ∈ Ωα ⊂ Ω such that neither λ = Λ − α + β nor λ = −Λ + β for a
β ∈ ∆. λ ∈ Ω and λ + α ∈ Ω gives by (PIV) that λ = −Λ + α + β with
β ∈ ∆ and α + β 6∈ ∆0, as well as λ = Λ − 2α + γ with γ ∈ ∆ and
α − γ 6∈ ∆0. By properties of root systems this implies that 〈α, β〉 ≥ 0
and 〈α, γ〉 ≤ 0. Furthermore it is

(63) 2Λ = 3α + β − γ.

Now it is 2〈Λ,α〉
‖α‖2 = 3 + 〈β,α〉

‖α‖2 − 〈γ,α〉
‖α‖2 ≥ 3, entailing Λ − 3α ∈ Ω. Since

Λ− 3α 6= Λ−α + δ for a δ ∈ ∆0 (PIV) gives Λ− 3α 6= −Λ + α + δ, i.e.,

(64) 2Λ = 4α + δ,

with δ 6= −α. (63) and (64) give

(65) 0 = α + δ + γ − β.

Now suppose that 2〈Λ,α〉
‖α‖2 = 3, i.e., 〈β, α〉 = 〈γ, α〉 = 0. In this case

(64) gives 2〈δ,α〉
‖δ‖2 = −2 and therefore 2〈Λ,δ〉

‖δ‖2 = −3. This implies that

Λ + 3δ ∈ Ω, but this is together with (64) is a contradiction to (PIV).

Now suppose that 2〈Λ,α〉
‖α‖2 = 4, i.e., 〈β,α〉−〈γ,α〉

‖α‖2 = 1. Then (65) implies

〈α, δ〉 = 0. Λ− 4α ∈ Ω implies by (PIV) and 3α 6∈ ∆ that 2Λ = 5α + ε,
i.e., α− δ ∈ δ. Since 〈α, δ〉 = 0 this implies that α and δ are short roots
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and α − δ is a long one, i.e., ‖δ‖2

‖α−δ‖2 = ‖α‖2

‖α−δ‖2 = 1
2 . But this gives that

2〈Λ,α−δ〉
‖α−δ‖2 = 5

2 , which is a contradiction.

Finally suppose that 2〈Λ,α〉
‖α‖2 ≥ 5. Hence, 〈β,α〉

‖α‖2 − 〈γ,α〉
‖α‖2 ≥ 2. On the

other hand, Λ − 5α ∈ Ω and by (PIV) 2α − δ ∈ ∆. This implies that
2〈α,δ〉
‖α‖2 ≥ 2. But both inequalities are a contradiction to (65).

Case 2. µ := Λ is an extremal weight. To proceed analogously as
in the first case we fix a root α ∈ ∆, which is supposed to be long in
case of root systems with roots of different length, and we show again
indirectly that (SII) is satisfied for the triple (Λ,−Λ, α). Suppose there
is a λ ∈ Ωα ⊂ Ω such that neither λ = Λ − α + β nor λ = −Λ + β for
a β ∈ ∆. λ ∈ Ω and λ + α ∈ Ω gives by (PIV) that λ = Λ + β with
β ∈ ∆ and α + β 6∈ ∆0, as well as λ = −Λ − α + γ with γ ∈ ∆ and
α − γ 6∈ ∆0. By properties of root systems this implies that 〈α, β〉 ≥ 0
and 〈α, γ〉 ≤ 0. Since α is supposed to be a long root this the same as
〈α,β〉
‖α‖2 ∈ {0, 1

2} and 〈α,γ〉
‖α‖2 ∈ {−1

2 , 0}. Furthermore it is

(66) 2Λ = −α − β + γ

and hence Z ∋ 2〈Λ,α〉
‖α‖2 = 1 − 〈β,α〉

‖α‖2 + 〈γ,α〉
‖α‖2 =: a ≤ −1. Then, of course

a ∈ {−2,−1}.
First suppose that a = −1. In this case it is 〈α, β〉 = 〈α, γ〉 = 0.

Then, because of Z ∋ 2〈Λ,β〉
‖β‖2 = −1 + 〈β,γ〉

‖β‖2 and Z ∋ 2〈Λ,γ〉
‖γ‖2 = −1 + 〈β,γ〉

‖γ‖2 it

must hold that 〈β,γ〉
‖β‖2 and 〈β,γ〉

‖γ‖2 are integers. But this can only be true if

β and γ are both long and short. This is impossible.

Now suppose that a = −2, i.e., 〈α,β〉
‖α‖2 = 1

2 and 〈α,γ〉
‖α‖2 = −1

2 . Then

Λ − 2α ∈ Ω, i.e., by (PIV) we get that

(67) 2Λ = −2α + δ

with δ ∈ ∆0 with δ 6= ±α because otherwise we would get a = −1 or
a = −3. Now, the existence of a root ε with the property ‖δ‖ ≤ ‖ε‖
would give a contradiction since

Z ∋
2〈Λ, ε〉

‖ε‖2
= −

2〈α, ε〉

‖ε‖2

︸ ︷︷ ︸

∈Z

+
〈δ, ε〉

‖ε‖2

︸ ︷︷ ︸

6∈Z

.

This implies that δ is a long root in the root system of type Cn. In Cn

the system of long roots equals to A1 × · · · ×A1. By this 〈α,β〉
‖α‖2 = 1

2 and
〈α,γ〉
‖α‖2 = −1

2 implies that β and γ are short roots recalling that α was

supposed to be a long one. But then by (66) we get

2〈Λ, β〉

‖β‖2
= −

〈α, β〉

‖β‖2
+
〈β, γ〉

‖β‖2
−1 = −

1

2

‖α‖2

‖β‖2
+
〈β, γ〉

‖β‖2
−1 = −2+

〈β, γ〉

‖β‖2
6∈ Z
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since β and γ are short. But this is a contradiction. q.e.d.

As a consequence of this proposition we only have to check whether
irreducible representations of simple Lie algebras satisfy (SII) — done
in Section 5 — and then to add the condition that the representations
are symplectic instead of orthogonal. We obtain the following result.

Proposition 6.12. Let g ⊂ sp(V ) be a complex, simple, irreducibly

and symplectic acting Lie algebra satisfying (PIII) and (PIV) and dif-

ferent from sl(2, C). Then the root system and the highest weight of the

representation are one of the following:

1) A5: ω3, i.e., g = sl(6, C) acting on ∧3
C

6.

2) Cn: ω1, i.e., g = sp(n, C) acting on C
2n.

3) C3: ω3, i.e., g = sp(3, C) acting on C
14.

4) D6: ω6, i.e., g = so(12, C) acting on C
32 as spin representation.

5) E7: ω1, i.e., the standard representation of E7 of dimension 56.

Proof. (PIV) implies (SII), so we use former results checking whether
the Lie algebras satisfying (SII) are symplectic. For this we consider two
cases. First we suppose that 0 ∈ Ω. In Proposition 5.7 and Corollary
5.10 of Section 5 it is proved that any such representation which satisfies
(SII) and is self-dual is orthogonal. Hence if 0 is a weight, no symplectic
representation satisfies (SII).

Now suppose that 0 6∈ Ω. In the proof of Proposition 5.19 of Section
5 we have shown that the representations of the following Lie algebras
with 0 6∈ Ω satisfy (SII). Now we check if these are symplectic and in
some cases if they satisfy (PIII) and (PIV).

An with n ≤ 7 odd, Λ = ωn+1
2

. The only representation of these

which is symplectic is the one for n = 5.
Bn: ωn for n ≤ 7 the spin representations, and ω1 + ω2 for n = 2.

The latter is symplectic and the the former is symplectic for n = 5, 6.
(B2 ≃ C2 we shall study in the next point.) Now we show that these
remaining representations does not satisfy (PIII) or (PIV). Of course
the representation of B2 with highest weight Λ = ω1 + ω2 = 3

2e1 + 1
2e2

cannot satisfy (PIV) because it has 12 weights while B2 has only 8 roots.
The spin representation for n = 6 cannot obey (PIV): W.l.o.g we may
assume that Λ from (PIV) is the highest weight Λ = 1

2(e1 + · · · + e6).

But then for the weight λ = 1
2(e1 +e2 +e3−e4−e5−e6) it holds neither

Λ − λ ∈ ∆0 nor Λ + λ ∈ ∆0. The spin representation for n = 5 does
satisfy (PIV) but not (PIII) since all the weights 1

2(±e1 ± · · ·± e5) with
3 minus signs can not lie on the same affine hyper plane. Hence, none of
the symplectic representations satisfying (SII) satisfy (PIII) and (PIV).

Cn with Λ = ω1 + ωi or Λ = ωi. These are symplectic for i even in
the first case and for i odd in the second case. Again we have to put
the condition (PIV) on both. First we consider the representation with
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highest weight Λ = ωi = e1 + · · · + ei. Hence, Ω = {±ek1 ± · · · ± eki
} ∪

{±ek1 ± · · · ± eki−2} ∪ · · · ∪ {±ek}. From this one sees that (PIV) can
not be satisfied if n ≥ 5. With analogous considerations we exclude the
case where Λ = ω1 + ωi with i even.

Dn with Λ = ωn and n ≤ 8. But these are only symplectic for
n = 6 and n = 2. The latter is excluded since D2 = A1 × A1, a case
which is handled in the previous subsection. For E7 remains only the
representation given in the proposition. q.e.d.

Combining the results of this and the previous subsection we get a fi-
nal corollary, which — together with Corollary 6.5 — proves proposition
6.1 and therefore Theorem 1.1.

Corollary 6.13. Let g = sl(2, C) ⊕ g2 be a semisimple, complex

weak-Berger algebra acting on C
2 ⊗ V2. Then it is the complexification

of a Riemannian holonomy representation, in particular the complexifi-

cation of the holonomy representation of a non-symmetric Sp(1)·Sp(n)-
manifold or of the following Riemannian symmetric spaces (we list only

the compact symmetric space):

1) Type EII: E6/SU(2) · SU(6),
2) Type CII: Sp(n + 1)/Sp(1) · Sp(n),
3) Type FI: F4/SU(2) · Sp(3),
4) Type EV I: E7/SU(2) · Spin(12),
5) Type EIX: E8/SU(2) · E7,

6) Type GI, i.e., G2/SU(2) · SU(2).

7. Conclusions

7.1. Conclusions for the holonomy problem. By the previous sec-
tions we have proven Theorem 1.1 and the ‘only if’ direction of Corollary
1.2 from the Introduction. Concerning the four types of indecomposable,
non-irreducible Lorentzian holonomy algebras due to Theorem 2.2, The-
orem 1.1 gives the following consequence: If h is the holonomy algebra
of an indecomposable, non-irreducible (n + 2)-dimensional Lorentzian
manifold, then h = (R ⊕ g) ⋉ R

n or g ⋉ R
n, where g is a Riemannian

holonomy algebra, or h is of coupled type type 3 or 4, in which case
g = prso(n)h is a Riemannian holonomy algebra with at least one irre-
ducible factor equal to a Riemannian holonomy algebra with centre, i.e.,
equal to so(2) acting on R

2, so(2)⊕ so(n) acting on R
2n, so(2)⊕ so(10)

acting on R
32 as the reellification of the complex spinor module of di-

mension 16, so(2)⊕ e6 acting on R
54, u(n) acting on R

2n or on R
n(n−1).

In order to find out which of these algebras actually can be realised
as holonomy algebras of Lorentzian manifolds, first we note that our
result enables us to classify indecomposable, non-irreducible Lorentzian
Berger algebras: An indecomposable h ⊂ (R ⊕ so(n)) × R

n is a Berger
algebra if and only if g := prso(n)(h) is a Berger algebra. For realising
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the Berger algebras of uncoupled type as holonomy algebras we recall
the following construction method, which we proved in [27], and in [29]
in a slightly more general version.

Proposition 7.1. Let (N, g) be an n-dimensional Riemannian man-

ifold with holonomy algebra g, θ a closed form on N , and q a function

on N × R
2, the latter sufficiently general. Then

(M = N × R
2, h = 2dxdz + q dz2 + θ dz + g)

is a Lorentzian manifold with holonomy (R⊕ g) ⋉ R
n if q depends on x

or g ⋉ R
n if q does not depend on x.

Obviously, this proposition gives the ‘if’ direction of Corollary 1.2 for
the uncoupled types. For indecomposable algebras of the coupled types
3 and 4 we refer to the construction given recently in [20], but also to
the results in [8, Théorème 3.IV.3 and Corollaire 3.IV.3].

7.2. Consequences for parallel spinors. Finally we want to draw
the conclusions for the existence of parallel spinor fields on Lorentzian
manifolds. The existence of a parallel spinor field on a Lorentzian spin
manifold (M, h) implies the existence of a parallel vector field in the
following way: To a spinor field ϕ, one may associate a vector field Xϕ,
defined by the the equation h(Vϕ, U) = 〈U · ϕ, ϕ〉 for any U ∈ TM ,
where 〈., .〉 is the inner product on the spin bundle and · is the Clifford
multiplication. Now, the vector field associated to a spinor in this way is
light-like or time-like. If the spinor field is parallel, so is the vector field.
In the case where it is time-like, the manifold splits by the de-Rham
decomposition theorem into a factor (R,−dt2) and Riemannian factors
which are flat or irreducible with a parallel spinor, i.e., with holonomy
{1}, G2, Spin(7), Sp(k) or SU(k).

In the case where the parallel vector field is light-like we have a
Lorentzian factor which is indecomposable, but with parallel light-like
vector field (and parallel spinor) and flat or irreducible Riemannian
manifolds with parallel spinors. Hence, in this case one has to know
which indecomposable Lorentzian manifolds admit a parallel spinor.
The existence of the light-like parallel vector field forces the holonomy
of such a manifold with parallel spinor to be contained in so(n) ⋉ R

n

i.e., to be of type 2 or 4.
Furthermore, the spin representation of so(n)-projection g ⊂ so(n)

must admit a trivial subrepresentation. In fact, the dimension of the
space of parallel spinor fields is equal to the dimension of the space of
spinors which are annihilated by g ⊂ so(n) [27]. But if this space is
non-trivial a direct calculation shows that the screen holonomy cannot
have a center, i.e., no so(2)-component (see also [16]). This excludes
the coupled type 4 and yields Corollary 1.3 and consequently Theorem
1.4 of the Introduction.



482 T. LEISTNER

References

[1] J.F. Adams, Lectures on exceptional Lie groups, Chicago Lectures in Mathe-
matics. University of Chicago Press, Chicago, IL, 1996; With a foreword by
J. Peter May, Edited by Zafer Mahmud and Mamoru Mimura, MR 1428422,
Zbl 0866.22008.
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École Norm. Sup. (3) 26 (1909) 93–161, MR 1509105, JFM 40.0193.02.

[14] , Les groupes projectifs qui ne laissent invariante aucune multiplicité
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