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VANISHING OF THE TOP CHERN CLASSES OF THE

MODULI OF VECTOR BUNDLES

Young-Hoon Kiem & Jun Li

Abstract

We prove the vanishing of the top Chern classes of the moduli
of rank three stable vector bundles on a smooth Riemann surface.
More precisely, the Chern class ci for i > 6g − 5 of the moduli
spaces of rank three vector bundles of degree one and two on a
genus g smooth Riemann surface all vanish. This generalizes the
rank two case, conjectured by Newstead and Ramanan and proved
by Gieseker.

0. Introduction

Let Y be a smooth nonsingular curve of genus g ≥ 2 and let Mr,d(Y )
be the moduli space of stable vector bundles of rank r and degree d on
Y . In case d and r are relatively prime, Mr,d(Y ) is a smooth projective
variety of dimension r2(g − 1) + 1. A classical conjecture of Newstead
and Ramanan states that

(0.1) ci(M2,1(Y )) = 0 for i > 2(g − 1);

i.e., the top 2g − 1 Chern classes vanish. The purpose of this paper is
to generalize this vanishing result to higher rank cases by generalizing
Gieseker’s degeneration method.

In the rank 2 case, there are two proofs of (0.1) due to Gieseker
[4] and Zagier [16]. Zagier’s proof is combinatorial based on the pre-
cise knowledge of the cohomology ring of the moduli space: by the
Grothendieck-Riemann-Roch theorem, Zagier found an expression for
the total Chern class c(M2,1(Y )) and then used Thaddeus’s formula on
intersection pairing to show the desired vanishing. Because the compu-
tation is extremely complicated even in the rank 2 case, it seems almost
impossible to generalize this approach to higher rank cases.

A more geometric proof of the vanishing (0.1) was provided by Giese-
ker via induction on the genus g. Let W → C be a flat family of
projective curves over a pointed smooth curve 0 ∈ C such that
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(1) W is nonsingular,
(2) the fibers Ws over s 6= 0 are smooth projective curves of genus g,
(3) the central fiber W0 is an irreducible stable curve X0 with one

node as its only singular point.

Gieseker constructed a flat family of projective varieties M2,1(W) → C
such that

(1) the total space M2,1(W) is nonsingular,
(2) the fibers M2,1(Ws) over s 6= 0 are the moduli spaces M2,1(Ws)

of stable bundles over Ws,
(3) the central fiber M2,1(W0) over 0 has only normal crossing singu-

larities.

Recently, this construction was generalized to the higher rank case by
Nagaraj and Seshadri in [11] by geometric invariant theory, and the
central fiber Mr,d(W0) of their construction parameterizes certain vector
bundles on semistable models of X0. In this paper, we will provide a
different construction, using the technique developed in [8].

To prove the vanishing of Chern classes by induction on genus g,
Gieseker relates the central fiber M2,1(W0) with the moduli space
M2,1(X) where X is the normalization of the nodal curve W0 = X0.
Let M0 be the normalization of M2,1(W0), which is a smooth projective
variety. Its general points represent vector bundles on X0 whose pull-
back to X are stable bundles, and hence induces a rational map

(0.2) M0 99K M2,1(X).

Gieseker then proves that the indeterminacy locus of this rational map
is precisely a projective bundle PE+ of a vector bundle E+ over the
product B = Jac0(X) × Jac1(X) of Jacobians, and the normal bundle
to PE+ is the pull-back of a vector bundle E− → B tensored with
OPE+(−1). This is a typical situation for flips: we blow up M0 along
PE+ and then blow down along the PE+ direction in the exceptional
divisor PE+ ×B PE−. Let M1 be the result of this flip. Then the
rational map becomes a morphism M1 → M2,1(X), and is a fiber bundle

with fiber GL(2) — the wonderful compactification of GL(2) — that is
constructed as follows. We first compactify GL(2) by embedding it in

P
(
End(C2) ⊕ C

)
.
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Its complement consists of two divisors Z ′
0 (divisor at infinity) and Y ′

1

(zero locus of determinant). The wonderful compactification is by blow-
ing it up along 0 ∈ End(C2) and along Y ′

1 ∩ Z ′
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The wonderful compactification of GL(r) for r ≥ 2 is similarly defined
by blowing up P (End(Cr) ⊕ C) along smooth subvarieties 2(r−1) times
and the complement of GL(r) in it consists of 2r smooth normal crossing
divisors. This was carefully studied by Kausz in [7]. In summary,
Gieseker obtains the following diagram:

(0.3) M̃
blow-up

}}||
||

||
|| blow-up

$$HH
HH

HH
HH

HH

M0

normalization

yyttttttttt
M1

GL(2)

²²

M2,1(Y )
degeneration

///o/o/o M2,1(W )0

M2,1(X)

Afterwards, the proof of the vanishing result (0.1) is reduced to a series
of very concrete Chern class computations.

To prove the vanishing of Chern classes for the higher rank case, we
first construct a diagram similar to (0.3). In §1, we (re-)construct a
degeneration Mr,d(W) of Nagaraj and Seshadri, by using the stack of
degeneration defined in [8]. We take M0 as the normalization of the cen-
tral fiber of the family Mr,d(W). Next, we define M1 as a fiber bundle

over Mr,d(X) whose fiber is GL(r) — the wonderful compactification of
GL(r). Explicitly, working with a universal bundle U → Mr,d(X) × X,
M1 is the blow-up of

P (Hom(U|p1 ,U|p2) ⊕O)

along suitable smooth subvarieties exactly as in the construction of
GL(r). The question is then how to relate M0 with M1. Our strategy
is to construct a family of complex manifolds Mα for 0 < α < 1 and
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study their variations as α moves from 1 to 0. We define a suitable
stability condition for each α (Definition 1.1) and then show that the
set of α-stable vector bundles on semistable models of X0 admits the
structure of a proper separated smooth algebraic space. In particular,
Mα is a compact complex manifold.

To prove the vanishing result of Chern classes, we need a very precise
description of the variation of Mα. We achieved this for the case of
rank 3. Since M3,1(Y ) ∼= M3,2(Y ) by the morphism [E] → [E∗] and
tensoring a line bundle of degree 1, we only need to consider the case
when r = 3 and d = 1. By the stability condition, the moduli spaces
Mα vary only at 1/3 and 2/3. We prove that M1/2 is obtained from
M1 as the consequence of two flips and similarly M0 is the consequence
of two flips from M1/2. The description is quite explicit and we have
the following diagram.

M0 oo

flips
//

normalization

zzuuuuuuuuu
M1/2 oo

flips
// M1

GL(3)

²²

M3,1(Y )
degeneration

///o/o/o M3,1(X0)

M3,1(X)

Now it is a matter of explicit but very involved Chern class computations
to verify the vanishing result by induction on genus g. The vanishing
result we prove in the end is the following.

Theorem 0.1. ci(M3,1(Y )) = 0 for i > 6g − 5.

In other words, the top 3g − 3 Chern classes vanish. It seems that
c6g−5 should also vanish, but we haven’t proved that. Notice that we
also have ci(M3,2(Y )) = 0 for i > 6g − 5.

The paper is organized as follows. In Section 1, we will introduce
and construct the moduli space of α-stable bundles on nodal curves;
a special case of this construction is the Gieseker’s degeneration for
high rank cases. The next section is devoted to the study of the α-
stable bundles and the generalized parabolic bundles on curves. The
initial investigation of the variation of the moduli spaces is carried out
in Section 3 and the detailed study of the flips is achieved in Section 4.
The last section is about the Chern class calculation.

1. α-stable sheaves and Gieseker’s degeration

In this section, we will introduce the notion of α-stable sheaves and
prove their basic properties. We will then give an alternative construc-
tion of Gieseker’s moduli of stable sheaves on nodal curves in high rank
case. In the end, we will show that the normalization of such moduli
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spaces can be realized as the moduli spaces of α-stable bundles over
marked nodal curves.

1.1. α-stable vector bundles. Let g ≥ 2 be an integer and let X0 be
a reduced and irreducible curve of arithmetic genus g with exactly one
node, q ∈ X0. For n ≥ 0, we denote by Xn the semistable model of
X0 that contains a chain of n-rational curves (i.e., P1). In this paper,
we will fix such an X0 once and for all. Let X be the normalization
of X0, with p1 and p2 ∈ X the two liftings of the node of X0 under
the normalization morphism. For Xn, we denote by D the union of its
rational curves and denote by D1, . . . , Dn its n rational components.
We order Di so that D1 ∩X = p1, Di ∩Di+1 6= ∅ and Dn ∩X = p2. We
let X0 = X0 − {q} = X − {p1, p2}, which is an open subset of Xn. We
define the based automorphisms of Xn to be

Aut0(Xn) = {σ :Xn
∼=

−→Xn | σ|X0 ≡ idX0} ∼= (C×)n.

(Namely, they are automorphisms of Xn whose restrictions to X0 ⊂ Xn

are the identity maps.)
Later, we need to study pairs (Xn, q†), where q† ∈ Xn are nodes of

Xn. In this paper, we will call (Xn, q†) based nodal curves, and denote

them by X†
n with q† ∈ Xn implicitly understood. For m ≥ n, we say

π :Xm → Xn is a contraction if π|X0 is the identity and π|Dk
is either

an embedding or a constant map. A contraction of X†
m → X†

n is a
contraction of the underlying spaces Xm → Xn that send the based

node of X†
m to the based node of X†

n.
We now fix a pair of positive integers r ≥ 2 and χ. Let X†

n = (Xn, q†)
be a based nodal curve and let E be a rank r locally free sheaf of OXn-
modules with χ(E) = χ. We say E is admissible if the restriction E|Di

has no negative degree factor1 for each i. (Here and later, for a closed
subscheme A ⊂ Xn we use E|A to mean E ⊗OXn

OA.) Next, we pick an

n-tuple d = (di) ∈ Z+n and let ǫ be a sufficiently small positive rational.
The pair (d, ǫ) defines a Q-polarization d(ǫ) on Xn whose degree along

the component X0 (resp. Di) is 1− ǫ|d| (resp. diǫ). (Here |d| =
∑

di.)
Now let F be any subsheaf of E. We define the rank of F ⊂ E at

q† ∈ X†
n to be

r†(F ) = dim Im{F |q† → E|q†}.

For real α we define the α-d-slope (implicitly depending on the choice
of ǫ) of F ⊂ E to be

(1.1) µd(F, α) = (χ(F ) − αr†(F ))/rkdF ∈ Q.

1By Grothendieck’s theorem, every vector bundle on P
1 is a direct sum of line

bundles. Each such line bundle is called a factor of this vector bundle.
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Here the denominator is defined to be

rkdF = (1 − ǫ|d|) rank F |X0 +

n∑

i=1

ǫdi rankF |Di .

We define the automorphism group Aut0(E) to be the group of pairs
(σ, f) so that σ ∈ Aut0(Xn) and f is an isomorphism E ∼= σ∗E.

Definition 1.1. Let E be a rank r locally free sheaf over X†
n. Let

α ∈ [0, 1) be any real number. We say E is α-d-semistable (resp. weakly
α-d-stable) if for any proper subsheaf F ⊂ E we have

µd(F, α) ≤ µd(E, α) (resp. < )

for ǫ sufficiently small. We say E is α-d-stable if E is weakly α-d-stable
and deg E|Di > 0 for all i.

In case E is a vector bundle on Xn (without the marked node), we
say E is d-(semi)stable if the same condition holds with α = 0.

We remark that when α = 0 the α-d-stability defined here coincides
with the Simpson stability (compare also the stability used in [5]).

We now collect a few facts about α-d-stable sheaves on X†
n. To avoid

complications arising from strictly semistable sheaves, we will restrict
ourselves to the case (r, χ) = 1 and α ∈ [0, 1) − Λr:
(1.2)

Λr = {α ∈ [0, 1) | α = r0

r0−r†

(χ
r − χ0

r0

)
, χ0, r0, r

† ∈ Z,

0 < r0 < r, 0 ≤ r† ≤ r, 2r0 − r ≤ r† ≤ 2r0}.

Clearly, Λr is a discrete subset of [0, 1). When (χ, r) = 1, 0 6∈ Λr.

Lemma 1.2. Let (r, χ) = 1 and χ > r be as before. Let α ∈ [0, 1)−Λr

be any real and let d ∈ Z+n be any weight. Then for any rank r α-d-

semistable sheaf E on X†
n of Euler characteristic χ(E) = χ, we have

(a) The restriction E|Di has no negative degree factors and there is

no nontrivial section of E which vanishes on X.

(b) For any (partial ) contraction π : X†
m → X†

n the pull back π∗E is

weakly α-d′-stable for any weight d′ ∈ Z+m.

(c) Suppose E is α-d-stable. Then n ≤ r and Aut0(E) = C×.

A similar statement holds for d-(semi)stable sheaves E on Xn.

Proof. We first prove (a). Suppose E|Di has a negative degree factor,
say ODi(−t). Let F be the kernel of E → E|Di → ODi(−t). Then
rkdF < rkdE, r†(F ) ≤ r and

χ(F ) = χ(E) − χ(ODi(−t)) = χ(E) + t − 1 ≥ χ(E).

Hence,

µd(F, α) =
χ(F ) − αr†(F )

rkdF
>

χ(E) − αr

r
= µd(E, α).
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This is a contradiction. Similarly, suppose there is a section s ∈ H0(E)
so that its restriction to X0 ⊂ Xn is trivial. Let L be the subsheaf of E
generated by this section. Then since rkdL = cǫ, c > 0 and χ(L) ≥ 1,
µd(L, α) > (1−α)/cǫ > µd(E, α). This is a contradiction, which proves
(a).

We now prove (b). Let F be any subsheaf of E. Since E is α-d-
semistable,

(1.3) µd(F, α) ≤ µd(E, α).

Let r0(F ) = rankF |X0 . If r0(F ) = 0, then µd(F, α) = cǫ−1, for some
c ∈ Q. Obviously c > 0 is impossible by (1.3) and χ > r. In case
c = 0, then χ(F ) − αr†(F ) = 0 and thus µd′(F, α) = 0 for all d′. Since
χ(E) > r, the strict inequality in (1.3) holds for all d′. When c < 0,
µd′(F, α) = c′ǫ−1 for some c′ < 0 as well. Hence the strict inequality in
(1.3) holds for d′ too.

We next consider the case r > rankE|X0 > 0. Then µd(F, α) −
µd(E, α) is a continuous function of ǫ whose value at ǫ = 0 is

χ(F ) − αr†(F )

r0(F )
−

χ

r
+ α.

Because α ∈ [0, 1) − Λr, this is never zero. Hence for sufficiently small
ǫ,

µd(F, α) ≤ µd(E, α) ⇐⇒ µd′(F, α) < µd′(E, α).

It remains to consider the case where r0(F ) = r. Obviously, we may
consider only proper subsheaves F such that F |X0 ≡ E|X0 and thus
E/F is a nonzero sheaf of OD-modules. Because E/F is a quotient sheaf
of E|D which is non-negative along each Di ⊂ D, χ(E/F ) ≥ r − r†(F ).
Since each vector v ∈ E|q† that lies in a subspace complementary to

Im{F |q† → E|q†} extends to a section of E, χ(E)−χ(F ) > αr−αr†(F )
and thus µd′(F, α) < µd′(E, α) for any d′. This proves that E is weakly
d′-stable for all d′.

Now we prove that the pull-back of E to any Xm is weakly α-d′-
stable. We first consider the case m = n + 1. For simplicity we assume
π is the contraction of the last rational component of Xn+1. We pick
d′ so that d′i = di for i ≤ n and d′n+1 = 1. Let F be a subsheaf of π∗E.
Since F |Dn+1 has no positive degree factor, π∗F is torsion free and is a

subsheaf of E. Further, since R1π∗(F ) is a skyscraper sheaf, by Leray
spectral sequence we have

χ(F ) = χ(π∗F ) − χ(R1π∗F ) ≤ χ(π∗F ).
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We now investigate the case r0(F ) > 0. (The other case can be treated
as in the proof of (b), and will be omitted.) Because E is weakly α-d-
stable and α 6∈ Λr, we must have

χ(π∗F ) − αr†(π∗F )

r0(π∗F )
<

χ(E)

r
− α.

Combined with the above inequality and r†(F ) ≥ r†(π∗F ), we conclude

µd′(F, α) < µd′(π∗E, α).

This proves that π∗E is weakly α-d′-stable. The general case m > n+1
follows by induction. This completes the proof of (b).

Now assume E is α-d-stable. Consider the vector space

V = {s ∈ H0(E|D) | s(p2) = 0}.

We know that its dimension is no less than n by Riemann-Roch since
degree(E|D) ≥ n. By part (b), the evaluation map

V −→ E|p1 ; via s 7→ s(p1) ∈ E|p1

is injective. Because dim E|p1 = r, we have n ≤ r. This proves (c).
The proof of the second part of (d) is based on the notion of GPB,

and will be proved in Section 2 (Corollary 2.7). q.e.d.

In the light of this lemma, the α-d-stability is independent of the
choice of d as long as α 6∈ Λr. In the remainder of this paper, we will
restrict ourselves to the case where the following is satisfied.

Basic Assumption 1.3. We assume (r, χ) = 1, χ > r and α ∈
[0, 1) − Λr

Henceforth, we can and will call α-d-stable simply α-stable with some
choice of d understood.

1.2. Gieseker’s degeneration of moduli spaces. In this subsection,
we will give an alternative construction of Gieseker’s degeneration of
moduli of bundles in high rank case. The first such construction was
obtained by Nagaraj and Seshadri [11].

Let (r, χ) = 1 be as before and fix d = (1, . . . , 1) ∈ Zn for any n. Let

Vr,χ(X) =
{

E | E is d-stable on Xn for some n,

rankE = n and χ(E) = χ
}

/ ∼

Here two E and E′ over Xn and Xm are isomorphic if there is a based
isomorphism σ :Xn → Xm so that σ∗E′ ∼= E.

Lemma 1.4. The set Vr,χ(X) is bounded.

Proof. It follows immediately from the bound n ≤ r in Lemma 1.2.
q.e.d.
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Let 0 ∈ C be a pointed smooth curve and let π : W → C be a
projective family of curves all of whose fibers Ws except W0 are smooth
and the central fiber W0 is the nodal curve X0 chosen before. Let
C◦ = C − 0 and W ◦ = W − W0. For s ∈ C◦ we let Mr,χ(Ws) be the
moduli space of rank r and Euler characteristic χ (namely χ(E) = χ)
semistable vector bundles on Ws. We then let Mr,χ(W ◦/C◦) be the
associated relative moduli space; namely for s ∈ C◦ we have

Mr,χ(W ◦/C◦) ×C◦ s = Mr,χ(Ws).

The goal of this section is to construct the degeneration of the family
Mr,χ(W ◦/C◦) by filling the central fiber of the family.

Our construction is aided by the construction of an Artin stack W

parameterizing all semi-stable models of W/C. Without loss of gener-
ality, we can assume C ⊂ A1 is a Zariski open subset with 0 ∈ C the
origin of A1. Let W [0] = W and let W [1] be a small resolution of

W [0] ×A1 A2, where A2 → A1 is via (t1, t2) 7→ t1t2.

The small resolution is chosen so that the fiber of W [1] over 0 ∈ A2

is X1, and the fibers of W [1] over the first (second) coordinate line
A1 ⊂ A2 are a smoothing of the first (resp. second) node of X1. Next
W [2] is constructed as a small resolution of

W [1] ×A2 A3, where A3 → A2 is via (t1, t2, t3) 7→ (t1, t2t3).

The small resolution is chosen so that the fiber of W [2] over 0 ∈ A3 is
X2 and the fibers of W [2] over the i-th coordinate line A1 ⊂ A3 are a
smoothing of the i-th node of X2. The degeneration W [n] is defined
inductively. For the details of this construction please see [8, §1].

Let C[n] be C ×A1 An+1. Then W [n] is a projective family of curves
over C[n] whose fibers are isomorphic to one of X0, . . . , Xn. As shown
in [8], there is a canonical G[n] ≡ (C×)n action on W [n] defined as
follows. Let σ = (σ1, . . . , σn) be a general element in G[n]. Then the
G[n] action on An+1 is

(t1, . . . , tn+1)
σ = (σ1t1, σ

−1
1 σ2t2, . . . , σ

−1
n−1σntn, σ−1

n tn+1).

The G[n] action on W [n] is the unique lifting of the trivial action on W [0]
and the above action on An+1. Consequently, we can view W [n]/G[n]
as an Artin stack. It is easy to see that W [n]/G[n] is an open substack
W [n + 1]/G[n + 1] via the embedding W [n]/An ⊂ W [n + 1]/An+1 with
An ⊂ An+1 the embedding via (ti) 7→ (ti, 1).

We define the groupoid W to be the category of pairs (WS/S, π),
where S are C-schemes, WS are families of projective curves over S and
π : WS → W are C-projections, such that there are open coverings Uα

of S and ρα :Uα → C[nα] so that

WS ×S Uα
∼= W [nα] ×C[nα] Uα,
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compatible with the projection WS → W . Two families WS and W ′
S are

isomorphic if there is an S-isomorphism f :WS → W ′
S compatible to the

tautological projections WS → W and W ′
S → W . By our construction,

W is indeed a stack.
We next define the family of stable sheaves over W. Let S/C be any

scheme over C. An S-family of locally free sheaves over W/C consists
of a member WS in W over S and a flat family of locally free sheaves
E over WS/S. We say E is admissible (resp. (semi)stable) if for each
closed s ∈ S the restriction of E to the fiber Ws = WS×S s is admissible
(resp. (semi)stable). Let WS and W ′

S be two families in W(S) and let
E and E′ be two families of sheaves over WS and W ′

S . We say E ∼ E′

if there is an isomorphism f : WS → W ′
S in W(S) and a line bundle L

on S so that f∗E′ ∼= E ⊗ pr∗SL.
We now define the groupoid of our moduli problem. For any C-scheme

S, let Fr,χ(S) be the set of equivalence classes of all pairs (E, WS), where
WS are members in W(S) and E are flat S-families of rank r Euler
characteristic χ stable vector bundles on WS .

We continue to assume the basic assumption 1.3.

Proposition 1.5. The functor Fr,χ(W) is represented by an Artin

stack Mr,χ(W).

Proof. The proof is straightforward and will be omitted. q.e.d.

Since all stable sheaves have automorphism groups isomorphic to C×,
the coarse moduli space Mr,χ(W) of Mr,χ(W) exists as an algebraic
space.

Theorem 1.6. The coarse moduli space Mr,χ(W) is separated and

proper over C. Further, it is smooth and its central fiber (over 0 ∈ C)
has normal crossing singularities.

We divide the proof into several lemmas.
We let Fr,χ(W [r]) be the functor that associates to each C[r]-scheme

S/C[r] the set of equivalence classes2 of stable sheaves E over W [r]×C[r]

S of rank r and Euler characteristic χ. Since (r, χ) = 1, the stability is
independent of the choice of the polarizations d(ǫ). By [13], Fr,χ(W [r])
is represented by an Artin stack Mr,χ(W [r]) and its coarse moduli space
Mr,χ(W [r]) is quasi-projective over C[r].

Lemma 1.7. The moduli stack Mr,χ(W [r]) and the moduli space

Mr,χ(W [r]) are smooth over C[r].

Proof. This is a simple consequence of the deformation theory of
sheaves on W [r]. Let [E] ∈ Mr,χ(W [r]) be a closed point, represented
by the sheaf E, as a sheaf of OW [r]-modules. Let Z be the support

2The equivalence relation for sheaves over W [r] is the usual equivalence relation.
Namely E ∼ E′ if E ∼= E′ ⊗ pr∗SL.
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of E, which is a fiber of W [r] over ξ ∈ C[r]. We denote by ι the in-
clusion Z → W [r]. It follows from the deformation theory of sheaves
that the first order deformation of E is given by the extension group
Ext1W [r](E, E) which fits into the exact sequence

0 −→ H1(Z, End(ι∗E)) −→ Ext1W [r](E, E)

−→ H0(Z, End(ι∗E)) ⊗ TξC[r] −→ 0.

Since E is stable, H0(Z, End(ι∗E)) ≡ C. Further, it is a direct check
that the homomorphism of the tangent spaces

(1.4) T[E]Mr,χ(W [r]) −→ TξC[r]

is the next to the last arrow in the above exact sequence.
To show that Mr,χ(W [r]) is smooth, we need to show that there is

no obstruction to deforming E. Since the support Z is a closed fiber
of W [r] → C[r] and since E is a locally free sheaf of OZ-modules, the
obstruction to deforming E lies in

H2(Z, End(ι∗E)) ⊗ TξC[r] = 0.

This shows that Mr,χ(W [r]) is smooth. Since (1.4) is surjective,
Mr,χ(W [r]) is smooth over C[r]. Finally, since the automorphism group
of each [E] ∈ Mr,χ(W [r]) is isomorphic to C×, the coarse moduli space
Mr,χ(W [r]) is also smooth over C[r]. This proves the lemma. q.e.d.

Corollary 1.8. The coarse moduli space Mr,χ(W) is smooth and is

flat over C.

Proof. Clearly the G[r]-action on W [r] naturally lifts to an action
on Mr,χ(W [r]) and Mr,χ(W [r]). By Lemma 1.2, the stabilizers of the
G[r]-action at all points of Mr,χ(W [r]) are trivial. Hence the quotient
Mr,χ(W [r])/G[r] is an algebraic space. Further, because Mr,χ(W [r]) is
smooth, Mr,χ(W [r])/G[r] is also smooth.

Now let
Φ : Mr,χ(W [r])/G[r] −→ Mr,χ(W)

be the induced morphism. To prove that Mr,χ(W) is smooth it suffices
to show that Φ is surjective and is étale. Since Mr,χ(W [r]) is the coarse
moduli space of the stack Mr,χ(W [r]), its quotient Mr,χ(W [r])/G[r] is
the coarse moduli space of the stack Mr,χ(W [r])/G[r]. Because the
nature morphism

Mr,χ(W [r])/G[r] −→ Mr,χ(W)

is étale, the morphism Φ is also étale. Further, Φ is surjective because
of Lemma 1.2. This proves that Mr,χ(W) is smooth. Finally, since
Mr,χ(W [r]) is smooth over C[r] and C[r] → C is flat, Mr,χ(W [r]) → C
is flat. Hence Mr,χ(W [r])/G[r] → C is flat and so is Mr,χ(W) → C.
q.e.d.
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Lemma 1.9. The algebraic space Mr,χ(W) is separated and proper

over C.

Proof. We first check that Mr,χ(W) is proper over C, using the val-
uation criterion. Let ξ ∈ S be a closed point in a smooth curve over
C. We let S◦ = S − ξ and let E◦ be a family of stable sheaves over
WS◦ for a C-morphism S◦ → C[n] for some n. We need to check that
S◦ → Mr,χ(W) extends to S → Mr,χ(W). Since Mr,χ(W) is flat over
C, it suffices to check those S◦ → Mr,χ(W) that are flat over C. In case
ξ lies over C◦, WS◦ extends to WS = W ×C S with smooth special fiber
Wξ. Hence there is an extension of E◦ to a family of stable sheaves over
WS . We now assume ξ lies over 0 ∈ C. Since S◦ is flat over C, S → C
does not factor through 0 ∈ C. Without loss of generality we can assume
S◦ → C factor through C◦ ⊂ C. Then E◦ is a family of stable sheaves
on W ×C S◦. We consider WS = W ×C S, which possibly has singularity
along the node of Wξ. We let W̃S be the canonical desingularization of

WS . The central fiber W̃ξ (of W̃S over ξ) is isomorphic to Xm for some

m. We next fix a polarization d(ǫ) on W̃S so that its degrees along the

irreducible components of W̃ξ are 1 − mǫ, ǫ, . . . , ǫ. Then by [13], there

is an extension of E◦ to an OS-flat sheaf of OW̃S
-modules Ẽ so that

Ẽ|W̃ξ
is semistable with respect to a polarization d(ǫ). Therefore Ẽ is

locally free since W̃S is smooth, Ẽ is OS-flat and Ẽ|W̃ξ
has no torsion

elements supported at points. By Lemma 1.2, for any rational curve
Di ⊂ W̃ξ the restriction Ẽ|Di is either trivial (∼= O⊕r

Di
) or is admissible

along Di. We let W̄S be the contraction of W̃S along those Di so that
Ẽ|Di is trivial. Let π : W̃S → W̄S be the contraction morphism and let

Ē = π∗Ẽ. It is direct to check that Ē is locally free and its restriction
to Wξ is admissible and stable.

It remains to show that the family W̄S can be derived from a C-
morphism S → C[r]. Let t ∈ Γ(OA1) be the standard coordinate func-

tion. Since the exceptional divisor of W̃S → WS has m irreducible
components, ρ∗t ∈ mm+1

ξ − mm+2
ξ , where ρ : S → A1 is the composite

S → C → A1. Hence possibly after an étale base change, we can assume
ρ∗(t) = t̃0 · · · t̃m for t̃i ∈ Γ(mξ). Let S → C[m] = C ×A1 Am+1 be in-
duced by S → C and (t̃0, . . . , t̃m) :S → Am+1. Then one checks directly

that the fiber product W [m] ×C[m] S is isomorphic to W̃S . As to W̄S ,

we consider the morphism S → C[m′] defined as follows. Let ζ̃0, . . . , ζ̃m

be the nodes of W̃ξ and let ζ̄0, . . . , ζ̄m′ be the nodes of W̄ξ, ordered
according to our convention. Then the restriction of the contraction
πξ :W̃ξ → W̄ξ induces a surjective map

φ : {ζ̃0, . . . , ζ̃m} −→ {ζ̄0, . . . , ζ̄m′}.
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We then define t̄k =
∏
{t̃i | φ(ζ̃i) = ζ̄k}. It is direct to check that

W [m′]×C[m′]S is isomorphic to W̄S . Finally, we have m′ ≤ r by Lemma
1.2. Hence W [m]×C[m] S can be realized as a product W [r]×C[r] S for
some S → C[r]. This verifies the valuation criterion for properness.

We next show that Mr,χ(W) is separated, using the valuation crite-
rion. Let ξ ∈ S be a closed point in a smooth curve over C, let WS◦ be a
family associated to a C-morphism S◦ → C[r] and let E◦ be a family of
stable sheaves on WS◦ , as before. To verify the separatedness, we need
to show that there is at most one extension of E◦ to families of stable
sheaves over S. Suppose there are two extensions W ′

S and W ′′
S of WS◦

and two extensions E′ on W ′
S and E′′ on W ′′

S of E◦. We need to show
that there is a based isomorphism σ : W ′

S → W ′′
S and an isomorphism

E′ ∼= σ∗E′′. Clearly, if ξ lies over a point in C◦, this follows from the
fact that the moduli of stable sheaves on smooth curves are separated.
We now assume ξ lies over 0 ∈ C. Again, because Mr,χ(W) is flat over
C, we only need to check those so that S◦ is flat over C. As before,
we let WS = W ×C S and let W̃S be the canonical desingularization of
WS . Because both W ′

S and W ′′
S are fiber products W [n′] ×C[n′] S and

W [n′′] ×C[n′′] S for some C-morphisms S → C[n′] and S → C[n′′], the

canonical desingularizations of both W ′
S and W ′′

S are isomorphic to W̃S .
Let

π′ :W̃S → W ′
S and π′′ :W̃S → W ′′

S

be the projections. Then by Lemma 1.2, both π′∗E′ and π′′∗E′′ are fam-
ilies of locally free stable vector bundles, extending E◦. Hence they are
isomorphic. Further, we observe that a rational curve D is contracted
by π′ if and only if π′∗E′|D is trivial. Because π′∗E′ ∼= π′′∗E′′, both π′

and π′′ contract the same set of rational curves in W̃S . Hence W ′
S
∼= W ′′

S
and under this isomorphism

E′ ≡ π′
∗π

′∗E′ ∼= π′′
∗π

′′∗E′′ ≡ E′′.

This proves the separatedness. q.e.d.

We now complete the proof of the theorem.

Proof. It remains to show that the central fiber of Mr,χ(W)/C has
normal crossing singularities. We consider the following Cartesian
square

Mr,χ(W [r]) −−−−→ Mr,χ(W [r])/G[r]
y

y

C[r] −−−−→ C = C[r]/G[r]

We know that the upper and left arrows are smooth morphisms while
fibers of C[r] → C are smooth except the central fiber, which has normal
crossing singularities. Thus the central fiber of the right arrow has nor-
mal crossing singularities. Finally, since Mr,χ(W [r])/G[r] → Mr,χ(W)
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is étale and the arrow commutes with the two projections to C, the
fibers of Mr,χ(W) over C are smooth except the central fiber which has
normal crossing singularities. q.e.d.

We conclude this subsection by remarking that the set of closed points
of Mr,χ(W) over 0 ∈ C is exactly the set Vr,χ(X) defined in the beginning
of this subsection. This set is exactly the set used by Gieseker and
Nagaraj - Seshadri in their construction degeneration of moduli spaces
[4, 11].

1.3. Normalization of the central fiber. We close this section by
constructing the normalization of the central fiber

Mr,χ(W0) = Mr,χ(W) ×C 0.

Let [E] ∈ Mr,χ(W0) be any closed point associated to a stable vector
bundle E on Xn. We consider the coarse moduli space Mr,χ(W [n])
of stable sheaves on W [n]/C[n]. As we argued before, the induced
morphism Mr,χ(W [n])/G[n] → Mr,χ(W) is étale and its image contains
[E]. For the same reason,

Mr,χ(W [n]) ×C[n] (C[n] ×C 0)/G[n] −→ Mr,χ(W0)

is étale. Now let Hk ⊂ An+1 be the coordinate hyperplane transversal
to the k-th coordinate axis (we agree that the coordinate axes of An+1

are indexed from 0 to n) and let Hk → C[n] be the induced immersion.
Then

n∐

k=0

Hk −→ C[n] ×C 0

is the normalization morphism and the induced morphism
n∐

k=0

(Mr,χ(W [n]) ×C[n] H
k)/G[n] −→ Mr,χ(W [n]) ×C[n] (C[n] ×C 0)

is the normalization morphism. It follows that the closed points of the
normalization of Mr,χ(W0) consist of the equivalence classes of triples

(E, Xn, q†) for some n where E are stable vector bundles over Xn and
q† are nodes of Xn.

The normalization of Mr,χ(W0) is indeed itself a moduli space. Let

X† be the Artin stack (groupoid) of pointed semistable models of X0.
Namely, X†(S) consists of pairs (WS , q†) where WS are members in
W(S) with S understood as C-schemes via the trivial morphisms S → 0
with 0 ∈ C, and q† are sections of nodes of the fibers of WS/S. An
isomorphism between two families (WS , q†) and (W ′

S , q′†) is an isomor-

phism σ : WS → W ′
S in W(S) that preserves the sections q† and q′†.

We denote the pair (WS , q†) by W †
S . We define the moduli groupoid

Fα
r,χ(X†) to be the category of all pairs (E, W †

S), where WS ∈ X†(S) and
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E is a family of α-stable sheaves on W †
S whose members (namely the re-

striction to closed fibers of WS/S) lie in the set Vα
r,χ(X†) of isomorphism

classes of α-stable rank r locally free sheaves E on X†
n for some n with

χ(E) = χ. Two families (E, W †
S) and (E′, W ′†

S ) are equivalent if there

is an isomorphism σ :W †
S → W

′†
S in W(S) and a line bundle L on S so

that f∗E′ ∼= E ⊗ pr∗SL. Following the proof of Theorem 1.5, one easily

shows that the functor Fα
r,χ(X†) is represented by a smooth Artin stack.

Further, because of Corollary 2.7 its coarse moduli space Mα
r,χ(X†) is

a smooth algebraic space. Again, similar to the proof of Lemma 1.9,
the coarse moduli space is proper and separated. Finally, the previous
argument shows that M0

r,χ(X†) is a normalization of Mr,χ(W0). We
summarize this in the following proposition.

Proposition 1.10. The groupoid Fα
r,χ(X†) forms a smooth Artin

stack Mα
r,χ(X†) and its coarse moduli space Mα

r,χ(X†) is a proper smooth

and separated algebraic space. Further, the canonical morphism

M0
r,χ(X†) → Mr,χ(W0) induced by forgetting the marked section of nodes

is the normalization morphism.

In case r = 2, the moduli space M2,χ(X†) is exactly the normalization
constructed in [4].

2. α-stable bundles and generalized parabolic bundles

In this section, we will first relate α-stable sheaves on X† to General-
ized-Parabolic-Bundle (in short GPB) on X+ = (X, p1 + p2). We will
then show that the moduli of α-stable sheaves on X† is a blow-up of
the moduli of α-stable GPB on X+. This will be used to study how

M0
r,χ(X†) is related to M1−

r,χ(X†) in the next section. We will continue
to assume (r, χ) = 1, χ > r and α 6∈ Λr throughout this section.

2.1. GPB. We begin with the notion of GPB. Let X+ be the pair
(X, p1 + p2). A rank r GPB on X+ is a pair V G = (V, V 0) of a rank
r vector bundle V on X and an r-dimensional subspace V 0 ⊂ V |p1+p2 .
In this paper, we will use the convention that for any sheaf F and
closed p ∈ X we denote by F |p the vector space F ⊗ k(p) and denote
by V |p1+p2 the vector space V |p1 ⊕ V |p2 . For any subsheaf F ⊂ V we
denote by F |p1+p2 ∩ V 0 the subspace Im{F |p1+p2 → V |p1+p2} ∩ V 0 and
define r+(F ) = dimF |p1+p2 ∩ V 0.

We begin with the investigation of locally free sheaves on a chain of
rational curves. Let R be a chain of n P1’s coupled with two end points
q0 and qn in the first and the last components of R. We order the n-
rational curves into R1, . . . , Rn so that Ri∩Ri+1 = {qi} for 1 ≤ i ≤ n−1,
q0 6= q1 ∈ R1 and qn 6= qn−1 ∈ Rn. In the following we will call such
R with q0 and qn understood an end-pointed chain of rational curves.
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Now let F be any admissible locally free sheaf on R. Inductively, we
define vector spaces Wi ⊂ F |qi by W0 = {0} and

Wi = {s(qi) | s ∈ H0(Ri, F ), s(qi−1) ∈ Wi−1} ⊂ F |qi .

We call T→ = Wn the transfer of 0 ∈ F |q0 along R. Note that

(2.1) T→ = {s(qn) | s(q0) = 0 and s ∈ H0(R, F )}.

If we reverse the order of R by putting R̃i = Rn−i+1, we call the resulting
transfer T← ⊂ F |q0 the reverse transfer of 0 ∈ F |qn . Notice that we
have a well-defined homomorphism Fqn → F |q0/T← by assigning to each
element c ∈ F |qn the class of [s(q0)] ∈ F |q0/T← for some s ∈ H0(R, F )
such that s(qn) = c. The kernel of this homomorphism is precisely the
transfer T→. Hence we have a canonical isomorphism

(2.2) ξ : F |qn/T→
∼=

−→F |q0/T←.

There is another way to see this isomorphism. Let H0(R, F∨) ⊗OR →
F∨ and

ϕ : F −→ H0(R, F∨)∨ ⊗OR

be the canonical homomorphism. Then ker(ϕ(q0)) = T←, ker(ϕ(qn)) =
T→ and the isomorphism (2.2) is induced by

F |q0 −→ H0(R, F∨)∨ ←− F |qn .

Definition 2.1. We say a locally free sheaf F on R is regular if there
are integers ai so that to each i ∈ [1, n],

F |Ri = Or−ai
Ri

⊕ORi(1)ai and dimWi = dimWi−1 + ai.

Note that F is regular if and only if each restriction F |Ri has only
degree 0 and 1 factors and

(2.3) {s ∈ H0(R, F ) | s(q0) = s(qn) = 0} = 0.

Also, if F is regular then deg F = dim T→ = dimT←. We now prove a
lemma concerning regular bundles on rational chains that will be useful
later.

Lemma 2.2. Let the notation be as before and let σ0 : F |q0 →
F |q0/T← and σn :F |qn → F |qn/T→ be the projections. Suppose S0 ⊂ F |q0

and Sn ⊂ F |qn are two subspaces so that ξ(σn(Sn)) ⊂ σ0(S0). Then

there is a subsheaf F ⊂ F so that Im{F|q0 → F |q0} = S0, Im{F|qn →
F |qn} = Sn and

χ(F) ≥ dimSn + dimS0 − dimσ0(S0).

Proof. The proof is straightforward, is based on the following easy
observation. Suppose A ⊂ F |q0 and B ⊂ F |qn are one dimensional
subspaces so that σ0(A) = ξ(σn(B)) 6= {0}. Then there is a unique
subsheaf L ∼= OR ⊂ F so that Im{L|q0 → F |q0} = A and Im{L|qn →
F |qn} = B.
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We now construct the subsheaf F . First, we write Sn = A1 ⊕ A2

so that A2 = kerσn ∩ Sn. Then by assumption, there is a subspace
A′

1 ⊂ S0 so that A′
1 is isomorphic to A1 under σ−1

n ◦ ξ−1 ◦ σ0. We let
A3 = kerσ0 ∩ S0 and A4 ⊂ S0 be the compliment of A′

1 ⊕ A3. Then by
the observation just stated, there is a subsheaf F1

∼= O⊕a1
R ⊂ F , where

a1 = dimA1, so that F1|q0 ⊂ F |q0 is A1 and F1|qn ⊂ F |qn is A′
1. We

then pick F4
∼= O⊕a4

R ⊂ F , where a4 = dimA4, so that F4|q0 ⊂ F |q0

is A4. We then define F2 ⊂ F to be the subsheaf spanned by {s ∈
H0(F (−qn)) | s(q0) ∈ A2}. Similarly, we defined F3 ⊂ F to be the
subsheaf spanned by sections in H0(F (−q0)) whose values at qn are in
B2. Clearly, χ(Fi) = ai, where ai = dim Ai. Finally, let F ⊂ F be the
image sheaf of

ϕ : F1 ⊕F2 ⊕F3 ⊕F4(−qn) → F.

By our construction, we certainly have Im{F|qi → F |qi} = Si for i = 0
and n. As χ(F), it is equal to

∑
χ(Fi) − a4 − χ(ker ϕ). Because the

restriction of ϕ to q0 and qn ∈ R are injective, the structures of Fi

guarantee that H0(R, ker ϕ) = 0. Hence χ(ker ϕ) ≤ 0. This proves the
inequality of χ(F). q.e.d.

Now we pick a pair of non-negative integers (n, m), and form the two
end-pointed rational chains R and R′ of length n and m, respectively.
Let q0, qn ∈ R and q′0, q

′
m ∈ R′ be the respective end points with their

nodes qi and q′i, respectively. We then form the 2-pointed curve Xn,m by
gluing p1 and p2 in X with the q0 ∈ R and the q′0 ∈ R′, respectively, with
qn, q′m its two marked points. Namely, Xn,m has two tails of rational
curves, the left tail R ∋ qn and the right tail R′ ∋ q′m. If we identify qn

and q′m, we obtain a pointed curve X†
n+m.

Now let E be a rank r vector bundle over X†
n+m so that its restriction

to the chain of rational curves D ⊂ Xn+m is regular. Let

ρ : Xn,m −→ X†
n+m and π : Xn,m −→ X

be the tautological projections. First, Ẽ , ρ∗E is a locally free sheaf
on Xn,m and E can be reconstructed from ρ∗E and the isomorphism

φ : Ẽ|qn ≡ E|q† ≡ Ẽ|q′m via

0 −→ E −→ ρ∗Ẽ −→ (Ẽ|qn ⊕ Ẽ|q′m)/Γφ −→ 0

where Γφ ⊂ Ẽ|qn ⊕ Ẽ|q′m is the graph of φ. Here we view the last non-

zero term in the sequence as a k(q†) vector space, which is naturally a

sheaf of OXn+m-modules. In this way the vector bundle E on X†
n+m is

equivalent to the GPB (Ẽ, Γφ) over Xn,m.

We now show how the GPB (Ẽ, Γφ) naturally associates to a GPB

over X+. First let V = (π∗Ẽ
∨)∨. Since the restriction of Ẽ to D is

regular, ρ∗Ẽ
∨ and hence V are locally free sheaves on X. Clearly, we
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have χ(V ) = χ(Ẽ) = χ(E) + r. Next, by its construction we have

canonical π∗(π∗Ẽ
∨) → Ẽ∨ and its dual

(2.4) Ẽ −→ π∗V ≡ π∗(π∗Ẽ
∨)∨.

Restricting to qn and q′m, we obtain

h1 : Ẽ|qn −→ π∗V |qn ≡ V |p1 and h2 : Ẽ|q′m −→ π∗V |q′m ≡ V |p2 .

We then define V 0 ⊂ V |p1 ⊕ V |p2 to be the image of Γφ ⊂ Ẽ|qn ⊕ Ẽ|q′m
under the homomorphism h1 ⊕h2. We claim that dim V 0 = r. Suppose
dimV 0 < r. Then there is v ∈ Γφ so that h1(v) = h2(v) = 0. Since

v ∈ Γφ, its image in Ẽ|qn and in Ẽ|q′m are identical, using Ẽ|qn ≡

Ẽ|q′m . By our previous discussion, h1(v) = 0 implies that v lies in

the kernel Ẽ|qn → Ẽ|q0/T←, which implies that there is a section s ∈

H0(Ẽ|R(−q0)) so that s(qn) = v. Similarly, h2(v) = 0 implies that there

is a section s′ ∈ H0(Ẽ|R′(−q′0)) so that s′(q′m) = v. The pair (s, s′) then
glues together to form a section of E that vanishes along X0. Since E|D
is regular, such section must be trivial, and hence v = 0. This proves
that dimV 0 = r and hence the pair V G = (V, V 0) is a GPB on X.

2.2. α-stable bundles and α-stable GPB. In this subsection we will
show that the correspondence constructed in the previous subsection

relates α-stable bundles on X†
n+m to α-stable GPBs on X+.

Definition 2.3. Let α ∈ [0, 1). A GPB V G = (V, V 0) is α-stable if
for any proper subbundle F ⊂ V we have µG(F, α) < µG(V, α), where

µG(F, α) = (χ(F ) + (1 − α)r+(F ))/r(F ).3

Let Gα
r,χ′(X+) be the set of all isomorphism classes of α-stable rank

r GPBs on X+ of Euler characteristics χ′ = χ + r. In this subsection,
we will show that the previous correspondence defines a map

Vα
r,χ(X†) −→ Gα

r,χ′(X+).

This map will be useful in studying the moduli of α-stable sheaves on
X†.

We now prove the following equivalence of the stable GPB and stable

vector bundles on X†
n+m.

Proposition 2.4. Let E be a rank r vector bundle of Eular charac-

teristic χ on X†
n+m. Suppose E|D is regular.4 Then E is α-stable if

and only if its associated GPB V G = (V, V 0) is α-stable.

3The α-stability is the (1 − α)-stability of GBP introduced in [1].
4By Lemma 1.2, E|D is regular whenever E is α-stable.
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Proof. We first prove that E being α-stable implies that V G is α-
stable. Let U ⊂ V be any proper subbundle. We need to show that
µG(U, α) < µG(V, α). We will prove this inequality by constructing a
subsheaf F ⊂ E so that r0(F ) = r(U), χ(F ) ≥ χ(U) − 2r(U) + r+(U)
and r†(F ) = r+(U). Then we have the inequality because

µG(U, α) =
χ(U) + (1 − α)r+(U)

r(U)

≤
(χ(F ) + 2r(U) − r+(U)) + (1 − α)r+(U)

r(U)

=
χ(F ) − αr†(F )

r0(F )
+ 2 <

χ(E) − αr

r
+ 2

=
χ(V ) + (1 − α)r

r
= µG(V, α).

We now construct such F . First let Ũ = Ẽ|X ∩ U , which makes
sense since by construction V is just the result of a elementary (Hecke)

modification of Ẽ|X at p1 and p2 so that Ẽ|X ⊂ V is a subsheaf. Let

A1 = Im{Ũ |p1 → Ẽ|q0} and A2 = Im{Ũ |p2 → Ẽ|q′0}. We then let

B̃ ⊂ Γφ be the preimage of U0 = V 0 ∩ (U |p1 ⊕ U |p2) under the iso-

morphism V 0 ∼= Γφ, and let B1 ⊂ Ẽ|qn and B2 ⊂ Ẽ|q′m be the image

of B̃ under the obvious projections. Let σ0 : Ẽ|q0 → Ẽ|q0/T← and

σn : Ẽ|qn → Ẽ|qn/T→ be the projections and ξ : Ẽ|qn/T→
∼= Ẽ|q0/T←

be the tautological isomorphisms, constructed in (2.2). We claim that

ξ(σn(B1)) ⊂ σ0(A1). Indeed, let (u1, u2) ∈ B̃ be any element with
(v1, v2) ∈ U0 its preimage. By definition, ξ(σn(v1)) = σ0(u1). Hence
ξ(σn(B1)) ⊂ σ0(A1). Similarly, if we let σ′

0, σ′
m and ξ′ be similar homo-

morphisms associated to q′0, q′m and p2, we have ξ′(σ′
m(B2)) ⊂ σ′

0(A2).
We now apply Lemma 2.2 to conclude that there is a subsheaf F1 ⊂

Ẽ|R so that

Im{F1|q0 → Ẽ|q0} = A1, Im{F1|qn → Ẽ|qn} = B1, χ(F1) ≥ dim B1+e1,

where e1 = dim ker{Ũ |p1 → U |p1}. Similarly, we have a subsheaf F2 ⊂

Ẽ|R′ having

Im{F2|q′0 → Ẽ|q′0}= A2, Im{F2|q′m → Ẽ|q′m}= B2, χ(F2) ≥ dimB2+e2,

where e2 = dim ker{Ũ |p2 → U |p2}. Note that B1 = B2 under the

identification Ẽ|qn ≡ Ẽ|q′m . Therefore, the subsheaves Ũ ⊂ Ẽ|X , F1 ⊂

Ẽ|R and F2 ⊂ Ẽ|R′ glue together to form a subsheaf F ⊂ E such that
r0(F ) = r(U), r†(F ) = dimB1 = dimB2 = dimU0 = r+(U) and

χ(F ) = χ(Ũ)+χ(F1)+χ(F2)−2r(U)−dimC ≥ χ(U)−2r(U)+dimU0.

Here we used the fact that χ(Ũ) = χ(U)−e1−e2. This F is the desired
subsheaf. This prove the first part of the lemma.



64 Y.-H. KIEM & J. LI

We postpone the other part of the proof until we give a more precise
description of the destabilizing subsheaf of E. q.e.d.

2.3. α-stable GPB and α-stable bundles. We will complete the
other half of Proposition 2.4 in this subsection.

We begin with a characterization of the destabilizing subsheaf of E

on X†
n+m. Let E be a vector bundle on X†

n+m as in Proposition 2.4. Let
F ⊂ E be an α-destabilizing subsheaf. Namely, µ(F, α) > µ(E, α) and
is the largest possible among all subsheaves of E. Since E|D is regular,
as mentioned before r0(F ) = rankF |X0 > 0. In the following, we say
that a sheaf F ′ with F ⊂ F ′ ⊂ E is a small extension of F ⊂ E if F ′/F
is a sheaf of OD-modules. We say F |D = F ⊗OXn

OD is non-negative
if the torsion free part of the restriction of F to each rational curves
Di ⊂ D has no-negative factors.

Lemma 2.5. Let E be as in Proposition 2.4 and F ⊂ E be an α-

destabilizing subsheaf. Then r0(F ) > 0, F |D is non-negative and there

is no non-negative small extension F ⊂ F ′ ⊂ E of F ⊂ E.

Proof. First, r0(F ) = 0 is impossible because of our assumption χ >
r. Suppose there is an irreducible component Di ⊂ D so that F |Di

is not non-negative. Namely, there is a t > 0 so that ODi(−t) is a
quotient sheaf of F |Di . We let F ′ be the kernel of the composite F →
F |Di → ODi(−t). Clearly, χ(F ′) ≥ χ(F ) and r†(F ′) ≤ r†(F ) while
rkdF ′ < rkdF . Hence µd(F ′, α) > µd(F, α), violating that F is an
α-destabilizing subsheaf of E.

Now suppose F ⊂ F ′ ⊂ E is a small extension of F so that F ′ is
also non-negative on D. We claim that µd(F ′, α) > µd(F, α). We look
at the quotient sheaf F ′/F . Since F ′|D is non-negative, F ′/F is also
non-negative. Further, since F ′/F is a sheaf of OD-modules, it is easy
to see that

χ(F ′/F ) ≥ r†(F ′) − r†(F ).

Hence because α < 1, the slope µd(F ′, α) is

(χ(F ) − αr†(F )) + (χ(F ′/F ) − α(r†(F ′) − r†(F )))

rkdF + O(ǫ)

>
χ(F ) − αr†(F )

rkdF
= µd(F, α).

Here we used the fact that r0(F ) > 0 and that ǫ is sufficiently small.
This violates the assumption that F is an α-destabilizing subsheaf of
E. q.e.d.

We now give a more precise description of the destabilizing subsheaf
F ⊂ E. We begin with more notation. Let D1, . . . , Dn+m be the or-

dered rational curves of D ⊂ X†
n+m with nodes q0, . . . , qn+m and the
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marked node q† = qn. We let D[i,j] = ∪j
k=i+1Dk be the subchain of

D. There are several (possible) subsheaves of E|D that are important
to our later study. The first is the subsheaf O[i,j] ⊂ E|D, which as a
sheaf is isomorphic to OD[i,j]

and such that the induced homomorphisms

σ(qi) :O[i,j] ⊗k(qi) → E|qi and σ(qj) :O[i,j] ⊗k(qj) → E|qj are non-zero.
If we impose the condition σ(qi) 6= 0 instead of σ(qi) = 0, we denote
the resulting subsheaf by O(i,j]. The sheaves O[i,j) are defined similarly

in the obvious way. The other subsheaf is O
[k]
[0,n+m] ⊂ E|D, which as a

sheaf is an invertible sheaf of OD-modules. Its degree on Dk is 1 and its
degrees on other components are all 0, and the induced homomorphisms
σ(q0) and σ(qn+m) are both non-zero.

Lemma 2.6. Let E be as in Proposition 2.4 and F ⊂ E be its α-

destabilizing subsheaf. Then the image subsheaf of F |D → E|D is a

direct sum of subsheaves from the list

O[0,i), O(i,n+m], O[0,n+m], O
[i]
[0,n+m].

Proof. Since E|D is regular, all restrictions F |Dk
have only degree 0

and 1 factors. We first assume there is a component Dk so that F |Dk

has a factor ODk
(1). Then there is a subchain D[i,j] containing Dk so

that this factor ODk
(1) ⊂ F |Dk

extends to a subsheaf L ⊂ F |D so that
L is an invertible sheaf of OD[i,j]

-modules and the degree of L along
each Dl ⊂ D[i,j] is non-negative. However, if there is another l 6= k so
that the degree of L on Dl is 1, then we can find a section of L that
vanishes at qi and qj . Using L → E|D, this section induces a section of
E that vanishes on X0, violating the fact that E|D is regular. Hence
degL|Dl

= 0 for all k 6= l ∈ [i + 1, j]. For the same reason we conclude
that σ(qi) :L⊗ k(qi) → E|qi cannot be zero since otherwise we can find
a section of E that vanishes on X0. Since E|D is locally free, this is
possible only if i = 0. For the same reason we have j = n + m and

σ(qn+m) 6= 0. Hence L ⊂ E|D is a subsheaf of the type O
[k]
[0,n+m] ⊂ E|D

described before.
Since F |D has only degree 0 and 1 factors, it is direct to see that

O
[k]
[0,n+m] ⊂ F |D must be a direct summand. Let F |D = O

[k]
[0,n+m] ⊕ F ′

be a decomposition. By repeating this procedure to the sheaf F ′, we

conclude that F |D is a direct sum of sheaves of type O
[k]
[0,n+m] with a

sheaf F whose restriction to each Di has only degree 0 factors. We now
show that F must be a direct sum of a torsion sheaf and sheaves of the
first three kinds in the list of the lemma: O[0,i], O(i,n+m] and O[0,n+m].
Suppose F is not supported at points. Then there is a subchain D[i,j] ⊂
D so that OD[i,j]

⊂ F is a subsheaf. Let σ(qi) and σ(qj) be the induced

homomorphisms OD[i,j]
⊗ k(qi) → E|qi and OD[i,j]

⊗ k(qj) → E|qj . As

before, we can show that σ(qi) and σ(qj) can not be simultaneously
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zero. Further, σ(qi) 6= 0 is possible only if i = 0. Hence F has a factor
from the first three kinds in the above list. By repeating this argument,
we conclude that F |D is a direct sum of sheaves supported on q0 and
qn+m, and sheaves from the list. q.e.d.

We now complete the proof of Proposition 2.4

Proof. We need to show that if E is α-unstable then V G is α-unstable
as well. Let F ⊂ E be the α-destabilizing subsheaf of E. We let R and
R′ be the left and the right rational tails of Xn,m, let Ẽ = ρ∗E be the

pull back vector bundle on Xn,m and let T← ⊂ Ẽ|q0 and T← ⊂ Ẽ|q′0 be

the reverse transfer of Ẽ|R and Ẽ|R′ . We follow the notation introduced
before (2.4) with qi and q′j the nodes of R and R′ so that q0 = p1 and

q′0 = p2. Then Ẽ|X and V fits into the exact sequence

0 −→ Ẽ|X −→ V −→ T← ⊗ k(p1) ⊕ T ′
← ⊗ k(p2) −→ 0.

Let F ⊂ Ẽ|X be the image subsheaf of ρ∗F |X → Ẽ|X , let F ′ ⊃ F be the

largest subsheaf of Ẽ|X so that F ′/F is torsion and let F ′ ⊂ V be the
largest subsheaf so that F ⊂ F ′ and F ′/F is torsion. Here the inclusion

F ⊂ F ′ is understood in terms of the inclusion of sheaves Ẽ|X ⊂ V .

Since F ′ is the largest possible such subsheaf, it is a subbundle of Ẽ|X
and F ′/F is contained in Ẽ|p1 ⊕ Ẽ|p2 . We claim that F ′/F|p1 ∩ T← =
F ′/F|p2 ∩ T ′

← = {0}, since otherwise we can find a small extension of
F ⊂ E so that its µ(·, α) degree is larger than µ(F, α), violating the
maximality of the latter. Combined with the maximality of µ(F, α), we
conclude that F ′/F is a torsion sheaf supported at p1 and p2 and is
indeed a direct sum of a k(p1)-module and a k(p2)-module.

We now write the torsion free part of F |D as a direct sum of sheaves
in the list of Lemma 2.6. Let a− (resp. a+) be the number of summands
of type O[0,i) with i ≤ n (resp. i > n) in the decomposition; let b− (resp.
b+) be the number of O(i,n+m] in the summand with i < n (resp. i ≥ n);
let c be the number of summand O[0,n+m] and let d− (resp. d+) be the

number of summands O
[i]
[0,n+m] with i ≤ n (resp. i > n). A direct check

via the construction of V shows that

dim F ′/F|p1 = r0(F ) − (a+ + c + d+) and

dim F ′/F|p2 = r0(F ) − (b− + c + d−).

Hence

χ(F ′) = χ(F) + 2r0(F ) − (a+ + b− + 2c + d− + d+).

Further, by a direct check we have χ(F) = χ(F ) + c and r†(F ) =
a+ + b− + c + d− + d+. Hence

χ(F ′) = χ(F ) + 2r0(F ) − r†(F ).
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A similar argument shows that r+(F ′) = a+ + b− + c + d− + d+ and
hence r†(F ) = r+(F ′). This implies that

χ(F ′) + (1 − α)r+(F ′)

r(F ′)
=

χ(F ) − αr†(F )

r(F ′)
+ 2 >

χ − αr

r
+ 2

=
χ′ + (1 − α)r

r
,

violating the α-stability of V G. This completes the proof of Proposition
2.4. q.e.d.

Corollary 2.7. Each E ∈ Vα
r,χ(X†) has Aut0(E) = C×.

Proof. Let E ∈ Vα
r,χ(X†) be a sheaf over X†

n+m and let (σ, f) be an
automorphism of E. Namely, σ : Xn+m → Xn+m is a based automor-
phism and f : σ∗E ∼= E is an isomorphism. Let σ′ : Xn,m

∼= Xn,m and

f ′ :σ′∗Ẽ ∼= Ẽ be the induced isomorphisms. Since σ|X = id, f induces

an isomorphism f̃ : Ẽ|X → Ẽ|X . Clearly, f ′ preserves the subspaces

T← ⊂ Ẽ|q0 and T ′
← ⊂ Ẽ|q′0 . Hence if we denote by V G = (V, V 0) the

associated GPB of E, f̃ extends to an isomorphism f̄ as shown:

0 −−−−→ Ẽ|X −−−−→ V −−−−→ T← ⊗ k(p1) ⊕ T ′
← ⊗ k(p2) −−−−→ 0

yf̃

yf̄

y

0 −−−−→ Ẽ|X −−−−→ V −−−−→ T← ⊗ k(p1) ⊕ T ′
← ⊗ k(p2) −−−−→ 0

We claim that the GPB structure V 0 ⊂ V |p1 ⊕ V |p2 is preserved under

f̄ . Indeed, because Γφ ⊂ Ẽ|qn ⊕ Ẽ|q′m is the graph of the tautological

isomorphism Ẽ|qn
∼= Ẽ|q′m , and this isomorphism is preserved by f ′, Γφ

is preserved by f ′. Next, we look at the homomorphism

Ẽ|qn −→ Ẽ|qn/T→
∼=

−→ Ẽ|q0/T←.

Obviously, the first arrow is canonical. The second arrow is induced
by O⊕a

R ⊂ Ẽ|R, which is also preserved by f ′. Hence the composite of
the above arrows is invariant under f ′. Therefore, the image of Γφ in
V |p1 ⊕ V |p2 will be preserved under f ′. This shows that (f, σ) induces
an isomorphism f̄ of V G whose restriction to X0 ⊂ X is exactly f |X0 .

Since E is α-stable, V G is α-stable by Proposition 2.4 and hence by
the usual argument, the automorphism group of V G is C×. Hence f̄
is a multiple of the identity map. In particular, after replacing f by a
multiple of itself, we can assume f |X0 = id. We now show that σ = id.
As before, let q0, . . . , qn+m be the nodes of Xn+m. Since qi are fixed
points of σ, the isomorphism f induces automorphisms f |qi :E|qi → E|qi .
We first claim that all f |qi = id. Suppose not; say f |qk

6= id. Then
0 < k < n + m since f |X0 = id. Since E|D is non-negative, there
is a section s ∈ H0(D, E) so that s(qk) is not fixed by f |qk

. Hence
s− f−1∗σ∗s is a section of H0(D, E) that vanishes on q0 and qn+m but
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non-zero at qk. This violates the α-stability of E. Hence all f |qi are the
identities.

Next, we claim that σk = σ|Dk
are identities for all Dk. Indeed, since

E|Dk
∼= O⊕r−a

Dk
⊕ODk

(1)⊕a for some a > 0, there is no isomorphism of

E|Dk
with σ∗

k(E|Dk
) whose restrictions to qk−1 and qk are the identity

maps unless σk = id. Finally, since σ = id and the restrictions of f to
X0 and all nodes are the identity maps, f must be an identity map since
E|Dk

has only degree 0 and 1 factors. This proves that Aut0(E) = C×.
q.e.d.

The association from E ∈ Vα
r,χ(X†) to V G ∈ Gα

r,χ′(X+) constructed
above defines a map

(2.5) Vα
r,χ(X†) −→ Gα

r,χ′(X†).

On the other hand, by [1] the moduli space of α-stable GPBs (V, V 0) on
X+ of rank r and χ(V ) = χ′ = χ+r form a fine moduli space Gα

r,χ′(X+).
We now show that the above correspondence induces a morphism

(2.6) Mα
r,χ(X†) −→ Gα

r,χ′(X+).

Later we will show that in case r = 3 this is the composition of two
blow-ups along smooth subvarieties.

Let Fα
r,χ(X†) and Fα

r,χ′(X+) be the moduli functors of the sets Vα
r,χ(X†)

and Gα
r,χ′(X+). To prove the statement, it suffices to show that the

map (2.5) defines a transformation of functors Fα
r,χ(X†) ⇒ Fα

r,χ′(X+).

Namely, to any scheme S and a family E ∈ Fα
r,χ(X†)(S) it associates a

unique family VG ∈ Fα
r,χ′(X+)(S), compatible to (2.5), and satisfies the

base change property. Let E ∈ Fα
r,χ(X†)(S) be any family over (WS , q†).

Let ρ : W̃S → WS be the normalization along q†(S) ⊂ WS and let

π :W̃S → X × S the contraction of all rational curves on the fibers. Let
q− and q+ ⊂ W̃S be the two sections of W̃S/S that are the pre-images
of q†(S). We then denote pi = pi × S ⊂ X × S. As usual, we index q±

so that π(q−) = p1. We define V =
(
π∗ρ

∗E∨
)∨

. Because E is a family

of α-stable sheaves, Riπ∗ρ
∗E∨ = 0 for i > 0. Hence π∗ρ

∗E∨ and V are
locally free sheaves on X×S. Next, there are canonical homomorphisms

π∗ρ
∗E∨|p1 −→ ρ∗E∨|q− and π∗ρ

∗E∨|p2 −→ ρ∗E∨|q+ .

Coupled with the identity ρ∗E|q− ≡ ρ∗E|q+ , we obtain homomorphisms

E|q†(S)
diag
−→ ρ∗E|q−+q+ −→

(
π∗ρ

∗E∨
)∨

|p1+p2 ≡ V|p1+p2 .

Here ρ∗E|q−+q+ is ρ∗E|q−⊕ρ∗E|q+ , considered as a sheaf of OS-modules.
We define V0 to be the image sheaf of the composition of the above
arrows. It is direct to check that this construction E ⇒ (V,V0) satisfies
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the base change property. Hence as we argued before (in constructing
V G = (V, V 0)) for each closed ξ ∈ S the induced

(
E|q†(S)

)
⊗ k(ξ) −→ V|p1+p2 ⊗ k(ξ)

is injective. Hence V0 is a subvector bundle of V|p1+p2 . Consequently,
by Lemma 2.4 and the base change property the pair VG = (V,V0)
is a family of α-stable GPB in Fα

r,χ′(X+). This defines the desired
transformation of the functors.

2.4. Mα
r,χ(X†) as a blow-up of Gα

r,χ′(X+). In this subsection, we will
restrict ourselves to the case r = 3 and χ = 4. We will show that
Mα

3,4(X
†) is a blow up of Gα

3,7(X
+). We will prove this by looking at

the inverse of (2.6):

(2.7) Φ : Gα
3,7(X

+) −−→ Mα
3,4(X

†),

and prove that after two blow-ups of the domain we can resolve the
indeterminacy and the resulting morphism is an isomorphism.

For simplicity, in the remainder of this paper we will denote Gα
3,7(X

+)

by Gα and denote Mα
3,4(X

†) by Mα. By [1, Theorem 2], we know that

there is a universal family of GPBs (V,V0) on Gα × X, where V is
a rank 3 vector bundle over Gα × X and V0 is a rank 3 subbundle
of V|p1+p2 , V|Gα×p1 ⊕ V|Gα×p2 over Gα. On the open dense subset
U ⊂ Gα where the induced V0 → V|p1 and V0 → V|p2 are isomorphisms,
we get a family of vector bundles over U × X0 by taking the kernel of

(1 × ρ)∗V −→ (1 × ρ)∗V|q/V
0 ≡

(
V|p1+p2

)
/V0,

where ρ :X → X0 is the normalization map and q ∈ X0 is its node. By
Lemma 2.4, the resulting family is a family of α-stable sheaves on X0.

The resulting U -family of α-stable sheaves defines a morphism U →
Mα, which defines a rational map Gα− → Mα, inverse to the given
Mα → Gα. We now show how to eliminate indeterminacy by blowing
up the domain Gα twice.

Let Yi (resp. Zi) be the subvariety of Gα consisting of GPB (V, V 0)
such that V 0 → V |p1 (resp. V 0 → V |p2) have ranks at most i. Clearly
Y0 ⊂ Y1 ⊂ Y2 and Z0 ⊂ Z1 ⊂ Z2 are chains of subvarieties with
Y0 and Z0 smooth. Further, because dimV 0 = 3, we know that
Z0∩Y2 = Y0∩Z2 = Y1∩Z1 = ∅ and Y1 intersects Z2 and Z1 intersects
Y2 transversally. We now blow up Gα along Y0 ∪ Z0. We denote the
blow-up of Gα by Gα

1 and denote the proper transforms of Yi and Zi

by Yi,1 and Zi,1. Because of the intersection property mentioned, the
proper transforms Y1,1 and Z1,1 are smooth, satisfying similar intersec-
tion properties. We next blow up Gα

1 along Y1,1 ∪Z1,1. We denote the

blow-up by G̃α and denote the corresponding total transforms by Ỹi

and Z̃i. This time, all Ỹi and Z̃i are smooth normal crossing divisors.
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We now show that Gα−→ Mα lifts to a morphism G̃α → Mα. Such
a morphism will be induced by a family of α-stable sheaves parameter-
ized by G̃α. We now construct such a family. First, we blow up the
codimension 2 subvarieties Ỹ0 × p1 and Z̃0 × p2 ⊂ G̃α ×X. We denote
the resulting family (the blown-up) by W1. Let

π1 : W1 → G̃α, Φ1 : W1 −→ G̃α × X and φ : G̃α −→ Gα

be the obvious projections. Note that the fibers of π1 are one of X, X0,1

and X1,0. Let q1 ⊂ W1 (resp. q′
1) be the proper transform of G̃α × p1

(resp. G̃α × p2) and let D1 (resp. D′
1) be the exceptional divisor over

Ỹ0 × p1 (resp. Z̃0 × p2).
Next let (V,V0) be the universal bundle of Gα given by a vector

bundle V over Gα × X and a subbundle V0 of V|p1+p2 , where pi =
Gα × pi ⊂ Gα × X. We introduce a new locally free sheaf on W1:

V1 , ker{Φ∗
1V −→ Φ∗

1V|D1 ⊕ Φ∗
1V|D′

1
}.

Because Ỹ0 is the locus where V 0 → V |p1 are zeros, and likewise for

Z̃0, the pull back φ∗
1V

0 → Φ∗
1V|q1+q′

1
factors through

(2.8) V0
1 , φ∗V0 −→ V1|q1+q′

1
.

The pair (V1,V
0
1 ) is a family of GPBs on (W1,q1,q

′
1), parameterized by

G̃α. As argued in [4], for each ξ ∈ G̃α the homomorphisms

V0
1 |W1,ξ

−→ V1|W1,ξ∩q1 and V0
1 |W1,ξ

−→ V1|W1,ξ∩q′
1

have ranks at least 1.
We now modify this family along the rank 1 degeneracy loci Ỹ1 and

Z̃1. The construction is similar. We first blow up W1 along the disjoint
union of π−1

1 (Y1) ∩ q1 and π−1
1 (Z1) ∩ q′

1. Let W2 be the blow-up, let
q2 and q′

2 be the proper transforms of q1 and q′
1 and let D2 and D′

2 be
the exceptional divisors of Φ2 :W2 → W1. As argued in [4], the cokernel

L1 , Coker{V0
1 |π−1

1 (Ỹ1)
−→ V1|π−1

1 (Ỹ1)∩q1
}

is a rank two locally free sheaf on π−1
1 (Ỹ1) ∩ q1. Similarly, let L′

1 be

defined with Ỹ1 replaced by Z̃1 and with q1 replaced by q′
1. It is also

a rank two locally free sheaf on π−1
1 (Z̃1) ∩ q′

1. Similarly to the rank 0
case, we define V2 to be the kernel of Φ∗

2V1 → Φ∗
2L1 ⊕ Φ∗

2L
′
1. It is a

locally free sheaf over W2. Further the homomorphism (2.8) induces a
homomorphism

(2.9) V0
2 , φ∗V0 −→ V2|q2+q′

2
.

The pair (V2,V
0
2 ) is a family of GPBs on W2 over G̃α.

Lastly, we resolve the rank 2 degeneracy. Let π2 : W2 → G̃α be
the projection and let W3 be the blow up of W2 along the disjoint
union of π−1

2 (Ỹ2) ∩ q2 and π−1
2 (Z̃2) ∩ q′

2. Let q3, q′
3 be the proper
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transforms of q2 and q′
2 and let D3 and D′

3 be the exceptional divisors of
Φ3 :W3 → W2. Again the cokernel L2 of V0

2 |π−1
2 (Ỹ2) → V2|π−1

2 (Ỹ2)∩q2
and

the similarly defined L′
2 are rank one locally free sheaves on π−1

2 (Ỹ2)∩q2

and π−1
2 (Z̃2)∩q′

2. We define V3 to be the kernel of Φ∗
3V2 → Φ∗

3L2⊕Φ∗
3L

′
2.

Then we have the canonical

(2.10) V0
3 , φ∗V0 −→ V3|q3+q′

3
.

Lemma 2.8. The family of GPBs (V3,V
0
3 ) on W3 has the property

that the induced homomorphisms V0 → V3|q3 and V0
3 → V3|q′

3
are both

isomorphisms.

Proof. We omit the proof since it is similar to that in [4] and follows
directly from the construction. q.e.d.

For simplicity, we denote q3 and q′
3 ⊂ W3 by q and q′ ⊂ W̃ , and

denote (V3,V
0
3 ) by (Ṽ, Ṽ0), respectively. We then glue the two sections

q and q′ of W̃ to obtain a family W † over G̃α with the marked section
q†, the gluing locus. Clearly, W † is a family of based semistable model
of X0 and the tautological projection ρ :W̃ → W † is the normalization
of W † along q†. Over W †, we define E via the exact sequence

0 −→ E −→ ρ∗Ṽ −→
(
Ṽ|q ⊕ Ṽ|q′

)
/Ṽ0 −→ 0.

We now show that the family E is a family of α-stable vector bundles

over W †/G̃α. We begin with a closed ξ̃ ∈ G̃α, with E → X†
n+m the

restriction of E → W † to the fiber over ξ̃. We will follow the notation
introduced before. In particular, let D be the chain of rational curves in

X†
n+m with q† = qn its based node, let Xn,m be its normalization along

q† and let R and R′ be its two rational tails. By our construction, E is
the gluing of a GPB (Ṽ , Ṽ 0) on Xn,m. Let ξ ∈ Gα be the image of ξ̃
with (V, V 0) the corresponding GPB.

Lemma 2.9. The vector bundle Ṽ |R is a regular vector bundle, as

defined in Definition 2.1. Further, if we let A = ker{V 0 → V |p1}, then

Im{A → V 0 ∼= Ṽ 0 → Ṽ |qn} is exactly the transfer T→ ⊂ Ṽ |qn defined in

(2.1).

Proof. We define the type of the left tail Ṽ |R to be the triple (i0, i1, i2)

defined by ij = 1 if ξ̃ ∈ Ỹj and ij = 0 otherwise. Clearly, n = i0+i1+i3.
We first study the case (i0, i1, i2) = (0, 1, 1). Since we only want to

understand Ṽ |R, we can assume without loss of generality that m = 0.

We begin with an explicit description of the construction of Ṽ → X2,0.
First, we let B1

∼= C2 be the cokernel of V 0 → V |p1 and let V ′ =
ker{V → B1⊗k(p1)}. The definition of V ′ induces a canonical filtration
B1 ⊂ V ′|p1 . Next, let U2 be OD1(1)⊕2 ⊕ OD1 . Again the canonical
inclusion OD1(1)⊕2 ⊂ U2 defines a filtration k(q0)

⊕2 ⊂ U2|q0 . We fix
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an isomorphism U2|q0
∼= V ′|p1 so that it preserves the two subspaces C2

just mentioned. We then define V2 by the induced exact sequence on
X1,0:

0 −→ V2 −→ j∗V
′ ⊕ j′∗U2 −→ V ′|p1 ⊗ k(q0) −→ 0.

By our construction of V2, V2 is the restriction of V2 to W2,ξ̃. The

restriction of V0
2 → V2|q2 induces a homomorphism V 0 → V2|q1 . Since

i2 = 1, its cokernel B2 has dimension 1.
We define V3 similarly. Let V ′

2 be the kernel of V2 → B2. Note that

V ′
2 |q1 has a filtration C ⊂ C3. Let U3 = OD2(1) ⊕ O⊕2

D2
. Then U3|q1

also has a filtration C ⊂ C3. We fix an isomorphism V ′
2 |q1

∼= U3|q1 ,
preserving the two filtrations. We then define V3 on X2,0 by the exact
sequence

0 −→ V3 −→ j̄∗V2 ⊕ j̄′∗U3 −→ V ′
2 |q1 ⊗ k(q1) −→ 0.

Here j̄ : X1,0 → X2,0 and j̄′ : D2 → X2,0 are the obvious inclusions.

Again V3 is the restriction of V3 to the fiber of W3 = W̃ over ξ̃. Also,
the restriction of V0

3 → V3|q3 gives us V 0 → V3|q2 , which must be an
isomorphism.

We now check that V3|R2 is regular. First, V3|D2 has one degree 1
factor and two trivial factors. We claim that V3|D1 also has one degree
1 factor and two trivial factors. By our construction, this will be true
if Im{V 0 → V2|q1} ⊂ V2|q1 is different from the C2 ⊂ V2|q2 induced
by the canonical OD1(1)⊕2 ⊂ V2|D1 . Indeed, if they are identical, then
V 0 → V |p1 has rank 0, a contradiction to i0 = 0. Hence V3|D1 has only
one degree 1 factor.

It remains to show that dimT→ ⊂ dimV3|q2 = 2. We claim that
T→ = Im{A → V 0 → V3|q2}, where A = ker{V 0 → V |p1}

∼= C2. But
this can be checked directly based on our explicit construction, and will
be left to the readers.

The other cases are trivial except when the type of Ṽ |R is of type
(1, 1, 1). The study of this case is parallel to the case studied, and will
be omitted. This proves the lemma. q.e.d.

Lemma 2.10. Let the notation be as before. Then E on X†
n+m is

α-stable.

Proof. We first check that E|D is regular. By the previous lemma, the
restriction of E to each rational curve has only degree 1 and 0 factors.
Hence to show E|D is regular we only need to show that there is no

non-trivial section s ∈ H0(E) that vanishes on X0 ⊂ X†
n+m. Let s be

any such section and let s̃ be its lift in H0(Xn,m, Ṽ ). Then s̃(qn) ∈ T→

and s̃(q′m) ∈ T ′
→. On the other hand, if we let v ∈ V 0 be the lift of s(q†)

via the canonical V 0 ∼= E|q† , s̃(qn) = s̃(q′m) = v, under the canonical

Ṽ |qn
∼= Ṽ |q′m

∼= V 0. By the previous lemma, s̃(qn) lies in the kernel of
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V 0 → V |p1 and s̃(q′m) lies in the kernel of V 0 → V |p2 . This is impossible

unless v = 0 since V 0 → V |p1+p2 is injective. This shows that s(q†) = 0.

Then s = 0 since Ṽ |Rn and Ṽ |R′
m

are both regular. This proves that
E|R is regular.

Once we proved that E|D is regular, we can apply Lemma 2.4 to
conclude that E is α-stable. This completes the proof. q.e.d.

Corollary 2.11. The family of locally free sheaves E on W † over G̃α

is a family of α-stable vector bundles.

As a consequence, we get a morphism λ : G̃α → Mα over Gα. Now
let U ⊂ G̃α be the largest open subset so that λ|U is one-one. Since both

G̃α and Mα are smooth, λ will be an isomorphism if Codim(G̃α−U) ≥
2. The complement of the 6 divisors Yi,Zi (i = 0, 1, 2) represents
GPBs (V, V 0) such that V 0 → V |p1 and V 0 → V |p2 are isomorphisms.
Obviously this is mapped isomorphically by λ onto the open subset in
Mα whose points represent α-stable bundles over X0. By construction,
the complement of this open set in Mα consists of 6 divisors whose

generic points are bundles E over X†
1 (2 choices for q†) such that the

restriction of E to the rational component is Oa⊕O(1)3−a (3 choices for

a). From our construction of the family of α-stable bundles over G̃α, it

is easy to see that λ maps the 6 divisors of G̃α to the 6 divisors of Mα.
Hence the restriction of λ to any of the 6 divisors Yi,Zi is generically
finite. Since λ is injective on the complement of the 6 divisors, λ is
a local homeomorphism at generic points of the divisors and hence λ
is injective on an open set U whose complement has codimension ≥ 2.
Therefore we have proved

Corollary 2.12. G̃α ∼= Mα.

3. Variations of Mα
r,d(X

†) in α

The goal of this section is to investigate how Mα
r,d(X

†) varies when α

varies in [0, 1). Following the work of [2, 15], it is expected that there
is a finite set A ⊂ (0, 1) so that Mα

r,d(X
†) is a constant family when α

varies in a connected component of (0, 1) − A. Further, for α ∈ A the
two moduli spaces

(3.1) Mα−

r,d (X†) ←−−→ Mα+

r,d (X†)

are birational and differ by a series of flips. In this section we will give
detailed description of the flips of (3.1).

3.1. The jumping loci. We begin with determining the set A. We
continue to assume (r, χ) = 1 and χ > r throughout this section. Let
α ∈ [0, 1) − Λr be any real number, let δ > 0 be a sufficiently small

number and let α± = α ± δ. We suppose Mα−

r,χ(X†) is different from
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Mα+

r,χ(X†). Then there is a locally free sheaf E on X†
n that is in Mα−

r,χ(X†)

but not in Mα+

r,χ(X†). Namely, there is a proper subsheaf F ⊂ E so that

(3.2) µd(F, α−) < µd(E, α−) while µd(F, α+) ≥ µd(E, α+).

Since E|D is regular, r0(F ) > 0. Then (3.2) implies that

χ(F ) − αr†(F )

r0(F )
=

χ(E) − αr

r
.

This means that α ∈ Λr. Hence the set A can be chosen to be Λr. We
summarize it as a lemma.

Lemma 3.1. For any two α1, α2 in a connected component of [0, 1)−
Λr, the birational map (3.1) is an isomorphism.

It is direct to check that Λ3 = {1/3, 2/3}.
In the remainder of this section, we will restrict ourselves to the case

where r = 3. Since for α 6∈ Λ3 the moduli space Mα
3,χ is a blow-up of

Gα
3,χ′ , the previous lemma suggests the following lemma.

Lemma 3.2. When α varies in a connected component of [0, 1)−Λ3

the moduli spaces Gα
3,χ are all isomorphic.

Proof. The proof is straightforward and will be omitted. q.e.d.

As in [4], it is relatively easy to prove a vanishing result of the top

Chern classes of a certain vector bundle on M1−
3,χ. What we need is the

vanishing result on M0
3,χ. One strategy to achieve this is to give an

explicit description of the flips involved in the birational maps

M0
3,χ ←−→ M

1/2
3,χ ←−→ M1−

3,χ.

It turns out the two arrows are similar. So we only need to study the
first arrow in detail.

3.2. Variation of Gα
r,χ′. Since Mα

r,χ is a blow-up of Gα
r,χ′ , it is natural

to study the variation of Gα in detail, which we will do now.
As we will see, we need to study GPB (V, V 0) with dimV 0 6= rankV .

Here is our convention. We denote by Gα
r,χ,a the moduli space of α-

stable GPBs (V, V 0) of rank r vector bundles V with χ(V ) = χ and
a-dimensional subspaces V 0 ⊂ V |p1+p2 . We will still use Gα

r,χ to denote

Gα
r,χ,r, i.e., when dimV 0 = rankV . Also, in the remainder of this paper

we will mostly be interested in the case r = 3 and χ = 4; for convenience
we will abbreviate Gα

3,7 to Gα and abbreviate Mα
3,4 to Mα.

We first investigate how Gα varies when α varies. Recall that a GPB
(V, V 0) ∈ Gα

r,χ,a on X is α-stable (α-semistable) if for any nontrivial
proper subsheaf F ⊂ V , we have

χ(F ) + (1 − α) dim V 0 ∩ F |p1+p2

r(F )
<

χ(V ) + (1 − α)a

r
(≤).
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Since both sides of the above inequality are linear, if a GPB (V, V 0) on
X is α1-stable but α2-unstable for some α1 < α2 in the interval [0, 1),
then we get the equality

(3.3)
χ(F ) + (1 − α) dim V 0 ∩ F |p1+p2

rank(F )
=

7 + (1 − α)3

3

for some α between α1 and α2. It is elementary to check that the
equality can hold only when α = 1/3 or 2/3. Hence Gα varies only at
α = 1/3 and 2/3 and thus it suffices to consider only the moduli spaces

G0+
, G1/2 and G1− .

The variation of Gα near α = 1/3 can be described as follows: the
equation (3.3) holds at α = 1/3 only if we have a subbundle F such
that

(3.4) rank(F ) = 2, χ(F ) = 4, dim V 0 ∩ F |p1+p2 = 3

or a subbundle L such that

(3.5) rank(L) = 1, χ(L) = 3, dimV 0 ∩ Lp1+p2 = 0.

Suppose a GPB (V, V 0) is 0+-stable but 1/2-unstable. Then V has a
subbundle L satisfying (3.5). The quotient bundle F = V/L is equipped
with a 3-dimensional subspace F 0 of F |p1+p2 that is the image of V 0. Let
L0 = 0. Then both GPBs (L, L0) and (F, F 0) are 1/3-stable with the
same parabolic slopes. Notice that the 1/3-semistability is equivalent

to the 1/3-stability for G
1/3
2,4,3 and G

1/3
1,3,0.

We now let A = G
1/3
2,4,3 × G

1/3
1,3,0. The previous argument shows that

there are maps

G0 − G1/2 η−

−−−−→ A
η+

←−−−− G1/2 − G0

that send (V, V 0) to pairs ((F, F 0), (L, L0)). We now show that there
are two vector bundles W− and W+ over A so that

(3.6) G0 − G1/2 = PW− and G1/2 − G0 = PW+.

Let (FG, LG) = ((F, F 0), (L, L0)) ∈ A be any pair. Let Ext1(FG, LG)
be the space of all extensions of GPBs

0 −→ LG −→ V G −→ FG −→ 0.

It is a C-vector space which fits into the long exact sequence

0 −→ Hom(FG, LG) −→ Hom(F, L) −→ Hom(F 0, L|p1+p2/L0)

−→ Ext1(FG, LG) −→ Ext1(F, L) −→ 0.

Thus we have

(η−)−1((FG, LG)) = PExt1(FG, LG).
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Since LG and FG are both 1/3-stable with the same slope,
Hom(FG, LG) = 0 by a standard argument. Hence by the Riemann-
Roch theorem, we have

dim Ext1(FG, LG) = −χ(Ext·(F, L)) + 6 = 2g.

(Recall g(X) = g − 1.) As to the base A, we have

dimG
1/3
2,4,3 = dim Ext1(FG, FG) = −χ(Ext·(F, F )) + 1 + 3 = 4g − 4

and

dimG
1/3
1,3,0 = dim Ext1(LG, LG) = −χ(Ext·(L, L)) + 1 = g − 1.

Thus dimA = 5g − 5 and

dim
(
G0 − G1/2

)
= (2g − 1) + (5g − 5) = 7g − 6.

Following the standard procedure, we pick a universal family FG =

(F ,F0) over G
1/3
2,4,3 × X+ and a universal family LG = (L,L0) over

G
1/3
1,3,0 × X+. We let πij be the projection from A × X = G

1/3
2,4,3 ×

G
1/3
1,3,0 ×X to the product of the i-th and the j-th factor. We then form

the locally free sheaves

W− = Ext1π12
(π∗

13F
G, π∗

23L
G) and W+ = Ext1π12

(π∗
23L

G, π∗
13F

G).

Note that fibers of W− and W+ over (FG, LG) are exactly Ext1(FG, LG)
and Ext1(LG, FG), respectively. Again, as in [14] one shows that

G0 − G1/2 = PW− and NPW−/G0
∼= π∗

−W+ ⊗OPW−(−1).

Here we use NA/B to denote the normal bundle of A ⊂ B and π− :

PW− → A is the projection. Notice that

dimM0 = dimG0 = (7g − 6) + dim Ext1(LG, FG) = 9g − 8

(the dimension of Ext1 is calculated below), which is exactly the dimen-
sion of the moduli of rank three vector bundles over a genus g curve.

Similarly, the vector space Ext1(LG, FG) that parameterize all exten-
sions

0 −→ FG −→ V G −→ LG −→ 0

satisfies a similar long exact sequence and by the stability of FG we
have

dim Ext1(LG, FG) = −χ(Ext·(L, F )) = 2g − 2.

Hence for the same reason,

G1/2 − G0 = PW+ and N
PW+/G1/2

∼= π∗
+W− ⊗OPW+(−1).

Again, following the work of Thaddeus [14], one checks that the blow-

up of G0 along PW− is isomorphic to the blow-up of G1/2 along PW+,
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extending the birational map G0− → G1/2. Since the details are rou-
tine, we omit them here. This is the explicit description of the flip
between G0 and G1/2.

3.3. Flip loci in Mα–First approach. In this subsection, we will
study the flip loci of M0 ∼bir M1/2 utilizing the fact that both are
moduli of stable vector bundles over X†.

Let Σ− ⊂ M0 and Σ+ ⊂ M1/2 be the indeterminacy loci of the above
birational map, namely the smallest closed subsets so that

(3.7) M0 − Σ− ∼=
−→M1/2 − Σ+

is an isomorphism. Our first approach to determine the set Σ± is to
characterize all members in Σ±.

Lemma 3.3. Let E ∈ Σ± be any member and F ⊂ E its 1/3∓-

destabilizing subsheaf. Then

(r0(F ), r†(F ), χ(F )) =

{
(1, 0, 1) if E ∈ Σ−,
(2, 3, 3) if E ∈ Σ+.

Proof. By Lemma 2.5, we must have r0(F ) = 1 or 2. In the case
r0(F ) = 1, r†(F ) and χ(F ) must satisfy the equation χ(F )− r†(F )/3 =
(4−1)/3, which is possible only if r†(F ) = 0 and χ(F ) = 1. To determine
if E is in Σ− or Σ+, we only need to compute

µ(F, 0) ∼ 1 < 4/3 and µ(F, 1/2) ∼ 1 > 4/3 − 1/2,

which implies that E 6∈ M1/2. Thus E ∈ Σ−.
Similarly, when r0(F ) = 2, the restraint is χ(F )/2 − r†(F )/6 = (4 −

1)/3, which has solution r†(F ) = 3 and χ(F ) = 3. A simple computation
shows that E ∈ Σ+. q.e.d.

We now give a more detailed description of pairs F ⊂ E ∈ Σ+ which

must have (r0(F ), r†(F ), χ(F )) = (2, 3, 3). We assume E is over X†
n+m.

As before, let q0, q1, . . . be the nodes of X†
n+m with q0 = p− in X. We

define r(F, qi) = dim{F |qi → E|qi}. Then since r0(F ) = 2, we must

have r(F, q0), r(F, qn) ≤ 2. On the other hand, let F |0D = ⊕k
1Li

5

be the decomposition given by Lemma 2.6. Then because r†(F ) = 3,
k ≥ 3. We claim that k = 3. First, because

4 ≥ r(F, q0) + r(F, qn) =
∑

r(Li, q0) + r(Li, qn),

and r(Li, q0) + r(Li, qn) ≥ 1, k > 4 is impossible. When k = 4, by
Lemma 3.3

(F |D)t.f. ∼= O[0,i1) ⊕O[0,i2) ⊕O(j1,n] ⊕O(j2,n].

5F |0D is the torsion free part of F |D.
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Clearly, this is possible only if χ(E|D) ≥ 4+4χ(OD), which contradicts
the regularity of E|D. Hence k = 3. In this case we must have

(F |D)t.f. ∼= O[0,i) ⊕O(j,n] ⊕O[0,n] or O[0,i) ⊕O(j,n] ⊕O
[k]
[0,n].

Now let the marked node of X†
n be ql. Since r(F, ql) > r(F, q0) and

r(F, qn), we must have 0 < l < n; thus n = 2 or 3. When n = 2, F |0D
must be one of the list

(3.8) O[0,2)⊕O(0,2]⊕O[0,2], O[0,2)⊕O(0,2]⊕O
[1]
[0,2], O[0,2)⊕O(0,2]⊕O

[2]
[0,2].

When n = 3, the α±-stable condition on E forces E|Di to have at
least one degree 1 factor and combined there are at most three degree
1 factors. Hence each E|Di has exactly one degree 1 factor. Following
this, it is easy to see that when q† = q1, F |0D must be one of

(3.9) O[0,2) ⊕O(0,3] ⊕O
[3]
[0,3], O[0,3) ⊕O(0,3] ⊕O

[2]
[0,3]

and when q† = q2, F |D must be one of

O[0,3) ⊕O(1,3] ⊕O
[1]
[0,3], O[0,3) ⊕O(0,3] ⊕O

[2]
[0,3].

To make our presentation easier to follow, we represent such sub-
sheaves by graphs. Here is the rule we will follow: for each Dk ⊂ D,
we will encounter invertible subsheaves σ : L → E|Dk

, where L is ei-
ther ODk

or ODk
(1). There are two cases, depending on whether the

image sheaf σ(L) lies in a factor ODk
or a factor ODk

(1) of E|Dk
. In

case σ(qk−1) = 0 (resp. 6= 0) we will attach a circle (resp. dot) to the
left end point of this line segment. We attach a circle or a dot to the
right end point of the line segment according to whether σ(qk) = 0 or
6= 0. Following this rule, we will represent a sheaf of OD-modules whose
restriction to each Dk is as mentioned by a chain of line segments, with
dots or circles attached. The following is the list of such subsheaves on
D = D[0,2]:

c s s1 s s c1 s s s s s s1 s s s1

Figure 1. These represent subsheaves O(0,2], O[0,2), O[0,2], O
[1]
[0,2] and

O
[2]
[0,2].

We next indicate how to represent a pair of sheaves F ⊂ E near

D ⊂ X†
2. Let U1 and U2 be small (analytic) disks containing p1 and

p2 ∈ X and let D̂ = U1 ∪ D ∪ U2 ⊂ X2 be an analytic neighborhood of
D ⊂ X2. The following are three examples of pairs F ⊂ E of subsheaves
in invertible sheaves E:
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s s s1? c s s1? s s c1?

Figure 2. The sheaves E in all three cases are invertible sheaves of OD̂-

modules. Their degrees along D1 and D2 are 1 and 0 (abbreviated O
[1]

D̂
)

in the first two cases and 0 and 1 (abbreviated O
[2]

D̂
) in the last case.

In the first case, F ∼= E and E/F = 0; in the second case, F = OD∪U2

and E/F ∼= OU1 ; in the last case, F = OU1∪D and E/F ∼= OU2 . The
three arrows indicate that the marked node of the first two examples is
q0 and of the last example is q1.

Accordingly, a pair F ⊂ E with rankE = 3 along D̂ will be repre-
sented by three horizontal lines, each representing a direct summand of
E|D̂. The following is such an example:

s s s1

c s s1

s s c1?

Figure 3. In this example, E|D̂ is a direct sum of (from top to bottom)

O
[2]

D̂
⊕ O

[1]

D̂
⊕ O

[1]

D̂
; the solid lines represent the subsheaf F |D̂ ⊂ E|D̂,

which is a direct sum of OU1∪D ⊂ O
[2]

D̂
, OD∪U2 ⊂ O

[1]

D̂
and O

[1]

D̂
⊂ O

[1]

D̂
.

By analyzing the possible structures of {F ⊂ E} ∈ Σ+ over X†
n+m,

we arrive at the following complete lists of such sheaves:

I+0
a :

s s s

c s s1

s s c1?
I+1
a :

s s s s

1

c s s s1

s s c c

1

?
I+2
a :

s s s s1

c c s s1

s s s c1?

I+0

b :
s s s1

c s s1

s s c1?
I+1

b :
s s s s1

c s s s1

s s s c1?
I+2

b :
s s s s1

c c s s1

s s s c1?

I+0
c :

s s s1

c s s1

s s c1?
I+1
c :

s s s s1

c s s s1

s s s c1?
I+2
c :

s s s s1

c s s s1

s s c c1?

Figure 4. This is the complete list of sheaves in Σ+. Note that I+i
c are

the reflections of I+i
b .

Lemma 3.4. The above is a complete list of sheaves in Σ+. The

sheaves of types I+j
i can be (small ) deformed to sheaves of type I+0

i .

Let I+a , I+b and I+c be the set of sheaves in Σ+ of types I+·
a , I+·

b and

I+·
c , respectively. Then I+a , I+b and I+c are three irreducible components

of Σ+. Finally, I+b ∩ I+c = ∅ while I+a ∩ I+b (resp. I+a ∩ I+c ) is the set

consisting of sheaves of type I+1
a = I+2

c (resp. I+2
a = I+2

b ).



80 Y.-H. KIEM & J. LI

Proof. We have already shown that sheaves of types in the above list
can not be 0-stable. On the other hand, it is easy to construct examples
of sheaves of each of the type in the list that are 1/2-stable. Hence,
all types in the list classifies some sheaves in Σ+. It remains to show

that this is a complete list. If {F ⊂ E} ∈ Σ+ is over X†
2, then we have

already shown that it must be from the list {I+0
a , I+0

b , I+0
c }. The case

where E is over X†
3 is similar, and will be omitted.

The statement that sheaves in I+1
a can be deformed to sheaves in I+0

a

is straightforward. Let E be such a sheaf, over X†
3 with q† = q1. Clearly,

by smoothing the node q3 ∈ X†
3 we can deform X†

3 to X†
2. Then it is

direct to see that we can deform E to E′ on X†
2 so that E′ has type I+0

a .
The proof of the remaining statements are similar. We omit the details
here since a direct construction will be given when we study the flips of
Mα later. q.e.d.

We next give the graphs of all types of sheaves in Σ−. Since the proof
is parallel, we will omit it here.

I−0
a :

c?
c

c

I−1
a :

c c?
c s1

c c

I−3
a :

c c c?
s c c1

c c c1

I−4
a :

s c c1 ?
c c s1

c c c

I−2
a :

c c1

c c

c c?
I−0

b :
c c?
c s1

c c1

I−1

b :
s c c?
c s s1

c c c1

I−2

b :
c c c?
c c s1

c c c1

I−3

b :
c c c1

c c s1

s c c1 ?
I−4

b :
c c c c1

c c c s1

s c c c1 ?
I−5

b :
c c c c1

c c s s1

s c c c1 ?

Figure 5. These are graphs of some of the sheaves in Σ−.

Proposition 3.5. The sheaves in Σ− can be divided into subsets:

1. I−i
a and I−i′

a where i = 0, . . . , 4. The graph I−i′
a is the reflection

of I−i
a along the vertical axis passing through the arrow;

2. I−i
b where i = 0, . . . , 5;

3. I−i
c , where i = 0, . . . , 5. Here the graph of I−i

c is the reflection of

I−i
b along the axis passing the arrow.

The set Σ− is an irreducible subvariety of M0.

3.4. Flip loci in Mα–Second approach. In this subsection we will
give an alternative description of the flip loci Σ± of M0 ∼bir M1/2,
based on the flip loci of the moduli of GPBs described before.

First let us describe Σ+. We know that M1/2 is the result of blowing-
up G1/2 along Y0 ∪ Z0 and then blowing-up the proper transform of
Y1 ∪Z1. It is obvious that Σ+ lies in the inverse image of G1/2 −G0 =
PW+. It is easy to see that the varieties Y0 and Z0 are disjoint from
PW+. Thus they do not contribute to the flip loci Σ+. Let (V, V 0) be
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a non-split extension of (L, 0) ∈ G
1/3
1,3,0 = M1,3(X) by (F, F 0) ∈ G

1/3
2,4,3.

Then (V, V 0) lies in Y1 (resp. Z1) if and only if F |p1 ⊂ F 0 (resp.
F |p2 ⊂ F 0). Let

Ξ1 = {
(
(F, F 0), (L, 0)

)
| F |p2 ⊂ F 0} and

Ξ2 = {
(
(F, F 0), (L, 0)

)
| F |p1 ⊂ F 0},

both subsets of A. Since Y1 is defined to be the loci where V 0 → V |p1

have dimensions at most one, Y1 ∩ PW+ is the preimage of Ξ1 ⊂ A,
which has codimension 2 in PW+ and the normal bundle NY1∩PW+/PW+

is the pull-back of the normal bundle NΞ1/A. A similar statement holds

for Z1 ∩ PW+ as well. To determine the preimage of PW+ in M1/2, we
need to know the normal bundle NY1/G1/2 , especially its restriction to

Y1∩PW+. Now let ξ ∈ Y1∩PW+ be any point lying over (FG, LG) ∈ A.
It is direct to see that

(3.10) TξG
1/2/

(
TξY1 + TξPW+

)
∼= Hom(F |p1 , L|p2)

canonically. Since Y1 ∩ PW+ has codimension two in PW+,

dim TξG
1/2/TξY1 = 4.

A similar picture holds for the intersection Z1 ∩ PW+.
Now let B be the blow-up of A along Ξ1 ∪ Ξ2 with Υ1 and Υ2 the

two exceptional divisors in A over Ξ1 and Ξ2 respectively. Then the
preimage of PW+ in M1/2 is the union of three smooth irreducible
varieties: the first is the blow-up of PW+ along PW+ ∩ (Y1 ∪ Z1),
which is PW+ ×A B, a projective bundle over B; the second is P3-
bundles over PW+×A Ξ1 and the third is P3-bundles over PW+×A Ξ2.
We denote these three components by I+a , I+b and I+c , respectively. Note
that
(3.11)
dimB = 5g − 5, dim I+a = 7g − 8 and dim I+b = dim I+c = 7g − 7.

The intersections are

I+a ∩ I+b = I+a ×B Υ1 and I+a ∩ I+c = I+a ×B Υ1.

We close this subsection by showing that the subsets I±· just defined
are exactly the corresponding subsets described in the previous sub-
section. Indeed, a general sheaf [E ] ∈ Ia defined in this section has
associated GPB EG fitting into the exact sequence

0 −→ (F, F 0) −→ (E, E0) −→ (L, 0) −→ 0

so that F 0∩F |p1 and F 0∩F |p2 are 1-dimensional. Hence the associated
subsheaf F ⊂ E has no OP1(1) when restricted to any rational compo-
nent in the base curve of E . This shows that the two Ia defined in the
above two subsections are identical. Now consider a general sheaf [E ] in
the component Ib defined in this section. Since its associated GPB EG
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is in Y1, it still fits into the above exact sequence with F |p2 ⊂ F 0. In
particular, there is a rational P1 in the base of E which is to the left
of the marked node so that F|P1 has a factor OP1(1). This shows that
the two definitions of Ib are identical.

3.5. Flipping M1/2. The goal of this subsection is to show that we can
flip M1/2 along I+a and then flip the resulting variety along the proper
transform of I+a ∪I+c . We will show in the next section that the resulting
variety is isomorphic to M0.

We begin with determining the normal bundles of I±• . In the follow-
ing we adopt the convention that for S ⊂ P we denote by TSP the
restriction of the tangent bundle TP to S.

Lemma 3.6. Let P, Q be smooth subvarieties of a nonsingular variety

R such that S , P ∩ Q is smooth. Let π : R̃ → R be the blowing-up

along Q and P̃ be the proper transform of P . Then we have an exact

sequence of vector bundles

0 −→ NP̃ /R̃ −→ π∗NP/R −→ π∗[TSR/(TSP + TSQ)] −→ 0.

Proof. It follows from Lemma 15.4 (i), (iv) in [3]. q.e.d.

Our first application of the lemma is a description of the normal
bundle to I+a . We put R = M1/2, P = PW+ and Q = Y1 ∪ Z1. Since

S , P ∩ Q is PW+ ×A (Ξ1 ∪ Ξ2), we have P̃ = PW̃+, where W̃+ is
the pull back of W+ to B, and where the latter is the blow-up of A

along Ξ1 ∪ Ξ2. To determine the normal bundle NP̃ /R̃, we need to find

the other two terms in the above exact sequence. The normal bundle
NP/R

∼= ρ∗W−(−1). Also a globalized version of the isomorphism (3.10)
shows that the quotient bundle TSR/(TSP + TSQ) is the pull-back of a
vector bundle on Ξ1 ∪ Ξ2, tensored with OPW+(−1). Thus by Lemma
3.6, the normal bundle N

I
+
a /M1/2 , which is NP̃ /R̃ in the statement of

lemma, becomes the pull-back of a vector bundle over B tensored with
O

PW̃+(−1). Hence by the standard theory in birational geometry we

can flip M1/2 along I+a . Let M1 be the result of this flip, let Ĩa be the

flipped loci and let Ĩb and Ĩc be the proper transforms of Ib and Ic.
Our next step is to show that we can flip M1 along Ĩb ∪ Ĩc. We

begin with a detailed description of Ĩb. As mentioned before, I+a ∩ I+b
is the projective bundle PΥ1W

+ while I+b is a P3-bundle over PΞ1W
+.

To proceed, we need a more detailed description of I+b . Let FG =

(F ,F0) and LG = (L, 0) be the restrictions to Ξ1 of the pull-backs of

the universal families of G
1/3
2,4,3 and G

1/3
1,3,0, respectively. Since Fξ|p2 ⊂ F0

ξ

for each ξ ∈ Ξ1, there is a tautological line subbundle ℓ ⊂ F|p1 so that
for each ξ

F0
ξ = Fξ|p2 ⊕ ℓξ.
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Then the normal bundle NY1/G to Y1 in G , G1/2, restricting to

PΞ1W
+ ⊂ G, is

NY1/G|PΞ1
W+ = Hom

(
ψ∗

1F|p2 , ψ
∗
1F|p1/ℓ ⊕ ψ∗

1L|p1(−1)
)

where ψ1 :PΞ1W
+ → Ξ1 is the projection and the sheaf ψ∗

1L|p1 is twisted
by OPW+(−1) because the universal GPB over PΞ1W

+ is given by

0 −→ ψ∗
1F

G −→ EG −→ ψ∗
1L

G ⊗OPW+(−1) −→ 0.

Therefore,

(3.12) I+b = P
(
ψ∗

1F|∨p2
⊗ (ψ∗

1F|p1/ℓ ⊕ ψ∗
1L|p1(−1))

)
,

as a P3-bundle over PΞ1W
+, which itself is a smooth subvariety of M1/2.

Based on this description, it is easy to see that I+a ∩ I+b is the sub-
bundle

I+a ∩ I+b = P
(
ψ∗

1(F|∨p2
⊗ (F|p1/ℓ))

)
= P

(
F|∨p2

⊗F|p1/ℓ
)
×Ξ1 PΞ1W

+.

Let
PΞ1W

+ ×Ξ1 P(F|∨p2
)

π2−−−−→ PF|∨p2yπ1

yψ2

PΞ1W
+ ψ1

−−−−→ Ξ1

be the projections and let K be the tautological line subbundle of F|∨p2

on PF|∨p2
. Then after we blow up M1/2 along I+a , the proper transform

Eb is the blowing up of I+b along I+a ∩ I+b :

(3.13) Eb = P
(
π∗

1ψ
∗
1F|∨p2

⊗ (F|p1/ℓ) ⊕ π∗
2K ⊗ π∗

2ψ
∗
2L|p1 ⊗ π∗

1O(−1)
)
,

as a P2-bundle over PΞ1W
+ ×Ξ1 PF|∨p2

. Inside this P2-bundle there is
a subbundle

P
(
π∗

1ψ
∗
1F|∨p2

⊗ (F|p1/ℓ)
)

over PW+ ×Ξ1 PF|∨p2
,

which is the intersection Ea ∩ Eb. Viewed as a bundle over PF|∨p2
, we

have

Ea ∩ Eb =
(
PW+ ×Ξ1 PF|∨p2

)
×Ξ1 PF|∨p2

.

The proper transform Ĩb ⊂ M1 is then the contraction of Ea ∩Eb along
all PW+ factors, which is a bundle over PF|∨p2

. We claim that Ĩb is a
projective bundle over PF|∨p2

. Indeed, Eb, considered as a bundle over

PF|∨p2
, has a subbundle PΞ1W

+ ×Ξ1 PF|∨p2
. Further, using the explicit

expression (3.13) its normal bundle in Eb along each slice

PW+
ξ × η ⊂ PΞ1W

+ ×Ξ1 PF|∨p2
,

where η ∈ PF|∨p2
is over ξ ∈ Ξ1, is isomorphic to O

PW+
ξ

(1)⊕2. Hence Ĩb

is a projective bundle over PF|∨p2
. By a moment of thought, one sees
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that

Ĩb = PW+ where W+ = K∨ ⊗ ψ∗
2(L|

∨
p1

⊗F|∨p2
⊗F|p1/ℓ) ⊕ ψ∗

2W
+.

Let π : Ĩb = PW+ → PF|∨p2
be the projection.

Lemma 3.7. There is a vector bundle W− over PF|∨p2
so that the

normal bundle N
Ĩb/M1

is isomorphic to π∗W− ⊗OPW+(−1). The same

conclusion holds for Ĩc as well.

As a corollary, we can flip M1 along Ĩb ∪ Ĩc to obtain a new smooth
variety M2.

Proof. We continue to use the notation developed earlier. First, the
exceptional divisor PNY1/G of the blowing up of G = G1/2 is a fiber

bundle over Y1. Because I+b = PNY1/G ×Y1 (Y1 ∩ PW+), we have the
exact sequence of vector bundles

0 −→ N
I
+
b /PNY1/G

−→ N
I
+
b /M1/2 −→ N

PNY1/G/M1/2 −→ 0

and the identity

N
I
+
b /PNY1/G

= π∗NY∩PW+/Y1
,

where
π : PNY1/G ×Y1 (Y1 ∩ PW+) → Y1 ∩ PW+

is the projection. Let η ∈ PF|∨p2
be any point over ξ ∈ Ξ1. Then based

on the description (3.12) η defines naturally a subvariety

Pη , P
(
0 ⊕ η ⊗ Lξ|p1(−1)

)
⊂ I+b

which is a section of

I+b ×Ξ1 ξ −→ PΞ1W
+ ×Ξ1 ξ , PW+

ξ .

Hence Pη is isomorphic to PW+
ξ .

We claim that the normal bundle N
I
+
b /M1/2 restricting to Pη is isomor-

phic to a vector space V tensored by OPη(−1). Indeed, since the normal
bundle N

PNY1/G/M1/2 is the tautological sub-line bundle of the pull back

of NY1/G over PNY1/G, its restriction to Pη = P
(
0 ⊕ η ⊗Lξ|p1(−1)

)
is

isomorphic to OPη(−1). As to the term NY1∩PW+/Y1
, it is clear that

its restriction to PW+
ξ is isomorphic to V ⊗O(−1) for a linear subspace

V ⊂ Ext1(FG
ξ ,LG

ξ ). Hence N
I
+
b /PNY1/G

|Pη , and therefore N
I
+
b /M1/2 |Pη ,

are of the forms V ′ ⊗OPη(−1) for some vector spaces V ′.

Finally, since the flip loci of M1/2 ∼ M1 are away from ι(PW+
ξ ),

N
Ĩb/M1

|Pη
∼= N

I
+
b /M1/2 |Pη .

By a theorem in [9], the restriction of N
Ĩb/M1

to the fiber of PW+

over η ∈ PF|∨p2
is of the form W ′ ⊗ O(−1). Because this is true for all
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η ∈ PF|∨p2
, there must be a vector bundle W− satisfying the requirement

of the lemma. The case for Ĩc is exactly the same and will be omitted.
q.e.d.

4. The isomorphism of the two flips

The goal of this section is to prove the following.

Proposition 4.1. The birational M0 ∼ M1/2 induces an isomor-

phism M0 ∼= M2.

We first briefly outline the strategy. As argued in Section 3, we can
flip M1/2 along I+a to obtain a new variety M1. Let Ĩa, etc., be the
flipped loci of I+a , etc. Then Lemma 3.7 tells us that we can flip M1

again along Ĩb and Ĩc to obtain a new variety M2. The key is to show
that the birational map M2 ∼ M0 extends to a morphism M2 → M0,
because it is an isomorphism away from a subset of codimension at least
two, it is an isomorphism.

We now list the main steps in constructing the morphism M2 → M0.
We first blow up M1/2 along I+a to obtain the variety M̃1, and then

contract its exceptional divisor to get the flip M1. Let Ĩb and Ĩc be the
flipped loci of I+b and I+c . We then blow up M1 along Ĩa∪ Ĩc and contract
the exceptional divisor to get the second flip M2, as shown below. It
is easy to see that if we blow up M̃1 along π−1

2 (Ĩb ∪ Ĩc), the resulting

variety M̃ fits into the diagram below. The first main technical part
of the proof is to show that the birational maps extend to a morphism
φ :M̃ → M0. This is achieved by first picking a (local) universal family

of M1/2 and performing an elementary modification to it to obtain a
family on M̃1, and then performing another elementary modification to
the new family to get a family over M̃. We will show that the latter is
a family of 0+-stable vector bundles, and thus induces a morphism Ψ,
extending the birational map.

M1/2 M1 M2

©©¼
Ψ1 HHj

Ψ2 ©©¼
Ψ3 HHj

Ψ4
M̃1 M̃2

©©¼
Ψ̃1 HHj

Ψ̃2
M̃ M0-Ψ

In the end, we will show that Ψ descends to a morphism M2 → M0, as
desired.

4.1. The family over M̃1. Our first step is to construct the (local)

tautological family over M̃1. Let ξ ∈ I+a ∩ I+b be any point and let U ⊂

M1/2 − Ic be an open subset containing ξ. Without loss of generality,
we can assume that the moduli space M1/2 admits a universal family
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E over U that is a sheaf over a family of nodal curves W over U. The
desired family over M̃ will be the result of an elementary modification
to the pull back of E to M̃.

To this end, we first need to construct the associated family W̃ and
Wst over M̃1. Let M̃1 be the blow up of M1/2 along I+a , let Ũ ⊂ M̃1

be the pre-image of U ⊂ M1/2, and let W̄ = W ×U Ũ be the pull back
family. The family W̄ is singular, and hence needs to be smoothed first.
We now set up the notation for the singular loci of the fibers of W/U.
Let ξ ∈ U and W/U be as before, and let N ⊂ W be the singular
loci of the fibers of W/U. Then N ∩ Wξ consists of four nodes: q0,

q1, q† = q2 and q3 of Wξ. By shrinking U if necessary, we can assume
that N is a disjoint union of four varieties N0, . . . ,N3 indexed so that
Ni ∩ Wξ = qi. Clearly, N2 is a section over U while all others are
codimension two smooth subvarieties of W. Let Di ⊂ U be the image
of Ni under the projection W → U. Then I+a ∩ U ⊂ D1 ∩ D3 while
(I+a ∩ I+b ) ∩ U = I+a ∩ D0.

Next, let Ea ⊂ M̃1 be the exceptional divisor of Ψ1, let D̃i ⊂ Ũ be
the proper transform of Di and let N̄i = Ni×UŨ ⊂ W̄ be the associated
subscheme. Since D0 intersects transversally with I+a , the total family

W̄ is smooth along N̄0. Obviously, N̄2 remains a section over Ũ. As to
N̄1 and N̄3, first of all, W̄ remains smooth along N̄1 (resp. N̄3) away

from P̄1 , N̄1|Ea∩D̃1
(resp. P̄3 , N̄3|Ea∩D̃3

). Secondly, the normal

slice to P̄1 and P̄3 in W̄ is isomorphic to the singularity of z1z2 = z3z4.
Hence we can find a small resolution of the singularities of W̄ to obtain
a new family W̃. It is known that the small resolution is obtained by
first blowing up the singular loci of W̄ and then contracting one P1

factor of the exceptional divisors6 . Since there are two P1 factors, to
proceed we need to specify our choice of contraction. Let P̃1 and P̃3 be
the exceptional loci of W̃ → W̄, which are P1-bundles over P̄1 and P̄3

respectively. We next pick a lift η ∈ Ea ∩ D̃1 ∩ D̃3 of ξ ∈ I+a ∩ I+b and

consider the fiber W̃η of W̃ over η. As it stands, it contains five rational
curves, indexed by R1, R1+, R2, R3 and R3+ so that the first intersects
with X at p1 while any two consecutive R•’s insect at one point. The
small resolution is the one so that R1+ = W̃η ∩ P̃1 and R3+ = W̃η ∩ P̃3,

and that if we let S ⊂ D̃0 ∩ D̃1 ∩ D̃3 be a smooth curve which contains
η and is transversal to Ea, then the family W̃S = W̃ ×

Ũ
S smooth the

nodes q1+ = R1+∩R2 and q3− = R3∩R3+ of the central fiber W̃η. (See
the figure below.)

6See [8, §1] for details.
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££
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q0

q1

q1+

q2

q3−

q3

££

££

q0

q1

q1+

q2

q3−

q3

Figure 6. The left one represents the total family over S: the vertical
chain of lines is the central fiber W̃η with each corner representing a
node, as labelled, the top and the bottom lines representing the main
component X while others are rational curves. The two dotted lines
represent the two P1 that are contracted under W̃η → Wη, and the
horizontal lines show that the associated nodes are not smoothed in
the family S. The right figure represents the total space over a curve
η ∈ S′ ⊂ D̃1 ∩ D̃3, S′ ⊂ Ea and is transversal to D̃0.

The family Wst is a contraction of W̃. Let R̃2 and R̃3 be the two
irreducible components of W̃ ×Ũ Ea that contain R2 and R3 ⊂ W̃η

respectively. It is easy to see that each is isomorphic to (Ea ∩ Ũ) × P1

and its normal bundle in W̃ has degree −1 along its fibers. Therefore,
we can contract W̃ along R̃2 and R̃3 to obtain a new family of nodal
curves. We denote this new family by Wst with projection

pr : W̃ −→ W.

Next we investigate the associated families of sheaves over W̃ and
Wst. Let E be the universal sheaf over W. By our description of the
sheaves in I+a , for each ζ ∈ I+a ∩ U the sheaf Eζ = E ⊗OW

OWζ
has

a canonical subsheaf Fζ ⊂ Eζ and the associated quotient sheaf Lζ =
Eζ/Fζ . Let Zζ ⊂ Wζ be the support of Lζ . Then Lζ is a rank one
locally free sheaf of OZζ

-modules. Further, it is direct to check that the
union ∪ζ∈U∩I

+
a
Zζ forms a smooth subvariety of W and is the irreducible

component of W ×U (I+a ∩ U) that contains X × (I+a ∩ U). We denote
this by Z with inclusion ι :Z ⊂ W. Further, there is a locally free sheaf
L of OZ -modules and a quotient sheaf homomorphism E → ι∗L so that
its restriction to each fiber Wζ is exactly the pair Eζ → Lζ mentioned
before.

Now we are ready to perform an elementary modification on the pull
back sheaf over W̃. Let Z̃ ⊂ W̃ be the pre-image of Z ⊂ W under
the projection W̃ → W. By our choice of the small resolution, Z̃ is
a smooth divisor of W̃ and the total space W̃ ×

Ũ
(Ea ∩ Ũ) is a union
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of three irreducible components: R̃2, R̃3 and Z̃. We consider the pull-
back family Ẽ , p̃r∗E and the associated surjective homomorphism
Ẽ → L̃ , p̃r∗ι∗L. Let Ẽ′ be the kernel of this homomorphism.

Lemma 4.2. The sheaf Ẽ′ is a locally free sheaf of OW̃-modules.

Further, for any η ∈ Ea ∩ Ũ, the restriction of Ẽ′ to R̃2 ×
Ũ

η and

R̃3 ×Ũ
η ∼= P1 is isomorphic to O⊕3

P1 .

Proof. Since Z̃ ⊂ W̃ is a smooth divisor and L̃ is an invertible sheaf
of OZ̃ -modules, the kernel of p̃r∗E → L̃ is locally free.

We now prove the second part. We first consider the case η ∈ Ea ∩
D̃1 ∩ D̃3 in detail. Let S ⊂ D̃1 ∩ D̃3 be a smooth curve that contains η
and is transversal to Ea. Since D̃0 is transversal to Ea, we can assume
S ⊂ D̃0 (see Figure 6). Then the irreducible component V1 of W̃S

contains R1+ and R2 as (−1)-curves. Similarly, R3 and R3+ are (−1)-
curves in the irreducible component V2 as shown in Figure 6. Now let
ẼS , Ẽ ⊗OW̃

OW̃S
be the pull-back family. As before, we denote by

Ẽη → L̃η the restriction of Ẽ → L̃ to W̃η. Since Ea is a smooth divisor,

the sheaf Ẽ′
η , Ẽ′|W̃η

is canonically isomorphic to ker{ẼS → L̃η}|W̃η
.

Following our convention, the pair Ẽη → L̃η can be represented by the
left graph in Figure 7 below.

s s s s s s1

c c c s s s1

s s s s c c1?

c c c c c c1

s s c c c c1

c c c c s s1?

c c c c1

s c c c1

c c c s1?

Figure 7. The last graph represents the type I−5
b in Figure 5. The

quotient sheaf L̃η is represented by the dotted lines.

We now show that the middle one represents the sheaf Ẽ′
η. First,

since ẼS fits into the exact sequence

0 −→ Ẽ′
S −→ ẼS −→ L̃η −→ 0,

after tensoring with OW̃η
, we obtain

0 −→ L̃η −→ Ẽ′
η −→ Ẽη −→ L̃η −→ 0.

Because Ẽ′
η is locally free, Ẽ′

η must be of the type shown in the middle

figure above. Here we used the fact that the total space W̃S is smooth
at the non-locally free loci of L̃η (as sheaves of OW̃η

-modules) and the

curves R2+ and R3+ are (−1)-curves. Consequently, the restriction of

Ẽ′
η to the two rational curves R2 and R3 are of the firm O⊕3

P1 .

The study of the sheaves E′
η for η ∈ Ea belonging to D̃1−D̃3, D̃3−D̃1

and in the complement of D̃1 ∪ D̃3 are similar and will be omitted.
q.e.d.
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For completeness, we list their stable modifications as follows.

s s s s1

c s s s1

s s c c1?

c c c c1

s c c c1

c c c s?
I−0

b :
c c1

s c1

c c?

s s s s s1

c c c s s1

s s s s c1?

c c c c c1

s s c c c1

c c c c c?
I−1

b :
c c c1

s s c1

c c c?

s s s s s1

c c s s s1

s s s c c1?

c c c c c1

s c c c c1

c c c c s1?
I−3

b :
c c c1

s c c1

c c s1?

Figure 8. The top, middle and the bottom figures represent the process
of stable modifications of Eη for η in the complement of D̃1 ∪ D̃3, in

D̃3 − D̃1 and in D̃1 − D̃3 respectively.

We now construct the stable modification of Ẽ. We first contract W̃
along R̃2 and R̃3. Since the restriction of Ẽ′ to fibers of R̃2 and R̃3 are
isomorphic to O⊕3

P1 , there is a unique sheaf Est on Wst whose pull back

to W̃ is Ẽ′. The sheaf Est is called the stable modification of Ẽ. The
restriction of Ẽst to fibers over Ea are represented by the right figures
in Figure 7.

In the following, for any η ∈ Ea we denote by Est
η the restriction of

Est to Wst
η . Note that by applying the same construction to different

open subsets U, we can construct sheaves Est
η for all η ∈ Ea, and it is

independent of the choices of U.
Let Eb,Ec ⊂ M̃1 be the proper transforms of I+b and I+c .

Lemma 4.3. The sheaves Est
η are 0+-stable for all η ∈ Ea −Eb ∪Ec.

Proof. Let η ∈ Ea be any closed point with Est
η the associated sheaf

on X†
n,m for some appropriate integers n and m. Let π† :Xn,m → X†

n,m

be the desingularization of the marked node and let π :Xn,m → X be the

contraction of all rational curves. Then Eη = π∗π
†∗Est

η is a rank three

locally free sheaf of OX -modules with a GPB structure E0
η ⊂ Eη|p1+p2

as described in Section 2. Furthermore, the subsheaf Lη ⊂ Est
η and

the quotient sheaf Est
η → Fη defines a sub and a quotient GPB bundle,

LG
η ⊂ EG

η and EG
η → FG

η . According to Proposition 2.4, Est
η is 0-stable

if and only if EG
η is 0-stable, which is the case when the extension

(4.1) 0 −→ LG −→ EG
η −→ FG −→ 0
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is non-trivial. Since EG
η is never FG

η ⊕LG
η when Est

η is of types I−0
b and

I−1
b , Est

η could be 0+-unstable only when it was of type I−3
b or of I−5

b .
(Here recall that there are no strictly 0-semistable vector bundles.)

We now demonstrate that η must belong to Ea∩Eb when Est
η is of type

I−3
b and its associated EG

η is a split extension. Let S ⊂ D̃0 ∩ D̃3 − D̃1

be a smooth curve containing η and transversal to Ea, with W̃S the
restriction of W̃ over S. Let X × S ⊂ W̃S be the main irreducible
component with ι :X × η ⊂ X × S the central fiber. Let ẼS and Ẽ′

S be

the associated sheaf on W̃S constructed before (Figure 7). Then the fact
that Est

η is 0-unstable, which is the case when (4.1) splits, implies that

there must be a surjective sheaf homomorphism Ẽ′
S → ι∗L(−p1 − p2) so

that the composite

(4.2) L̃η −→ Ẽ′
S |W̃η

−→ ι∗L(−p1 − p2)

is surjective. Let L̃2 be the sheaf of OW̃S
-modules that fits into the

commutative diagram with the lower sequence exact:

(4.3)

0 −−−−→ Ẽ′
S −−−−→ ẼS −−−−→ L̃η −−−−→ 0

y
y

∥∥∥

0 −−−−→ ι∗L(−p1 − p2) −−−−→ L̃2 −−−−→ L̃η −−−−→ 0

Now let X2 = X ×Speck[t]/(t2) and let ι2 :X2 → W̃S be the immersion

extending ι : X → W̃S . Since (4.3) is exact while the composition of

(4.2) is surjective, the pull-back sheaf ι∗2L̃2 is an invertible sheaf of OX2-
modules and is an extension of ι∗L(−p1−p2) by ι∗L(−p1−p2). Now let

S′ ⊂ M1/2 be the image of S ⊂ M̃1 under the projection M̃1 → M1/2

with η′ ∈ S′ the image of η ∈ S. Since η ∈ Ea∩Eb, η′ belongs to I+a ∩I+b .

A direct check shows that the existence of ẼS → L̃2 implies that the
tangent Tη′S′ must be contained in the span of the tangent spaces

(4.4) Tη′I+a + Tη′I+b ⊂ Tη′M1/2.

Since Ea is the blown-up locus of I+a while Eb is the proper transform
of I+b , the curve S must specialize to a point in the intersection Ea∩Eb,
and hence η ∈ Ea ∩ Eb. This proves the claim.

In case Est
η is of type I−5

b , a similar argument shows that (4.4) also

holds. But then since those Est
η of type I−5

b are elementary modification

along direction inside D̃1 ∩ D̃3, it must be inside Tη′I+a . But this is

impossible, which proves that if Est
η is of type I−5

b then it must be 0-
stable. q.e.d.

4.2. The family over M̃. In this subsection, we will construct a family
of sheaves over M̃ after performing an elementary modification to the
family constructed in the previous subsection, and we will then show
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that all members of this family are 0-stable. This way we can prove the
proposition by applying the universal property of the moduli space M0:

Proposition 4.4. The birational map M̃−→ M0 extends to a mor-

phism M̃ → M0.

We now prove this proposition. We will sketch the steps that are par-
allel to the proof in the previous subsection and provide details when
called for. As mentioned before, the main strategy is to pull back the
(local) tautological families over M̃1 to M̃, find a small resolution of

the base variety of these families over M̃, and then perform an elemen-
tary modification to these new families. The members of the resulting
families are 0+-stable, and hence induce a morphism M̃ → M0.

We begin with any analytic neighborhood Ũ ⊂ M̃1 − Ec and the
tautological family Est on W̃ over Ũ that was constructed in the previous
subsection. When ξ ∈ Eb is away from Ea, Est

ξ must be of the type I+0
b or

I+1
b , as shown in Figure 4, and accordingly it has an associated quotient

sheaf Lξ and subsheaf Fξ that fits into the exact sequence

(4.5) 0 −→ Fξ −→ Est
ξ −→ Lξ −→ 0.

Note that sheaves of types I+2
b are in Ia ∩ Ib, and thus won’t appear

in Eb − Eb. If ξ ∈ Eb ∩ Ea, then it is of type I−3
b with the additional

property that the associated GPB short exact sequence of Est
ξ splits, as

proved in Lemma 4.3. We now show that we can pick a new associated
quotient sheaf of Est

ξ so as to make it of type I+0
b as well: since Est

ξ is of

type I−3
b , it is a sheaf on X†

1,1 and fits into the exact sequence

0 −→ Lξ −→ Est
ξ −→ Fξ −→ 0,

according to the proof of Lemma 4.2. Because the associated GPB
splits, if we let Lξ be the cokernel of OD1(−1) ⊕ OD2(−1) → Lξ we
obtain a unique surjective

(4.6) Est
ξ −→ Lξ

so that the composite Lξ → Est
ξ → Lξ is exactly the defining quotient

homomorphism Lξ → Lξ. Let Fξ be the kernel of Est
ξ → Lξ. Then Est

ξ

fits into the exact sequence (4.5) as well, and the latter will be called
the associated exact sequence of Est

ξ while the sheaves Fξ and Lξ will

be called the associated sub and quotient sheaves of Est
ξ . Clearly, (4.5)

makes such Est
ξ a sheaf of type I+0

b .

As before, we can make the quotients Est
ξ → Lξ into a family of

quotients. Let Z̃ξ ⊂ W̃ξ be the support of Lξ; Z̃ξ is X ⊂ X†
1,1 when Est

ξ

is of type I+0
b , and is X1,0 ⊂ X†

2,1 when Est
ξ is of type I+1

b . The union
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Z̃ = Suppξ∈Eb
Z̃ξ is an irreducible variety and there is an invertible

sheaf L of OZ̃ -modules and a surjective homomorphism

(4.7) Est −→ ι∗L,

where ι : Z̃ →֒ W̃ is the inclusion, so that its restriction to each W̃ξ is
exactly the associated homomorphism in (4.5).

Our next step is to pull back the family Est to a family over M̃

and perform elementary modification to it. Let Ṽ be Ψ̃−1
1 (Ũ), which

is the blowing up of Ũ along Eb; let π : Ṽ → Ũ be the projection;
let Ẽb be the exceptional divisor and let Ẽa be the proper transform
of Ea. Let X = W̃ ×

Ũ
Ṽ be the pull-back family over Ṽ and let

Y = Z̃ ×
Ũ

Ṽ be the associated subvariety of X . As before, the total
space of X is not smooth, and we need to small resolve its singularity.
For the moment, we consider the case where all sheaves over Ũ are of
types I+0

b . Hence, by shrinking W̃ if necessary we can assume that the

singular locus of the fibers of W̃/Ũ consists of three smooth connected
codimension two subvarieties: N0, N1 and N2 that are ordered so that
for ξ ∈ Eb the intersection W̃ξ∩Ni is the i-th nodal point of W̃ξ. Now let

Ñi = Ni×Ũ
Ṽ, let Di ⊂ Ũ be the image divisor of Ni under X → Ũ and

let D̃i ⊂ Ṽ be the proper transform of D̃i. Then Ñ1 are the marked
nodes of the whole family X , that X smooth along Ñ0 except over
those ξ ∈ D̃0 ∩ Ẽb and smooth along Ñ2 except over those ξ ∈ D̃2 ∩ Ẽb.
Again, we blow up X along Ñ0 ×Ṽ

(D̃1 ∩ Ẽb) and Ñ2 ×Ṽ
(D̃3 ∩ Ẽb); we

then contract one P1-factor from each of the two exceptional divisors to
obtain a family of nodal curves X̃ . As before, we choose the contraction
so that if we let Ỹ ⊂ X̃ be the proper transform of Y ⊂ X , and let D̃0

and D̃2 be the two exceptional loci of X̃ → X , then the intersections
Ỹ ∩ D̃0 and Ỹ ∩ D̃2 are finite over Ṽ; namely they contain no curves
that lie inside a single fiber X̃ξ over some ξ ∈ Ṽ.

We now pull back the family Est to X̃ and perform an elementary
modification. Let p : X̃ → W̃ be the projection, and let

(4.8) p∗Est → p∗ι∗L

be the pull-back of the pair (4.7). Then the kernel Ẽ of the homomor-
phism (4.8) is the modification we seek for.

It remains to prove that all members in Ẽ are 0+-stable. Let ξ ∈ Eb

be any point and let η ∈ Ẽb be any of its lifts. Since ξ ∈ D0 ∩ D2, η
can possibly be in D̃0 ∩ D̃2, in D̃0 − D̃2, in D̃2 − D̃0 or is away from
D̃0 ∪ D̃2. Now we investigate in detail the sheaf Ẽη when η ∈ D̃0 ∩ D̃2.

First, the curve X̃η is X†
2,2 with X̃η → Xη the contraction of the first

and the last rational curves; when ηt is curve in Ṽ with η0 = η and is
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normal to Ẽb, the family X̃ηt smooths the first7 and the third node of

X̃η. The pull back

(p∗Ẽ)η −→ (p∗ι∗L)η

is represented by the left graph below with (p∗ι∗L)η represented by the

dotted lines. The modified sheaf Ẽη is represented by the middle graph.

After contracting the third rational curve in X̃η we obtain a sheaf shown

in the right graph that is of type I−4
b :

s s s s s1

c c s s s1

s s s c c1? ?c c c c s1

s c c c c1

c c c c c1

c c c s1?
s c c c1

c c c c1

Figure 9. The graphs represent the sheaf over η ∈ D̃0 ∩ D̃2 before
the modification, after the modification and after the stabilization. The
resulting sheaf is of type I−4

b .

We will call the sheaf obtained after contracting the third rational
curve the stable modification of (p∗Est)η, and will denote it by Ẽst

η .

We can derive the other stable modifications Ẽst
η similarly and will

give the graphs sketching their respective process as follows:

s s s c1?
c c s s1

s s s s1

c c c c?
s c c c1

c c c c1

c c c?
s c c1

c c c1

s s c c1?
c s s s1

s s s s1

?c c c s1

c c c c

c c c c1

?c c s1

c c c

c c c1

?s s c1

c s s1

s s s1

?c c c

c c c

c c c1

?c c

c c

c c1

Figure 10. From top to bottom, they represent the derivation of Ẽst
η

in case η is in η ∈ D̃2 − D̃0, in D̃0 − D̃2 and is away from D̃0 ∪ D̃2.

Exactly as in the case before, we can contract all those rational curves
that are immediately to the right of the marked nodes in X̃η for all

η ∈ Ẽb simultaneously and obtain a new family X̃ st that has smooth
total space. Let ϕ : X̃ → X̃ st be the stabilization; then Ẽst = ϕ∗Ẽ is
locally free and the sheaves Ẽst

η for η ∈ Eb are exactly the sheaves shown
in the right column in Figures 9 and 10.

Lemma 4.5. All stable modifications Ẽst
η derived so far are 0-stable.

7Recall that our convention is to label the nodes from the 0-th to the 3-rd if there
are four nodes.
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Proof. We will only sketch the proof here, since the details are exactly
the same as in the proof of Lemma 4.3. First, Ẽη could be 0-unstable
only if its associated GPB were split. This is possible only when it is
of type I−4

b . Because η ∈ D̃0 ∩ D̃2, the split of its associated GPB

implies that the tangent in TξM̃1 associated to η lies in TξEb, which is
impossible. Thus the associated GPB is irreducible and hence all stable
modification derived are 0-stable. q.e.d.

We now consider the case where Est
ξ is of type I+1

b . Let η ∈ Ẽb be

a lift of ξ, let X/Ṽ be an analytic neighborhood of η as before and let

X̃ → X be the small resolution constructed according to a similar rule.
We will have similar quotient family p∗Est → p∗ι∗L, and we will take
the Ẽ be the kernel of this homomorphism. We still need to determine
the types of members in Ẽ. As before, we let N0, . . . ,N3 be the loci of
singular points of the fibers of W/Ũ, let D0, . . . ,D3 be their respective

images in Ũ and let D̃0, . . . , D̃3 be their proper transforms in Ṽ. The
resulting type of the stable modification will depend on whether η is in
D̃0 ∩ D̃2, in D̃2 − D̃0, in D̃0 − D̃2 or is away from D̃0 ∪ D̃2. We will
show their respective stable modification by providing their associated
graphes as before:

?s s s s c c1

c c s s s s1

s s s s s s1

?c c c c c s1

s c c c c c1

c c c c c s1

?c c c s1

s c c c1

c c c c1

?s s s s c1

c c s s s1

s s s s s1

?c c c c c

s c c c c1

c c c c c1

c c c?
s c c1

c c c1

?s s s c c1

c s s s s1

s s s s s1

?c c c c s1

c c c c c

c c c c c1

?c c s1

c c c

c c c1

?s s s c1

c s s s1

s s s s1

?c c c c

c c c c

c c c c1

?c c

c c

c c1

Figure 11. The graphs represent the stable modifications of type I+1
b

sheaves over D̃0∩D̃2, over D̃2−D̃0, over D̃0−D̃2 or away from D̃0∪D̃2.

Lemma 4.6. Let Ẽ over X̃ be the result of the stable elementary

modification of p∗Est; then all its members are weakly 0-stable and hence

their stabilization are 0-stable.

Proof. The proof is similar to the argument before and will be omit-
ted. q.e.d.

The family Ẽst over each Ṽ induces a morphism Ṽ → M0 that is
the local extension of the birational M̃− → M0. Since both M̃ and
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M0 are smooth, the local extension patch together to form a morphism
M̃ → M0, as desired.

4.3. The existence of the descent M̃ → M0. In this subsection,
we will show that the morphism Ψ:M̃ → M0 descends to a morphism
M2 → M0.

We begin with a brief outline of our strategy. First, we know that the
flipped loci Ĩb is PW+ and is the result of Eb after contracting Ea ∩Eb,
and that the exceptional divisor of M̃2 → M1 over Ĩb is PW+ ×PF|∨p2

PW−. Since M2 is a flip of M1, the projection Ψ4 is the result of
contracting all fibers of PW+. On the other hand, by our description
of the contraction M̃1 → M1, the exceptional divisor of M̃ → M̃1

over Ψ−1
3 (Ĩb) is Eb ×M1 PW−. Since both M2 and M0 are smooth and

since Eb is proper, to show that Ψ descends to a morphism M2 → M0

it suffices to show that there is an open subset U ⊂ Eb and an open
V ⊂ PW− so that the restriction of Ψ to U×M1 V is a composition of
the second projection U ×M1 V → V with a morphism V → M0.

To prove the last statement, we need a description of the normal
bundle NPW+/M1

that relates directly to the elementary modification
we shall perform. It is expressed in terms of relative extension sheaves;
hence a tautological family on M1 is required. There is one more tech-
nical difficulty: the space M1 is not a moduli space per se, thus we can
not use deformation theory to derive its tangent bundle. Nevertheless,
M1 is birational to M1/2, and thus over a dense open subset its tangent
bundle is given by the deformation theory of sheaves.

Our first step is to construct a tautological family over an open subset
of PW+ ⊂ M1. Since PW+ is a projective bundle over PF|∨p2

, we shall
content ourselves with constructing such a family over an open subset
of the fiber PW+η of PW+ over a general η ∈ PF|∨p2

. Such a family will

be the universal extension of a sheaf Fη by another sheaf Lη over X†
1,1.

We begin with constructing Fη and Lη. Let η0 ∈ Ξ1 be any point
associated to a pair of GPBs (FG, LG) with F 0 = ℓ⊕F |p2 for a line ℓ ⊂
F |p1 , and let β1 : F → F |p1/ℓ = k(p1) be the induced homomorphism.

Let X̃A1 be the blowing up of (p1, 0) ∈ X ×A1, let ϕ :X̃A1 → X be the
projection, and define

F̃ = ker{ϕ∗F
ϕ∗β1
−→ ϕ∗k(p1)}|X̃0

, where X̃0 = X̃A1 ×A1 0.

The sheaf F̃ is a locally free sheaf on X1,0
∼= X̃0 whose restriction to the

unique rational curve D1 ⊂ X1,0 is isomorphic to O ⊕O(1). To obtain
a sheaf on X1,1 we consider the map ϕ2 : X1,1 → X1,0 contracting the
rational curve D2 ⊂ X1,1 attached to p2. By abuse of notation, we still
denote by D1 the other rational curve in X1,1. The sheaf we intend to
construct is the direct sum

(4.9) F ′ = ϕ∗
2F̃ ⊕OD1 ⊕OD2(1),
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where ODi = ιi∗ODi with ιi :Di → X1,1 the inclusion.
Our next step is to glue F ′ along the two marked points of X1,1

using a lift η ∈ PF|∨p2
of η0 ∈ Ξ1 that is defined by a homomorphism

β2 : F → k(p2). Let ψ : X1,1 → X†
1,1 be the obvious morphism, let

q− = D1 ∩ ψ−1(q†) and q+ = D2 ∩ ψ−1(q†) be the two marked points
of X1,1, and let q0 = D1 ∩ X and q2 = D2 ∩ X. We consider the space
K− = HomX1,1(OD1 , F

′) and the subspaces of F ′|q− :

V−,1 = {f(q−) | f ∈ K−, f(q0) = 0} and V−,2 = {f(q−) | f ∈ K−}.

Obviously,

0 6= V−,1 Ã V−,2 Ã F ′|q−

form a filtration that depends only on FG. Similarly, we define a filtra-
tion

0 6= V+,1 Ã V+,2 Ã F ′|q+

via

V+,1 = ker{ϕ∗
2F̃ |q+

β2
−→ϕ∗

2k(p2)|q+} and V+,2 = V+,1 ⊕OD2(1)|q+ .

This filtration depends on η. After that, we pick an isomorphism h :
F ′|q− → F ′|q+ that preserves these two filtrations, and identify F ′ along
the two marked points q− and q+ via this isomorphism to form a vector

bundle on X†
1,1. We denote the resulting vector bundle by Fh.

Given two such homomorphisms h1 and h2, we say Fh1 ∼ Fh2 if there

is an automorphism σ of X†
1,1 and an isomorphism σ∗Fh2

∼= Fh1 .

Lemma 4.7. Let η ∈ PF|∨p2
be any element and let Fh be the sheaf

on X†
1,1 so constructed. Then Fh, modulo the equivalence relation so

defined, is independent of the choice of h. Let Fη be a representative of

this equivalence class. Then for any η′ ∈ PF|∨p2
, Fη ∼ Fη′ if and only if

η = η′.

Proof. Let G be the group of pairs (v, σ) where σ is an automorphism
of the pointed curve (X1,1, q±) and v is an isomorphism σ∗F ′ v

−→F ′. It
is direct to check that the tautological homomorphism G → Aut(F ′|p2)
preserves the filtration V+,• while the image of G → Aut(F ′|p1) is exactly
the subgroup of automorphisms that preserve the filtration V−,•. It
follows that the equivalence class of the sheaf Fh is independent of the
choice of h.

The proof of the second part is straightforward and will be omitted.
q.e.d.

Finally, let ι0 : X → X†
1,1 be the tautological inclusion and let Lη =

ι0∗L(−p1 − p2).
Next, we will construct a vector space Wη and a family of sheaves

over PWη. Later we will show that Wη is canonically isomorphic to
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W+η and the family over PWη and the tautological family over PW+η

coincide over a dense open subset of PWη
∼= PW+η.

The vector space Wη is the kernel of the canonical homomorphism

Ext1
X†

1,1

(Fη,Lη) −→ H0(Ext1(Fη,Lη)) ≡ H0(k(q0) ⊕ k(q2))
proj
−→k(q2).

Next we construct a family of curves over PWη. Let D1 = P1 ×PWη,
let O(1) be the degree one line bundle over PWη and let D2 = P(O ⊕
O(1)) be the associated projective bundle over PWη. We fix two sections

Q− = 0 × PWη and Q0 = ∞× PWη

of D1 and pick two sections

Q2 = P(0 ⊕O(1)) and Q+ = P(O ⊕ 0)

of D2. We then glue D1 to X × PWη by identifying Q0 with p1 × PWη,
and glue D2 to X1,0 by identifying Q2 with p2 × PWη. We denote the
family from the first gluing by X1,0 and denote the family resulting
from both gluings by X1,1. The first is a constant family of X1,0 and

the second is a non-constant family of X1,1 over PWη. Let X †
1,1 be the

result of gluing the two sections Q− and Q+ of X1,1. It is a family of

X†
1,1 over PWη.

We now construct a sheaf F over X †
1,1. Let X1,1 → X1,0 be the contrac-

tion of the component D2, and let Φ : X1,1 → X1,1 be the composition
of the contraction X1,1 → X1,0 with the projection X1,0 → X1,0 ⊂ X1,1.
We consider the sheaf of OX1,1-modules

(4.10) F′ = Φ∗ϕ∗
2F̃ ⊕OD1 ⊕OD2(Q2),

according to the convention of (4.9). Clearly, there are canonical iso-
morphisms

F′|Q±
∼= F ′|q± ⊗k OQ± .

Hence any isomorphism h : F ′|q−
∼= F ′|q+ induces a canonical isomor-

phism h̃ : F′|Q−
∼= F′|Q+ . Using an isomorphism h that preserves the

two filtrations as defined in Lemma 4.7, we can glue F′ along the two

marked sections Q− and Q+ to obtain a new sheaf F over X †
1,1. Clearly,

restricting to each fiber of X1,1 over PWη, the sheaf F′ is merely the
sheaf F ′ constructed before, and the sheaf F is isomorphic to the F
constructed in Lemma 4.7.

We are ready to construct the desired tautological family E over

X †
1,1. First, recall that F′ has a direct summand OD2(Q2). Since

OD2(Q2)|Q2
∼= OQ2(−1)8 , the inclusion OD2(Q2) ⊂ F′ defines a sub-

sheaf
g1 :OQ2(−1) → F′|Q2 ≡ F|Q2 .

8In case π :Z → PWη is a family and E is a sheaf of OZ-modules, we will use E(1)
to denote the sheaf E ⊗ π∗OPWη

(1).
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Let L be the sheaf of O
X †

1,1
-modules L = ῑ∗L(−p1 − p2), where ῑ :X ×

PWη → X1,1 is the tautological inclusion. Next let π :X †
1,1 → PWη be

the projection and consider the following two relative extension sheaves
and the natural homomorphism between them:

(4.11) Ext1
X †

1,1/PWη
(L(−1), F) −→ Ext1

Q̂2
(L̂(−1), F̂),

where the latter is canonically isomorphic to

(4.12) Ext1
W [2]†0

(Lη,Fη) ⊗OPWη(−1).

Here Q̂2 is the formal completion of X †
1,1 along Q2 while L̂ = L ⊗O

X
†
1,1

OQ̂2
, etc. Because the support of L only intersects D2 along Q2 and

the restriction of F to X1,0 × PWη ⊂ X †
1,1 is the pull-back of F ′|X1,0 ,

the kernel of the above homomorphism is canonically isomorphic to
Wη ⊗OPWη(1). Let ǫ be a tautological section of Wη ⊗OPWη(1). It can
be viewed as a section of the relative extension sheaf, and thus defines
an extension sheaf E′ fitting into the exact sequence

0 −→ F −→ E′ −→ L(−1) −→ 0.

Because ǫ is in the kernel of (4.11), E′ is not locally free along D2.
Not only that, but there is a homomorphism µ1 : E′ −→ OQ2(−1) so
that the composite F → E′ → OQ2(−1) is identical to the composite
F → OD2(D2)|Q2 ≡ OQ2(−1) induced by (4.10). Let µ2 :E′ → OQ2(−1)
be induced by E′ → L(−1)|Q2 and define E′′ by the exact sequence

0 −→ E′′ −→ E′ (µ1,µ2)
−→ OQ2(−1) −→ 0.

The resulting sheaf E′′ is locally free along Q2.
The sheaf E′ is still non-locally free along some points of Q0. Indeed,

the section ǫ composed with the homomorphism

Ext1
X †

1,1/PWη
(L(−1), F) −→ Ext1

Q̂0
(L̂(−1), F̂) ∼= OQ0(1)

defines a section of OQ0(1) whose vanishing locus is exactly where E′′

is not locally free. Let s ∈ H0(OQ0(1)) be this section. Before we
proceed, we need to resolve the non-local freeness of E′′. We first glue
D2 to X × PWη by identifying Q2 with p2 × PWη, and then glue D1

to the resulting family by identifying Q− with Q+ in the obvious way.

Let ϕ1 : X ′ → X †
1,1 be the projection, which is the smoothing of X †

1,1

along Q0 ⊂ X †
1,1. Clearly, X ′ is a locally constant family of X0,2’s. We

next blow up X ′ along p1 × s−1(0), where s is the section of OPWη(1)

mentioned before. We denote the blowing up by X̃ , and let Q′
0 ⊂ X̃

be the proper transform of p1 × PWη ⊂ X ′. Lastly, we construct a new

family X †
1,1 by identifying (gluing) the two sections Q′

0 and Q0 of X ′ in

the obvious way, and we keep the section Q− = Q+ ⊂ X † as its marked
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section. This way X † is a family whose members are either X†
1,1 or X†

2,1.

Let ϕ :X † → X †
1,1 be the tautological projection.

Lemma 4.8. There is a unique family of locally free sheaves Ẽ over

X † so that ϕ∗Ẽ = E′′ and R1ϕ∗Ẽ = 0.

Proof. The proof is straightforward and will be omitted. q.e.d.

For ξ ∈ PWη we denote by Ẽξ the restriction of Ẽ to the fiber X †
ξ of

X † over ξ.

Lemma 4.9. There is a line Ση ⊂ PWη so that for each ξ ∈ PWη−Ση

the sheaf Ẽη is 1
2 -stable.

Proof. We will postpone the proof until the next subsection. q.e.d.

Since for ξ ∈ PWη − Ση the sheaf Ẽξ is 1
2 -stable, by the universal

property of M1/2 the family Ẽ induces a canonical morphism u :PWη −

Ση → M1/2. Further, by the construction of the family, it is clear that

u factor through Ib − Ia, and hence to Ĩb − Ĩa ⊂ M1. Since Ĩb = PW+,
the morphism u induces a morphism

ũ : PWη − Ση −→ PW+.

On the other hand, the construction of the family Ẽ ensures that the
composition of ũ with the projection PW+ → PF|∨p2

maps PWη −Ση to
the point η ∈ PF|∨p2

. Thus ũ factor through

uη : PWη − Ση −→ PW+η.

Lemma 4.10. The morphism uη extends to an isomorphism PWη →
PW+η.

Proof. By construction uη is one-one. Since dim PWη = dim PW+η ≥
3, uη is an isomorphism away from a line. It is direct to check that
uη maps lines in PWη − Ση to lines in PW+η. Hence uη automatically
extends to an isomorphism. q.e.d.

By the argument in Section 3, there is a vector bundle W− over PF|∨p2

so that the normal bundle

N
Ĩb/M1

∼= ϕ∗W− ⊗OPW+(−1),

where ϕ :PW+ → PF|∨p2
is the projection.

Lemma 4.11. The normal bundle N
Ĩb/M1

|PWη is canonically isomor-

phic to

Ext1W [2]†(Lη,Fη) ⊗OPWη(−1).
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Lemma 4.12. The restriction of the morphism Ψ to the preimage of

PW+η, say φη :PWη × P Ext1W [2]†(Lη,Fη) → M0 is the composite of the

second projection with a morphism h :P Ext1W [2]†(Lη,Fη) → M0.

Proof. We will postpone the proofs of these two lemmas until the
next subsection. q.e.d.

Since M2 is a flip of M1 along Ĩb ∪ Ĩc, the restriction of Ψ3 to the
exceptional divisor over Ĩb, which is PW+ × PW−, is the composite of
the second projection with the morphism PW− → M2. In particular,
this proves that

Lemma 4.13. For any z ∈ Im φη, the image set (Ψ4 ◦ Ψ̃2)(φ
−1
η (z))

is a single point set in M2.

Since η ∈ PFη|
∨
p2

is an arbitrary point, this proves

Lemma 4.14. For any closed z ∈ M2 there is a unique point z′ ∈ M0

so that (Ψ4 ◦ Ψ̃2)
−1(z) = Ψ−1(z′).

As a corollary, this proves the equivalence result we set out to prove:

Proposition 4.15. The induced birational map M0 ∼ M2 is an

isomorphism of varieties.

In this subsection, we will give the proof of Lemmas 4.9, 4.11 and
4.12.

Proof of Lemma 4.9. We need to investigate when the sheaf Ẽξ is 1
2 -

stable. For the moment, we assume ξ is away from the vanishing locus
s−1(0). Then Ẽξ is of type I+0

b that fits into the exact sequence

(4.13) 0 −→ Fη −→ Ẽξ −→ Lη −→ 0.

Following the discussion in Section 3, Ẽξ is not 1
2 -stable if and only

if there is a sheaf L̄η that is locally free away from the marked node

q1 = q† so that it fits into the diagram with exact rows:

0 −−−−→ Fη −−−−→ Ẽξ −−−−→ Lη −−−−→ 0
x⊂

x
∥∥∥

0 −−−−→ OD1(−1) ⊕OD2(−1) −−−−→ L̄η −−−−→ Lη −−−−→ 0.

Because L̄η is unique and the left square is a push-out, Ēξ is uniquely
determined by the left vertical inclusion. On the other hand, the sub-
sheaf OD2(−1) →֒ Fη is unique and there is a P1 family of subsheaves
OD1(−1) →֒ Fη. Hence there is a P1 family of extensions (4.13) that
are derived from the diagram above. Further, it is easy to see that there
is one choice of OD1(−1) →֒ Fη so that the associated sheaf Ẽξ is not
locally free at q0. A quick reasoning shows that this corresponds exactly
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to the case where ξ ∈ s−1(0). Combined, this shows that there is a line
Ση ⊂ PWη so that for all ξ ∈ PWη −Ση ∪ s−1(0) the associated sheaves

Ẽξ are 1
2 -stable.

In case ξ ∈ s−1(0), a similar argument shows that Ẽξ is 1
2 -stable

unless ξ ∈ s−1(0) ∩ Ση. This proves the lemma. q.e.d.

Proof of Lemma 4.11. We now prove that

(4.14) N
Ĩb/M1

|PWη
∼= Ext1W [2]†(Lη,Fη) ⊗OPWη(−1).

Let W [2]†/A2 be the family of marked curves containing W [2]†0
∼= X†

1,1

as its central fiber. Then Ẽξ, where ξ ∈ PWη−s−1(0)∪Ση, is a sheaf over

W [2]†0. It is known that the first order deformations of Ẽξ as sheaves of

Ow[2]†-modules are Ext1W [2]†(Ẽξ, Ẽξ), which fits into the diagram

Ext1W [2]†(Lη,Fη) Ext1W [2]†(Lη,Lη)y
y

Ext1W [2]†(Ẽξ,Fη) −−−−→ Ext1W [2]†(Ẽξ, Ẽξ)
φ1

−−−−→ Ext1W [2]†(Ẽξ,Lη)y
yφ2

Ext1W [2]†(Fη,Fη) Ext1W [2]†(Fη,Lη)

Because the standard (C∗)×2 action on A2 lifts to an action on W [2]† →
A2, it induces a homomorphism C⊕2 ≡ T0A

2 → Ext1W [2]†(Ẽξ, Ẽξ). Since

Ẽξ is 1
2 -stable, [Ẽξ] ∈ M1/2, and hence lies in I+b . Then the tangent space

T[Ẽξ]M
1/2 at [Ẽξ] is canonically isomorphic to Ext1W [2]†(Ẽξ, Ẽξ)/T0A

2.

We now claim that the kernel of φ = φ2 ◦ φ1 contains the image of
T0A

2 → Ext1W [2]†(Ẽξ, Ẽξ) and the tangent space of I+b at [Ẽξ] is the quo-

tient ker(φ)/T0A
2. Indeed, the groups Ext1W [2]†(Lη,Lη), Ext1W [2]†(Fη,Fη)

and Ext1W [2]†(Lη,Fη) parameterize the first order deformations of Lη,

of Fη and the space of extensions of Lη by Fη. It is direct to check that

the kernel of φ is the tangent space at [Ẽξ] of the space of all sheaves

of type I+b . Because the (C∗)×2 action preserves this space, we have

Im(T0A
2) ⊂ ker(φ) and hence ker(φ)/T0A

2 ≡ T[Ẽξ]I
+
b .

We now show that φ is surjective. Once this is established, then the
normal vector space to I+b at Ẽη is canonically isomorphic to

(4.15) N
I
+
b /M1/2 |Ẽξ

≡ Ext1W [2]†(Fη,Lη).

First, since T[Ẽφ]I
+
a = ker(ξ)/T0A

2, the image of φ is the normal vector

space to I+a in M1/2 at [Ẽξ]. By (3.11), we know that the normal vector
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space has dimension 2g−1. Thus to prove the lemma it suffices to show
that

dim Ext1W [2]†(Fη,Lη) = 2g − 1.

Recall that q† = q1. By a direct computation we have the exact sequence

0 −→ k(q0) ⊕ k(q2) −→ Ext1
W [2]†(Fη,Lη)

−→ Hom(Fη,Lη) ⊗k T0A
2 −→ 0.

We claim that H0(Hom(Fη,Lη)) = 0. First, let FG = (F, F 0) and LG =

(L, 0) be the associated GPB vector bundles of [Ẽξ] in G
1/3
2,4,3 and G

1/3
1,3,0,

respectively; that is the image of the morphism I+a → G
1/3
2,4,3 × G

1/3
1,3,0

introduced in Section 3.2. By abuse of notation, we let j : X → W [2]†0
be the main irreducible component. Then we have exact sequences of
sheaves of OX -modules

0 −→ Fη ⊗O
W [2]†

OX −→ F −→ k(p1) −→ 0

and
0 −→ Lη ⊗O

W [2]†
OX −→ L −→ k(p1) ⊕ k(p2) −→ 0.

Further, a direct check shows that

Hom(Fη,Lη) = j∗ ker{F∨ ⊗ L −→ k(p1) ⊗ L|p1 ⊕ F∨ ⊗ L|p2}.

Hence any nontrivial homomorphism F → L in H0(Hom(Fη,Lη)) is
a homomorphism FG → LG of GPBs. But both FG and LG are 1

3 -
stable GPBs and thus there are no nontrivial homomorphisms between
them. This proves that H0(Hom(Fη,Lη)) = 0. Combined with the
exact sequence

0 −→ H1(Hom(Fη,Lη)) −→ Ext1W [2]†(Fη,Lη)

−→ H0(Ext1
W [2]†(Fη,Lη)) −→ 0,

we obtain

dim Ext1W [2]†(Fη,Lη) = 2 + h1(Hom(Fη,Lη) = 2g − 1.

This proves that the arrow φ is surjective.
Because the isomorphism (4.15) is canonical, restricting to PWη −

s−1(0) ∪ Ση we have canonical isomorphism

N
I
+
b /M1/2 |PWη−s−1(0)∪Ση

∼= Ext1
X †

1,1/PWη
(L(−1), F)|PWη−s−1(0)∪Ση

.

Because Codim Ση ≥ 2, s−1(0) is a hypersurface and both N
I
+
b /M1/2 and

Ext1
X †

1,1/PWη
(L(−1), F) are of the forms C2g−1 ⊗ OPWη(−1), the above

isomorphism must extend to an isomorphism (4.14), as desired. This
proves the lemma. q.e.d.
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Proof of Lemma 4.12. We pick an element

(ξ, v) ∈ PWη × P Ext1W [2]†(Lη,Fη).

We assume that the sheaf Ẽξ is a sheaf over W [2]†0, which is 1
2 -stable,

and the image of v in

H0
(
Ext1

W [2]†(Fη,Lη)
)

= k(q0) ⊕ k(q2)

is not contained in either k(q0) or in k(q2). Now let B = Speck[u]/(u2)

and let B0 ⊂ B be the closed point. Then a lift ṽ ∈ P Ext1W [2]†(Ẽξ, Ẽξ)

of v, namely φ(ṽ) = v, defines a sheaf of OW [2]†×B-modules Ẽξ(ṽ) that

is the extension of Ẽξ by Ẽξ ⊗ I defined by the class ṽ. Here I is the

ideal sheaf of W [2]† × B0 ⊂ W [2]† × B. Then a direct local calculation
of extension sheaves shows that there is an embedding ω :B → A2 that
does not lie in the two coordinate lines of A2, and so Ẽξ(ṽ) is a rank
three locally free sheaf of OW [2]†×

A2B-modules.

We now suppose Ψ−1
2 (ξ) is a single point. Then (ξ, v) ∈ M̃1 lifts to a

unique element in M̃, which we denote by (ξ, v) as well. Then following
the discussion in subsection 4.1, the image Ψ((ξ, v)) ∈ M0 is the point

associated to the sheaf F̃ξ(ṽ) that was constructed by first taking the
kernel of the composite

Fξ(ṽ) = ker
{
Ẽξ(ṽ) −→ Ẽξ(ṽ) ⊗O

W [2]†×
A2B

O
W [2]†0

∼= Ẽξ −→ Lη

}

and then restricting to the closed fiber W [2]†0

F̃ξ(ṽ) ≡ Fξ(ṽ) ⊗O
W [2]†×

A2B
O

W [2]†0
.

First of all, since B → A2 does not lie in any of the two coordinate lines,
to perform the elementary modification we do not need to modify any

of the nodes in W [2]†0 and the sheaf F̃ξ(ṽ) is locally free. On the other

hand, F̃ξ(ṽ) is the cokernel of the composite Fη ≡ Fη ⊗ I −→ Fξ(ṽ)
that is the unique lifting of

Fη ⊗O
W [2]

†
0

I −→ Ẽξ ⊗O
W [2]

†
0

I −→ F̃ξ(ṽ).

Hence F̃ξ(ṽ) fits into the exact sequence

0 −→ Lη −→ F̃ξ(ṽ) −→ Fη −→ 0

and the extension class of this exact sequence is a multiple of

v ∈ P Ext1W [2]†(Lη,Fη)

we started with. In particular the image Ψ((ξ, v)) depends only on
v. Now we pick an (analytic) open subset Uη of ξ ∈ PWη and Vη ⊂
P Ext1W [2]†(Lη,Fη) so that

Ψ̃2|Ψ̃−1
2 (Uη×Vη) : Ψ̃

−1
2 (Uη × Vη) → Uη × Vη
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is an isomorphism. Then the fact that Ψ((ξ, v)) depends only on v

implies that the restriction of Ψ to Ψ̃−1
2 (Uη × Vη) is the composite of

the second projection Uη × Vη → Vη with a morphism Vη → M0. Since
Ψ is a morphism and

Ψ̃−1
2 (PW+ ×PF|∨p2

PW−) ∼= Eb ×PF|∨p2
PW−,

its restriction to Ψ̃−1
2 (PW+ ×PF|∨p2

PW−) must be the composite of the

second projection with a morphism PW− → M0. This proves the
lemma. q.e.d.

5. The vanishing results

The purpose of this section is to prove the main theorem of this paper.

Theorem 5.1. Let M3,χ(Y ) be the moduli space of stable vector bun-

dles over a smooth irreducible curve Y of genus g for χ ≡ 1, 2 mod 3.
Then we have

ci(M3,χ(Y )) = 0 for i > 6g − 5.

Since M3,1(Y ) ∼= M3,2(Y ) by E → E∨ ⊗ L for a fixed line bundle L
of degree 1, we may assume χ ≡ 1 mod 3, say χ = 4.

Our proof is induction on the genus g. When g = 1, M3,4(Y ) ∼= Y by
Atiyah’s theorem and hence we have the vanishing result. We assume
from now on that g ≥ 2.

In the previous sections, we established the following diagram:

M0 oo

flips
//

normalization

zzuuuuuuuuu
M1/2 oo

flips
// M1

GL(3)

²²

M3,4(Y )
degeneration

///o/o/o M3,4(X0)

M3,7(X)

Suppose ci(M3,4(X)) = 0 for i > 6g − 11. We want to show that
ci(M3,4(Y )) = 0 for i > 6g − 5.

5.1. Chern classes of M0. Let S0 = M3,7(X) and E → S0 × X be a
universal bundle. Recall that a vector bundle on Xn is α-stable if and
only if its associated GPB (V, V 0) is α-stable. When α = 1−, this is

equivalent to V being stable. Hence M1− is a fiber bundle over S0 ob-

tained by blowing up G1− = Gr(3, E|p1+p2), the Grassmannian bundle
over S0. Let π1 : S1 = PHom(E|p1 , E|p2) → S0 be the projectivization
of the bundle Hom(E|p1 , E|p2).

We blow up S1 along the locus of rank 1 homomorphisms

B := PE|∨p1
×S0 PE|p2
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and let π2 : S2 → S1 be the blow-up map.
The exceptional divisor ∆1 := B̃ of π2 : S2 → S1 and the proper

transform ∆2 of the locus of rank 2 homomorphisms in S1 are normal
crossing divisors. Let ∆ = ∆1 + ∆2.

Lemma 5.2. ci(ΩS2/S0
(log ∆)) = 0 for i > 6. Consequently, if

ci(ΩS0) = 0 for i > 6g − 11, then ci(ΩS2(log ∆)) = 0 for i > 6g − 5.

Since ΩS2/S0
(log ∆) is locally free of rank 8, it suffices to check that

the 7th and 8th Chern classes vanish. The proof is a lengthy computa-
tion. See the Appendix.

Let S3 be the result of two blow-ups of P
(
Hom(E|p1 , E|p2)⊕OS0

)
first

along the section POS0 and then along the closure of the locus of rank 1
homomorphisms in Hom(E|p1 , E|p2) ⊂ P

(
Hom(E|p1 , E|p2) ⊕OS0

)
. The

obvious rational map

P
(
Hom(E|p1 , E|p2) ⊕OS0

)
99K PHom(E|p1 , E|p2) = S1

becomes a P1-bundle after the above first blow-up and the preimage
of B is the center of the second blow-up. Hence we get a P1-bundle
projection

π3 : S3 → S2

and S2 naturally embeds into S3.
Next, we blow up S3 along ∆1 = B̃ ⊂ S2, which lies in S3 as a

codimension 2 subvariety. Let π4 : S4 → S3 be the blow-up. Then
by local computation, S4 is the same as the result of the blow-ups of
P
(
Hom(E|p1 , E|p2) ⊕ OS0

)
, first along POS0 , second along B, which

lies in PHom(E|p1 , E|p2), and finally along the proper transform of the
closure of the locus rank 1 homomorphisms in

Hom(E|p1 , E|p2) ⊂ P
(
Hom(E|p1 , E|p2) ⊕OS0

)
.

So if we finally blow up S4 along the proper transform of ∆2 ⊂ S2 which
lies in S4 as a codimension 2 subvariety, then we obtain the moduli

space M1− of 1−-stable bundles which we also denote by S5 and the

last blow-up is denoted by π5 : S5 → S4. Recall that M1− has six
divisors Ỹ0, Ỹ1, Ỹ2, Z̃0, Z̃1, Z̃2. Let D be the sum of these.

Lemma 5.3. ci(ΩM1(log D)) = 0 for i > 6(g − 1) if and only if

ci(ΩS2(log ∆)) = 0 for i > 6(g − 1).

Proof. The proof is due to Gieseker [4]. Notice that we have four

divisors ∆̃0, ∆̃1, ∆̃2, ∆̃3 in S3 which are the images of Z̃0, Ỹ1, Ỹ2, Ỹ0

respectively. Let ∆̃ be the sum of ∆̃i’s. Notice that ∆̃1 = π−1
3 (∆1) and

∆̃2 = π−1
3 (∆2). Hence we have an exact sequence

0 → π∗
3ΩS2(log ∆) → ΩS3(log ∆̃) → ΩS3/S2

(log(∆̃0 + ∆̃3)) → 0.
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But the line bundle ΩS3/S2
(log(∆̃0 + ∆̃3)) is trivial since we can find

a nowhere vanishing section as follows: as π3 is a P1-bundle there is an
open covering {Ui} of S2 and rational functions zi on π−1

3 (Ui) with a

simple pole at ∆̃0 and a simple zero at ∆̃3. Because zi = zjfij for a
nowhere vanishing function fij on Ui ∩ Uj , dzi/zi gives a well-defined

section of ΩS3/S2
(log(∆̃0 + ∆̃3)).

Next, S4 was obtained by blowing up along the intersection of two

divisors ∆̃0 and ∆̃1 in S3. Let Z ′
1 be the exceptional divisor of π4. By

a local computation, we get

π∗
4ΩS3(log ∆̃) ∼= ΩS4(log(∆̃ + Z ′

1)).

By the same argument, we see that

π∗
5ΩS4(log(∆̃ + Z ′

1))
∼= ΩM1(log D).

The lemma now follows immediately. q.e.d.

By Lemmas 5.2 and 5.3, we deduce the vanishing of Chern classes for

M1− .

Corollary 5.4. ci(ΩM1− (log D)) = 0 for i > 6g − 5

5.2. From M1− to M0. The goal of this subsection is to show the
following.

Proposition 5.5.

ci(ΩM1− (log D)) = 0 for i > 6g − 5 iff ci(ΩM0(log D)) = 0 for i >
6g − 5.

Recall that M0 is obtained from M1− by a sequence of flips along
subvarieties, each of which lies in the intersection of two of the six
divisors, and the blow-up center is not contained in any other divisor.

We use a lemma from [4]. Let J be the base of a flip. In other
words, there are two vector bundles E and F over J and a variety S
into which PE is embedded. And the normal bundle to Z = PE is the
pull-back of F tensored with OPE(−1). Let S̃ be the blow-up of S along

Z and S′ be the blow-down of S̃ along the PE-direction. Then S̃ is the
blow-up of S′ along Z ′ = PF . Suppose that there are normally crossing
smooth divisors Di in S such that Z is contained in D1∩D2 as a smooth
subvariety but no other divisor contains Z. Let D =

∑
Di and D′ be

its proper transform in S′. The following lemma is from [4, §12].9

Lemma 5.6. Suppose the top k Chern classes of J vanish. Then

ci(ΩS(log D)) = 0 for i > dimS − k − 1 iff ci(ΩS′(log D′)) = 0 for

i > dimS − k − 1.

9Gieseker assumed that Z ⊂ D1 ∩ D2 and Z ∩ Dk = ∅ for k 6= 1, 2. But the same
proof works as long as Z ∩ D is a smooth divisor in Z.
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The flip bases for α = 2/3 are as follows: The moduli spaces P
2/3
2,5,pi

of

stable parabolic bundles with parabolic weight 1/3 and quasi-parabolic

structure at pi for i = 1, 2 lie in the moduli of GPBs G
2/3
2,5,1. Let G̃

2/3
2,5,1

be the blow-up of G
2/3
2,5,1 along P

2/3
2,5,p1

∪P
2/3
2,5,p2

. Then the flip bases are

• G̃
2/3
2,5,1 × Jac(X)

• a Jacobian of X times a P1 bundle over P
2/3
2,5,p1

• a Jacobian of X times a P1 bundle over P
2/3
2,5,p2

.

Because the underlying vector bundle of a parabolic bundle or a GPB
above is stable, all these three moduli spaces are fiber bundles over
M2,5(X). By Gieseker’s theorem [4], we know that the top 2g−3 Chern
classes of M2,5(X) vanish. Hence the top 3g − 4 Chern classes of the
flip bases for α = 2/3 vanish. From the above lemma, we have

ci(ΩM1/2(log D)) = 0 for i > 6g − 5.

We can similarly deal with the flip bases for α = 1/3: the moduli

spaces P
1/3
2,4,pi

of stable parabolic bundles with parabolic weight 2/3 and

quasi-parabolic structure at pi for i = 1, 2 lie in the moduli of GPBs10

G
1/3
2,4,3. Let G̃

1/3
2,4,3 be the blow-up of G

1/3
2,4,3 along P

1/3
2,4,p1

∪P
1/3
2,4,p2

. Then
the flip bases are

• G̃
1/3
2,4,3 × Jac(X)

• a Jacobian of X times a P1 bundle over P
1/3
2,4,p1

• a Jacobian of X times a P1 bundle over P
1/3
2,4,p2

.

Because the underlying vector bundle of a parabolic bundle above

is stable, the moduli spaces P
1/3
2,4,p1

and P
1/3
2,4,p2

are fiber bundles over

M2,3(X). By Gieseker’s theorem [4], we know that the top 2g−3 Chern
classes of M2,3(X) vanish.

The moduli space G̃
1/3
2,4,3 is not a fiber bundle over M2,3(X) but this

is isomorphic to a divisor in Gieseker’s moduli space: consider the uni-

versal family F over G̃
1/3
2,4,3 × X. Blow up this space along P

1/3
2,4,p1

× p1

and P
1/3
2,4,p2

×p2. Perform elementary modifications as in §2.4 so that we

get a family of curves over G̃
1/3
2,4,3 and a vector bundle on the family of

curves. The restriction of this vector bundle to the proper transforms

of G̃
1/3
2,4,3 × p1 and G̃

1/3
2,4,3 × p2 is equipped with a choice of basis and we

can glue the rank 2 bundle O ⊕O(1) over a rational curve P1 to get a
vector bundle over the family of nodal genus g curves. It is elementary
to check that this is a family of bundles in the Gieseker’s moduli space

10The choice of 1 dimensional subspace V1 of E|p1
gives rise to the 3 dimensional

subspace V = V1 + E|p2
. This is a GPB in G

1/3
2,4,3.
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M
1/3
2,3 for the rank 2 case and so we get a morphism

G̃
1/3
2,4,3 → M

1/3
2,3 .

It is now an easy matter to check that this morphism is bijective onto

a divisor of rank 1 locus in the Gieseker’s moduli space. Hence, G̃
1/3
2,4,3

becomes a fiber bundle over M2,1(X) after a flip whose base is the
product of two Jacobians over X. By Gieseker’s lemma again, we deduce

that the top 2g − 3 Chern classes of G̃
1/3
2,4,3 vanish and hence the top

3g − 4 Chern classes of all the flip bases for α = 1/3 vanish. From
Gieseker’s lemma, we have

ci(ΩM0(log D)) = 0 for i > 6g − 5.

The argument at the end of §13 in [4] enables us to deduce the van-
ishing Chern classes of the general member of the family M3,4(W) from
the vanishing of the Chern classes of ΩM0(log D). So we conclude that

ci(M3,4(Y )) = 0 for i > 6g − 5.

6. Appendix

The purpose of this appendix is to prove Lemma 5.2.
Notice that E|p1 is isomorphic to E|p2 . Let a1, a2, a3 be the Chern

roots of E|p1
∼= E|p2 and let ξ = c1(OS1(−1)). Then the Chern roots of

Hom(E|p1 , E|p2) are 0, 0, 0,±(a1 − a2),±(a2 − a3),±(a3 − a1) and thus
the cohomology ring H∗(S1) is the polynomial algebra H∗(S0)[ξ] over
H∗(S0) modulo the relation

(6.1) ξ3(ξ2 − (a1 − a2)
2)(ξ2 − (a2 − a3)

2)(ξ2 − (a3 − a1)
2).

From the exact sequence

0 → ΩS1/S0
→ π∗

1Hom(E|p1 , E|p2) ⊗OS1(−1) → O → 0

we deduce that the total Chern class of the relative cotangent bundle
of S1 over S0 is

c(ΩS1/S0
) =

(1+ξ)3((1+ξ)2−(a1−a2)
2)((1+ξ)2−(a2−a3)

2)((1+ξ)2−(a3−a1)
2)).

Similarly, we can describe the cohomology rings and the total Chern
classes of the relative tangent bundles of PE|∨p1

and PE|p2 over S0. Let

u = c1(OPE|∨p1
(−1)) +

1

3
c1(E|p1)

v = c1(OPE|p2
(−1)) −

1

3
c1(E|p1).
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We intentionally shifted the generators to make our computation sim-
pler. Then, we have

H∗(PE|∨p1
) = H∗(S0)[u]/〈u3 + αu + β〉

H∗(PE|p2) = H∗(S0)[v]/〈v3 + αv − β〉

where

α = c2(E|p1) −
1

3
c2
1(E|p1)

β = c3(E|p1) −
1

3
c1(E|p1)c2(E|p1) +

2

27
c3
1(E|p1).

Also we have

c(TPE|∨p1
/S0

) = (1 − u)3 + α(1 − u) − β = 1 − 3u + 3u2 + α

c(TPE|p2/S0
) = (1 − v)3 + α(1 − v) + β = 1 − 3v + 3v2 + α.

Using α and β, we can rewrite

c(ΩS1/S0
) = (1 + ξ)3((1 + ξ)6 + 6α(1 + ξ)4 + 9α2(1 + ξ)2 + 4α3 + 27β2)

as one can check by direct computation.
From [3], we get the exact sequences

0 → OB̃(−1) → g∗NB/S1
→ F → 0

0 → TS2 → π∗
2TS1 → ∗F → 0

where g : B̃ → B is the restriction of π2 to the exceptional divisor B̃
and  is the inclusion of B̃. Therefore, we have

(6.2) c(TS2) = π∗
2c(TS1)/c(∗F )

(6.3) c(F ) = g∗c(NB/S1
)/c(OB̃(−1)).

Since OS1(−1) restricts to OPE|∗p1
(−1) ⊠ OPE|p2

(−1), ξ restricts to

c1(OPE|∗p1
(−1)) + c1(OPE|p2

(−1)) = u + v.

The restriction of the relative tangent bundle TS1/S0
to B has total

Chern class

(1−u−v)3((1−u−v)6 +6α(1−u−v)4 +9α2(1−u−v)2 +4α3 +27β2)

while the total Chern class of the relative tangent bundle TB/S0
is

(1 − 3u + 3u2 + α)(1 − 3v + 3v2 + α).

Hence the total Chern class of the normal bundle NB/S1
is

(1 − u − v)3((1 − u − v)6 + 6α(1 − u − v)4 + 9α2(1 − u − v)2 + 4α3 + 27β2)

(1 − 3u + 3u2 + α)(1 − 3v + 3v2 + α)

which is by direct computation equal to

1 − 6ξ + (15ξ2 + 4α − 3uv) − (15ξ3 + 9αξ) + (6ξ4 + 6αξ2)

with ξ|B = u + v understood by abuse of notations.
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Let η = c1(OS2(B̃)) ∈ H2(S2). Then η|B̃ = c1(OB̃(−1)) since

OS2(B̃)|B̃
∼= OB̃(−1). So we have

H∗(B̃) ∼= H∗(B)[η]
/〈

η4 + 6ξη3 + (15ξ2 + 4α − 3uv)η2

+ (15ξ3 + 9αξ)η + (6ξ4 + 6αξ2)
〉
.

In fact, it is easy to see that the above relation lifts to a relation

(6.4) η4 + 6ξη3 + (15ξ2 + 4α)η2 − 3∗(uv)η

+ (15ξ3 + 9αξ)η + (6ξ4 + 6αξ2) = 0

in H∗(S2).
From (6.3), we have

c(F ) = c(NB/S1
)/(1 + η)

= 1 − (6ξ + η) + (15ξ2 + 4α − 3uv + 6ξη + η2)

− (15ξ3 + 9αξ + 15ξ2η + 4αη + 6ξη2 + η3 − 3uvη).

By local computation we have

c(OS2(∆1)) = 1 + η, c(OS2(∆2)) = 1 − 3ξ − 2η.

Hence we have

c(ΩS2/S0
(log ∆))

(6.5)

=
(1 + ξ)3((1 + ξ)6 + 6α(1 + ξ)4 + 9α2(1 + ξ)2 + 4α3 + 27β2)

(1 − η)(1 + 3ξ + 2η)
c(ΩS2/S1

).

For c(ΩS2/S1
), we compute

(6.6) c(TS2/S1
) = c(TS2)/π∗

2c(TS1) =
1

c(∗F )

and change the signs of the terms of degree ≡ 2 (mod 4).
It is a consequence of the Grothendieck-Riemann-Roch theorem that

(6.7) c(∗F ) = 1 − ∗

(
1

η

(
1 −

∏ 1 + bi

1 + bi − η

))

where bi are the Chern roots of F , i.e.,
∏

(1 + bi) = 1 − (6ξ + η) + (15ξ2 + 4α − 3uv + 6ξη + η2)
−(15ξ3 + 9αξ + 15ξ2η + 4αη + 6ξη2 + η3 − 3uvη).

By expanding, we see that
∏

(1 + bi − η) = 1 − (6ξ + 4η) + (15ξ2 + 4α − 3uv + 18ξη + 6η2)
−(15ξ3 + 9αξ + 30ξ2η + 8αη + 18ξη2 + 4η3 − 6uvη).
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Hence, we have

(6.8)
1

η

(
1 −

∏ 1 + bi

1 + bi − η

)
=

F

1 − D
.

Here

A = (6ξ + 4η) − (15ξ2 + 4α + 18ξη + 6η2)

+ (15ξ3 + 9αξ + 30ξ2η + 8αη + 18ξη2 + 4η3 − 6uvη),

B = −3 + (12ξ + 5η) − (15ξ2 + 12ξη + 3η2 + 4α),

D = A + 3uv and F = B + 3uv. Then by expanding11 (6.8) and
collecting all terms of degrees up to 14, we obtain

27u3v3 + 9u2v2 + 3uv + 18BA5uv + 12BA3uv + 3Auv
+3A2uv + 18Au2v2 + 3A3uv + 27A2u2v2

+81Au3v3 + 3A4uv + 36A3u2v2

+162A2u3v3 + BA3 + BA4 + B + 3A5uv + 45A4u2v2

+270A3u3v3 + 54A5u2v2 + 405A4u3v3 + 3uvA7 + 567u3v3A5

+63u2v2A6 + 27Bu3v3 + 9Bu2v2 + 3Buv + 3A6uv + BA2

+BA + BA5 + BA6 + BA7 + 6BAuv + 9BA2uv
+27BAu2v2 + 54BA2u2v2 + 108BAu3v3 + 15BA4uv + 90BA3u2v2

+270BA2u3v3 + 135BA4u2v2 + 540BA3u3v3 + 189BA5u2v2

+945BA4u3v3 + 21BA6uv.

By the projection formula and ∗1 = η,

∗

(
1

η

(
1 −

∏ 1 + bi

1 + bi − η

))
= ∗ (F/(1 − D))

is, up to degree 16, equal to

27∗(u
3v3) + 9∗(u

2v2) + 3∗(uv) + 18BA5∗(uv)
+12BA3∗(uv) + 3A∗(uv)
+3A2∗(uv) + 18A∗(u

2v2) + 3A3∗(uv) + 27A2∗(u
2v2)

+81A∗(u
3v3) + 3A4∗(uv) + 36A3∗(u

2v2)
+162A2∗(u

3v3) +BA3η +BA4η +Bη + 3A5∗(uv) + 45A4∗(u
2v2)

+270A3∗(u
3v3) + 54A5∗(u

2v2) + 405A4∗(u
3v3)

+3∗(uv)A7 + 567∗(u
3v3)A5

+63∗(u
2v2)A6 + 27B∗(u

3v3) + 9B∗(u
2v2)

+3B∗(uv) + 3A6∗(uv) + BA2η
+BAη + BA5η + BA6η + BA7η + 6BA∗(uv) + 9BA2∗(uv)
+27BA∗(u

2v2) + 54BA2∗(u
2v2) + 108BA∗(u

3v3)
+15BA4∗(uv) + 90BA3∗(u

2v2)
+270BA2∗(u

3v3) + 135BA4∗(u
2v2)

+540BA3∗(u
3v3) + 189BA5∗(u

2v2)
+945BA4∗(u

3v3) + 21BA6∗(uv).

11We used Maple 7 for the computations in this section.
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Substitute the above expression into (6.7) and expand (6.6) up to
degree 16. Change the signs of the terms of degree ≡ 2 mod 4 and plug
it into (6.5).

Now we can compute the Chern classes by direct computation from
(6.5). The 7th Chern class is, up to sign, equal to

−378ξ5η2 + 36αξ∗(uv)η − 72αξ2η3 − 138α2ξη2

−492α2ξ2η − 516αξ3η2

−1056αξ4η − 540ξ2∗(uv)η2 + 558αξ2∗(uv)
+108α∗(u

2v2) − 810ξ2∗(u
2v2)

−630ξ3(uv)η − 564ξ6η − 252ξ7 − 504αξ5 − 252α2ξ3 − 72ξ4η3

−54α2∗(uv) + 72ξ4∗(uv) − 126ξη3∗(uv) − 54ηβ2 − 54∗(u
3v3)

and the 8th Chern class is

1332∗(uv)η2αξ + 2178∗(uv)ξ2αη − 2835∗(u
2v2)ξ3

−1143∗(u
2v2)η3 + 2214∗(uv)ξ5

−6939∗(u
2v2)ξ2η − 4968 ∗ ∗(u

2v2)ξη2

+1485∗(u
2v2)αξ + 774∗(u

2v2)αη
−72ξ5η3 + 132ξ6η2 − 336α2ξη3 − 588α2ξ2η2 − 408αξ3η3

−456αξ4η2 + 1152∗(u
2v2)η3

+6372ξ2∗(u
2v2)η − 828α∗(u

2v2)η + 3942η2∗(u
2v2)ξ

+846∗(uv)ξ4η + 30∗(uv)α2η
+1008∗(uv)η2ξ3 + 72∗(uv)ξ2η3 − 6∗(uv)αη3 + 3150∗(uv)αξ3

−828∗(uv)α2ξ − 567η∗(u
3v3) − 648αξ5η − 498α2ξ3η

+132α3ξη − 18ξ7η + 153ξ8

−810ξ∗(u
3v3) + 54β2η2 + 165α2ξ4 + 6ξ2α3 + 81ξ2β2

+312αξ6 + 594∗(u
2v2)∗(uv).

Notice that the 7th Chern class is the image by ∗ of

(6.9)

−378ξ5η + 36αuvξη − 72αξ2η2 − 138α2ξη − 492α2ξ2

−516αξ3η − 1056αξ4

−540ξ2η2uv + 558αuvξ2 + 108αu2v2 − 810ξ2u2v2

−630ξ3uvη − 564ξ6

−72ξ4η2 − 54α2uv + 72ξ4uv − 126ξη3uv − 54β2 − 54u3v3

+42αξ(η3 + 6ξη2 + (15ξ2 + 4α)η − 3uvη + 15ξ3 + 9αξ)
+42ξ3(η3 + 6ξη2 + (15ξ2 + 4α)η − 3uvη + 15ξ3 + 9αξ)

with ξ4 + αξ2 replaced by

∗[−
(
η3 + 6ξη2 + (15ξ2 + 4α)η − 3uvη + 15ξ3 + 9αξ

)
/6]

from the relation (6.4).

This is a class in H∗(B̃) which is a polynomial algebra over H∗(S0)
generated by u, v, and η with the relations ξ = u + v,

u3 + αu + β = 0

v3 + αv − β = 0

η4 + 6ξη3 + (15ξ2 + 4α − 3uv)η2 + (15ξ3 + 9αξ)η + (6ξ4 + 6αξ2) = 0.
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Using Gröbner package, one can check that the class (6.9) is zero. There-
fore we have proved that the 7th Chern class vanishes.

We apply the same strategy for the 8th Chern class. The only term
we cannot express as the image of ∗ in the above fashion using (6.4) is
the term 81ξ2β2. Let

µ = (ξ4 + αξ2)(ξ2 + α)(ξ2 + 4α) + 27ξ2β2.

This is exactly the relation (6.1) divided by ξ and thus we have

ξµ = 0.

Then by the relation (6.4) as above c8(ΩS2/S0
(log ∆))− 3µ is the image

by ∗ of

−72ξ5η2 − 336α2ξη2 − 588α2ξ2η − 408αξ3η2

−456αξ4η + 132ξ6η − 18ξ7

−648αξ5 + 1008ξ3uvη2 − 498α2ξ3 + 54ηβ2 + 132ξα3

−51
2 ξ4(y3 + 6ξη2 + (15ξ2 + 4α − 3uv)η + 15ξ3 + 9αξ)

−α2(y3 + 6ξη2 + (15ξ2 + 4α − 3uv)η + 15ξ3 + 9αξ)
+2214ξ5uv − 2835ξ3u2v2

−53
2 αξ2(y3 + 6ξη2 + (15ξ2 + 4α − 3uv)η + 15ξ3 + 9αξ)

−810u3v3ξ + 27u3v3η
+3150αuvξ3 + 1332αuvξη2 + 2178αuvξ2η − 54αu2v2η
+9η3u2v2 + 30α2uvη + 1485αu2v2ξ − 828α2uvξ + 846ξ4uvη
−1026η2u2v2ξ − 567ξ2u2v2η + 72ξ2η3uv − 6η3αuv
+1

2(ξ2 + α)(ξ2 + 4α)(η3+ 6ξη2+ (15ξ2 + 4α − 3uv)η + 15ξ3 + 9αξ).

If we simplify this expression using the Gröbner package for the ring

H∗(B̃), we get
(6.10)

3η3u2v2 + αu2η3 + 2η3αuv − 3η3uβ + αv2η3 + 3η3vβ + a4η3

+6αu2v2η + 9ηu2vβ + 4α2ηu2 − 9ηuv2β + 2α2uvη − 6ηαuβ
+4α2ηv2 + 6ηαvβ + 4α3η + 9β2η.

If we multiply η to this expression (6.10), we get zero! Hence

c8(ΩS2/S0
(log ∆)) − 3µ lies in H∗(S1) because its restriction to B̃ is

exactly the above expression multiplied by η and is equal to zero.
If we multiply ξ = u + v to (6.10) and simplify using the Gröbner

package, we get zero! By the projection formula, this implies that
c8(ΩS2/S0

(log ∆)) − 3µ lies in the kernel of multiplication by ξ

ξ : H∗(S1) → H∗+2(S1)

which is exactly H∗(S0)µ. Therefore, we deduce that

c8(ΩS2/S0
(log ∆)) − 3µ = cµ

for some rational number c. To compute c, we restrict the image by
∗ of (6.10) to a fiber of π1 ◦ π2 : S2 → S0 so that α = 0 and β = 0.
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Using the explicit relations it is now an elementary exercise to check
that c = −3. Hence, we conclude that c8(ΩS2/S0

(log ∆)) = 0.
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