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OZSVÁTH–SZABÓ INVARIANTS AND TIGHT

CONTACT THREE–MANIFOLDS, II

Paolo Lisca & András I. Stipsicz

Abstract

Let p and n be positive integers with p > 1, and let Ep,n be the
oriented 3–manifold obtained by performing p2n− pn− 1 surgery
on a positive torus knot of type (p, pn + 1). We prove that E2,n

does not carry tight contact structures for any n, while Ep,n carries
tight contact structures for any n and any odd p. In particular,
we exhibit the first infinite family of closed, oriented, irreducible
3–manifolds which do not support tight contact structures. We
obtain the nonexistence results via standard methods of contact
topology, and the existence results by using a quite delicate com-
putation of contact Ozsváth–Szabó invariants.

1. Introduction

Let S3
r (K), r ∈ Q, be the oriented 3–manifold obtained by performing

rational r–surgery along a knot K ⊂ S3. In [15] we used the Ozsváth–
Szabó invariants to study the existence of tight contact structures on
S3

r (K). In particular, we proved that if Tp,q is the positive (p, q) torus
knot, then S3

r (Tp,q) carries positive, tight contact structures for every
r 6= pq − p − q.

On the other hand, it was proved by Etnyre and Honda [6] that
S3

1(T2,3) supports no positive tight contact structure. Therefore, the
question whether the 3–manifolds S3

pq−p−q(Tp,q) carry positive, tight
contact structures seems to be particularly interesting.

Consider the oriented 3–manifold

Ep,n := S3
p2n−pn−1(Tp,pn+1).

The first main result of this paper is the following:

Theorem 1.1. Let p, n be positive integers with p > 1. Then, the

number of isotopy classes of tight contact structures carried by Ep,n is

at most

2 max{p(p − 1) − 4, 0}.

An immediate corollary of Theorem 1.1 is:

Corollary 1.2. Let n be a positive integer. Then, the oriented 3–
manifold E2,n admits no positive, tight contact structures.
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Notice that Corollary 1.2 generalizes the result of Etnyre and Honda
[6]. Since the 3–manifolds E2,n are Seifert fibered with base S2 and three
exceptional fibers, by [26] they are irreducible. Therefore, Corollary 1.2
gives the first infinite family of closed, oriented, irreducible 3–manifolds
not carrying positive, tight contact structures.

In the second part of the paper we prove the following:

Theorem 1.3. Let n, p be positive integers with p > 1 odd. Then,

Ep,n carries positive, tight contact structures.

In order to motivate this result, we also prove that the oriented 3–
manifolds Ep,n do not support any fillable contact structures (Propo-
sition 4.1). Therefore, one cannot prove the existence of tight contact
structures by presenting the 3–manifolds Ep,n as boundaries of sym-
plectic fillings. In fact, we need to use the more sophisticated methods
provided by Heegaard Floer theory.

The paper is organized as follows. In Section 2 we prove Theorem 1.1
and so verify Corollary 1.2. The proof uses convex surface theory along
the lines of [6, 8]. In the second part of the paper (Sections 3 to 6) we
prove Theorem 1.3 using the Ozsváth–Szabó invariants. In Section 3
we recall the relevant facts of Heegaard Floer theory. In Section 4 we
show that the 3–manifolds Ep,n do not support symplectically fillable
contact structures. In Section 5 we define suitable contact structures
on the manifolds Ep,n (p > 1 odd) and in Section 6 we verify their
tightness. The techniques used in the first part of the paper (Section 2)
are completely independent from the methods applied in the second
part (Sections 3–6). However, the two approaches nicely complement
each other, in the sense that using both of them on the same 3–manifold
appears to be an effective way to attack the classification problem for
tight contact structures.

Acknowledgments. The second author was partially supported by
OTKA T034885. Part of this collaboration took place when the second
author visited the University of Pisa. He wishes to thank the Geome-
try Group of the Mathematics Department for hospitality and support.
Both authors were also partially supported by the EU Marie Curie TOK
grant BudAlgGeo.

2. Proof of Theorem 1.1

We will follow the methods developed in [6] and implemented in [8].
We will assume that the reader is familiar with the theory of convex
surfaces [9] as well as the references [6, 8].

We now recall the notations used in [6, 8]. Denote the Seifert fibered
3–manifold given by the surgery diagram of Figure 1 by M(a, b, c) (with
a, b, c ∈ Q).
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0− 1
a −1

b
−1

c

Figure 1. Surgery diagram for the Seifert fibered 3–
manifold M(a, b, c).

Lemma 2.1. Let p, n ∈ N with p ≥ 2 and n ≥ 1. Then, there exists

an orientation–preserving diffeomorphism

S3
p2n−pn−1(Tp,pn+1) ∼= M

(
−

1

p
,

n

pn + 1
,

1

p(n + 1) + 1

)
.

Proof. An orientation–preserving diffeomorphism is given by the se-
quence of Kirby moves of Figure 2 for r = p2n − pn − 1 (see e.g., [11]
for an introduction to Kirby calculus). q.e.d.

r

p strands

n

r − np2

n

−1 −1

−2 −2 −2
−1

n − 1 r − np2

n p

0 r − np2

−p

n p

−1 −1

r − p(np + 1)

p − 1

−2 −2 −2

−1

r − p(np + 1)

−p

n

r − p(np + 1)

n
−p0

p

r − p(np + 1)

p

−p −
1

n0

Figure 2. A diffeomorphism between S3
r (Tp,pn+1) and

M(−1
p
, n

pn+1 , 1
p(np+1)−r

).
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Define
Ep,n := S3

p2n−pn−1(Tp,pn+1).

In view of Lemma 2.1 and following [6, 8], we start by decomposing
Ep,n into S1 × Σ0, where Σ0 is S2 minus three disks, and three copies
of S1 × D2 identified with neighbourhoods Vi of the singular fibers Fi,
i = 1, 2, 3. In order to recover Ep,n from S1 × Σ0 we need to glue these
three copies of S1×D2 to its three boundary tori. We can prescribe the
gluing maps by matrices once we fix identifications of the boundary tori
with R2/Z2. To do that, for each boundary component of ∂(S1 × Σ0)
we identify the intersection with a section {∗} × Σ0 with the image of
the line 〈(1, 0)〉, and the fiber with the image of the line 〈(0, 1)〉. For the
boundaries of the solid tori S1×D2, the meridional direction is uniquely
determined by the property of being homologically trivial in S1 × D2.
The longitude is unique only up to a Z–action. This indeterminacy
results in a certain degree of freedom in choosing the particular gluing
matrices. We choose:

Ai : ∂(S1 × D2) → −∂(Ep,n \ Vi), i = 1, 2, 3,

A1 =
(

p −1
1 0

)
, A2 =

(
pn+1 pn−p+1
−n 1−n

)
, A3 =

(
p(n+1)+1 1

−1 0

)
.

The matrices Ai have determinant one, and the ratios of the elements
in their first columns equal the surgery coefficients appearing in the
surgery diagram; therefore using the gluing maps Ai recovers Ep,n. We
shall denote by Fi the singular fibers inside the glued-up tori, while each
neighbourhood of Fi (as a subspace of Ep,n) will be called Vi, i = 1, 2, 3.
From the matrices Ai it is immediate to compute that a regular fiber of
the fibration has slope

v1 = p, v2 = −
pn + 1

pn − p + 1
and v3 = −(p(n + 1) + 1)

when viewed, respectively, in ∂Vi, i = 1, 2, 3, while the meridian of each
Vi has slope

c1 =
1

p
, c2 = −

n

pn + 1
and c3 = −

1

p(n + 1) + 1

when viewed in −∂(Ep,n \ Vi), i = 1, 2, 3. The numbers v1, v2 and v3

are called the vertical slopes, while c1, c2 and c3 are the critical slopes.
Recall that the slope of a convex torus in standard form identified

with R2/Z2 is, by definition, the slope of any component of its dividing
set.

Remark. If T is a convex torus in standard form isotopic to ∂Vi and
the slope of T with respect to the identification −∂(Ep,n \ Vi) ∼= R2/Z2

given above is equal to the critical slope of Fi, then the contact structure
under consideration is overtwisted. In fact, any Legendrian divide on T
bounds an overtwisted disk in Vi.
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Let f ⊂ Ep,n be a Legendrian curve isotopic to a regular fiber of
the fibration. There are two framings of f : the one coming from the
fibration and the one induced by the contact structure. The difference
between the fibration framing and the contact framing is, by definition,
the twisting number of f .

Let Fi be a Legendrian singular fiber with twisting number mi and
standard neighbourhood Vi. Then, the slope of the torus ∂Vi is 1

mi
with

respect to the identification ∂Vi
∼= R2/Z2 given above. The same slope

is equal to, respectively,

b1 =
m1

pm1 − 1
, b2 = −

n(m2 + 1) − 1

(pn + 1)m2 + p(n − 1) + 1

and

b3 = −
m3

(p(n + 1) + 1)m3 + 1

when computed with respect to the chosen identification −∂(Ep,n\Vi) ∼=
R2/Z2. The numbers b1, b2 and b3 are called the boundary slopes.

Lemma 2.2. Let ξ be a positive, tight contact structure on Ep,n.

Then, the singular fibers F1, F2 and F3 can be isotoped to Legendrian

positions such that

m1 = 0 and m2 = m3 = −1.

Moreover, we can find (nonstandard ) neighbourhoods V ′
i ⊃ Vi with con-

vex boundaries such that the slopes of −∂(Ep,n \ V ′
i ) are all infinite.

Proof. The argument is a simple adaptation of the proof of [6,
Lemma 7]. Notice that the statement of [6, Lemma 7] coincides with
the statement we want to prove for (n, p) = (1, 2). Therefore, we will
assume (n, p) 6= (1, 2).

Let V2 and V3 be standard neighbourhoods of F2 and F3 with vertical
rulings on their boundaries. Up to stabilizing F2 and F3, we may assume
m2, m3 < −1. Then, there are two possible cases.

Case I. Suppose there is a vertical annulus A between V2 and V3

having no boundary parallel dividing curves. Then, by the Imbalance
Principle [12, Proposition 3.17],

(2.1) (pn + 1)m2 + p(n − 1) + 1 = (p(n + 1) + 1)m3 + 1,

that is,

m3 =
(pn + 1)m2 + p(n − 1)

p(n + 1) + 1
= m2 + 1 −

pm2 + 2p + 1

p(n + 1) + 1
.

Since m3 ∈ Z, this implies that p(n+1)+1 ≥ 7 divides pm2+2p+1 6= 0,
therefore m2 < −2 and we have

|pm2 + 2p + 1| = p|m2| − 2p − 1 ≥ p(n + 1) + 1.
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This observation implies that Equation (2.1) can hold only if

|m2| ≥ n + 3 +
2

p
,

i.e., if m2 ≤ −(n + 4). If we cut along A and round corners, we get a
torus T of slope

(2.2) −sT = −
n(m2 + 1) + (pn+1)m2+p(n−1)

p(n+1)+1

(pn + 1)m2 + p(n − 1) + 1
.

surrounding the fibers F2 and F3. When viewed as minus the boundary
of the complement of a neighbourhood of F1, the slope of T is sT . We
claim that

(2.3) sT >
m1

pm1 − 1
.

In fact, it is easy to check that sT is a strictly decreasing function of
m2, and takes the value sT = 1

p
for

m2 = −1 −
p2n

p2n − p − 1
.

Moreover, an easy calculation shows that, since (n, p) 6= (1, 2),

−(n + 4) < −1 −
p2n

p2n − p − 1
.

It follows that for m2 ≤ −(n + 4) we have sT > 1
p
. Therefore, since

1

p
>

1

p − 1
m1

=
m1

pm1 − 1
,

the claim (2.3) is proved. This immediately implies the existence of a
convex vertical torus T ′ with slope ∞. Then, let Ai, i = 1, 2, 3, be
vertical convex annuli between a Legendrian divide of T ′ and a ruling
of ∂Vi, i = 1, 2, 3. As long as mi < 0, we can find bypasses on Ai

attached to ∂Vi for each i = 1, 2, 3. By attaching those bypasses to Vi

we can find bigger standard neighbourhoods of the singular fibers Fi,
which amounts to increasing the twisting numbers mi as long as the
assumptions of the Twist Number Lemma [6, Lemma 6] hold, i.e., as
long as

1

p
≥ m1 + 1, −

pn − p + 1

pn + 1
≥ m2 + 1, −

1

p(n + 1) + 1
≥ m3 + 1.

Consequently, we can increase the mi’s up to m1 = 0 and m2 = m3 =
−1. Moreover, the Legendrian divide of T ′ allows us to attach further
vertical bypasses to the standard neighbourhoods until we obtain the
neighbourhoods V ′

i of the statement.

Case II. Suppose there is a vertical annulus A between V2 and V3

with some boundary parallel dividing curve. Then, we can attach a
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vertical bypass to either V2 or V3 and increase either m2 or m3. Since
under Case I we have proved the statement, we may assume that we
fall again under Case II. Using Equation (2.1) it is easy to check that
if m2 = −1 we can always attach a vertical bypass to V3 as long as
m3 < −1, while if m3 = −1 we can attach a vertical bypass to V2 as
long as m2 < −1. Therefore, we may assume to be able to increase m2

and m3 until m2 = m3 = −1. At this point the values of the boundary
slopes b2 and b3 are

b2 = −
1

p
and b3 = −

1

p(n + 1)
.

We can keep attaching vertical bypasses until the slopes of the resulting
neighbourhoods are both − 1

k
, for some 0 ≤ k ≤ p. Since for k = 0 this

gives a vertical convex torus of infinity slope and the conclusion follows
as in Case I, we may assume that at some point we can find an annulus
A between the two neighbourhoods with no boundary parallel curves.
After cutting and rounding we get a torus of slope − 1

k
surrounding F2

and F3, which can be viewed as a torus of slope s = 1
k

around V1. For
k = p, s is the critical slope of the first singular fiber, hence its existence
contradicts the tightness of ξ. For 0 ≤ k < p we have

b1 =
m1

pm1 − 1
=

1

p − 1
m1

<
1

k
.

Therefore there is a torus of slope ∞ around F1, and the conclusion
follows as before. q.e.d.

Using Lemma 2.2, we can assume the boundary slopes to be

b1 = 0, b2 = −
1

p
and b3 = −

1

p(n + 1)
.

Let V ′
i (i = 1, 2, 3) be the neighbourhoods given in the statement of

Lemma 2.2. Each of the thickened tori V ′
i \Vi has a decomposition into

basic slices. Following the notation of [8], any tight contact structure on
∪iV

′
i with infinity boundary slopes can be represented and is uniquely

determined by a diagram as in Figure 3 for some choice of signs, where
each sign denotes the corresponding type of basic slice.

Let qi denote the number of ‘+’ signs in Vi. Then,

q1 ∈ {0, 1}, q2 ∈ {0, . . . , p} and q3 ∈ {0, . . . , p(n + 1)}.

Let us denote by ξ(q1, q2, q3) the contact structure on ∪iV
′
i correspond-

ing to the vector (q1, q2, q3). We are going to use the following result in
the proofs of Lemmas 2.4, 2.5, 2.6 and 2.7.

Lemma 2.3 ([8], Lemma 4.13). Let Σ be a pair of pants and ξ a tight

contact structure on Σ × S1. Suppose that the boundary −∂(Σ × S1) =
T0∪T1∪T2 consists of tori in standard form with #ΓTi

= 2 for i = 0, 1, 2,
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V1

±

0

∞

V2

±

±

−
1

p

−
1

p−1

−1

∞

V3

±

±

−

1
p(n+1)

−

1
p(n+1)−1

−1

∞

Figure 3. A tight contact structure with infinity bound-
ary slopes on ∪iV

′
i .

and slopes s(T0) = p0

q
, s(T1) = ∞, s(T2) = p2

q
. Suppose also that there

exists a pair of pants Σ′ ⊂ Σ such that Σ× S1 decomposes as Σ× S1 =
Σ′×S1∪(T0×I)∪(T2×I), with ξ|Ti×I minimally twisting for i = 0, 2 and

where ξ|Σ′×S1 is a tight contact structure with infinite boundary slopes

such that for some s ∈ S1 the surface Σ′ × {s} ⊂ Σ′ × S1 is convex and

its dividing set consists of arcs, each connecting two different boundary

components. Suppose that one of the following holds:

1) s(T0) = s(T2) = −1
q

and ξ|T0×I is isotopic to ξ|T2×I ;

2) s(T2) < 0 and ξ|Ti×I , for i = 0, 2, decomposes into basic slices of

the same sign (i.e., with relative Euler class ±(q, pi − 1)).

Then there exists a convex annulus with Legendrian boundary consisting

of vertical Legendrian rulings of T0 and T2 without boundary parallel

dividing curves.

Observe that in our situation Ep,n \ ∪iV
′
i
∼= Σ′ × S1, and a standard

argument shows that the restriction to Ep,n \ ∪iV
′
i of any tight contact

structure on Ep,n satisfies the assumptions on the dividing set of Σ′×{s}
stated in Lemma 2.3 (cf. [8, Lemma 4.6]).
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Lemma 2.4. Let ξ be a positive contact structure on Ep,n such that

ξ|∪iV
′

i
= ξ(q1, q2, q3).

If q2 ≤ q3 ≤ q2 + pn, then ξ is overtwisted.

Proof. By contradiction, suppose that ξ is tight. The assumption is
equivalent to

(2.4) q3 ≥ q2 and p(n + 1) − q3 ≥ p − q2.

Denote by V ′′
2 and V ′′

3 the neighborhoods of F2 and F3, respectively,
bounded by vertical tori inside V ′

2 and V ′
3 with slope −1

p
. Since by [12,

Lemma 4.14] the basic slices of V ′
i \ Vi can be shuffled, by (2.4) we may

assume that
ξ|V ′

2
\V ′′

2
and ξ|V ′

3
\V ′′

3

are isotopic. By Lemma 2.3(1) there exists a vertical convex annulus A
with no boundary parallel dividing curve connecting two ruling curves
of ∂V ′′

2 and ∂V ′′
3 . Cutting along A and rounding corners we get a convex

vertical torus T surrounding F2 and F3 with slope −1
p
. When viewed as

minus the boundary of the complement of a neighbourhood of F1, the
slope of T becomes 1

p
, which is the critical slope c1. This implies that ξ

is overtwisted, giving a contradiction. q.e.d.

Lemma 2.5. Let ξ be a positive contact structure on Ep,n such that

ξ|∪iV
′

i
= ξ(q1, q2, q3).

If q1 = 0 and q3 ≤ p−1, or q1 = 1 and q3 ≥ pn+1, then ξ is overtwisted.

Proof. We consider the case q1 = 0 only, because the case q1 = 1
follows by a symmetric argument. Assume by contradiction that ξ is
tight. Stabilize F1 n times by adding zig-zags to it in such a way that the
newly created basic slices all have negative signs. The new Legendrian
singular fiber has a standard neighbourhood V ′′

1 ⊂ V1 such that the
boundary slope of −∂(Ep,n \ V ′′

1 ) is
n

pn + 1
.

Inside V3 there is a convex neighbourhood V ′′
3 of F3 such that −∂(Ep,n \

V ′′
3 ) has boundary slope

−
1

pn + 1
.

Moreover, since we can shuffle the basic slices of V ′
3 \V3, by the assump-

tion q3 ≤ p − 1 we may assume that

ξ|V ′

1
\V ′′

1
and ξ|V ′

3
\V ′′

3

decompose into basic slices of the same sign. Therefore, by Lemma
2.3(2) there exists a convex vertical annulus A between V ′′

1 and V ′′
3 with

no boundary parallel dividing curves. Cutting along A and rounding
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corners we get a vertical convex torus which, when viewed as minus the
boundary of the complement of a neighbourhood of F2 has slope − n

pn+1 ,

which is exactly the critical slope c2. This implies that ξ is overtwisted,
giving a contradiction. q.e.d.

Lemma 2.6. Let ξ be a positive contact structure on Ep,n such that

ξ|∪iV
′

i
= ξ(q1, q2, q3).

If (q1, q2) ∈ {(0, 0), (1, p)}, then for any q3 ∈ {0, . . . , p(n+1)} the struc-

ture ξ is overtwisted .

Proof. Suppose by contradiction that ξ is tight. Stabilize F1 (n + 1)
times and F2 once, and denote by V ′′

1 and V ′′
2 standard neighbourhoods

of the new Legendrian curves. The slopes of −∂(Ep,n\V
′′
1 ) and −∂(Ep,n\

V ′′
2 ) are, respectively,

n + 1

p(n + 1) + 1
and −

n + 1

p(n + 1) + 1
.

Since (q1, q2) ∈ {(0, 0), (1, p)}, the stabilizations can be chosen so that

ξ|V ′

1
\V ′′

1
and ξ|V ′

2
\V ′′

2

decompose into basic slices of the same sign. Therefore, by Lemma
2.3(2) we can find a convex vertical annulus A between V ′′

1 and V ′′
2 with

no boundary parallel dividing curves. Cutting and rounding provides a
torus with slope 1

p(n+1)+1 , which turns into the critical slope c3 when

viewed as minus the boundary of the complement of a neighbourhood
of F3. Therefore, ξ is overtwisted and we have a contradiction. q.e.d.

Lemma 2.7. Let ξ be a positive contact structure on Ep,n such that

ξ|∪iV
′

i
= ξ(q1, q2, q3).

Suppose that

(q1, q2, q3) ∈ {(0, 1, pn + 2), (0, p − 1, pn + p), (1, 1, 0), (1, p − 1, p − 2)}.

Then, ξ is overtwisted.

Proof. By contradiction, suppose that ξ is tight. Since the basic
slices of V ′

i \ Vi, i = 2, 3 can be shuffled, the assumption on (q1, q2, q3)
guarantees that we can find convex neighbourhoods V ′′

2 and V ′′
3 with

boundary slope − 1
p−1 such that Vi ⊂ V ′′

i ⊂ V ′
i , i = 2, 3, and such that

ξ|V ′

2
\V ′′

2
and ξ|V ′

3
\V ′′

3

are isotopic. Then, by Lemma 2.3(1), we can find a convex vertical annu-
lus between V ′′

2 and V ′′
3 with no boundary parallel dividing curves. Cut-

ting and rounding gives a convex vertical torus T which, when viewed
as minus the boundary of the complement of a neighbourhood of F1 has
slope 1

p−1 .



OZSVÁTH–SZABÓ INVARIANTS, II 119

Now we follow the line of the argument given in the last paragraph of
the proof of [8, Theorem 4.14]. By substituting m1 = 1 into the formula
for the boundary slope b1, we get exactly 1

p−1 . This shows that F1 can

be destabilized to a Legendrian curve F ′
1, and T can be viewed as the

boundary of a standard neighbourhood of F ′
1. If now we stabilize F ′

1, we
get a new singular fiber F1 and a new standard neighbourhood V1 inside
V ′

1 . But there is a degree of freedom in the choice of the stabilization of
F ′

1, which corresponds to the choice of “zig–zag” to be added to it. By
choosing the appropriate stabilization, we can arrange a different sign
for the basic slice ξ|V ′

1
\V1

.
The above argument shows that there is an isotopy between ξ and

a contact structure which restricts to ∪iV
′
i as ξ(1 − q1, q

′
2, q

′
3), for some

q′2 and q′3 which are a priori different from q2 and q3. In fact, when we
create the torus T we do not touch V ′′

2 and V ′′
3 , but we destroy V ′

2 \ V ′′
2

and V ′
3 \ V ′′

3 . Using −∂(Ep,n \ V ′
1), which has slope infinity, we can find

new convex neighbourhoods V ′
i ⊃ V ′′

i with infinity boundary slope, but
we loose control on the signs in the basic slice decompositions of V ′

2 \V ′′
2

and V ′
3 \ V ′′

3 . Since V ′′
3 has been preserved, an easy computation shows

that q′3 ≥ pn + 1 if q1 = 0, and q′3 ≤ p− 1 if q1 = 1. By Lemma 2.5, any
contact structure which restricts to ∪iV

′
i as ξ(1−q1, q

′
2, q

′
3) is overtwisted

in these cases and we get a contradiction. q.e.d.

Proof of Theorem 1.1. Let V ′
i (i = 1, 2, 3) be the neighborhoods given

in the statement of Lemma 2.2. By [6, Lemmas 10, 11], there are
exactly two positive, tight contact structures on Ep,n \∪iV

′
i with convex

boundary and boundary slopes (∞,∞,∞). The statement is now an
immediate consequence of Lemmas 2.4, 2.5, 2.6 and 2.7. q.e.d.

Remark 2.8. Shortly after the first version of the present paper was
circulated, Paolo Ghiggini pointed out to the authors that the upper
bound given in Theorem 1.1 is not sharp for p > 2.

3. Generalities in Heegaard Floer theory

In the second part of the paper we will apply Heegaard Floer theory
in proving tightness of certain contact structures (specified by contact
surgery diagrams later) on the oriented 3–manifolds

Ep,n = S3
p2n−pn−1(Tp,pn+1)

for p > 1 and odd. As it was indicated earlier, the methods used
in the subsequent sections are completely different from the ones used
earlier. For the sake of completeness we begin our discussion by shortly
reviewing the basics of Heegaard Floer theory and contact surgery.
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Ozsváth–Szabó homologies. In a remarkable series of papers [19,
20, 21, 24] Ozsváth and Szabó defined new invariants of many low–
dimensional objects, including contact structures on closed 3–manifolds.
Heegaard Floer theory associates a finetely generated abelian group

ĤF (Y, t) (the Ozsváth–Szabó homology group) to a closed, oriented
spinc 3–manifold (Y, t), and a homomorphism

FW,s : ĤF (Y1, t1) → ĤF (Y2, t2)

to an oriented spinc cobordism (W, s) between two spinc 3–manifolds
(Y1, t1) and (Y2, t2).

Throughout this paper we shall assume that Z/2Z coefficients are be-

ing used in the complexes defining the ĤF–groups. With this assump-

tion, the groups are actually Z/2Z–vector spaces. The group ĤF (Y )

will denote the sum of ĤF (Y, t) for all spinc structures. A fundamen-
tal property of these groups is that there are only finitely many spinc

structures on any 3–manifold with nontrivial Ozsváth–Szabó homology

groups; hence ĤF (Y ) is also finitely generated. For a rational homology

sphere Y the Ozsváth–Szabó homology group ĤF (Y, t) is nontrivial for
any spinc structure t ∈ Spinc(Y ), see [20, Proposition 5.1]. In particu-
lar, for a rational homology 3–sphere Y we have

dim ĤF (Y ) ≥ |H1(Y ; Z)|.

A rational homology 3–sphere Y is called an L–space if

dim ĤF (Y ) = |H1(Y ; Z)|.

In the light of the above nonvanishing result, this property is equivalent
to

ĤF (Y, t) = Z/2Z

for all t ∈ Spinc(Y ).
Let Y be a closed, oriented 3–manifold and let K ⊂ Y be a framed

knot with framing f . Let Y (K) denote the 3–manifold given by surgery
along K ⊂ Y with respect to the framing f . The surgery can be viewed
at the 4–manifold level as a 2–handle addition. The resulting cobordism
X induces a homomorphism

FX :=
∑

t∈Spinc(X)

FX,t : ĤF (Y ) → ĤF (Y (K))

obtained by summing over all spinc structures on X. Similarly, there is
a cobordism U defined by adding a 2–handle to Y (K) along a normal
circle N to K with framing −1 with respect to a normal disk to K.
The boundary components of U are Y (K) and the 3–manifold Y ′(K)
obtained from Y by a surgery along K with framing f + 1. As before,
U induces a homomorphism

FU : ĤF (Y (K)) → ĤF (Y ′(K)).
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Finally, by attaching a 4–dimensional 2–handle to Y ′(K) along a normal
circle D to N with framing −1 with respect to the normal disk to N ,
we obtain a cobordism V . As it is shown in [15], the 4–manifold V
is a cobordism from Y ′(K) to Y . As above, FV denotes the induced
homomorphism

FV : ĤF (Y ′(K)) → ĤF (Y ).

Theorem 3.1 (Surgery exact triangle; [20], Theorem 9.16). The

homomorphisms FX , FU and FV fit into an exact triangle

ĤF (Y ) ĤF (Y (K))

ĤF (Y ′(K))

FX

FUFV

It was proved in [19, 22] that the Ozsváth–Szabó homology groups

ĤF (Y ) split as

ĤF (Y ) = ⊕(d,t)∈HĤF d(Y, t),

where H denotes the set of homotopy types of oriented 2–plane fields on
Y . The set H can be identified with [Y, S2], which is isomorphic to the
set of framed 1–manifolds via the Pontrjagin–Thom construction. The
1–manifold determines a spinc structure t ∈ Spinc(Y ), while the framing
corresponds to the degree d. This invariant of the oriented 2–plane field
ξ is naturally an element of Z/div (ξ)Z, where div (ξ) is the divisibility
of c1(ξ) in H2(Y ; Z). If c1(ξ) is torsion then div (ξ) = 0. Therefore if
t ∈ Spinc(Y ) is torsion, that is, c1(t) ∈ H2(Y ; Z) is a torsion element,

then the Ozsváth–Szabó homology group ĤF (Y, t) comes with a natural
relative Z–grading. As it was shown in [22], this relative Z–grading
admits a natural lift to an absolute Q–grading. In conclusion, for a

torsion spinc structure t the Ozsváth–Szabó homology group ĤF (Y, t)
splits as

ĤF (Y, t) = ⊕d∈QĤF d(Y, t),

where the degree d is determined mod 1 by t. When t ∈ Spinc(Y ) has
torsion first Chern class, there is an isomorphism between the homology

groups ĤF d(Y, t) and ĤF−d(−Y, t).
Next we describe the relation between degrees and the maps induced

by 4–dimensional cobordisms. Let (W, s) be a spinc cobordism between
two spinc manifolds (Y1, t1) and (Y2, t2). If the spinc structures ti are

both torsion and x ∈ ĤF (Y1, t1) is a nonzero homogeneous element of

degree d(x), then either FW,s(x) ∈ ĤF (Y2, t2) is zero or it is homoge-
neous of degree

d(x) +
1

4
(c2

1(s) − 3σ(W ) − 2χ(W )).
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Notice that FW (being equal to the sum
∑

s∈Spinc(W ) FW,s) might map a

homogeneous element x ∈ ĤF d(Y1, t) into a nonhomogeneous element

FW (x) ∈ ĤF (Y2).
We need one more piece of information. Recall that the set of spinc

structures comes equipped with a natural involution, usually denoted
by t 7→ t. The spinc structure t, called the conjugate of t, is defined
as follows: If one thinks of a spinc structure as a suitable equivalence
class of nowhere zero vector fields (cf. [19]), then the above involution
is the map induced by multiplying a representative vector field by (−1).
Equivalently, viewing a spinc structure as an equivalence class of ori-
ented 2–plane fields, the conjugate action is induced by reversing the
orientation of the planes in the oriented 2–plane field.

Theorem 3.2 ([20], Theorem 2.4). The groups ĤF (Y, t) and

ĤF (Y, t) are canonically isomorphic.

A spinc structure t ∈ Spinc(Y ) is induced by a spin structure ex-
actly when c1(t) = 0, or equivalently when t = t. Let JY denote the

isomorphism of Theorem 3.2 between ĤF (Y, t) and ĤF (Y, t). Then,
according to [21, Theorem 3.6], given a spinc cobordism (W, s) we have

(3.1) FW,s = JY ′ ◦ FW,s ◦ JY ,

where s is the spinc structure on the 4–manifold W conjugate to s. (If we
think of s ∈ Spinc(W ) as a suitable equivalence class of almost–complex
structures defined on W − {finitely many points}, then s corresponds
to the conjugate of the almost–complex structure defining s.) As an
easy corollary of (3.1), we get that FW,s is nontrivial if and only if FW,s

is nontrivial. Viewing ĤF (Y ) with the conjugate actions as a Z/2Z–
representation, the above identity (3.1) simply says that the induced
map FW for the cobordism W is Z/2Z–equivariant.

The special relation between spin structures and maps induced by
cobordisms is demonstrated by the following simple observation. Sup-
pose that Y is a rational homology sphere which is an L–space. We

identify the nontrivial element in each group ĤF (Y, t) = Z/2Z with
t ∈ Spinc(Y ). With this convention, the set of spinc structures provides

a basis for ĤF (Y ). Let V be a cobordism between the rational homol-
ogy spheres Y1 and Y2, Yi be L–spaces and ti be spin structures on Yi

(i = 1, 2). Let

S = {s ∈ Spinc(V ) | s|Yi
= ti i = 1, 2}.

The set S decomposes as the collection S1 of spinc structures which are
not spin structures and the set of spin structures S2 among the elements
of S. As always, let FV denote the map induced by the cobordism V ,
that is, FV =

∑
s∈Spinc(V ) FV,s.
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Lemma 3.3. Suppose that V and ti (i = 1, 2) are given as above. If

S2 = ∅ then the t2–component of FV (t1) is zero.

Proof. Notice that the t2–component of F (t1) is computed by con-
sidering the sum

∑
s∈S FV,s(t1). By assumption, this sum is equal to∑

s∈S1
FV,s(t1). Since S1 = {s1, s1, . . . , sk, sk}, t1 = t1 by assumption

and FV,si
(t1) + FV,si

(t1) = 0, the lemma follows. q.e.d.

Contact (±1)–surgery. Suppose that L ⊂ (Y, ξ) is a Legendrian knot
in a contact 3–manifold. Let Y ±

L denote the 3–manifold we get by doing
(±1)–surgery along L, where the surgery coefficient is measured with re-
spect to the contact framing of L. According to the classification of tight
contact structures on a solid torus [12], the contact structure ξ|Y −νL

extends uniquely (up to isotopy) to the surgered manifolds Y +
L and Y −

L

as a tight structure on the glued–up torus. Therefore, the knot L with
a (+1) or (−1) on it uniquely specifies a contact 3–manifold (Y +

L , ξ+
L ) or

(Y −
L , ξ−L ). (For more about contact surgery see [1, 2, 3].) In particular,

a Legendrian link L ⊂ (S3, ξst) in the standard contact 3–sphere (which
can be represented by its front projection) defines a contact structure
once the surgery coefficients (+1) and (−1) are specified on its compo-
nents. In order to keep diagrams as simple as possible, we will follow the
convention that when in a diagram a Legendrian knot has no coefficient,
then contact (−1)–surgery is performed on it. Contact (−1)–surgery is
also frequently called Legendrian surgery in the literature.

Contact Ozsváth–Szabó invariants. In [24] Ozsváth and Szabó de-
fine an invariant

c(Y, ξ) ∈ ĤF (−Y, tξ)

assigned to a positive, cooriented contact structure ξ on Y .1 In fact, ξ
(as an oriented 2–plane field) determines an element (d(ξ), tξ) ∈ H
and according to [24] the contact invariant c(Y, ξ) is an element of

ĤF−d(ξ)(−Y, tξ). Moreover, if c1(ξ) ∈ H2(Y ; Z) is torsion then

d(ξ) =
1

4
(c2

1(X, J) − 3σ(X) − 2χ(X) + 2),

where X is a compact almost–complex 4–manifold with ∂X = Y , and
ξ is homotopic to the distribution of complex tangencies on ∂X.

The main properties of the contact Ozsváth–Szabó invariant are sum-
marized in the following two theorems.

Theorem 3.4 ([24]). If (Y, ξ) is overtwisted, then c(Y, ξ) = 0. If

(Y, ξ) is Stein fillable then c(Y, ξ) 6= 0. In particular, for the standard

contact structure (S3, ξst) the invariant c(S3, ξst) ∈ ĤF (S3) = Z/2Z is

nonzero.

1When Z–coefficients are used, the invariant c(Y, ξ) is only defined up to sign, but
since we are using Z/2Z–coefficients we do not need to worry about such ambiguity.
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Theorem 3.5 ([14, 24]). Suppose that (Y2, ξ2) is obtained from

(Y1, ξ1) by a contact (+1)–surgery. Then

F−W (c(Y1, ξ1)) = c(Y2, ξ2),

where −W is the cobordism induced by the surgery with reversed orien-

tation and F−W is the sum
∑

s
F−W,s over all spinc structures on W .

In particular, if c(Y2, ξ2) 6= 0 then (Y1, ξ1) is tight.

Since by [1, Proposition 8] contact (−1)–surgery along a Legendrian
push–off inverts contact (+1)–surgery, the above theorem implies

Corollary 3.6. If (Y2, ξ2) is given as Legendrian surgery along a

Legendrian knot in (Y1, ξ1) and c(Y1, ξ1) 6= 0 then c(Y2, ξ2) 6= 0; in

particular, (Y2, ξ2) is tight.

An easy application of the surgery exact triangle and Theorem 3.5
provides

Lemma 3.7 ([14], Lemma 2.5). The contact structure η1 on S1×S2

given as contact (+1)–surgery on a Legendrian unknot with Thurston–

Bennequin number −1 has nonvanishing contact Ozsváth–Szabó invari-

ant c(S1 × S2, η1) ∈ ĤF (S1 × S2).

4. Symplectic fillings

In this section we show, assuming n ≥ 1 and p > 1, that the 3–
manifold Ep,n does not support fillable contact structures, thus justi-
fying our use of Heegaard Floer theory in the proof of tightness of the
contact structures described below.

Recall that a compact symplectic 4–manifold (X, ω) is a symplectic

filling of the closed contact 3–manifold (Y, ξ) if ∂X = Y and ω|ξ 6= 0
along the boundary ∂X.

Proposition 4.1. For each p > 1 and n ≥ 1 the oriented 3–manifold

Ep,n = S3
p2n−pn−1(Tp,pn+1) is an L–space and supports no positive, fill-

able contact structure.

Proof. Arguing by contradiction, suppose that Ep,n supports a fillable
contact structure. Recall that the slice genus of the (p, q)–torus knot
Tp,q is equal to 1

2(p−1)(q−1). Since (pq−1)–surgery on the torus knot
Tp,q is a lens space [16], by [15, Proposition 4.1] Ep,n is an L-space.
By [25, Theorem 1.4] this implies that if (X, ω) is a symplectic filling of
Ep,n, then b+

2 (X) = 0. On the other hand, Figure 4 shows that −Ep,n

is the boundary of a negative definite plumbing 4–manifold Wp,n.
Therefore the closed 4–manifold Z = X∪Ep,n

Wp,n is negative definite,
and by Donaldson’s celebrated result [4, 5] Z has a diagonal intersection
form. This implies that any intersection lattice contained in QWp,n

embeds into the diagonal intersection form QZ . But the argument of
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Figure 4. Presentation of −Ep,n as the boundary of a plumbing.

[13, Lemma 4.3] with the minor modification given in [15, Theorem 4.2]
(due to the presence of the framing −n−1 instead of −2 at the end of one
long leg) shows that QWp,n

contains an intersection lattice which does
not embed into any diagonal intersection form, yielding a contradiction.

q.e.d.

5. Tight contact structures on Ep,n

Now we outline our approach to the proof of Theorem 1.3. The strat-
egy is the following: in this section we specify a contact structure ξp,n

on a certain 3–manifold Sp,n so that the contact invariant c(Sp,n, ξp,n)
is nonzero. Since Sp,n turns out to be an L-space, we can identify

the invariant c(Sp,n, ξp,n) ∈ ĤF (−Sp,n) by determining the spinc struc-
ture induced by ξp,n. By specifying an appropriate Legendrian knot
in ξp,n and doing contact (+1)–surgery along it, we define a contact
structure ζp,n on Ep,n and a cobordism X from Sp,n to Ep,n. In the
next section we show that c(Sp,n, ξp,n) is not in kerF−X , which implies
that c(Ep,n, ζp,n) = F−X(c(Sp,n, ξp,n)) is nonzero, hence that the contact
structure ζp,n on Ep,n is tight, concluding the argument. Throughout
the rest of the paper we assume that p > 1 is odd. The contact structure
ξp,n is defined by the contact surgery diagram of Figure 5. The num-
bers different from +1 next to the vertical braces denote the number
of left cusps immediately to their right. Moreover (as noted earlier) we
adopt the convention that when in a diagram a Legendrian knot has no
surgery coefficient, then contact (−1)–surgery is performed on it.

Notice that the diagram also specifies the underlying oriented 3–
manifold Sp,n.
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p − 2p − 2
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Figure 5. The tight contact structure ξp,n on Sp,n with
p > 1 odd.

Proposition 5.1. The 3–manifold Sp,n defined by the contact surgery

diagram of Figure 5 is an L–space, and the invariant c(Sp,n, ξp,n) is

nonzero.

Proof. The first statement can be proved in two steps. First observe,
by converting contact surgery coefficients into smooth ones, that Sp,n is
orientation preserving diffeomorphic to S3

r (Tp,pn+1), with

r = p(np + 1) −
p(n + 1) + 1

p(n + 1) + 2
.

For the Kirby moves see Figure 6 and compare the result with Figure 2.
Since the above r is greater than 2gs(Tp,pn+1) − 1 = p2n − pn − 1,

by [15, Proposition 4.1] the 3–manifold Sp,n is an L–space.
The second statement follows from the fact that the structure ξp,n is

given as Legendrian surgery on the contact structure η1 of Lemma 3.7.
Therefore, Lemma 3.7 and Corollary 3.6 imply that the invariant of ξp,n

is nonzero. q.e.d.

Remark. In fact, the contact structure ξp,n can be proved to be Stein
fillable. We will not make use of this fact in our further arguments.

Next, we want to identify the spinc structure induced by ξp,n. In
order to do this, we need a little preparation.
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Figure 6. Surgery diagrams for Sp,n.

It follows from Figure 6 that the homology group H1(Sp,n; Z) has
order

(5.1) hS := |H1(Sp,n; Z)| = p(pn + 1)(p(n + 1) + 2) − p(n + 1) − 1.

Moreover, H1(Sp,n; Z) is generated by the classes µa1
, µa2

, µb, µc, µd of
suitably oriented meridional circles to the knots a1, a2, b, c, d given in
Figure 6. These elements are subject to the relations:

nµa1
+ µa2

= 0, −pµa2
+ µa1

+ µd = 0, pµb + µd = 0,

(−p(n + 1) − 1)µc + µd = 0, µa2
+ µb + µc + µd = 0.

The relations above imply that µd generates the homology group, since
µa1

, µa2
, µb and µc can be expressed in terms of µd as

• µa1
= [n(n + 1)p2 + 2np − 1 − n]µd, µa2

= −nµa1
,

• µb = [(−n2 − n)p2 + (−1 − 3n)p − 1 + n]µd,
• µc = [(n2 + 2n + 1)np2 + p(2n2 + 3n + 1) − (n + 2)n]µd.

Notice that the order of H1(Sp,n; Z) is always odd. Therefore, there is
no 2–torsion in the second cohomology of Sp,n, and the spinc structures
on Sp,n are determined by their first Chern classes.
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Lemma 5.2. Let tp,n be the spinc structure induced by ξp,n. Then,

if p is odd we have c1(tp,n) = PD(µd).

Proof. Consider the 4–manifold X determined by the surgery dia-
gram of Figure 5. Since X is simply connected, a spinc structure on
X is determined by its first Chern class. Let α ∈ H2(X; Z) be the
unique cohomology class which evaluates on each 2–homology class cor-
responding to an oriented knot K of the diagram as the rotation number
of K. Then, the spinc structure corresponding to α restricts to the spinc

structure of ξp,n (see e.g., [3] for details).
Therefore, after choosing a suitable orientation of the curves in Fig-

ure 5, we have

(5.2) PD(c1(tp,n)) =
∑

K

rot(K)µK ,

where the sum is over all surgery curves, rot(K) denotes the rotation
number of the oriented Legendrian knot K, and µK denotes the first ho-
mology class induced by its meridian. Recall that according to [10, 11]
the front projection determines the rotation number of the correspond-
ing Legendrian knot as

(5.3) rot(K) =
1

2
(cd − cu),

where cu and cd denote the number of up and down cusps in the pro-
jection. Using Formulas (5.2) and (5.3), and following the Kirby moves
of Figure 6, one can easily check that

PD(c1(tp,n)) = −µa2
− µb + p(n + 1)µc − µd.

Replacing each of µa2
, µb and µc by the corresponding multiple of µd

yields, after a somewhat tedious calculation, PD(c1(tp,n)) = µd. q.e.d.

Definition 5.3. Let ζp,n be the contact structure defined by the
upper–left contact surgery picture of Figure 7.

Proposition 5.4. The contact structure ζp,n is supported by Ep,n.

Proof. The proof requires only a minor modification of the Kirby
calculus of Figure 6. This modification is shown in Figure 7. q.e.d.

6. Maps between the Ozsváth–Szabó homologies

In this section we show that the contact Ozsváth–Szabó invariant
of the contact 3–manifold (Ep,n, ζp,n) is nonzero. This proves Theo-
rem 1.3. Note that ζp,n is obtained by contact (+1)–surgery on ξp,n

along the Legendrian knot L shown in Figure 7. There is a cobor-
dism naturally associated to the surgery which we denote by X. By
the properties of the contact Ozsváth–Szabó invariants we know that
c(Ep,n, ζp,n) = F−X(c(Sp,n, ξp,n)). This section is devoted to collecting
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Figure 7. The contact structure ζp,n on Ep,n.

partial information about the map F−X . In particular, we show that
c(Sp,n, ξp,n) is not in kerF−X . Recall that we have assumed that p > 1
is odd. The cobordism −X induced by the surgery on the knot L of
Figure 7 (after reversing its orientation) fits into the triangle given by
Figure 8.

In the remaining figures of the paper we adopt the convention of
denoting the 3–manifold under examination by solid framed links, while
dashed curves denote the 2–handles of the cobordism built on the given
3–manifold. We shall use the corresponding exact triangle involving the
Ozsváth–Szabó homology groups to study the map

F := F−X : ĤF (−Sp,n) → ĤF (−Ep,n).

The strategy to show that the contact invariant

c(Ep,n, ζp,n) = F−X(c(Sp,n, ξp,n))

is nonzero will be the following. Let GV be the map induced by the

cobordism V . First we show that there exists an element of ĤF (−Lp,n)
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Figure 8. Manifolds and cobordisms in the main sur-
gery triangle.

corresponding to a spin structure on −Lp,n with the property that its

GV –image is equal to a + a for some a ∈ ĤF (−Sp,n). (Recall that

a denotes the image of a ∈ ĤF (−Sp,n) under the J –action induced
by conjugation on spinc structures.) Next we consider the decomposi-
tion of this element a into a sum of homogeneous terms, and we find a

homogeneous component a1 ∈ ĤF (−Sp,n, t) which maps to a nonzero
element under F−X . In the final step of the proof we determine the
spinc structure t corresponding to the above element a1 and show that
it is equal to the spinc structure induced by the contact structure ξp,n.
Since Sp,n was proved to be an L–space, the nonzero elements a1 and
c(Sp,n, ξp,n) inducing the same spinc structure must be equal. In par-
ticular, F−X(c(Sp,n, ξp,n)) 6= 0, concluding the proof. In identifying the
spinc structure of the element a1 we appeal to a computation which de-
termines the degree difference between two spin structures on −Lp,n and
−Ep,n; this computation relies on the study of a related exact triangle
and is given in a separate subsection. Notice that all the 3–manifolds in
the triangle of Figure 8 are L–spaces: this property was verified for Ep,n

and Sp,n in Propositions 4.1 and 5.1, while Lp,n is the connected sum of
three lens spaces, hence the L–space property trivially follows. (Recall

that ĤF (Y ) is isomorphic to ĤF (−Y ), hence Y is an L–space if and
only if −Y is an L–space.) To set up notation, consider the surgery
exact triangle defined by the cobordisms of Figure 8:

(6.1)

ĤF (−Sp,n) ĤF (−Ep,n)

ĤF (−Lp,n)

F = F−X

HGV
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Using the surgery descriptions it follows that

hE := |H1(Ep,n; Z)| = p2n − pn − 1, and(6.2)

hL := |H1(Lp,n)| = p(pn + 1)(p(n + 1) + 1).(6.3)

Proposition 6.1. The map H is equal to 0, therefore F is surjective

and GV is injective.

Proof. Since the three 3–manifolds are all L–spaces, their Ozsváth–
Szabó homology groups can be determined from their first homologies.
Now a simple computation using Equations (5.1), (6.2) and (6.3) shows
that hE + hL = hS , hence the statement of the lemma follows from the
exactness of the triangle and elementary algebra (cf. also the concluding
remark of [15, Section 2]). q.e.d.

Lemma 6.2. The manifolds Sp,n and Ep,n admit a unique spin struc-

ture, while Lp,n supports exactly two spin structures.

Proof. Recall that any orientable 3–manifold Y admits a spin struc-
ture, and the number of inequivalent spin structures is |H1(Y ; Z/2Z)|.
Using Equations (5.1), (6.2) and (6.3) it is easy to check that Sp,n and
Ep,n have first homology groups of odd order, while for Lp,n (as the
connected sum of the three lens spaces of Figure 8) we have

H1(Lp,n; Z/2Z) ∼= Z/2Z.

q.e.d.

Lemma 6.3. Let V and W be the cobordisms defined, respectively,

in Figure 8 and Figure 10. Then, each spin structure on −Lp,n extends

as a spin structure to one of the cobordisms V and W , but not to the

other.

Proof. Recall that we are assuming that p is odd. In the proof we
will distinguish two cases according to the parity of n. We would like to
present −Lp,n as the boundary of two spin 4–manifolds. Consider the
bottom pictures of Figures 8 and 10. Suppose first that n is even. By
anti-blowups we can transform the (−n)–framed unknot linking the p–
framed unknot into a chain of (+2)’s. During this operation we change
the framing p into p + 1. Do the same operation with the (−p)–framed
circle. Notice that after the above blow ups and blow downs the parity
of the framing of the knot K shown by the figures has changed. Since
n is even, p(n + 1) + 1 is also even. Therefore the diagram defines a
simply connected spin 4–manifold with a unique spin structure, and we
define tV ∈ Spin(Lp,n) as the restriction of this unique spin structure
to the boundary. Since the framing of K when defining V is even, tV

extends to V as a spin structure but does not extend to W (as a spin
structure), since it would give a spin 4–manifold with a homology class
of odd square, hence with nontrivial second Stiefel–Whitney class.
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To find the other spin 4–manifold, we turn the (p(n+1)+1)–framed
circle into a chain of (−2)’s by blowing up and down. This operation
changes the parity of the framing of K again. We define tW as the re-
striction of the unique spin structure of the resulting simply connected
spin 4–manifold. Since the parity of the framing of K is now different
than in the previous case, the spin structure tW extends to the cobor-
dism W as a spin structure but does not extend to V as a spin structure.
Clearly tV 6= tW , and when n is even we are done.

Finally we address the case of odd n. In this case both −p and
p(n + 1) + 1 are odd, so first we turn these surgeries into chains of (+2)
(and (−2), resp.) surgeries. Each one of these transformations changes
the framing of the knot K by +1 (and −1 resp.), so the net change of
the framing of K is zero. Now we have a choice for the remaining two
odd framed surgery curves defining −Lp,n. If we turn the (−n)–framed
unknot into a chain of (+2)’s, we change the framing p into p + 1, but
we do not change the framing of K. Hence the resulting 4–manifold
admits a spin structure sW which extends to W as a spin structure, but
not to V . We denote the restriction of sW to the boundary −Lp,n by
tW . On the other hand, the corresponding operation on the p–framed
circle changes the framing of the (−n)–framed circle to (−n−1) and also
changes the parity of the framing of K. Therefore the spin structure
of the resulting simply connected spin 4–manifold will extend to V as
a spin structure but not to W . The restriction of this spin structure to
the boundary −Lp,n will be called tV . Clearly tW 6= tV , and the proof
is finished. q.e.d.

Notation. We denote the unique spin structures on −Sp,n and
−Ep,n, respectively, by tS and tE . As in the proof of Lemma 6.3, we
denote by tV the spin structure on −Lp,n which extends as a spin struc-
ture to V but not to W and by tW the spin structure which extends (as
a spin structure) to W but not to V .

Computations. Now we return to the analysis of Triangle (6.1). Recall
that when Y is a rational homology sphere which is an L–space, we

have identified the nontrivial element in each group ĤF (Y, t) with t ∈
Spinc(Y ). If H1(Y ; Z) is of odd rank, then Y admits a unique spin
structure, which will be denoted by tY . Using the conjugate action
encountered in Section 3 (cf. Theorem 3.2), and denoting J (t) by t, in

this case the vector space ĤF (Y ) has a basis of the form

(6.4) {t1, t1, t2, t2, . . . , tk, tk, tY }.

Let
C := 〈t1, . . . , tk〉 ⊂ ĤF (Y ).

Then, we have

(6.5) ĤF (Y ) = 〈tY 〉 ⊕ C ⊕ C.
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Notice that the subspace C ⊂ ĤF (Y ) depends on a choice of basis as
in (6.4), and therefore the above splitting is not canonical. In analogy
to Equation (6.5), there are direct sum decompositions

ĤF (−Sp,n) = 〈tS〉 ⊕ A ⊕ A,(6.6)

ĤF (−Lp,n) = 〈tV 〉 ⊕ 〈tW 〉 ⊕ C ⊕ C

ĤF (−Ep,n) = 〈tE〉 ⊕ T ⊕ T .

Since by its definition tW does not extend as a spin structure to V ,
Lemma 3.3 implies that

GV (tW ) ∈ A ⊕ A.

Since tW is fixed under conjugation, so is GV (tW ); therefore there is an
element a ∈ A such that GV (tW ) = a + a. Notice that F (a) = F (a) =

F (a), because

F (a) + F (a) = F (a + a) = F (GV (tW )) = 0,

and we work with Z/2Z–coefficients.

Lemma 6.4. We have F (a) 6= 0.

Proof. If F (a) = 0 then, by exactness, we have a = GV (c) for some

element c ∈ ĤF (−Lp,n). Therefore

GV (tW + c + c) = 0.

Since c + c ∈ C ⊕ C, the injectivity of GV would imply tW ∈ C ⊕ C,
which is impossible by (6.6). q.e.d.

Lemma 6.5. Suppose that F (a)= ǫtE+t+t for some t ∈ĤF (−Ep,n).
Then, ǫ 6= 0.

Proof. By contradiction, suppose that ǫ = 0. By the surjectivity of

F , there is b ∈ ĤF (−Sp,n) with F (b) = t, implying also F (b) = t. Now

consider x = a + b + b. Then, F (x) = 0, and so F (x) = 0. By exactness

this means that there is u ∈ ĤF (−Lp,n) satisfying GV (u) = x, and
so GV (u) = x. This implies that GV (u + u + tW ) = 0. By the the
injectivity of GV , this would imply

tW = u + u ∈ C ⊕ C,

which is impossible by (6.6). q.e.d.

In order to apply the degree–shift formula for the cobordisms X and
V , we need some understanding of their algebraic topology.

Lemma 6.6. We have

H2(V ; Z) ∼= H2(−X; Z) ∼= Z
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and

σ(V ) = σ(−X) = −1,

where σ denotes the signature.

Proof. The cobordism V is obtained by attaching a 2–handle to the
rational homology sphere −Lp,n. Therefore, H2(V,−Lp,n; Z) ∼= Z, and
the exactness of the sequence

0 −→ H2(V ; Z) −→ H2(V,−Lp,n; Z) −→ H1(−Lp,n; Z)

implies H2(V ; Z) ∼= Z. A similar argument shows H2(−X; Z) ∼= Z.
It is easy to deduce from Figure 8 that

V ∪ −X ∼= Q#CP2,

where the cobordism Q#CP2 is given by Figure 9, obtained by applying
two Rolfsen twists to the bottom picture of Figure 8.

−1−1

−1−1
−p(n+1)+1

p(n+1)−p(n+1)+1
p(n+1)−p(n+1)+1

p(n+1)−p(n+1)+1
p(n+1) −p−p−p−p − np+1

n(p−1)+1− np+1
n(p−1)+1− np+1

n(p−1)+1− np+1
n(p−1)+1

∼=∼=

−2−2−3−3

Figure 9. The cobordism Q#CP2.

Similarly to the proof of Lemma 6.3, we can replace the two unknots
with nonintegral surgery coefficients by two chains of unknots with in-
tegral coefficients, with each coefficient less than or equal to −2. The
resulting picture expresses Q as a 4–dimensional 2–handle attached to
the boundary of a 4–dimensional plumbing P with ∂P = −Lp,n. More-
over, the union P ∪Q is still a plumbing and we claim that it is negative
definite. In fact, according to [18, Theorem 5.2], to see this it is enough
to check that

−2 +
n(p − 1) + 1

np + 1
+

1

p
+

pn + 1

p(n + 1) + 1
< 0

for any n ≥ 1 and p ≥ 2. This implies that Q is negative definite and
concludes the proof. q.e.d.

Recall that hS , hE and hL denote the cardinality of the homology
groups H1(Sp,n; Z), H1(Ep,n; Z) and H1(Lp,n; Z), respectively.

Lemma 6.7. Let g ∈ H2(V ; Z) and g′ ∈ H2(−X; Z) be generators.

Then,

g · g = −hLhS , and g′ · g′ = −hShE .
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Proof. We give the argument for V , the one for −X being essentially
the same. From Figure 8 we see that V is obtained by attaching a
4–dimensional 2–handle along a circle which represents a generator of
H1(−Lp,n; Z). Therefore, H1(V ; Z) = 0. Since by Lemma 6.6 we have
that H2(V ; Z) ∼= Z, the Theorem of Universal Coefficients gives

H2(V, ∂V ; Z) ∼= H2(V ; Z) ∼= Z.

Consider the exact sequence

(6.7) 0 → H2(V ; Z)
i∗→ H2(V, ∂V ; Z) →

H1(∂V ; Z) ∼= Z/hLZ ⊕ Z/hSZ → 0.

It is easy to check that hL and hS are coprime, thus

Z/hLZ ⊕ Z/hSZ ∼= Z/(hLhS)Z,

and i∗(g) must be equal to hLhS times a generator of H2(V, ∂V ; Z).
Therefore, since by Lemma 6.6 the cobordism V has negative definite
intersection form,

g · g = 〈PD(i∗(g)), g〉 = −hLhS .

q.e.d.

Lemma 6.8. Let s ∈ Spinc(V ), and let C ⊂ V be the cocore of the

2–handle defining V . If s|−Lp,n
= tW , then

PD(c1(s)) = k[C] ∈ H2(V, ∂V ; Z)

for some odd integer k. Moreover,

c1(s) · c1(s) = −
k2hL

hS

.

Proof. According to the proof of Lemma 6.3, tW is the restriction to
−Lp,n of a spin structure u on a spin 4–manifold Z with ∂Z = −Lp,n.
Moreover, Z is obtained by attaching 4–dimensional 2–handles to the
4–ball B4, and V by attaching a last 2–handle H to ∂Z. Recall that
the framing of the attaching circle of H is odd, because tW does not
extend over V as a spin structure. Thus, if s|−Lp,n

= tW , then s extends
u to W := Z ∪ V as a spinc structure. Denote by s̃ the extended spinc

structure u ∪ s. Thinking of H as attached to S3 = ∂B4, let F denote
the surface obtained by capping off the core D of H by a Seifert surface
with interior pushed in B4. Since c1(s̃) is characteristic and F has odd
square, we have

〈c1(s̃), [F ]〉 = k

for some odd integer k. Therefore, since W is simply connected,
PD(c1(s̃)) = k[C]. The first part of the statement follows because s̃

restricts to s on V and C ⊂ V .
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Now observe that the boundary of hL parallel copies of D is ho-
mologically trivial in −Lp,n. Thus, we can define S ⊂ V to be the
surface obtained by capping off hLD in −Lp,n with a bounding surface.
Moreover, since C is disjoint from −Lp,n, by Exact Sequence (6.7) the
relative homology class [C] must be a multiple of hL times a generator
g′ of H2(V, ∂V ; Z). But the equality [C] · [S] = hL implies at once that
[S] is a generator g of H2(V ; Z), and [C] is hLg′. Now recall that in the
proof of Lemma 6.7 we showed that the image of g under the map i∗ of
Exact Sequence (6.7) is equal to ±hLhSg′. Therefore,

hS PD(c1(s)) = khS [C] = khShLg′ = ±ki∗(g)

which implies, by Lemma 6.7, that

c1(s) · c1(s) = k2 g · g

h2
S

= −k2 hL

hS

.

q.e.d.

Lemma 6.9. Let s ∈ Spinc(−X), and let D ⊂ −X be the core of the

2–handle defining −X. If s|−Ep,n
= tE, then

PD(c1(s)) = l[D] ∈ H2(−X, ∂(−X); Z)

for some odd integer l. Moreover,

c1(s) · c1(s) = −l2
hE

hS

.

Proof. Observe that the spin structure tE does not extend to −X
as a spin structure simply because −X does not carry spin structures.
This follows immediately from Lemma 6.7, since both hS and hE are
odd numbers. Thus, the proof of this lemma is similar to the proof of
Lemma 6.8, and we omit it. q.e.d.

We wish to find a relation between the degrees of tW and tE . This
can be done with a (quite tedious) direct computation: the gradings

of generators of ĤF (Y ) for a lens space Y are given in [22], and since
−Lp,n is a connected sum of three lens spaces and the degrees are ad-
ditive under connected sums, the computation of the degree of tW is a
fairly easy exercise. The degree of an element in the Ozsváth–Szabó ho-
mology of a Seifert fibered 3–manifold can be computed using formulae
from [17, 23]. In particular, in [17] there is an explicit formula in terms
of a vector with some special properties in the cohomology of a certain
negative definite plumbing with boundary Y . This direct computation,
however, is quite delicate, so we prefer to choose a theoretically more
involved, less computational way of relating the degrees of tW and tE .
In particular, we will get the desired conclusion by studying a related
triangle of manifolds.
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−1−1

−n−n

−n−n−n−n

pp

pppp

−p−p

−p−p−p−p

00

00

00 11

p(n + 1) + 1p(n + 1) + 1

p(n + 1) + 1p(n + 1) + 1p(n + 1) + 1p(n + 1) + 1

WW

= −Up,n= −Up,n−Ep,n =−Ep,n =

= −Lp,n= −Lp,n

KK

Figure 10. Manifolds and cobordisms in a related
surgery triangle.

Digression: study of a related triangle. Let us consider the triangle
of 3–manifolds and cobordisms given by Figure 10.

Proposition 6.10. The 3–manifold −Up,n is an L–space.

Proof. Kirby calculus, as in the proof of Proposition 5.1, shows that
Up,n is diffeomorphic to S3

r (Tp,pn+1), with

r = p2n + p + 1 +
1

p(n + 1)
.

Since the above r is greater than 2gs(Tp,pn+1)−1 = p2n−pn−1, by [15,
Proposition 4.1] Up,n is an L–space. q.e.d.

The exact triangle on Ozsváth–Szabó homologies induced by the
surgery triangle of Figure 10 has the following shape:

ĤF (−Ep,n) ĤF (−Up,n)

ĤF (−Lp,n)

F ′

H ′GW

Simple computation shows that

hU := |H1(Up,n; Z)| = p3n(n + 1) + p(p + 1)(n + 1) + 1.
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Since hU is odd, the 3–manifold −Up,n supports a unique spin struc-
ture, which will be denoted by tU . In analogy to Equation (6.5), there
is a direct sum decomposition

ĤF (−Up,n) = 〈tU 〉 ⊕ S ⊕ S.(6.8)

Corollary 6.11. The map F ′ in the above triangle is 0. Therefore

H ′ is injective and GW is surjective.

Proof. Since all the manifolds involved are L–spaces, the argument
boils down to the simple observation that hL = hE + hU , cf. also the
proof of Proposition 6.1. q.e.d.

Lemma 6.12. The tE–component of the element

GW (tW ) ∈ ĤF (−Ep,n)

is nonzero.

Proof. Notice first that, since tV does not extend to W as a spin
structure, by Lemma 3.3 the tE–component of GW (tV ) is zero. Arguing
by contradiction, suppose now that the tE–component of GW (tW ) is
also zero. Suppose that GW (tV ) = xV + xV and GW (tW ) = xW + xW

with xV , xW ∈ T .

Since GW is onto, there exist elements lV , lW ∈ ĤF (−Lp,n) such that

GW (lV ) = xV and GW (lW ) = xW .

Therefore,

GW (tV + lV + lV ) = 0 and GW (tW + lW + lW ) = 0.

By exactness, this implies the existence of uV , uW ∈ ĤF (−Up,n) such
that

H ′(uV ) = tV + lV + lV and H ′(uW ) = tW + lW + lW .

Since H ′ is injective, we have that uV and uW are both fixed under
conjugation. Then, one of uV , uW or uV + uW belongs to S ⊕ S and is
therefore of the form s + s for some s ∈ S. But for any s ∈ S we have
H ′(s + s) ∈ C ⊕ C, so one of tV + lV + lV , tW + lW + lW or their sum
belongs to C⊕C, which is clearly impossible. This contradiction proves
the lemma. q.e.d.

The following is the most important result of this subsection:

Proposition 6.13. We have

deg(tE) = deg(tW ) +
1

4
.
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Proof. By Lemma 6.12 the tE–component of the element GW (tW )
is nontrivial, therefore there are spinc structures si on W such that
GW,si

(tW ) = tE . By the conjugation invariance we have GW,si
(tW ) =

GW,si
(tW ). Since we use mod 2 coefficients, this shows that there are

an odd number of si’s with the above property, and therefore there
exists a spin structure s on W with the property that GW,s(tW ) = tE .
An argument similar to the one given in Lemma 6.6 shows that W is
negative definite. Since for a spin structure c1(s) = 0, the degree shift
formula implies the result. q.e.d.

Proof of Theorem 1.3. Recall that there is an element a ∈ ĤF (−Sp,n)
satisfying the equation GV (tW ) = a + a. Express a as a sum of homo-
geneous elements. Since by Lemma 6.5 the tE–component of F (a) is
nonzero, a has a homogeneous component a1 with the same property.
By the degree–shift formula, Lemmas 6.8 and 6.9 immediately imply
(with |k| = |l| = 1) that

(6.9) deg(tE) −
1

4
(−

hE

hS

+ 1) ≤ deg(a1) ≤ deg(tW ) +
1

4
(−

hL

hS

+ 1).

But since hS = hL + hE , by Proposition 6.13 the inequalities of Equa-
tion (6.9) must in fact be equalities. This shows that the spinc struc-
ture corresponding to a1 is the restriction of a spinc structure s as

in Lemma 6.8 with k = ±1. Consequently, a1 ∈ ĤF (−Sp,n, t) with
c1(t) = ±PD(µd) in the basis of homologies given by Figure 6. Ac-
cording to Lemma 5.2, either a1 or a1 belongs to the same summand

ĤF (−Sp,n, t) as c(Sp,n, ξp,n). Therefore, since −Sp,n is an L–space,

c(Sp,n, ξp,n) is equal to either a1 or a1. But F (a1) = F (a1). Therefore,

c(Ep,n, ζp,n) = F−X(c(Sp,n, ξp,n))

has nonzero tE–component, and therefore it coincides with tE . This fact
implies that ζp,n is a tight, positive contact structure on Ep,n, concluding
the proof. q.e.d.
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