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STABLE BRANCHED MINIMAL IMMERSIONS WITH

PRESCRIBED BOUNDARY

Leon Simon & Neshan Wickramasekera

Abstract

We describe a method for producing smooth 2-valued minimal
graphs over the cylindrical region (D\{0})×R

n−2, where D is the
disk in R

2, subject to given continuous 2-valued boundary data
on ∂D × R

n−2. Subject to appropriate symmetry assumptions,
the construction produces branched minimal immersions in D ×
R

n−2 ×R with prescribed boundary and branching at every point
of {0} × R

n−2, and we also discuss the nature of the possible
singularities along {0} × R

n−2 in case of general boundary data.

Introduction

Recently the second author ([Wic04], [Wic05]) has established a
regularity and compactness theory for stable branched minimal immer-
sions near points of density less than 3. The work in [Wic05] in fact
considers a class of immersed minimal hypersurfaces in an open ball
B ⊂ R

n+1 which are assumed to have no boundary in B and be im-
mersed away from a set of K ⊂ B which is relatively closed in B and
which has finite (n − 2)-dimensional Hausdorff measure; K is to be
thought of as the singular set, including the branch points if any exist,
and one of the main theorems of [Wic05] asserts that, near singular
points having density not much larger than two, K breaks up into a set
of dimension ≤ n−7 (empty for n ≤ 6 and discrete for n = 7) of genuine
singularities and a “branching set” of dimension ≤ n− 2, at each point
of which there is a tangent plane of multiplicity 2.

The question therefore naturally arises as to the size of the class of
such branched stable immersions. We here present a method which
shows that in fact there is a very rich class of such hypersurfaces, each
having a branching set equal to an (n−2)-dimensional C1,α submanifold
for some α ∈ (0, 1). Indeed one of the main results here (Theorem 2
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of §2) establishes the existence of stable C1,α branched minimal immer-
sions Φ from the cylinder C = {(x, y) ∈ R

2 × R
n−2 : |x| < 1} into R

n+1

having prescribed boundary data which is required to have a Zk sym-
metry for some odd k ≥ 3 but which is otherwise arbitrary bounded
continuous; Φ inherits the Zk symmetry and has branch points at (0, y)
for each y ∈ R

n−2 (so that the actual geometric branch set in the image
is the embedded C1,α submanifold {Φ(0, y) : y ∈ R

n−2}).
The case n = 2 (when there are no y variables and the examples

under consideration have isolated branch points) is also of interest, and
appears to be new, although in the case n = 2 other techniques for
generating branched minimal immersions with isolated branch points
are available—for example modifications of the method [CHS84] can
be used to prove quite general existence theorems which complement
the result for symmetric data proved here. The precise conclusion in
the case n = 2 for symmetric boundary data is given in Corollary 1
of §2.

The proof of Theorem 2 involves construction of a C1,α(C) ∩ C0(C)
function u0 as the solution, with prescribed bounded continuous bound-
ary data ϕ (not necessarily with any symmetry properties in the first
instance), of the Euler-Lagrange equation of the (degenerate) func-
tional F0 (introduced in §1) which maps to the non-parametric area
functional under the transformation T : (reiθ, y) 7→ (r2e2iθ, y); com-
position with the inverse transformation takes the single-valued func-
tion u0 to the 2-valued function u(reiθ, y) = u0(r

1/2eiθ/2, y), 0 ≤ θ <

4π (i.e., u(reiθ, y) = u0(±r1/2eiθ/2, y), 0 ≤ θ < 2π), and the map
Φ is just the map that takes the cylinder C to the graph of the 2-
valued function u (explicitly: Φ(reiθ, y) = (reiθ, y, u0(r

1/2eiθ/2, y)) =

(reiθ, y, u0(±r1/2eiθ/2, y))).
There is some subtlety involved in checking that the graph of u so ob-

tained is stationary and C1, and for this some varifold theory is needed—
this is where the symmetry condition on ϕ is used. The discussion in §§2,
3 (in particular Theorem 1, Theorem 3 and Corollary 2) also more or
less fully illuminates what happens in general when no symmetry con-
dition on ϕ is assumed. As discussed in Theorem 3 and Corollary 2, in
this case u0 may have discontinuities and it may not be true that the
graph of u is stationary with respect to first variation of area, because
the closure of the graph in this case has “vertical pieces” (open regions
in the (n − 1)-dimensional plane {0} × R

n−2 × R) which introduce a
varifold boundary and negate the stationarity of the graph.

In §4 we discuss extension of the main results to the case of q-valued
(rather than 2-valued) solutions, i.e., branch points of order q rather
than of order 2. The main results are given in Theorems 4, 5, which
include Theorems 2, 3 as the special case when q = 2.
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1. The Initial Functional F0

For n ≥ 2 we first study the functional which transforms to the non-
parametric area functional under the transformation T : R

n → R
n which

takes (x, y) ∈ R
2 × R

n−2 to (x2
1 − x2

2, 2x1x2, y). Identifying x = (x1, x2)

with x1 + ix2, we can write x = reiθ, r =
√

x2
1 + x2

2 , and T (reiθ, y) =

(r2e2iθ, y). Thus we study the functional

F0(v) =

∫

Ω
4r2

√
1 + (4r2)−1|Dxv|2 + |Dyv|2 dxdy,

Here and subsequently we use the notation that Ω is a bounded open
subset of the cylinder

C = {(x, y) ∈ R
2 × R

n−2 : |x| < 1},
Dxv = ( ∂v

∂x1
, ∂v

∂x2
), and Dyv = ( ∂v

∂y1
, . . . , ∂v

∂yn−2
). (Note that in case

n = 2 we have Ω ⊂ D = {x ∈ R
2 : |x| < 1} and Dyv is absent from the

functional.)
F0 is of course a degenerate functional, but we can approximate by

non-degenerate functionals of the form

(1.1) Fδ(v) =

∫

Ω
4r2

δ

√
1 + (4r2

δ )
−1|Dxv|2 + |Dyv|2 dxdy,

where, for δ ∈ (0, 1
2), rδ is a smooth function of the variables x = (x1, x2)

with rδ ≡ r for r ≥ δ and δ ≥ rδ ≥ δ/2 for r ∈ [0, δ). (We’ll first prove
existence properties for Fδ and then let δ ↓ 0.)

The Euler-Lagrange equation for the functional Fδ is

(1.2)
2∑

i=1

Dxi


 Dxiv√

1 + (4r2
δ )

−1|Dxv|2 + |Dyv|2




+ 4r2
δ

n−2∑

i=1

Dyi


 Dyiv√

1 + (4r2
δ )

−1|Dxv|2 + |Dyv|2


 = 0,

which is a quasilinear elliptic equation, and which can be written in
weak form

(1.3)

∫

C

(
2∑

i=1

DxivDxiζ√
1 + (4r2

δ )
−1|Dxv|2 + |Dyv|2

+ 4r2
δ

n−2∑

i=1

DyivDyiζ√
1 + (4r2

δ )
−1|Dxv|2 + |Dyv|2

)
dxdy = 0, ζ ∈ C1

c (C).

Let ϕ = ϕ(x, y) : ∂C → R be an arbitrary Lipschitz function which is
ρj-periodic in the variable yj for some ρj > 0 and each j = 1, . . . , n− 2
(the periodicity is imposed for technical convenience and will be removed
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at the end of this section by letting the length of the period approach
∞), and suppose that uδ is a C2(C) ∩ C0(C) solution of the Euler-
Lagrange equation for Fδ which is also ρj-periodic in the variable yj

for each j = 1, . . . , n − 2, and which attains the boundary values ϕ on
∂C. (Thus in the case n = 2, when there are no variables yj , uδ is just

a C2(D) ∩ C0(D) solution of the Euler-Lagrange equation on the disk
D = {x = (x1, x2) : |x| < 1} with uδ = ϕ on ∂D.)

We claim that for each n ≥ 2 such uδ exists by virtue of the gradient
estimates [Sim76] and standard elliptic theory, and in addition that
uδ is smooth, is continuous up to the boundary ∂C, and has globally
bounded derivatives on C with respect to the variables y1, . . . , yn−2, as
follows:

In fact there is a well established theory for solutions u of quasi-
linear elliptic equations which arise as the Euler-Lagrange equation of
functionals of the form

∫
Ω F (x, u, Du) dx, where x denotes the indepen-

dent variables in the given domain Ω ⊂ R
n, and where F (x, t, p) is a

given smooth function on R
n×R×R

n which is locally uniformly convex
with respect to the variable p. In the present instance we use notation
(x, y) ∈ R

2 × R
n−2 (rather than x ∈ R

n) for the independent variables

∈ Ω ⊂ C, and F (x, y, t, p) = 4r2
δ

√
1 + (4r2

δ )
−1|px|2 + |py|2, independent

of the variable t, where p = (p1, . . . , pn), px = (p1, p2), py = (p3, . . . , pn).
In this case (as in all cases when the integrand F (x, t, p) does not depend
on t), we have that any given C2(C) solution v = uδ of (1.2) satisfies a
strong maximum principle:
(1.4)

v cannot attain a maximum/minimum in C unless it is constant,

and also the difference v1 − v2 of any two C2(C) solutions also satisfies
a strong maximum principle:
(1.5)
v1 − v2 cannot attain a maximum/minimum in C unless it is constant.

We now focus attention on C2(C) ∩ C0(C) solutions v(x, y) = uδ(x, y)
of (1.2) such that

v(x, y) is periodic with some period ρj > 0(1.6)

in each variable yj , j = 1, . . . , n − 2,

and we observe that by applying (1.5) to v1(x, y) = v(x, y) and v2(x, y) =
v(x, y + h) (h ∈ R

n−2 an arbitrary fixed vector), such a solution v sat-
isfies
(1.7)

sup
(x,y),(x,z)∈C,y 6=z

|v(x, y) − v(x, z)|
|y − z| ≤ sup

|x|=1,y,z∈Rn−2,y 6=z

|v(x, y) − v(x, z)|
|y − z| .
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For the moment we assume that the boundary data ϕ ≡ v|∂C is Lipschitz
in the y variables, uniformly with respect to x ∈ S1; that is we assume
that there is L > 0 such that
(1.8)



sup
x∈S1

|ϕ(x, y) − ϕ(x, z)| ≤ L|y − z|, y, z ∈ R
n−2,

ϕ(x, y) is periodic in the variable yj with period ρj , j = 1, . . . , n − 2,

which means that (1.7) implies

(1.9) sup
C

|Dyv| ≤ L

for any C2(C) ∩ C0(C) solution v = uδ of (1.2) which satisfies the peri-
odicity conditions (1.6).

Next we observe that for solutions v of (1.2) which satisfy (1.9) we
can check the structural conditions 1.1, 1.2, 1.3, 1.4 of [Sim76] with
structural constants βj = βj(δ, n, L) and structural functions µ = β (1+
|Du|2)−1, β = β(δ, n, L), and µ, λ,Λ constants depending on δ, n, L, and
the dependence on δ, σ can be dropped in favor of a dependence on σ
alone if we restrict points (x, y) with |x| > σ ≥ δ; hence by [Sim76,
Theorem 1] we have the interior gradient estimates

(1.10)

{
supΩ|Dv| ≤ C(δ, σ, n, L)

supΩ\{(x,y):|x|<σ}|Dv| ≤ C(σ, n, L)

on any domain Ω ⊂ C, and for any σ ∈ (δ, 1/2), provided dist(Ω, ∂C) ≥
σ > 0. Then standard regularity theory for uniformly elliptic quasilinear
equations gives us for each ℓ = 1, 2, . . . that

(1.11)

{
supΩ|Dℓv| ≤ C(ℓ, δ, σ, n, L)

supΩ\{(x,y):|x|<σ}|Dℓv| ≤ C(ℓ, σ, n, L).

Also, assuming that sup∂C(|Dϕ|+|D2ϕ|) ≤ R, and keeping in mind that

v(r1/2eiθ/2, y) is a solution of the minimal surface equation (MSE) for
r ∈ (δ, 1) and α < θ < α+π (α ∈ [0, 2π) arbitrary) we can use standard
local barrier constructions for solutions of the MSE to prove that if v is
a C2(C) solution of (1.2) which satisfies (1.6), then, there is a boundary
gradient estimate sup∂C |Dv| ≤ C(R), and in this case [Sim76, Theo-
rem 1] gives gradient bounds up to the boundary of C:

(1.10′)

{
supC |Dv| ≤ C(δ, n, L, R)

supC∩{(x,y):|x|>σ}|Dv| ≤ C(σ, n, L, R)

and there are then also versions of the bounds as in (1.11) up to the
boundary: For any ℓ ≥ 1

(1.11′)

{
supC |Dℓv| ≤ C(ℓ, δ, n, ρ1, . . . , ρn−2, L, R)

sup{(x,y)∈C:|x|>σ}|Dℓv| ≤ C(ℓ, σ, n, ρ1, . . . , ρn−2, L, R),
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assuming that σ ∈ (δ, 1/2) and sup∂C

∑ℓ+1
j=1 |Djϕ| ≤ R.

We can therefore apply the Leray-Schauder existence theory as in
[GT83] (working in the Banach space of C1,α(C) functions which are
periodic in the y variables with the given periods ρj as in (1.6)) in

order to conclude that we have a C2,α(C) solution v of (1.2) which is
periodic in the y variables as in (1.6) and which has boundary data
ϕ. If ϕ is merely Lipschitz with Lipschitz constant L with respect to
the y-variables (and still periodic with respect to the y variables) then
we can approximate ϕ uniformly on ∂C by a sequence ϕk of smooth
functions each periodic in the y variables and with Lipschitz constant
L with respect to the y variables, and then use (1.5), (1.10), (1.11) to
assert that the corresponding sequence vk of solutions converges in the
C2 sense locally in C and uniformly with respect to the sup norm on C
to a C2(C) ∩ C0(C) solution uδ of (1.2) with uδ|∂C = ϕ, and with uδ

satisfying also (1.9).

Finally, using the interior estimates (1.10), (1.11) and the local bound-
ary continuity estimates for the MSE (which follows from the existence
of local boundary barriers for solutions of the MSE, as already used
above in establishing (1.10′)), we deduce that as δ ↓ 0 a subsequence of
the solutions uδ converges in the C2 norm on {(x, y) : σ < |x| < 1 − σ}
and uniformly on {(x, y) : σ < |x| ≤ 1}, for each σ ∈ (0, 1/2), to a
function u0, where
(1.12)



u0 ∈ C∞(C \ ({0} × R
n−2)) ∩ C0(C \ ({0} × R

n−2)).

u0|∂C = ϕ

u0(x, y) is periodic in variable yj with period ρj , j = 1, . . . , n − 2.

sup0<|x|≤1|u0(x, y) − u0(x, z)| ≤ L|y − z|, y, z ∈ R
n−2, L as in (1.8).

u0 satisfies the Euler-Lagrange equation for F0 on C \ ({0} × R
n−2).

In case the boundary data ϕ is merely bounded (|ϕ| < M for some con-
stant M) and continuous (rather than Lipschitz and periodic as in (1.8))
we can still approximate ϕ by smooth functions ϕk which are periodic
in the y variables with periods ρ1 = ρ2 = · · · = ρn−2 → ∞ and which
converge uniformly to ϕ on each compact subset of ∂C. Then by (1.12)

we have a corresponding sequence of C∞ solutions u
(k)
0 . Using the fact

that these transform (via the transformation T (reıθ, y) = (r2eiθ, y))
to 2-valued smooth solutions of the MSE which can be written as
the union of two single-valued smooth solutions on each slit domain
Ωθ0

= (D \{λeiθ0 : λ ≥ 0})×R
n−2, we can use the standard interior es-

timates for the gradient of solutions of the miminal surface equation to

argue that we have uniform estimates supσ<|x|<ρ |Du
(k)
0 | ≤ C(σ, ρ, M)

for any σ, ρ ∈ (0, 1) with σ < ρ, where M = sup∂D×Rn−2 |ϕ|. This means
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in particular that we still have a Lipschitz estimate |Dyu
(k)
0 | ≤ Lρ, in-

dependent of k for the solutions u
(k)
0 on the domain Cρ = {(x, y) : 0 <

|x| < ρ, y ∈ R
n−2}, for any ρ ∈ (0, 1), and so we can repeat all the

arguments leading to (1.12) on the domain Cρ. (Technically we are thus

applying the previous discussion to the functions ρ−1u
(k)
0 (ρx, ρy).) We

can also use local barriers for solutions of the MSE near boundary points
(cf. the argument leading to (1.10′)) to establish continuity estimates

for u
(k)
0 at boundary points which are uniform with respect to k. Thus

by passing to the limit after selecting a suitable subsequence of u
(k)
0 , we

get a limit function which is continuous on C \ {0} × R
n−2 and which

satisfies analogous estimates to those of (1.12) on Cρ for each ρ < 1,
except for the periodicity in the y variables.

Specifically, if ϕ is merely bounded and continuous on ∂C, then there
is a solution u0 on C \ ({0} × R

n−2) with
(1.12′)



u0 ∈ C∞(Cρ \ ({0} × R
n−2)) ∩ C0(C \ ({0} × R

n−2)), ρ ∈ (0, 1)

sup{(x,y)∈R2×Rn−2:σ<|x|<ρ}|Dℓu0| ≤ C(n, σ, ρ, ℓ), 0 < σ < ρ < 1, ∀ℓ

u0|∂C = ϕ

sup0<|x|≤ρ|u0(x, y) − u0(x, z)| ≤ Lρ|y − z|, y, z ∈ R
n−2, ∀ρ ∈ (0, 1)

u0 satisfies the Euler-Lagrange equation for F0 on C \ ({0} × R
n−2).

If ℓ ∈ {2, 3, . . .} and ϕ ◦ Sℓ = ϕ, then u0 ◦ Sℓ = u0 also.

In the last property Sℓ(re
iθ, y) = (rei(θ+2π/ℓ), y), and this last property

follows from the fact that if ϕ ◦ Sℓ = ϕ then the smooth periodic ap-
proximations of ϕ can be chosen to have the same invariance, and hence

the u
(k)
0 have this invariance also, because, by virtue of the maximum

principle (1.5), the Euler-Lagrange equation for each functional Fδ has
a unique solution subject to smooth data on ∂C which is periodic in the
y-variables.

By construction, the functional F0 transforms to the area functional
A in any region Ω ⊂ C \ {(0, 0)} × R

n−2 where the transformation

(1.13) T : (x, y) 7→ (x2
1 − x2

2, 2x1x2, y) i.e., T : (reiθ, y) 7→ (r2e2iθ, y)

is 1:1. Thus the relation

(1.14) u = u0 ◦ T−1

defines a 2-valued function on C \ {(0, 0)}×R
n−2 such that if Ωθ0

is any
one of the “slit domains” C\({λeiθ0 : λ ≥ 0}×R

n−2), where θ0 ∈ [0, 2π),
and if {

T1 = T |{(reiθ, y) : 0 < r < 1, θ ∈ (θ0/2, θ0/2 + π)}
T2 = T |{(reiθ, y) : 0 < r < 1, θ ∈ (θ0/2 − π, θ0/2)},
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then
(1.15)




uj = u0 ◦ T−1
j is a C2(Ωθ0

) solution of the MSE, j = 1, 2,

sup{(x,y)∈R2×Rn−2:σ<|x|<ρ}|Dℓuj | ≤ C(n, σ, ρ, ℓ), 0 < σ < ρ < 1, ∀ℓ

graphu|Ωθ0
= graphu1 ∪ graphu2,

|uj(x, y) − uj(x, z)| ≤ Lρ|y − z|, 0 < |x| ≤ ρ < 1,

y, z ∈ R
n−2, j = 1, 2.

Notice that so far we say nothing of what happens at r = 0, and that
is the essential issue which we analyze in the next section.

2. Main Results

Here u0 is the C∞(C \ ({(0, 0)} × R
n−2)) ∩ C0(C \ ({(0, 0)} × R

n−2))
solution of the Euler-Lagrange equation for F0, constructed as in §1
above. Thus u0 has prescribed bounded continuous boundary values ϕ
and u0 satisfies the conditions (1.12′), and u(reiθ, y) = u0(r

1/2eiθ/2, y)
is the corresponding 2-valued solution of the MSE as in (1.13)–(1.15).

Here and subsequently we use the following notation: G is the graph
of u; thus G is covered by the map
(2.1)

Φ(reiθ, y) = (reiθ, y, u0(r
1/2eiθ/2, y)), θ ∈ R, r ∈ (0, 1], y ∈ R

n−2,

which is a minimal immersion into (C×R)\({0}×R
n−2×R) with period

4π in θ, and G decomposes, over any slit domain Ωθ0
= C \ ({λeiθ0 :

λ ≥ 0} × R
n−2) (where θ0 ∈ [0, 2π) is given) into the union of a unique

pair of smooth minimal graphs, as in (1.15). Of course then geometric
quantities like the second fundamental form of G (which we denote by
AG) and the upward pointing unit normal of G (which we denote by
ν = (ν1, . . . , νn+1)) are well defined smooth quantities on G when G is
viewed as an immersion into (C × R) \ ({0} × R

n−2 × R). We also have
the Jacobi field equation

(2.2) ∆Gνn+1 + |AG|2νn+1 = 0 on G

for the (n + 1)’st component νn+1 of the upward pointing unit normal
ν.

The first main theorem we prove here is as follows:

Theorem 1. With u0 as in (1.12′), the following 3 properties are all

equivalent:

(i) u0 extends across {0} × R
n−2 to give a continuous function u0 ∈

C0(C).
(ii) Hn−2(G∩ ({0}×K×R)) < ∞ for any compact K ⊂ R

n−2, and G
is stable in the sense that the stability inequality

∫
G |AG|2ζ2 dHn ≤
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∫
G |∇G ζ|2 dHn holds for all functions ζ ∈ C1((C×R)\({0}×R

n−2×
R)) of bounded support ⊂ {(x, y, t) : |x| < σ} for some σ < 1.

(iii) sup|x|<σ,y∈Rn−2 |Du| ≤ C = C(n, M, σ) (< ∞), and Du is uni-

formly Hölder continuous as a 2-valued function on {(x, y) : 0 <
|x| < σ} ∀σ < 1, in the sense that if Ωθ0

is any one of the slit do-

mains as in (1.15) then, for each σ ∈ (0, 1), each Duj is uniformly

Hölder continuous on {(reiθ, y) ∈ Ωθ0
: |eiθ −eiθ0 | > 1−σ, 0 < r <

σ, y ∈ R
n−2}, with exponent α = α(n, M, σ) ∈ (0, 1) and Hölder

coefficient ≤ C = C(n, M, σ). Here uj are as in (1.15) and M is

any upper bound for sup∂C ϕ.

Remarks.

(1) Notice that the above theorem guarantees that if u0 extends across
{0} × R

n−2 to give a continuous function u0, then the closure of
G in C ×R is a C1,α stable branched minimal immersion, with the
branched immersion being given explicitly by the covering map
Φ(reiθ, y) = (reiθ, y, u0(r

1/2eiθ/2, y)) for 0 ≤ r < 1 and θ ∈ R,
which is 4π-periodic in the θ variable.

(2) Of course (iii) trivially implies (i), so to prove the theorem it will
be enough to show (i) ⇐⇒ (ii) and (i)⇒(iii), and this is what we
shall do below.

(3) We should remark that in fact (i)⇒(iii) is a direct consequence
of the general regularity theory established in [Wic05], but the
proof in the present context is much simpler and we include it as
part of the proof of Theorem 1.

For the second main theorem we need to assume the Zk symmetry
mentioned in the introduction. The main result is then as follows:

Theorem 2. If u0 is as in (1.12′) with bounded continuous boundary

data ϕ satisfying the Zk symmetry condition ϕ ◦ Sk = ϕ for some odd

k ≥ 3, where Sk(e
iθ, y) = (ei(θ+2π/k), y), then (i), (ii), (iii) of Theorem 1

hold, with the additional conclusion (in addition to (iii)) that

sup
0<|x|<σ,y∈Rn−2

|x|−α|Dxu(x, y)| ≤ C,

where α = α(k, n, σ, M) ∈ (0, 1/2) and C = C(k, n, σ, M) > 0, with M
any upper bound for sup∂C |ϕ|. In particular, the closure of G in C × R

is a C1,α branched immersion, with the branched immersion being given

explicitly by the covering map (2.1) which is 4π-periodic in the θ variable

and which has boundary values at r = 1 equal to (eiθ, y, ϕ(eiθ/2, y)).

Remark. Notice that in terms of the single-valued function u0, the
gradient estimate of the above theorem is equivalently written

sup
0<|x|<σ2, y∈Rn−2

|x|−1−2α|Dxu0(x, y)| ≤ C,

with the same constants α = α(k, n, σ, M), C = C(k, n, σ, M).
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In the particular case n = 2, we have the following:

Corollary 1. If n = 2 and if ϕ : S1 → R is continuous and has the

symmetry ϕ(eiθ) ≡ ϕ(ei(θ+2π/k)) for some odd integer k ≥ 3, then u0

in (1.12′) extends to a continuous map D → R such that Φ : reiθ 7→
(reiθ, u0(r

1/2eiθ/2)), 0 ≤ r < 1, θ ∈ R, is a C1,α covering map (with

period 4π) for a stable branched minimal immersion of the unit disk into

R
3 with prescribed boundary values (eiθ, ϕ(eiθ/2)) and a branch point at

0 (and no other branch points), and sup0<|x|<σ |x|−1−2α|Dxu0(x)| ≤ C.

Here α = α(k, n, M, σ) ∈ (0, 1/2) and C = C(k, n, M, σ), with M any

upper bound for supS1 |ϕ|.
The following result, needed in the proof of Theorem 2 and of in-

dependent interest, further analyzes the local structure of the graph G
over points which are close to a discontinuity of u0.

Theorem 3. Suppose u0, as in (1.12′), is discontinuous at some point

(0, y0) ∈ {0} × R
n−2, and ρ0 ∈ (0, 1

4 ]. Then there is a ρ1 ∈ (0, ρ0] and

a point (0, y1, t1) ∈ Bρ0
(0, y0)×R such that Bρ1

(0, y1, t1)∩ ((0, y1, t1) +

{0} × R
n−2 × R) ⊂ G, G (as an n-dimensional integer multiplicity

varifold in R
n+1) has a unique tangent cone C at (0, y1, t1) of the form

C = |H1| + |H2|,
where H1, H2 are distinct n-dimensional half-spaces meeting at angle

6= π along the common boundary {0}×R
n−2×R, |Hj | is the multiplicity 1

varifold corresponding to Hj, and

G ∩ Bρ1
(0, y1, t1) = L1 ∪ L2,

where each Lj is an embedded C∞ manifold-with-boundary, with bound-

ary (in the open ball Bρ1
(0, y1, t1)) ∂Lj = Bρ1

(0, y1, t1) ∩ ((0, y1, t1) +
{0}×R

n−2×R), Lj has the tangent half-space Hj at the point (0, y1, t1),
and (L1 \ ∂L1) ∩ (L2 \ ∂L2) = ∅.

Remarks.

(1) If the boundary data ϕ is Sk invariant (i.e., ϕ ◦ Sk = ϕ) then by
the last identity in (1.12′) the graph G is also Sk invariant, and
hence so is the tangent cone C of the above theorem. But then
H1, H2, Sk(H1), Sk(H2) consists of at least 3 distinct half-spaces,
and so C is not Sk invariant, a contradiction. That is if ϕ is
Sk invariant then u0 extends across {0} × R

n−2 as a continuous
function u0, and hence (i)–(iii) of Theorem 1 all hold, and G has
a multiplicity 2 tangent plane of dimension n at (0, y, u0(0, y))
which is Sk invariant, hence contains the subspace R

2×{0}×{0} ⊂
R

2×R
n−2×R. Hence using the Hölder continuity of Du guaranteed

by (iii) of Theorem 1, we must have lim|x|→0 |Dxu(x, y)| = 0 and

sup0<|x|<σ |x|−α|Dxu| ≤ C(k, n, M, σ). This explains the special
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conclusions of Theorem 2 in case of Sk symmetric boundary data,
so we need now only prove Theorem 1 and Theorem 3, which we
shall do in the next section.

(2) Notice that the above theorem in particular shows that the graph
G is not stationary as an integer multiplicity varifold in C × R if
u0 has discontinuities because H1, H2 meet at angle 6= π. Thus we
have the following extension of Theorem 1:

Corollary 2. If ϕ : ∂C → R is bounded continuous, then u0, as in

(1.12′), extends continuously across {0}×R
n−2 (so (i), (ii), (iii) of Theor-

em 1 all hold ) if and only if the graph G = {(reiθ, y, u0(r
1/2eiθ/2, y)) :

0 < r < 1, θ ∈ R, y ∈ R
n−2}, viewed as a multiplicity 1 varifold in C×R,

is stationary in C × R.

3. Proofs

As we pointed out in Remark 1 following Theorem 3, Theorem 2
follows directly from Theorems 1, 3, so we need only prove Theorems 1,
3.

Proof of Theorem 1. Let u0 be as in (1.12′). We first show that
(i) ⇐⇒ (ii). So suppose (i) holds and, as in §2, let G be the graph of
the 2-valued function u over C, so that

(1) G = {(x, y, u(x, y)) : 0 < |x| < 1, y ∈ R
n−2}.

According to (1.12′)

(2) |u0(x, y) − u0(x, z)| ≤ Lρ|y − z|, y, z ∈ R
n−2, |x| < ρ, 0 < ρ < 1,

and in particular this holds for x = 0. Also

G ∩ ({0} × R
n−2 × R) = {(0, y, u0(0, y)) : y ∈ R

n−2}
which (by (2) with x = 0 and ρ = 1

2) is the graph of the Lipschitz

function u0(0, y) over R
n−2 and so

(3) Hn−2(G ∩ ({0} × Ω × R)) < ∞
for any bounded open subset Ω ⊂ R

n−2, which is the first claim in (2).
We also need the first variation formula

(4)

∫

G
divG ζ dHn = 0,

valid for any Lipschitz function ζ = (ζ1, . . . , ζn+1) on G with compact
support in G. Here divG ζ denotes the divergence of ζ on G, which is
defined by divG ζ =

∑n+1
j=1 ej · ∇G ζj , where ∇G is computed via local

decomposition into the smooth minimal graphs as in (1.15). It is im-
portant to note here that this makes sense, and formula (4) is correct,
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if either ζ is the restriction to the set G of a Lipschitz function in R
n+1

or if we assume ζ is actually 2-valued of the form

(5) ζ(reiθ, y) = ζ0(r
1/2eiθ/2, y), 0 < r < 1, θ ∈ R, y ∈ R

n−2,

with the understanding that near any point

p0 = (reiθ0 , y, u0(r
1/2eiθ0/2, y))

of G we use the (single) value ζ0(r
1/2eiθ/2, y) for the values of ζ near p0

on the part of G given by the map (reiθ, y) 7→ (reiθ, y, u0(r
1/2eiθ/2, y))

with θ close to θ0.
Of course in this case the validity of (4) is easily checked via taking a

partition of unity β1, β2, . . . of D \{0} with each βj having support in a
disk ⊂ D\{0} and with any given point of D\{0} having a neighborhood
which intersects at most finitely many of the supports of the βj . We can
then interpret βj as a function of the variables (x, y, t) ∈ D×R

n−2 ×R

which happens to be independent of the y and t variables, and we note
that (4) is valid with βjζ in place of ζ. By summing over j we then
justify (4) for the given ζ as in (5), provided ζ vanishes on ∂C and
has compact support in C \ ({0} × R). (We will eliminate the latter
restriction shortly—see (10) below.)

In particular for each δ, ρ ∈ (0, 1) and each (x0, y0, t0) ∈ C × R with
|(x0, y0)| < 1 − ρ we can insert the choice

ζ(x, y, t) = βδ(x)λρ(x, y)γρ(t)en+1

in (5), where (i) βδ is is a C∞(R2) function which vanishes identically
for |x| < δ/2, which is identically equal to 1 for |x| ≥ δ, and |Dβδ| ≤
3/δ, (ii) λρ(x, y) ≡ 1 for |(x − x0, y − y0)| < ρ/2, λρ(x, y) ≡ 0 for
|(x − x0, y − y0)| > ρ, 0 ≤ λρ ≤ 1 everywhere, and |Dλρ| ≤ 3ρ−1, and
(iii) γρ(t) ≡ 0 for t < t0 − ρ, γρ(t) = t − t0 + ρ for t ∈ [t0 − ρ, t0 + ρ],
and γρ(t) ≡ 2ρ for t > t0 + ρ. Then the identity (4) with this choice of
ζ gives

∫

G∩(Bρ/2(x0,y0)×(t0−ρ,t0+ρ))
βδ en+1 · ∇G t

(6)

≤ 2ρ

∫

G∩(Bρ(x0,y0)×R)

(
|en+1 · ∇G λρ| + |en+1 · ∇G βδ|

)
.

Now for any C1 function h on R
n+1, ∇G h is just the orthogonal projec-

tion Dh− (ν ·Dh)ν of the R
n+1 gradient of h onto the tangent space of

G, so en+1 · ∇G t ≡ 1− ν2
n+1 and en+1 · ∇G h = −νn+1ν ·Dh in case h is
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independent of the last variable t, and hence (6) gives
∫

(G∩(Bρ/2(x0,y0)×(t0−ρ,t0+ρ)))
βδ dHn(7)

≤
∫

G∩(Bρ(x0,y0)×R)
(1 + 2ρ(|Dλρ| + |Dβδ|))νn+1 dHn.

Now the volume form on G is ν−1
n+1dxdy, so (keeping in mind that G is

the graph of a two-valued function) the right side is ≤ 2
∫
Bρ(x0,y0)(1 +

2ρ(|Dλρ| + |Dβδ|)) dxdy and the contribution from Dβδ → 0 as δ ↓ 0,
so (7) gives, after letting δ ↓ 0,

(8) Hn(G ∩ (Bρ/2(x0, y0) × (t0 − ρ, t0 + ρ))) ≤ Cρn,

which since Bρ/2(x0, y0) × (t0 − ρ, t0 + ρ) ⊃ Bρ/2(x0, y0, t0) also gives

Hn(G ∩ Bρ/2(x0, y0, t0)) ≤ Cρn, C = C(n),

provided only that Bρ(x0, y0) ⊂ C. (Note that the point (x0, y0, t0) here

need not be in G.)
Now observe we derived (4) subject to the restriction that ζ should

have compact support in G and so in particular ζ must vanish in a
neighborhood of the closed set G ∩ ({0} × R

n−2 × R). However (3)
guarantees that, for any given compact K ⊂ R

n−2,

(9) Hn−1(G ∩ ({0} × K × R)) = 0

and we claim that in fact then

(10)





the first variation formula (4) holds for any 2-valued ζ as

in (5) if ζ is locally Lipschitz for 0 < r ≤ 1, ζ(reiθ, y) ≡ 0

for r = 1 or y /∈ K, and |Dζ| ∈ L1(G).

This is easily checked by using (4) with βδζ in place of ζ, where βδ is
Lipschitz on R

n+1 with βδ ≡ 0 in a neighborhood of {0}×R
n−2×R, βδ ≡

1 at all points at distance ≥ δ from {0} × R
n−2 × R, and

∫
G |Dβδ| < δ,

and then letting δ ↓ 0. (Notice that it is standard that such a βδ exists
because, by (9), G ∩ ({0} × K × R) is a compact set of Hn−1-measure
zero, and hence we can select a finite family of balls Bσj (0, yj , tj), j =

1, . . . , N , with centers (0, yj , tj) ∈ G ∩ ({0} × K × R) and radii σj < δ

with G ∩ ({0} × K × R) ⊂ ∪jBσj (0, yj , tj) and
∑

j σn−1
j < δ. Then

we can select non-negative functions ψj ∈ C∞(Rn+1) with ψj ≡ 0 in
Bσj (0, yj , tj), ψj ≡ 1 on R

n+1\B2σj (0, yj , tj) and |Dψj | ≤ 3/σj , whereas,
by (8), Hn(G ∩ Bσj (0, yj , tj)) ≤ Cσn

j for every j. We can then take

βδ = min{ψ1, . . . , ψN} and check that βδ has the desired properties
with Cδ in place of δ, C = C(n).

Once we have (3) and (4) for functions as in (5), (10) it is standard to
prove the stability inequality: by taking w = − log νn+1 on G (which is
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interpreted as a smooth function when we view G as a smooth immersion
as in (1.15)), we first see from (2.2) that

(11) −∆Gw + (|∇G w|2 + |AG|2) = 0 on G,

the weak form of which is

(12)

∫

G

(
(|∇G w|2 + |AG|2)ζ + ∇G w · ∇G ζ

)
dHn = 0,

for any locally Lipschitz function ζ with compact support in {(x, y, t) :
0 < |x| < 1, y ∈ R

n−2, t ∈ R} and which can be 2-valued as in (5).
This is evidently justified using (4) and (10), together with the fact
that ∆Gw = divG(∇G w).

Now because of (3), (8) and the fact that G ∩ ({0} × R
n−2 × R) is

closed, we can for each δ > 0 select a Lipschitz function βδ on R
n+1 such

that βδ ≡ 0 in a neighborhood of G∩ ({0}×R
n−2 ×R), with βδ ≡ 1 on

the set of points with distance at least δ from G∩ ({0}×R
n−2 ×R) and

with
(13)∫

G
|Dβδ|2 < δ+CHn−2(support ζ∩G∩({0}×R

n−2×R)) < ∞, C = C(n).

Indeed the same construction for βδ that we used in the discussion
following (10) can be used here, except that now we choose the balls
Bσj (xj , yj , tj) with σj < δ and ωn−2

∑
j σn−2

j ≤ δ+2n−2Hn−2(support ζ

∩G∩({0}×R
n−2×R)), which we can do by definition of Hn−2. Then for

any locally Lipschitz function ζ on {(x, y, t) : 0 < |x| ≤ 1, y ∈ R
n−2, t ∈

R} with bounded support and ζ ≡ 0 on ∂C × R, we have that βδζ
2 is

Lipschitz with compact support in {(x, y, t) : 0 < |x| ≤ 1, y ∈ R
n−2, t ∈

R}, and so we can use (12) with βδζ
2 in place of ζ. This first shows

∫

G

(
|∇G w|2 + |AG|2

)
ζ2βδ(14)

= −
∫

G

(
ζ2∇G w · ∇G βδ + 2ζ∇G w · ∇G ζβδ

)

≤ ε

∫

G
|∇G w|2ζ2 + C(ε)

∫

G

(
ζ2|∇G βδ|2 + |∇ζ|2

)
,

so that by letting δ ↓ 0 we conclude that
∫

G

(
|AG|2 + |∇G w|2

)
ζ2 ≤ CHn−2(support ζ ∩ G ∩ ({0} × R

n−2 × R))

+ C

∫

G
|∇G ζ|2 < ∞, C = C(n).

This enables us to let δ ↓ 0 in the first identity of (14) so that
∫

G

(
|∇G w|2 + |AG|2

)
ζ2 dHn = −

∫

G
2ζ∇G w · ∇G ζ dHn
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and, using Cauchy-Schwarz in the form 2ab ≤ a2 + b2, we deduce the
stability inequality

∫
G |AG|2ζ2 ≤

∫
G |∇G ζ|2, as claimed in (ii). By using

the Cauchy-Schwarz inequality in the alternative form 2ab ≤ 1
2a2 + 2b2,

we also obtain

(15)

∫

G

(
|∇G w|2 + |AG|2

)
ζ2 dHn ≤ 4

∫

G
|∇G ζ|2 dHn.

We next prove (ii)⇒(i). For this we do not need the stability condi-
tion in (ii); indeed we will show that the hypothesis Hn−1(G ∩ ({0} ×
R

n−2×R)) = 0 suffices to give (i), as follows: Suppose that there is y0 ∈
R

n−2 such that lim inf |x|→0 u0(x, y0) < lim sup|x|→0 u0(x, y0). Let m =

lim sup|x|→0 u0(x, y0)− lim inf |x|→0 u0(x, y0) > 0 and using the Lipschitz

condition with respect to the y-variables given by (1.12′), with Lipschitz
constant L = Lρ corresponding to ρ = 1

2 , we have lim sup|x|→0 u0(x, y)−
t0 > m

2 and t0 − lim inf |x|→0 u0(x, y) > m
2 whenever |y − y0| < m

4(L+1) ,

where t0 = 1
2(lim inf |x|→0 u0(x, y0) + lim sup|x|→0 u0(x, y0)). This evi-

dently implies that G∩((0, y0, t0)+{0}×R
n−2×R) contains the relatively

open subset Bn−2
ρ0

(y0)×(t0−ρ0, t0+ρ0)∩((0, y0, t0)+{0}×R
n−2×R), ρ0 =

min{ m
4(L+1) ,

1
2}, t0 = (lim infx→0 u0(x, y0)+lim supx→0 u0(x, y0))/2, and

therefore has positive Hn−1-measure, in particular contradicting (3),
so (ii) fails.

We have thus proved (i) ⇐⇒ (ii), and in accordance with the Re-
mark (2) following the statement of Theorem 1, we have only now to
check that (i)⇒(iii). For this we need to modify some standard PDE
arguments from the usual R

n setting, so that we can instead work on
G. We showed already that (i)⇒ implies (3), (4) for any ζ as in (10),
so we can use these facts in the remainder of the argument.

The identity (11) guarantees that ∆Gw ≥ 0 (and of course w ≥ 0
because w = − log νn+1 and νn+1 ≤ 1). We also have the Sobolev
inequality

(16)

(∫

G
ζκ

)1/κ

≤ C

∫

G
|∇ζ|, κ =

n

n − 1
,

for any locally Lipschitz function as in (5), (10) assuming we integrate
the appropriate values of the 2-valued function ζ as explained in the
discussion following (5). This is not quite a direct consequence of the
normal Sobolev inequality for minimal submanifolds (e.g., [MS73]),
because of the requirement that functions ζ as in (5) are included, rather
than just the restriction to G of functions which are locally Lipschitz on
C×R. However since we have already established that the first variation
formula (4) is valid for such functions, we can use one of the usual proofs
of the Sobolev inequality (e.g., as in [MS73]) without change, so (16)
is valid as claimed.



158 L. SIMON & N. WICKRAMASEKERA

The proof of the gradient estimate claimed in (iii) of Theorem 1
will now be proved by modifying one of the standard proofs of the
gradient estimate for (single-valued) solutions of the MSE. The gradient
estimate for single-valued solutions of the MSE was first established
in [BDM69], and here we follow essentially the same procedure, with
some simplifications suggested in [Sim76], [Tru72], as follows:

For each τ ≥ 1, let wτ = min{w, τ}, so that wτ is a bounded locally
Lipschitz function which is 2-valued in the sense of (5), and so we can

apply the identity (12) with w2q
τ ζ2 in place of ζ and we can also use the

Sobolev inequality (16) with w2q
τ ζ2 in place of ζ. In view of the volume

bounds (8) and the fact that ∆Gw ≥ 0 on G by (11), we can then use
Moser iteration exactly as in the usual R

n setting (see [GT83]), using
the Sobolev inequality (16) in place of the usual Sobolev inequality, in
order to conclude that

(17) sup
G∩B1/8(0,y0,t0)

wτ ≤ C

∫

G∩B1/6(0,y0,t0)
wτ dHn,

where t0 = u(0, y0). On the other hand using the identity (4) again
with wτ · γ · λ in place of ζ, where γ = γ(t), λ = λ(x, y) are the same as
the functions γρ(t), λρ in (6) but with ρ = 1/3 and x0 = 0, we conclude
(cf. (6))

∫

G∩(B1/6(0,y0)×(t0−1/6,t0+1/6))
wτ en+1 · ∇G t dHn(18)

≤
∫

G∩(B1/3(0,y0)×R)

(
wτ |en+1 · ∇G λ| + |∇G wτ |

)
dHn.

Also by (15) we have
∫

G∩(B1/3(0,y0)×R)
|∇G w|

≤
(
Hn(G ∩ (B1/3(0, y0) × R))

)1/2

(∫

G∩(B1/3(0,y0)×R)
|∇G w|2

)1/2

≤ CHn(G ∩ (B1/2(0, y0) × R))

and (since en+1·∇G t = 1−ν2
n+1 and |en+1·∇G λ| ≤ 3νn+1 as in the discus-

sion following (6)) we also have
∫
G∩(B1/2(0,y0)×R) wτ |en+1 · ∇G λ| dHn ≤

C
∫
G∩(B1/2(0,y0)×R) wτνn+1 dHn so in fact (18) gives

∫

G∩(B1/6(0,y0)×(t0−1/6,t0+1/6))
wτ dHn ≤ C(n)Hn(G ∩ (B1/2(0, y0) × R)).

Thus, after letting τ ↑ ∞, (17) in fact yields the bound

sup
G∩B1/8(0,y0,t0)

w ≤ CHn(G ∩ (B1/2(0, y0) × R)), C = C(n),
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and since the set G∩(B1/2(0, y0)×R ⊂ ∪N
j=−NG∩(B1/2(0, y0)× [j, j+1)

with a suitable value of N ≤ C(1+supB1/2(0,y0) |u|), we deduce from (8)

that
Hn(G ∩ (B1/2(0, y0) × R)) ≤ C(1 + sup

B1/2(0,y0)
|u|),

and hence finally the gradient bound

sup
G∩B1/8(0,y0,t0)

w ≤ C(1 + M),

where M is any upper bound for supB1/2(0,y0) |u|. By exponentiating

each side this gives

(19) sup
G∩B1/8(0,y0,t0)

|Du| ≤ C1 exp(C2M), C1 = C1(n), C2 = C2(n),

which has the same form as the gradient bound for single-valued solu-
tions of the MSE.

To complete the proof of (iii) we have to establish a Hölder estimate
for the 2-valued functions Dxju, j = 1, 2 and Dyju, j = 1, . . . , n − 2.
Notice these derivatives are 2-valued functions of the form (5), and are
smooth on C\{0}×R

n−2 assuming as usual we make the natural selection
of value on G as in the discussion following (5). By differentiating the
MSE with respect to any one of the variables x1, x2, y1, . . . , yn−2 we get
a divergence-form equation

(20)
n∑

i,j=1

Di(aijDjv) = 0 on C \ ({0} × R
n−2),

where v is the derivative of u with respect to the chosen variable, and

(21) aij = νn+1(δij − νiνj), i, j = 1, . . . , n.

Notice that since the volume element for G is ν−1
n+1dx and since Dv ∈ L2

locally in C (by (15)), we can write (20) in the weak form on G (with ζ
as in (5)) as

(22)

∫

G

n∑

i,j=1

ãijDivDjζ dHn = 0

for any ζ as in (5), (10) with ∇G ζ ∈ L2(G), where

ãij = νn+1aij = ν2
n+1(δij − νiνj).

Notice that in fact then
n∑

i,j=1

ãijDivDjζ = ν2
n+1∇G ζ · ∇G v

and λ ≤ ν2
n+1 ≤ 1 for suitable λ = λ(n, M) > 0 by (19), and so (22) is

in exactly the uniformly elliptic form used (in the case of single valued
solutions of the MSE) to establish a Harnack theory in [BG72]; we
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therefore simply need to modify the proof of [BG72] to the present
2-valued setting. In fact the discussion in [BG72, §§4, 5] carries over
without change to the present setting, so the only thing we need to check
is that a Poincaré inequality as in [BG72, §3] applies here. But, since G
is the graph of a 2-valued function u of the form (5) and with bounded
gradient, it is an easy exercise to check that such a Poincaré inequality
follows directly from the usual Poincaré inequality for functions on R

n.
Hence we do have the required Harnack inequality for non-negative

solutions v of the equation (20), and hence solutions v of arbitrary
sign (in particular v = any one of the derivatives Dx1

u, Dx2
u, Dy1

u, . . . ,
Dyn−2

u) are then Hölder continuous by the usual procedure:
We let Mρ = supG∩Bρ(x0,y0,t0) v, mρ = infG∩Bρ(x0,y0,t0) v and note that

then Mρ−v and v−mρ are non-negative solutions of (20) and hence by
the Harnack inequality we have some constant C = C(n, M) > 1 such
that

sup
G∩Bρ/2(x0,y0,t0)

(Mρ − v) ≤ C inf
G∩Bρ/2(x0,y0,t0)

(Mρ − v)

and

sup
G∩Bρ/2(x0,y0,t0)

(v − mρ) ≤ C inf
G∩Bρ/2(x0,y0,t0)

(v − mρ).

But this says exactly that

Mρ − mρ/2 ≤ C(Mρ − Mρ/2) and Mρ/2 − mρ ≤ C(mρ/2 − mρ),

and adding these inequalities gives

Mρ/2 − mρ/2 ≤ C − 1

C + 1
(Mρ − mρ),

and by the usual iteration procedure this shows that v is uniformly
Hölder continuous on the set G ∩ B1/2(0, y0, t0). Since u is Lipschitz,
this then of course gives Hölder continuity of v as a 2-valued function
on Bn

σ (0, y0) for some fixed σ = σ(n, M) ∈ (0, 1/2). This completes the
proof of (iii) and hence the proof of Theorem 1.

Proof of Theorem 3. To begin, let (0, y0) be a point of discontinuity of
u0. As pointed out in the proof of Theorem 1 (in the proof that (ii)⇒(i)),
using the Lipschitzness of u0(x, y) with respect to the y-variable, we have

(1) G ⊃ {0} × Bn−2
ρ0

(y0) × (t0 − ρ0, t0 + ρ0),

where t0 = (lim inf |x|→0 u(x, y0) + lim sup|x|→0 u(x, y0))/2 and ρ0 =

min{ m
4(L+1) ,

1
2} with

m = lim sup
|x|→0

u0(x, y0) − lim inf
|x|→0

u0(x, y0)(> 0).

Now the graph G of u, as an integer multiplicity varifold, is not nec-
essarily stationary in C × R (indeed Corollary 2 asserts that it is defi-
nitely not stationary in C × R under the present hypothesis that (0, y0)
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is a point of discontinuity of u), but it is (by (1.15)) stationary in
(C×R)\({0}×R

n−2×R), and hence by the reflection principle ([All75,
§3.2]—Cf. the discussion in the proof of Lemma A of Appendix A) we
see that for each (y, t) ∈ Bρ0

(y0, t0)
(2)
σ−nHn(G∩Bσ(0, y, t)) is increasing with σ, σ ∈ (0, ρ0−|(y−y0, t−t0)|),
there exists a tangent cone C of G at (0, y, t), and the density of G,
ΘG(0, y, t), defined by

(3) ΘG(0, y, t) = lim
ρ↓0

(ωnρn)−1Hn(G ∩ Bρ(0, y, t)))

exists and satisfies

(4) ΘG(0, y, t) ≥ 1

2
, (0, y, t) ∈ ({0} × R

n−2 × R) ∩ Bρ0
(0, y0, t0).

Now let ε > 0, define κ = inf{ΘG(0, y, t) : (0, y, t) ∈ ({0} × R
n−2 ×

R)∩Bρ0
(0, y0, t0)}(≥ 1/2 by (4)), and select a point (0, y1, t1) ∈ ({0}×

R
n−2 × R) ∩ Bρ0

(0, y0, t0) with

(5) ΘG(0, y1, t1) ≤ κ + ε/2

and take ρ1 ∈ (0, ρ0 − |(y1 − y0, t1 − t0)|) such that

(6) (ωnρn
1 )−1Hn(G ∩ Bρ1

(0, y1, t1)) < κ + 3ε/4,

which we can do because (ωnρn)−1Hn(G ∩ Bρ(0, y1, t1)) ↓ ΘG(0, y1, t1)
as ρ ↓ 0 by (2). Notice that if σ ≤ σ0 ∈ (0, ρ1/2) and if (0, y, t) ∈
Bσ0

(0, y1, t1) then we have

ΘG(0, y, t) ≤ (ωnσn)−1Hn(G ∩ Bσ(0, y, t))

≤ (ωn(ρ1 − σ0)
n)−1Hn(G ∩ Bρ1−σ0

(0, y, t))

≤ (ωn(ρ1 − σ0)
n)−1Hn(G ∩ Bρ1

(0, y1, t1))

≤ (1 − σ0/ρ1)
−n(κ + ε/2)

≤ κ + ε if σ ≤ σ0 = σ0(κ, n, ρ1, ε).

So assume δ > 0 is given and choose ε > 0, θ as in Lemma A, and then
σ0 = σ0(δ, κ, n, ρ1) so that the above holds with this choice of ε. Then
the above shows that the hypotheses of Lemma A of the Appendix A
hold if we take σ ∈ (0, σ0], (0, y2, t2) ∈ Bσ0

(0, y1, t1) and if V = h#G,
where h : R

n+1 → R
n+1 is defined by h(x, y, t) = σ−1(x, y − y2, t − t2),

uniformly for (0, y2, t2) ∈ Bσ0
(0, y1, t1). Then according to Lemma A

we have (possibly with a new σ0 = σ0(δ, κ, n, ρ1)) that ∀ (0, y, t) ∈
Bσ0

(0, y1, t1) and all σ ∈ (0, σ0] ∃ half-spaces H1, . . . , Hp (depending
on σ, y, t) with p = p(σ, y, t) ∈ {1, . . . , P0} and

(7) Hausdorff distance(G ∩ Bσ(0, y, t),∪p
j=1Hj ∩ Bσ(0, y, t)) < δσ,

where P0 is a fixed integer (determined by Hn(G ∩ B1/2(0, y1, t1))).
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Now for τ > 0 let Nτ denote the tubular neighborhood, cross-section
radius τ , of the subspace {0} × R

n−2 × R; thus

(8) Nτ = {(x, y, t) ∈ R
2 × R

n−2 × R : |x| < τ}.
In view of the fact that G decomposes into a union of graphs as in (1.15),
to each of which we can separately apply the regularity theory for stable
embedded minimal surfaces as in [SS83], we see that (7) yields (possibly
with a new σ0 still depending only on δ, κ, n, ρ1)

(9)

{ ∀σ ≤ σ0 and ∀ (0, y, t) ∈ Bσ0
(0, y1, t1) ∃ q = q(σ, y, t) ∈

{1, . . . , Q0} with Bσ(0, y, t) ∩ G \ Nδ̃σ = ∪q
j=1Lj(σ, y, t),

where Q0 is a fixed integer (determined by Hn(G ∩ B1/2(0, y1, t1))),

where δ̃ = Cδ ∈ (0, 1
4 ], with C = C(n) sufficiently large, and we hence-

forth adopt the convention that we only consider δ small enough so
that C(n)δ ≤ 1

8 , and where L1(σ, y, t), . . . , Lq(σ, y, t) are embedded
minimal hypersurfaces with each Lj(σ, y, t)(⊂ G) being representable
as a minimal graph. More specifically, for each j = 1, . . . , q there is
an n-dimensional half-space Hj(σ, y, t) with boundary {0} × R

n−2 × R

and having unit normal ηj ∈ Sn, and a wj ∈ C∞(Ωj), with Ωj ⊃
Hj(σ, y, t) ∩ Bσ(0, y, t) \ Nδ̃σ/2 with

Lj(σ, y, t) ∩ (Bσ(0, y, t) \ Nδ̃σ(10)

= {ξ + wj(ξ)ηj : ξ ∈ Ωj} ∩ (Bσ(0, y, t) \ Nδ̃σ ⊂ G,

and

(11) sup
ξ∈Ωj

(σ−1|wj(ξ)| + |Dwj(ξ)|) ≤ Cδ, C = C(n).

We now fix

(12) q0 = q(σ0, y1, t1), L1
j = Lj(σ0, y1, t1), j = 1, . . . , q0.

By an inductive procedure (induction on k), based on application of (9),
(10) and (11) to suitable finite collections of points (0, y, t)∈Bσ0

(0, y1, t1)
we prove that, for each k = 2, 3, . . . there are embedded minimal hyper-
surfaces Lk−1

1 ⊂ Lk
1 ⊂ G ∩ Bσ0

(0, y1, t1) \ Neδkσ0

such that

∂Lk
1 ∩ Bσ0

(0, y1, t1) ⊂ G ∩ Bσ0
(0, y1, t1) ∩ ∂Neδkσ0

and such that for each (0, y, t) ∈ Bσ0
(0, y1, t1) and each σ ∈ [δ̃k−1σ0, σ0]

there is j = j(σ, y, t) ∈ {1, . . . , q0} with

Lk
1 ∩ Bσ(0, y, t) ∩ Bσ0

(0, y1, t1) \ Neδσ

= Lj(σ, y, t) ∩ Bσ(0, y, t) ∩ Bσ0
(0, y1, t1) \ Neδσ

,

where Lj(σ, y, t) as in (10)).

Notice that Lk
1 is clearly unique (depending on the choice of L1

1)
for each k, by unique continuation of solutions of the MSE, so then
L1 = ∪∞

k=1L
k
1 is an embedded minimal hypersurface with (L1 \ L1) ∩



STABLE BRANCHED MINIMAL IMMERSIONS 163

Bσ0
(0, y1, t1) ⊂ (0, y1, t1) + {0} × R

n−2 × R. Also, by (10) and (11),
the hypotheses of Allard’s boundary regularity theorem ([All75, §4])
are then satisfied and we have (possibly with a smaller σ0) that L1 is
a smooth embedded hypersurface-with-boundary, with boundary ∂L1 ∩
Bσ0

(0, y1, t1) = Bσ0
(0, y1, t1) ∩ ((0, y1, t1) + {0} × R

n−2 × R) and

(13) L1 = {ξ + w1(ξ)η1 : ξ ∈ H1 ∩ Bσ0
(0, y1, t1)} ∩ Bσ0

(0, y1, t1),

where w1 ∈ C∞(H1 ∩Bσ0
(0, y1, t1)) and σ−1

0 sup |w1|+sup |Dw1| ≤ Cδ,
C = C(n).

Repeating this process with L1
j in place of L1

1 for each j = 2, . . . , q0,

where q0 and L1
j are as in (12), and using (9) again, we then have

(14) G ∩ Bσ0
(0, y1, t1) = ∪q0

j=1Lj ,

where each Lj is a C∞ manifold-with-boundary, with boundary ∂Lj

(taken in the open ball Bσ0
(0, y1, t1)) given by ∂Lj = Γ, where, here

and subsequently,

(15) Γ = Bσ0
(0, y1, t1) ∩ ((0, y1, t1) + {0} × R

n−2 × R).

Let H1, . . . , Hq0
be the tangent half-spaces of the L1, . . . , Lq0

respec-
tively at the point (0, y1, t1), and note that it is possible that two or
more of the Hj are equal (because two or more of the Lj might share
a common tangent half-plane at the point (0, y1, t1)). However it is not
possible for a distinct pair Li, Lj to meet with angle zero everywhere

along an open subset Γ̃ of Γ = Bσ0
(0, y1, t1)∩((0, y1, t1)+{0}×R

n−2×R)
because then uniqueness of the Cauchy problem would imply that Li, Lj

agree identically on some open region, and then the whole graph would
be a multiplicity 2 version of a single-valued graph. But then u would
be a smooth single-valued solution of the minimal surface equation on
C \ {0}×R

n−2, which would imply that u extends smoothly to all of C,
because (single-valued) solutions of the minimal surface equation can-
not have singularities on a set of zero (n − 1)-dimensional Hausdorff
measure by [Sim77]. However this contradicts the fact that in the
present case we have a discontinuity at (0, y1). Hence we can select a
new ỹ1, t̃1, as close as we please to the y1, t1, such that no pair of Lj

meet at angle 0 at the point (0, ỹ1, t̃1). In particular this means that

the tangent half-spaces H̃1, . . . , H̃q0
of L1, . . . , Lq0

at the point (0, ỹ1, t̃1)

are distinct, and we can take L̃j = Lj ∩ Beσ0
(0, ỹ1, t̃1) for j = 1, . . . , q0,

with σ̃0 ∈ (0, σ0−|(y1− ỹ1, t1− t̃1)|) chosen small enough to ensure that

L̃1 \ ∂L̃1, . . . , L̃q0
\ ∂L̃q0

are pairwise disjoint and that the L̃j all meet
with non-zero angle along the common boundary Γ. Also, by the reflec-

tion principle for minimal surfaces, we see that if a pair L̃i, L̃j meet at

angle π at each point of an non-empty open subset Γ̃ = Bbσ0
(0, ŷ1, t̂1)∩Γ,

where Bbσ0
(0, ŷ1, t̂1) ⊂ Beσ0

(0, ỹ1, t̃1), then with L̂k = Bbσ0
(0, ŷ1, t̂1) ∩ L̃k,
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k = 1, . . . , q0, we would have that L̂i∪L̂j is a smooth embedded minimal

hypersurface containing Γ̃.

Thus by replacing σ0, y1, t1, H, Lj by σ̃0, ỹ1, t̃1, H̃j , L̃j or σ̂0, ŷ1, t̂1, Ĥj ,

L̂j as in the above discussion, we can assume that we have made a
selection of base-point (0, y1, t1) (as close as we please to the original
(0, y0, t0)) and new scale σ0 with the properties

(16)





L1 \ ∂L1, . . . , Lq0
\ ∂Lq0

are pairwise disjoint
and L1, . . . , Lq0

meet with angle 6= 0

along Γ = Bσ0
(0, y1, t1) ∩ ((0, y1, t1) + {0} × R

n−2 × R),

Hj is the tangent half-space to Lj at (0, y1, t1),

∀ i 6= j, Li, Lj either meet with angle 6= π along Γ
or meet with angle ≡ π,
in which case Li ∪ Lj is a smooth embedded hypersurface.

The half-spaces Hj can be written in the form {(λωj , y, t) : λ ≥ 0, (y, t) ∈
R

n−2 × R} for some unique ωj ∈ S1, so

(17) ωj = eiηj , ηj ∈ [0, 2π).

By applying (1.15) with θ0 = ηj + π we associate two solutions u±
j of

the MSE, with graphs G±
j , with each u±

j defined over (D \ {−λωj : λ ≥
0}) × R

n−2, and with

(18) G∩((D\{−λωj : λ ≥ 0})×R
n−2×R) = G+

j ∪G−
j , j = 1, . . . , q0;

of course then for any k ∈ {1, . . . , q0} such that ωk 6= ηj + π we have
Lk \ ∂Lk is either entirely contained in G+

j or entirely contained in G−
j .

We claim that q0 is even. To see this observe that if 0 < σ < σ0/
√

2
(so that {(x, y1, t) : |x| = σ, |t − t1| ≤ σ} ⊂ Bσ0

(0, y1, t1)) and if we

let γ(θ) = (σeiθ, y1, u0(σ
1/2eiθ/2, y1)), then (assuming σ is sufficiently

small and appropriately reordering and relabeling the L1, . . . , Lq0
) we

can select pairwise disjoint intervals (αj , βj) with

(19) αj < βj < αj+1 < βj+1, j = 1, . . . , q0 − 1, βq0
− α1 < 4π,

and such that γ|[αj , βj ] is 1:1 and γ([αj , βj ]) = Lj ∩ {(x, y1, t) : |x| =
σ, t ∈ [t1 − σ, t1 + σ]) for each j = 1, . . . , q0. (We can in fact arrange
max{βj − αj : j = 1, . . . , q0} is as small as we please by taking σ
sufficiently small.) Then γ|[α1, α1 + 4π] is a closed curve which tra-
verses each of the arcs Lj ∩ {(x, y1, t) : |x| = σ, t ∈ [t1 − σ, t1 + σ])
exactly once, and, by (14), en+1 · γ(θ) is never between [t1 − σ, t1 + σ]
for θ ∈ [α1, α1 + 4π] \ (∪q0

j=1[αj , βj ]), and hence en+1 · γ|[αj , βj ] must be
alternately increasing and decreasing as a function of θ for j = 1, . . . , q0,
and the number of j such that it is increasing must therefore match the
number of j such that it is decreasing. So q0 is even as claimed.
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Now again relabel the Lj , and the corresponding Hj , this time to
ensure that the angles ηj in (17) satisfy

(20) 0 ≤ η1 < η2 < · · · < ηq0
< 2π, ηq0+1 = η1 + 2π,

let Lq0+1 = L1, L0 = Lq0
, Hq0+1 = H1, H0 = Hq0

, and let θj be the
angle between Hj and it’s nearest neighbor in the counter-clockwise
direction. Thus

(21) θj = ηj+1 − ηj , j = 1, . . . , q0, θq0+1 = θ1, and

q0∑

j=1

θj = 2π.

In particular
∑q0

i=1(θi + θi+1) = 2
∑q0

i=1 θi = 4π, and so we see that
if q0 ≥ 4 then there must be 3 successive half-spaces Hi0−1, Hi0 , Hi0+1

such that
(22)



either θi0 + θi0+1 < π

or θi0 + θi0+1 = π and Li0−1, Li0+1 meet at angle π along Γ
and Li0−1 ∪ Li0+1 is a smooth embedded minimal hypersurface.

With such i0, consider the three corresponding hypersurfaces Li0−1, Li0 ,
Li0+1. Notice that, in the notation of (18), either at least two of
these three hypersurfaces lie in G+

i0
or else at least two lie in G−

i0
.

Let us suppose for convenience of notation that the former possibil-
ity holds, let ũ = u+

i0
(so graph of ũ is G+

i0
), and let L, L̃ be chosen

from Li0−1, Li0 , Li0+1 as follows: If Li0−1 is contained in G+
i0

then take

L = Li0−1 and L̃ = Li0 if Li0 ⊂ G+
i0

and L̃ = Li0+1 if Li0 is not

contained in G+
i0

. If Li0−1 is not contained in G+
i0

then take L = Li0

and L̃ = Li0+1. Having thus chosen L, L̃, let H, H̃ denote the tangent

half-spaces of L, L̃ respectively at the point (0, y1, t1).

We first dispense with the possibility that L = Li0−1, L̃ = Li0+1

with the second alternative in (22), so that L∪ L̃ is a smooth embedded
hypersurface containing Γ = Bσ0

(0, y1, t1)∩((0, y1, t1)+{0}×R
n−2×R),

and L \ Γ, L̃ \ Γ are both contained in the graph G+
i0

. We claim this is

impossible because then L ∪ L̃ would be a minimal hypersurface with
(n+1)’st component νn+1 of the unit normal strictly positive away from
Γ and vanishing on Γ, but this would contradict the Hopf maximum
principle for νn+1; the Hopf maximum principle holds because νn+1

satisfies the Jacobi field equation 2.2 which means ∆νn+1 ≤ 0. Thus

we conclude that L, L̃ meet with angle < π along Γ in all cases. In

particular this shows that half-spaces H, H̃ must meet at angle < π.
Now G ∩ Bσ0

(0, y1, t1) \ (∪q0

i=1Li) = ∅ (by (14)), hence there are no
points (x, y) with 0 < |x| < σ0 and ũ(x, y) = t1 other than points
(x, y) ∈ P (∪q0

i=1Li), where P denotes the projection of (x, y, t) onto

(x, y). Since by construction L, L̃ ∈ {Lj : j = 1, . . . , q0} and both L, L̃
are contained in G, it then follows that, for sufficiently small σ, there is
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a wedge-shaped domain Ω with ũ ≡ t1 on ∂Ω∩Bρ(0, y1)\((0, y1)+{0}×
R

n−2) and with Ω asymptotic at (0, y1) to the convex wedge W (H, H̃)

between (0, y1) + PH and (0, y1) + PH̃ (P (x, y, t) = (x, y) as above).

Now we can apply Lemma B of Appendix B with u = ũ, with Ω
as above, with x0 = (0, y1), ρ0 = ρ (sufficiently small), ψ ≡ t1 on
∂Ω∩Bρ(0, y1), and with U being any open half-space in R

n with (0, y1) ∈
∂U and (Bρ(0, y1) \ {(0, y1)}) ∩ W (H, H̃) ⊂ U , where W (H, H̃) is the

closure of the convex wedge W (H, H̃) introduced above. (For example,
a suitable choice for U would be the half-space (0, y1) + {(x, y) : x ·
(ωi0−1 + ωi0+1) > 0}.)

But then Lemma B asserts that ũ|Ω extends continuously to Ω ∪
{(0, y1)} with value t1 at (0, y1). On the other hand L ∩ {(x, y, t) ∈
Bρ(0, y1, t1) : x 6= 0, t > t1} is contained in the graph of ũ|Ω, and

L ∩ Bρ(0, y1, t1) contains the vertical segment (0, y1) × (t1, t1 + σ) so
the closure of graph ũ|Ω contains this vertical segment, which means
that ũ|Ω does not extend continuously to Ω ∪ {(0, y1)}. Thus we have
a contradiction, so we must have q0 = 2 and there are just two half-
spaces H1, H2 and two submanifolds L1, L2. This completes the proof
of Theorem 3, except for the claim that H1 and H2 do not meet at angle
π.

To check this last point we observe that otherwise, by (16), L1 ∪ L2

is a smooth embedded hypersurface containing Γ. Let u1, u2 be the
smooth functions such that graphuj = Lj \ Γ for j = 1, 2, so that

(1 + |Duj |2)−1/2(−Duj , 1) is the upward pointing unit normal of Lj .
Evidently the domain of uj is Ωj such that for small enough σ we have
{(x, y) ∈ Ωj : |x| < σ} ⊂ Wℓj × R

n−2, where Wℓj is a thin coni-

cal neighborhood of ℓj , with ℓj the ray from the origin in R
2 given

by the orthogonal projection of Hj onto R
2. Then ℓ1, ℓ2 meet at the

origin with angle π. Let η ∈ R
2 be a unit normal to ℓ1 ∪ ℓ2. Since

L1, L2 are smooth submanifolds with boundary Γ, the unit normals
(1+|Duj |2)−1/2(−Duj , 1), j = 1, 2, each have asymptotic limit ±(η, 0, 0)
on approach to Γ. In particular this means that the limit of the unit
normal (1 + |Du1|2)−1/2(−Du1, 1) of L1 agrees with ± the limit of the

unit normal (1 + |Du2|2)−1/2(−Du2, 1) of L2 on approach to Γ, and
in fact the plus sign must hold because for sufficiently small σ we
know (Cf. the argument following (19)) that ∂

∂θu1(re
iθ, y) has a con-

stant sign (either large positive or negative with large absolute value) in
Ω1 ∩Bσ(0, y1) and its sign must be opposite to the sign of ∂

∂θu1(re
iθ, y)

on Ω2 ∩Bσ(0, y1), and it follows that (η, 0) ·Du1 (= (η, 0, 0) · (−Du1, 1))
and (η, 0) · Du2 (= (η, 0, 0) · (−Du2, 1)) must have the same sign for
|x| < σ (i.e., either (η, 0) · Duj > 0 in {(x, y) ∈ Ωj : |x| < σ} for both
j = 1, 2 or (η, 0) · Duj < 0 in {(x, y) ∈ Ωj : |x| < σ} for both j = 1, 2).
That is, there is a continuous unit normal ν of the smooth hypersurface
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L1 ∪ L2 which points upward (i.e., en+1 · ν ≥ 0) on both L1 and L2,
hence the maximum principle can again be applied to en+1 · ν as in
the discussion following (22) above and gives to a contradiction. Thus
H1, H2 do not meet at angle π. This completes the proof of Theorem 3.

4. Extension to the q-valued case

Let q ∈ {2, 3, 4, . . .}. All of the above has a straightforward gener-
alization to the consideration of examples involving q-valued (instead

of 2-valued) graphs of the form u0(r
1/qeiθ/q, y), 0 ≤ θ < 2qπ, with pre-

scribed boundary data given by ϕ(eiθ/q), where ϕ is a given bounded
continuous function on ∂C.

Indeed by straightforward modifications of the discussion of §1, using
T (reiθ, y) = (rqeiqθ, y) and

(∗) F0(v) =

∫

Ω
(qrq−1)2

√
1 + (qrq−1)−2|Dxv|2 + |Dyv|2 dxdy

in place of the T,F0 of §1, we prove there is a u0 as in (1.12′) and a

corresponding q-valued solution u(reiθ, y) = u0(r
1/qeiθ/q, y) of the MSE

on C \ {0} × R
n−2 with the prescribed boundary values ϕ(eiθ/q).

In this case the analogue of Theorem 3 is the following:

Theorem 4. Let u (with u(reiθ, y) = u0(r
1/qeiθ/q, y) on C \ {0} ×

R
n−2) be the q-valued solution of the MSE as above and let ρ0 ∈ (0, 1

4 ].

If u is discontinuous at some point (0, y0) ∈ {0} × R
n−2 then there is a

point (0, y1, t1) ∈ {0} × R
n−2 × R with |y0 − y1| < ρ0 and ρ1 ∈ (0, ρ0]

such that Bρ1
(0, y1, t1) ∩ ((0, y1, t1) + {0} × R

n−2 × R) ⊂ G, and such

that G (as an n-dimensional integer multiplicity varifold in R
n+1) has

a unique tangent cone C at (0, y1, t1) of the form

C = |H1| + · · · + |Hq0
|,

where q0 is even with q0 ∈ {2, . . . , 2q − 2}, and where H1, . . . , Hq0
are

distinct n-dimensional half-spaces with common boundary {0}×R
n−2×R

and |Hj | is the multiplicity 1 varifold corresponding to Hj, and

G ∩ Bρ1
(0, y1, t0) = ∪q0

j=1Lj ,

where each Lj is an embedded C∞ manifold-with-boundary, with bound-

ary (taken in the open ball Bρ1
(0, y1, t1)) ∂Lj = Bρ1

(0, y1, t1)∩((0, y1, t1)
+{0}×R

n−2×R), Lj has the tangent half-space Hj at the point (0, y1, t1)
∈ ∂Lj, and Lj \ ∂Lj , j = 1, . . . , q0, are pairwise disjoint.

The proof is a straightforward modification of the proof of Theorem 3,
the fact that q0 ≤ 2q − 2 coming from an application of Lemma B
exactly analogous to the corresponding part of the proof of Theorem 3,
as follows: If η1, . . . , ηq0

, θ1, . . . , θq0
as in the proof of Theorem 3 and if

we adopt the convention that i + q is counted mod-q0 if i + q > q0, then
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∑q0

i=1(θi+· · ·+θi+q−1) = q(θ1+· · ·+θq0
) = 2qπ, so if θi+· · ·+θi+q−1 > π

for each i = 1, . . . , q0 we would have q0π < 2qπ, i.e., q0 < 2q and hence
q0 ≤ 2q − 2 because q0 is even. Thus if q0 > 2q − 2 then we would have
θi0 + · · · + θi0+q−1 ≤ π for some i0 ∈ {1, . . . , q0}, and (cf. the proof of
Theorem 3) at least two of the q+1 sheets Li, i ∈ {i0−1, . . . , i0 +q−1},
are in the same (single-valued) graph Gj0

i0
for some j0 ∈ {1, . . . , q}, where

{G1
i0

, . . . , Gq
i0
} are the q single-valued graphs whose union is the graph

of the q-valued function u over the slit domain C \ ({−λeiηi0 : λ ≥
0} × R

n−2). After eliminating the possibility θi0 + · · · + θi0+q−1 = π
as in the case q = 2 (by applying the strong maximum principle to

en+1 · ν, where ν is the upward-pointing unit normal of Gj0
i0

), we can
then apply Lemma B of Appendix B as in the proof of Theorem 3 to
give a contradiction. Thus q0 ≤ 2q − 2.

Finally we observe that if k, q are relatively prime (so ℓk + mq = 1
for some integers ℓ, m), then the graph of the q-valued function u is
Sk invariant if u0 ◦ Sk = u0, and hence the collection of hypersurfaces
L1, . . . , Lq0

and the corresponding half-spaces H1, . . . , Hq0
(tangent to

L1, . . . , Lq0
respectively at (0, y1, t1)) are invariant under Sk, and so we

must have q0 ≥ 2k, because at least k of the Lj have boundary data
which is strictly increasing in θ for θ near ηj , and likewise at least k of
the Lj have boundary data which is strictly decreasing in θ for θ near
ηj . Thus 2q − 2 ≥ q0 ≥ 2k and we have a contradiction if k > q.

Thus we obtain the following q-valued generalization of Theorem 2:

Theorem 5. Suppose q ≥ 2, k > q, k, q are relatively prime, ϕ◦Sk =
ϕ and ϕ ◦ Sq 6= ϕ, with ϕ bounded and continuous, and let u0 be as

in (1.12′), where F0 is now the modified functional as in (∗) above.

Then the q-valued function u defined by u(reiθ, y) = u0(r
1/qeiθ/q, y) has

a q-valued C1,α graph for some α ∈ (0, 1), with

sup
0<|x|<σ

|x|−α|Dxu| ≤ C,

and such that the q-valued analogue of (iii) of Theorem 1 holds.

Remark. If both ϕ ◦ Sk = ϕ and ϕ ◦ Sq = ϕ then since k, q are
relatively prime u would be a multiplicity q version of a single valued
function, so this case is of no interest in the present context; this explains
the condition ϕ ◦ Sq 6= ϕ in the above theorem.

5. Appendix A

Here we establish the following general varifold lemma, needed in the
proof of Theorem 3,4 above:

Lemma A. For each given δ ∈ (0, 1) and M > 0 there are θ =
θ(n, M, δ) ∈ (0, 1/2] and ε = ε(n, M, δ) ∈ (0, 1/4] such that if V is an

n-dimensional integer multiplicity varifold in the open unit ball B1(0) ⊂
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R
n+1 with ‖V ‖(B1(0)) < M , if σ ∈ (0, θ] and if V satisfies the condi-

tions

(a) V is stationary in B1(0) \ ({0} × R
n−1) and 0 ∈ support ‖V ‖,

(b) ω−1
n ‖V ‖(B1(0)) ≤ Θ‖V ‖(0) + ε,

(c) Θ‖V ‖(ξ) ≥ Θ‖V ‖(0) − ε for each ξ ∈ B1(0) ∩ ({0} × R
n−1),

then there are n-dimensional half-spaces H1, . . . , Hq (depending on σ)
with common boundary {0} × R

n−1 such that

Hausdorff distance
(
support ‖V ‖ ∩ Bσ(0),∪q

j=1Hj ∩ Bσ(0)
)

< δσ.

Proof. Otherwise we have a δ0 > 0, M0 > 0 and sequences σk, εk ↓ 0,
Vk stationary in B1(0) \ ({0} × R

n−1) with mass < M0 and

(1) ω−1
n ‖Vk‖(B1(0)) ≤ Θ‖Vk‖(0) + εk

and

(2) Θ‖Vk‖(ξ) ≥ Θ‖Vk‖(0) − εk for each ξ ∈ B1(0) ∩ ({0} × R
n−1),

yet such that
(3)
Hausdorff distance

(
support ‖Vk Bσk

(0)‖,∪q
j=1Hj ∩ Bσk

(0)
)
≥ δ0σk

for every finite collection H1, . . . , Hq of n-dimensional half-spaces with
with common boundary {0} × R

n−1.
Let R be the odd reflection of R

n+1 across {0} × R
n−2 × R (so R :

(x, y, t) 7→ (−x, y, t) for x ∈ R
2), let ηk be the homothety (x, y, t) 7→

σ−1
k (x, y, t) and define

Ṽk = ηk #(Vk + R#Vk), V̂k = ηk #Vk,

so that Ṽk is stationary on B1/σk
(0) \ ({0} × R

n−1) by the reflection
principle of [All75, §3.2].

It therefore follows that the monotonicity formula holds for Ṽk and
hence ΘbVk

(0) exists (and equals 1
2ΘeVk

(0)), and the monotonicity identity

holds for V̂k = ηk #Vk:
∫

Bρ(0)\Bσ(0)
|X|−n−2(νbVk

· X)2 d‖V̂k‖ + σ−n‖V̂k‖(Bσ(0))(4)

= ρ−n‖V̂k‖(Bρ(0))

for 0 < σ < ρ < σ−1
k , where X = (x, y, t) is the general point in R

n+1

and νbVk
is the unit normal for the tangent space of V̂k. By applying the

compactness theorem for integral varifolds we then have

(5) V̂k′ → W

where the convergence is in the varifold sense to an integer multiplicity
varifold W which is stationary in R

n+1 \ ({0} × R
n−2 × R), and W is a
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cone:

(6) ηρ #W = W ρ > 0

or equivalently, using first variation, νW (X) · X = 0 for a.e., X ∈
support ‖W‖. (The latter comes from the fact that, by monotonic-

ity of ρ−n‖V̂k‖(Bρ(0)), we have that ρ−n‖W‖(Bρ(0)) is constant in
the variable ρ, and therefore by applying the monotonicity (4) to W
we conclude (6)). By applying the same reasoning to τξ #W , where
τξ(X) = X − ξ and ξ is an arbitrary point in {0} × R

n−2 × R, and
noting that

ΘW (0) = lim
ρ→∞

(ωnρn)−1‖W‖(Bρ(0))

= lim
ρ→∞

(ωnρn)−1‖τξ #W‖(Bρ(0)),

we also deduce that

(7) ΘW (0) ≥ ΘW (ξ) with equality ⇐⇒ τξ #W = W

(because by the monotonicity identity ΘW (0) = ΘW (ξ) implies νW ·X =
0 = νW · (X − ξ) = 0 a.e., on support of W , and so ξ · νW = 0 a.e.,
whence it follows from the first variation formula that τξ #W = W ).

Also using (2) in combination with (1) together with the upper semi-
continuity of ΘeVk′

(ξ) we also have

(8) ΘW (ξ) ≥ ΘW (0), ξ ∈ {0} × R
n−1.

which in combination with (7) implies that W is invariant under trans-
lations in such directions ξ. Thus W is invariant under translations by
all elements of {0}×R

n−1 and so is a cylinder with 1-dimensional cross
section W0, where W0 is a 1-dimensional stationary integer multiplic-
ity cone on R

2; that is W0 is a sum of rays, each with positive integer
multiplicity, emanating from 0. Thus

(9) W =

q∑

j=1

|Hj |,

where each Hj is an n-dimensional half-space and H1, . . . , Hq have com-
mon boundary {0} × R

n−1, and where we must allow the possibility
that some of the H1, . . . , Hq are equal. Since varifold convergence (5) of

the stationary integral varifolds V̂k to W implies Hausdorff distance

convergence of support of ‖V̂k‖ to the support of ‖W‖ on each set
Bρ(0) \ {(x, y, t) : |x| < σ}, (9) contradict (3), so the proof of Lemma A
is complete.
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6. Appendix B

Here we establish a lemma concerning removability of boundary dis-
continuities for solutions of the MSE. The result here is a modification
of the argument in [Sim77], which in turn depends on an argument in-
troduced in [Fin53] to remove isolated interior singularities of solutions
of the MSE.

Lemma B. Let Ω ⊂ R
n be open and u ∈ C2(Ω) a bounded solution

of the MSE in Ω, let x0 ∈ ∂Ω, and suppose there is ρ0 > 0 such that

Ω∩Bρ0
(x0) ⊂ U for some open half-space U with x0 ∈ ∂U . Suppose also

that ψ : ∂Ω∩Bρ0
(x0) → R is continuous and that there is a compact set

K ⊂ ∂Ω with x0 ∈ K, Hn−1(K) = 0 and with limx∈Ω,x→y u(x) = ψ(y)
for each y ∈ ∂Ω ∩ Bρ0

(x0) \ K. Then limx→x0,x∈Ω u(x) = ψ(x0) (i.e., u
extends continuously to Ω ∪ {x0}).

Proof. For any function v we let ν(v) = Dv√
1+|Dv|2

, so that the MSE

for u can be written
n∑

i=1

Diνi(u) = 0,

which in weak form is

(1)

∫

Ω
ν(u) · Dζ = 0

for all ζ which are Lipschitz with compact support in Ω. For any given
ε > 0 we select σ = σ(ε) ∈ (0, ρ0) such that ψ(x) < ψ(x0) + ε on
∂Ω ∩ Bσ(x0). Then a standard barrier construction (see e.g., [GT83,
§14.1]) shows that there is C2(U ∩Bσ(x0)) supersolution v of the MSE
with v(x0) = ψ(x0) + ε, v(x) ≥ ψ(x0) + ε for each x ∈ U ∩ Bσ(x0) and
with v > M at each point of U ∩ ∂Bσ(x0), where M = supΩ u. The
requirement that v is a supersolution can be written in weak form as

(2)

∫

Ω∩Bσ(x0)
ν(v) · Dζ ≥ 0

for all ζ which are non-negative Lipschitz with compact support in Ω∩
Bσ(x0).

We now define w = max{arctan(u − v) − ε, 0} on Ω ∩ Bσ(x0), and

observe (using the local uniform convexity of the function
√

1 + |p|2 for
p ∈ R

n) that

(3) (ν(u) − ν(v)) · (Du − Dv) ≥ c(x)|D(u − v)|2

for some function c(x) which is positive and continuous on Ω ∩Bσ(x0).
Since Hn−1(K) = 0 we can choose (as in the proof of Theorem 1) a

Lipschitz function βδ with βδ ≡ 0 in a neighborhood of K,

(4)

∫

Rn

|Dβδ| < δ
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and βδ(x) ≡ 1 whenever dist(x,K) ≥ δ. Then the function wβδ is
non-negative Lipschitz with compact support in Ω ∩ Bσ(x0).

Taking the difference of (1) and (2) we have
∫

Ω∩Bσ(x0)
(ν(u) − ν(v)) · Dζ ≤ 0

for each non-negative Lipschitz function ζ with compact support in Ω∩
Bσ(x0), and by selecting ζ = βδw we see that

∫

{x∈Ω∩Bσ(x0):w(x)>0}
βδ (1 + (u − v)2)−1(ν(u) − ν(v)) · (Du − Dv)

≤ −
∫

Ω∩Bσ(x0)
w (ν(u) − ν(v)) · Dβδ,

and since 0 ≤ w ≤ π/2 and |ν(u) − ν(v)| ≤ 2 we see |w (ν(u) − ν(v)) ·
Dβδ| ≤ 4|Dβδ|, and so from (4) the right side here is ≤ 4δ, whereas
by (3) the integrand in the integral on the left is ≥ c(x)|D(u − v)|2βδ

on Ωε ≡ {x ∈ Ω ∩ Bσ(x0) : w(x) > 0}, so we deduce, after letting
δ ↓ 0, that u − v = const. on Ωε, hence arctan(u − v) ≤ ε everywhere
in Ω ∩ Bσ(x0). Thus we have lim supx→x0

u(x) ≤ ψ(x0) + Cε for each
ε > 0. Thus lim supx→x0

u(x) ≤ ψ(x0).
By the same argument applied to −u with −ψ in place of ψ, we then

conclude that also lim infx→x0
u(x) ≥ ψ(x0), and hence limx→x0,x∈Ω u(x)

= ψ(x0), as claimed.
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