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A RIGIDITY THEOREM FOR STABLE MINIMAL
HYPERCONES

Neshan Wickramasekera

Abstract

We prove that any cone having vertex density strictly between
1 and 3, occurring as the weak limit of a sequence of oriented,
immersed, stable minimal hypersurfaces and lying near a pair of
hyperplanes must itself be a pair of hyperplanes.

1. Introduction

Our goal in this paper is to prove a rigidity theorem (Theorem 1.1)
for certain cones that arise as weak (i.e., varifold) limits of oriented,
smooth, immersed, stable, minimal hypersurfaces in Bn+1

2 (0), the open
ball in the (n + 1)-dimensional Euclidean space Rn+1 (n ≥ 2) with
radius 2 and center the origin. In order to state the theorem precisely,
we introduce the following notation and terminology.

Let I denote the family of oriented, smooth, immersed, stable, mini-
mal hypersurfaces in Bn+1

2 (0) of finite volume. Let I be the closure of
I in varifold topology. (See Section 2 for a brief discussion of varifolds.)
By a pair of hyperplanes, we mean either the sum (as varifolds) of two
transversely intersecting hyperplanes of Rn+1 or a single hyperplane of
Rn+1 with multiplicity 2.

The theorem we shall prove is the following.

Theorem 1.1. Let α ∈ (0, 2). There exists a number ε0 = ε0(n, α) >
0, depending only on n and α, such that the following is true. Suppose
C ∈ I is a cone with 1 < Θ(‖C‖, 0) ≤ 3 − α and

distH (spt ‖C‖ ∩Bn+1
2 (0), spt ‖P‖ ∩Bn+1

2 (0)) ≤ ε0

for some pair of hyperplanes P; namely, P is either
(a) a multiplicity two hyperplane or
(b) the sum of two transverse hyperplanes.
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434 N. WICKRAMASEKERA

Then C is equal to a pair of hyperplanes. Here Θ(‖C‖, 0) denotes the
density of C at the origin and distH (S, T ) denotes the Hausdorff dis-
tance between the sets S and T .

It is well known by Allard’s regularity theorem ([1], Section 8; [10],
Theorem 23.1; [3], Theorem 2.1) that if a stationary n-varifold (of ar-
bitrary codimension) is a cone having vertex density greater than or
equal to 1 and less than or equal to 2 − α, where α ∈ (0, 1] is a given
number, and if it is weakly sufficiently close (depending on α) to an
n-dimensional plane, then it must be equal to an n-dimensional plane.
Thus, for cones in I, our theorem is an extension of this result.

Theorem 1.1 can be applied to understanding the local behavior of
certain stable varifolds. It gives results concerning the types of tangent
cones at low density singularities (i.e., those with density not much
greater than 2) of an arbitrary varifold V ∈ I. These and other appli-
cations of the theorem will appear in [13].

Remark. We shall first prove case (a) of the theorem; i.e., case when
P is a multiplicity 2 hyperplane. Case (b), in which P is a transverse
pair of hyperplanes, will follow from case (a) and (slightly modified)
results of Section 6. Section 7 will provide a detailed account of the
proof of case (b).

In view of the preceding remark, until the end of Section 6 of the pa-
per, we assume that P is a multiplicity two hyperplane, and without loss
of generality, we take P = v(Rn, 2), multiplicity 2 varifold associated
with Rn, the hyperplane {xn+1 = 0} of Rn+1.

The proof of Theorem 1.1 is based on two separate “blow-up” processes.
The idea is as follows. Suppose the theorem is false. Then, we can sat-
isfy the following.

hypotheses (�)
(1) α ∈ (0, 2).
(2) Ck ∈ I is a sequence of cones with 1 < Θ(‖Ck‖, 0) ≤ 3 − α.
(3) Ck �= a pair of hyperplanes for each k.
(4) spt ‖Ck‖∩Bn+1

2 (0) converges to the ball Bn
2 (0) ⊆ Rn in the sense

of Hausdorff distance.
(5) For each k, there exists a smooth, immersed, stable, hypersurface

Mk in Bn+1
2 (0) approximating Ck sufficiently closely. (This means

that Mk = M
(j)
k for any j ≥ j0(k), where for each k, {M (j)

k } is
a sequence of immersed, stable hypersurfaces converging as vari-
folds to Ck and j0(k) is chosen sufficiently large depending on the
requirements to be specified during the course of the proof. In par-
ticular, we require that dH (spt ‖Ck‖∩Bn+1

2 (0),M (j)
k ∩Bn+1

2 (0)) ≤
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δ(k) for all j ≥ j0(k) where δ(k) ↘ 0 as k → ∞ sufficiently rapidly.
By (4) above, this of course implies that Mk ∩ Bn+1

2 (0) converge
to Bn

2 (0) ⊆ Rn in Hausdorff distance. Such Mk exist by the defi-
nition of I.)

We shall prove that under hypotheses (�), for infinitely many k,
Mk must be equal to a pair of transverse hyperplanes. This means that
for infinitely many k, Ck is the varifold limit of a sequence of pairs of
hyperplanes, and hence, Ck must itself be a pair of hyperplanes, giving
the contradiction necessary to prove the theorem.

The first step of the proof involves obtaining a two-valued approxi-
mate graphical decomposition of Mk over the unit ball Bn

1 (0) of Rn. We
do this in Section 3, following exactly the methods used by Schoen and
Simon in [8], and often just quoting the relevant results from [8].

We then obtain, in Section 4, a (two-valued) blow-up of these graphs
by blowing them up by the tilt-excess of Mk∩(Bn

1 (0)×R) relative to the
hyperplane Rn. In Section 4, we also establish several key properties
satisfied by the blow-up.

In Section 5, we prove that this blow-up is equal to the union of two
transverse hyperplanes of Rn+1. Our analysis uses a dimension reducing
argument based on the monotonicity of a frequency function, a tech-
nique first used by F. J. Almgren, Jr. in [2] in his work on multi-valued
functions minimizing the Dirichlet integral. Our setting, however, dif-
fers from that of [2] in two important aspects. On the one hand, we are
in codimension 1, which is much simpler than the arbitrary codimension
dealt with in [2]. On the other hand, we do not have the minimizing
hypothesis. Our arguments demonstrate that a frequency function can
nevertheless be used under the weaker hypothesis of stability.

In Section 6, we blow up the Mk’s again, but this time by their
(finer) excess measured relative to the (appropriately vertically scaled)
hyperplanes of the first blow up. This is done following very closely the
work of Simon in [11], and we show that this second blow-up is also
equal to a pair of hyperplanes. This leads to a contradiction unless the
Mk are pairs of hyperplanes for infinitely many k, completing the proof
of the theorem in case (a).

Finally, in Section 7, we indicate how case (b) of the theorem follows.

2. Notation and varifold preliminaries

We shall adopt the following notation and conventions throughout
the paper.

Rn+1 denotes the (n+ 1)-dimensional Euclidean space and (x1, . . . ,
xn+1) denotes a general point in Rn+1. We shall identify Rn with
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the hyperplane {xn+1 = 0} of Rn+1 (except in Section 6, where
we choose notation to be consistent with that of [11].)

Bn+1
ρ (x) denotes the open ball in Rn+1 with radius ρ and center x.
We shall often use the abbreviation Bρ(x) for Bn

ρ (x).
ωn denotes the volume of a ball in Rn with radius 1.

For compact sets S, T ⊆ Rn+1, distH(S, T ) denotes the Hausdorff dis-
tance between S and T .

Hn (S) denotes the n-dimensional Hausdorff measure of the set S
and Ln (S) the n-dimensional Lebesgue measure of S.

I denotes the collection of smooth, immersed, stable, minimal hy-
persurfaces M ⊂ Bn+1

2 (0) with Hn (M) <∞.

I denotes the closure of I taken in the varifold topology. (See the
discussion on varifolds below.)

Θ (V, x) denotes the n-dimensional density of the n-varifold V in
Rn+1 at the point x ∈ Rn+1 and ‖V ‖ denotes the weight measure
associated with V .

sptµ denotes the support of the measure µ.
v (M,θ) denotes the rectifiable n-varifold associated to the smooth
n-manifold taken with multiplicity θ. We shall abbreviate v (M, 1)
as v(M).

D, ∇M denote the gradient operators on Rn and the smooth mani-
fold M respectively. ∆M denotes the Laplacian on M .

For y ∈ Rn+1 and ρ > 0, the map ηy,ρ : Rn+1 → Rn+1 is defined by
ηy,ρ(x) = x−y

ρ .

p : Rn+1 → Rn denotes the orthogonal projection. For a subspace
S, pS denotes the orthogonal projection of Rn+1 onto S.

All constants c depend only on n and α unless stated otherwise.
Next we briefly record, following [10], the notions and theorems in the

theory of varifolds relevant for the purposes of this paper. We refer the
reader to [10], Chapter 8 or [1] for a detailed exposition of the theory.

Let G(n) denote the set of hyperplanes of Rn+1 equipped with the
metric given by

ρ(S1, S2) = |pS1 − pS2 | ≡
 n+1∑
i,j=1

(pijS1
− pijS2

)2

 1
2

,

where pS denotes the orthogonal projection of Rn+1 onto S and pijS =
ei · pS(ej), 1 ≤ i, j ≤ n + 1 gives the matrix of pS with respect to the
standard orthonormal basis {ek}n+1

k=1 of Rn+1.
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For U ⊆ Rn+1 open, let Gn(U) = U × G(n), equipped with the
product metric. Thus, Gn(U) is a locally compact metric space—indeed
it is the countable union of the compact subsets Gn(Kj), where Kj are
compact subsets of U with U = ∪∞

j=1Kj.

Let Vn(U) denote the set of n-varifolds on U ; i.e. the collection
of (non-negative) Radon measures on Gn(U) topologized by the weak*
topology. Thus, if V, Vj ∈ Vn(U), j = 1, 2, . . ., then Vj → V if and
only if

(2.1)
∫
Gn(U)

f(x, S) dVj(x, S) →
∫
Gn(U)

f(x, S) dV (x, S)

for each fixed continuous function f : Gn(U) → R with compact sup-
port.

Each given V ∈ Vn(U) defines a Radon measure ‖V ‖ on U , called
the weight measure associated with V , via

‖V ‖(A) = V ({(x, S) ∈ Gn(U) : x ∈ A}).
The mass M(V ) of V is defined by M(V ) = ‖V ‖(U).
If U , Ũ are open subsets of Rn+1 and f : U → Ũ is a proper C1

function, then, given V ∈ Vn(U), we define the image varifold f� V ∈
Vn(Ũ) by the mapping formula

f� V (E) =
∫
F−1(E)

JS f(x) dV (x, S)

for each Borel set E ⊆ Gn(Ũ ). Here, F : G+
n (U) → Gn(Ũ ) is defined

by F (x, S) = (f(x), dfx(S)), JS f(x) = (det((dfx|S)∗ ◦(dfx|S)))1/2 where
(dfx|S)∗ denotes the adjoint of dfx|S and G+

n (U) = {(x, S) ∈ Gn(U) :
JS f(x) �= 0}.

The first and the second variations of V ∈ Vn(U), denoted δ V and
δ2 V respectively, are the linear functionals on the set of C1 vector fields
X : U → Rn+1 with compact support defined by

(2.2) δ V (X) =
d

dt

∣∣∣∣
t=0

M(ϕt � V �Gn(K))

and

(2.3) δ2 V (X) =
d2

dt2

∣∣∣∣
t=0

M(ϕt � V �Gn(K)),

where K is a compact subset of U and ϕt, t ∈ (−1, 1) is a family of
diffeomorphisms of U onto U such that

(i) ϕt(x) = ϕ(t, x) where ϕ : (−1, 1) × U → U is C2,
(ii) ϕ0(x) ≡ x,
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(iii) ϕt(x) ≡ x for each t ∈ (−1, 1) whenever x ∈ U \K and
(iv) ∂

∂t

∣∣
t=0

ϕ(t, x) = X(x).

A computation involving the above mapping formula for varifolds and
differentiation under the integral sign then yields

(2.4) δ V (X) =
∫
Gn(U)

divS X(x) dV (x, S),

where for S ∈ G(n) andX = (X1, . . . ,Xn+1), divSX =
∑n+1

j=1 ej · ∇SXj

with ∇Sf(x) = pS Df(x).
A varifold V ∈ Vn(U) is said to be stationary in U if

(2.5) δ V (X) = 0

for every C1 vector field X : U → Rn+1 with compact support. Station-
ary varifolds satisfy the following monotonicity identity:

‖V ‖(Bn+1
ρ (y))
ρn

− ‖V ‖(Bn+1
σ (y))
σn

(2.6)

=
∫
Gn(Bn+1

ρ (y)\Bn+1
σ (y))

|pS⊥ (x− y)|2
|x− y|n+2

dV (x, S)

for y ∈ U and 0 < σ ≤ ρ ≤ dist (y, ∂ U). In particular, this means

that the quantity ‖V ‖(Bn+1
ρ (y))

ωn ρn is monotonically non-decreasing in ρ and
therefore, the density

Θ(‖V ‖, y) = lim
ρ↓0

‖V ‖(Bn+1
ρ (y))

ωn ρn

exists and is finite.
A varifold C ∈ Vn(Rn+1) is a cone if η0, λ �C = C for all λ > 0. If C

is a cone, then Θ(‖C‖, 0) = ‖C‖(Bn+1
ρ (0))

ωnρn for every ρ > 0.
Given a countably n-rectifiable Hn-measurable subset M of U and a

non-negative, locally Hn-integrable function θ on M , we can define an
n-varifold v (M,θ) ∈ Vn(U) (called a countably n-rectifiable varifold or
rectifiable n-varifold) by setting

(2.7) v (M,θ)(E) =
∫
π(TM∩E)

θ dHn

for each E ⊆ Gn(U), where TM = { (x, TxM) : x ∈ M∗ } and M∗ is
the set of points x ∈ M where M has an approximate tangent space
TxM with respect to θ and π : Gn(U) → U is the projection map. When
θ ≡ 1, we simply write v(M) for v(M, 1). The function θ is referred to
as the multiplicity of the varifold (M,θ).
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Thus, we may regard each smooth minimal hypersurface M ⊆ U (in
particular, each M ∈ I) as a rectifiable n-varifold v(M) on U with
multiplicity 1 via

v(M)(E) = Hn (π(TM ∩ E))

for E ⊆ Gn(U), where TM = {(x, TxM) : x ∈ M} and TxM is the
(classical) tangent space to M at the point x ∈ M. Notice that then,
‖v(M)‖(A) = Hn(M ∩A) for A ⊆ Rn+1. Then, I is the closure of I ⊆
Vn(Bn+1

2 (0)) taken with respect to the weak* topology on Vn(Bn+1
2 (0)).

Note that by the well known compactness theorem of Allard ([10], The-
orem 42.7), every sequence Mj ∈ I with supj≥1 Hn(Mj) < ∞ has a
subsequence converging as varifolds to an integer multiplicity, station-
ary, rectifiable n-varifold.

For a smooth minimal hypersurface M ⊆ U , the first variation iden-
tity (2.5) says that

(2.8)
∫
M

divM X dHn = 0

for every C1 vector field X : U → Rn+1 with compact support in U ,
and the monotonicity formula (2.6) says that

Hn (M ∩Bn+1
ρ (Y ))

ρn
− Hn (M ∩Bn+1

σ (Y ))
σn

(2.9)

=
∫
M∩(Bn+1

ρ (Y )\Bn+1
σ (Y ))

|pTXM⊥ (X − Y )|2
|X − Y |n+2

dHn(X)

for Y ∈M and 0 < σ ≤ ρ with Bn+1
ρ (Y ) ⊆ U. The minimal hypersurface

M is stable if the second variation in identity (2.3) (with V = v(M))
is non-negative for every C1 vector field X with compact support in U .
A standard computation ([10], Remark 9.8) shows that stability of M
implies that

(2.10)
∫
M

|A|2ϕ2 ≤
∫
M

|∇M ϕ|2

for every C1 function ϕ with compact support in M , where A is the
second fundamental form of M and |A| the length of A.

3. Approximate decomposition into graphs

Suppose hypotheses (�) of Section 1 hold, and fix a k, chosen suf-
ficiently large. In this section we use the argument in Section 3 of [8]
to show that a “large” part Gk of Mk ∩ (B1/2(0) × R) can be written
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as the union of graphs (not necessarily disjoint) of two Lipschitz func-
tions over an open, connected sub-domain Ωk ⊆ B1/2(0) in such a way
that the gradients of the graphs are controlled Ln almost everywhere in
their domain. Gk is large in the sense that the n-dimensional Hausdorff
measure of (Mk \Gk) ∩ (B1/2(0)×R) is of lower order than the square
of the “tilt-excess” εk of Mk∩(B1(0)×R) relative to Rn. The definition
of εk appears below.

We shall begin by giving the statement of an integral curvature es-
timate proved in [8]. This result was first proved by Schoen in his
thesis [7]. It is a key ingredient in obtaining the approximate graphical
decomposition as well as in both our subsequent blow-up procedures.

Lemma 3.2 ([8, Lemma 1]). For every bounded, locally Lipschitz
function ϕ vanishing in a neighborhood of Mk ∩ (∂B1(0) ×R), we have

(3.1)
∫
Mk

|Ak|2ϕ2 ≤ c

∫
Mk

(
1 − (νk(X).en+1)2

) |∇Mkϕ|2,

where c is a constant depending only on n, Ak is the second fundamental
form of Mk and νk is the unit normal to Mk.

Proof. See Lemma 1 of [8]. q.e.d.

Definitions. Let gk(X) = 1 − (νk(X).en+1)2 for X ∈ Mk. Define a
tilt-excess εk by

εk =

(∫
Mk∩(B1(0)×R)

(
1 − (νk(X).en+1)2

)) 1
2

.

Remark. Since Mk ∩ Bn+1
2 (0) converge to B2(0) in Hausdorff dis-

tance, it follows that

supX∈Mk∩(B3/2(0)×R) |xn+1| → 0

as k → ∞, where X = (x, xn+1). By the first variation formula, this
implies that εk → 0. To see this implication, repeat the argument
leading to inequality (4.18) of Section 4 with an appropriate choice of
the cut off function ζ.

Lemma 3.3 ([8]). For each k sufficiently large such that εk ≤ δ,
where δ = δ(n, α) ∈ (0, 1) is a fixed constant depending only on n and
α, there exist a regular value θk ∈ (1/4, 1/2) of gk and a unique open,
connected component Ωk of B1/2(0)\Γk with ∂Ωk∩B1/2(0) ⊆ Γk, where
Γk = p{X ∈Mk∩(B1/2(0)×R) : gk(X) = θk }, such that the following
is true:

(a) Hn−1({X ∈Mk ∩ (B1/2(0) × R) : gk(X) = θk}) ≤ c ε2k.
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(b) Hn(B1/2(0) \ Ωk) ≤ c ε2k.
(c) For every x ∈ Ωk, there exists a ball Br(x) ⊆ Ωk, r = r(x), and

two C2(Br(x)) functions ux, (1)k , u
x, (2)
k (depending on x) such that

|Dux, (1)k |2, |Dux, (2)k |2 ≤ θk
1 − θk

in Br(x) and

{X ∈Mk : gk(X) < θk } ∩ (Br(x) × R) = graphux, (1)k ∪ graphux, (2)k .

(We emphasize here our hypothesis that Mk is smooth with no
branch points.)

(d) Hn
(
Mk ∩ (B1/2(0) × R) \ ({X ∈Mk : gk(X) < θk} ∩ (Ωk × R))

)
≤ c ε2k.

Here, c = c(n).

Remark. graphux, (1)k and graphux, (2)k are not necessarily disjoint.

Remark. For notational convenience, we shall often suppress the
dependence of ux, (i)k on x and simply write u(i)

k , i = 1, 2 instead.

Proof. The proofs of parts (a), (b) and (c) are essentially the same as
the proof of Lemma 2 of [8] and (d) follows exactly by the corresponding
argument on pp. 755–756 of [8]. We do not repeat the entire argument
here, except to justify that in part (c), the set {X ∈ Mk : gk(X) <
θk} ∩ (Br(x) × R) is the union of exactly two graphs.

For each sufficiently large k, the argument of [8] gives an integer
m(k) ≥ 0 and locally defined C2 functions ux, (1)k , . . . , u

x, (m(k))
k for each

x ∈ Ωk with the properties as in part (c). i.e., |Dux, (i)| ≤ θk/(1 − θk)
for i = 1, . . . ,m(k) and

{X ∈Mk : gk(X) < θk} ∩ (Br(x) × R) = ∪m(k)
i=1 graphux, (i)k .

To show that m(k) = 2, we proceed as follows.
First, notice that it is clear from part (d) that m(k) ≥ 1.
For each k and each x ∈ Ωk, we may order the numbers ux, (i)k (x),

i = 1, . . . ,m(k), in a non-decreasing sequence. Define functions uk, i :
Ωk → R by setting uk, i(x) = the ith term of this sequence, where
uk, 1(x) is the smallest. Let Gik = graphuk, i.

By part (b),

(3.2) ωn

(
1
2

)n
− c ε2k ≤ Ln(Ωk) ≤ Hn(Gik)

for each i. Summing over i in inequalities (3.2) gives
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(3.3)
(
ωn

(
1
2

)n
− c ε2k

)
m(k) ≤ Hn(Mk ∩ (B1/2(0) × R)).

Now, Mk ∩ (B1/2(0)×R) ⊆Mk ∩Bn+1
Rk

(0), where Rk =
(
(1
2)2 + δ2k

) 1
2 ,

δk = sup(x,xn+1)∈Mk∩(B3/2(0)×R) |xn+1|. By the definition of I, we may
choose Mk such that

Hn(Mk ∩Bn+1
Rk

(0)) ≤
(

1 +
1
k

)
‖Ck‖(Bn+1

Rk
(0))(3.4)

≤
(

1 +
1
k

)
(3 − α)ωnRnk .

Hence

m(k) ≤
(
1 + 1

k

)
(3 − α)ωnRnk

ωn
(

1
2

)n − c ε2k
(3.5)

< 3

for sufficiently large k depending on n, α.
On the other hand, if m(k) = 1 for infinitely many k, then {X ∈

Mk : gk(X) < θk} ∩ (Ωk × R) is the graph of a single C2(Ωk) function
uk for infinitely many k. A standard single valued blow up argument
(e.g. first extending uk to all of B1/2(0) by multiplying uk by the cut-off
function ψk of Section 4, and then following the argument leading to the
identity (4.30), making use of part (d) of Lemma 3.3) shows then that
Mk, and hence Ck, must be equal to a (multiplicity 1) hyperplane for
infinitely many k. But this contradicts the hypothesis Θ(‖Ck‖, 0) > 1.

We thus conclude that

(3.6) m(k) = 2

for all sufficiently large k. q.e.d.

Definitions. Let Gk = {X ∈Mk : gk(X) < θk } ∩ (Ωk × R).
For x ∈ Ωk, define

u+
k (x) = max {ux, (1)k (x), ux, (2)k (x)}

and
u−k (x) = min {ux, (1)k (x), ux, (2)k (x)},

where ux, (1)k and u
x, (2)
k are as in Lemma 3.3, part (c). The functions

u+
k and u−k are Lipschitz with u+

k ≥ u−k and |Du+
k |, |Du−k | ≤ θk/(1− θk)

Ln-a.e. in Ωk. Furthermore, Gk = graphu+
k ∪ graphu−k .
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Let G+
k = graphu+

k and G−
k = graphu−k .

We will need the following result later in the paper.

Lemma 3.4. For every locally Lipschitz function ϕ with compact
support in Mk, ∫

Mk

|Ak|4ϕ2 ≤ c

∫
Mk

|Ak|2|∇Mk ϕ|2,

where c = c(n).

Proof. The lemma follows from (i) the stability inequality (2.10) and
(ii) the following pointwise estimate proved in [9]:

If A is the second fundamental form of a smooth, stable, minimal
hypersurface M immersed in Rn+1 then,

(3.7) |A|∆M |A| + |A|4 ≥ c |∇M |A||2,
where c depends only on n. The proof of the lemma is as follows.

Let ϕ be a locally Lipschitz function with compact support in Mk.
Using the stability inequality (2.10) with Mk in place of M and |Ak|ϕ
in place of ϕ (a valid choice by approximation), we obtain that

∫
Mk

|Ak|4 ϕ2

(3.8)

≤
∫
Mk

|∇Mk |Ak||2 ϕ2 + 2ϕ|Ak|∇Mk ϕ · ∇Mk |Ak| + |Ak|2|∇Mkϕ|2.

Multiplying inequality (3.7) by ϕ2 and integrating the resulting inequal-
ity over Mk, we have

c

∫
Mk

|∇Mk |Ak||2ϕ2 ≤
∫
Mk

|Ak|4ϕ2 −
∫
Mk

|∇Mk |Ak||2ϕ2(3.9)

− 2
∫
Mk

ϕ|Ak|∇Mk ϕ · ∇Mk |Ak|.

The inequalities (3.8) and (3.9) imply that

(3.10)
∫
Mk

|∇Mk |Ak||2ϕ2 ≤ c

∫
Mk

|Ak|2|∇Mkϕ|2

and the lemma follows from this, the inequality (3.8) and the fact that
2ϕ|Ak|∇Mk ϕ · ∇Mk |Ak| ≤ |∇Mk |Ak||2ϕ2 + |Ak|2|∇Mk ϕ|2. q.e.d.
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Next, we reproduce from [8] the construction of two important cut-
off functions, which will play a crucial role in the blow up argument of
Section 4.

For the first of these, we begin with a C2 function γ : [0, 1] → R with
the properties that γ(t) = t if 0 ≤ t ≤ 2/3, γ(t) = 0 if t ≥ 3/4, γ(t) ≥ 0
and |γ′(t)| ≤ 12 for all t, and set g0

k(X) = γ((gk(X))
1
2 ) for X ∈ Mk.

Then g0
k(X) = g

1
2
k (X) if g

1
2
k (X) ≤ 1/2 and |∇Mk g0

k| ≤ 12|∇Mk g
1
2
k | ≤

12|Ak| on Mk.
Define ϕ0

k : B1(0) → R by

ϕ0
k(x) =

{
0 if Mk ∩ p−1(x) = ∅,
sup {g0

k(X) : X ∈Mk ∩ p−1(x)} otherwise.

ϕ0
k is locally Lipschitz in B1(0). The proof of this is the same as in [8],

p. 758, except { graphwj } are not disjoint (notation as in [8]),but this
does not cause a problem.

We also have the following key estimate for all x ∈ B1(0). (See [8],
p. 758.)

(3.11) |Dϕ0
k(x)| ≤ 24max {|Ak|(X) : X ∈Mk ∩ p−1(x)}.

Extend ϕ0
k to B1(0) × R by setting ϕ0

k(x, xn+1) = ϕ0
k(x).

Our second cut off function is a locally Lipschitz function on Mk

that separates Mk \ Gk from most of Gk. To construct this, first let
η ∈ (0, 1/4], and βη : [0,∞) → R be a C2 function such that

βη(t) =

{
0 if t ≤ η/2,
1 if t ≥ η

and 0 ≤ β′η(t) ≤ 4/η for all t. Then, define the required cut-off function

ψ
(η)
k : Mk → R by setting

ψ
(η)
k (X) =

{
βη(ϕ0

k(X)) if X ∈ Gk,

1 if X ∈Mk \Gk.
ψ

(η)
k is locally Lipschitz and

(3.12) |Dψ(η)
k (x, u±k (x))| ≤ 96η−1 max {|Ak|(X) : X ∈Mk ∩ p−1(x)}

for all x ∈ Ωk. (See [8], p. 759.)
We use these cut-off functions just as they were used in [8] to show

that the non-graphical part (Mk \Gk)∩(B1/2(0)×R) as well as the part
of Gk, where the unit normal to Mk deviates from the en+1-direction by
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a “large” amount (i.e., the part where ϕ0
k assumes “large” values) has

lower order measure.
For σ ∈ (0, 1/2] and λ ∈ (0, 1/4], let

Lσ,λk = (Mk ∩ (Bσ(0) × R) \Gk)(3.13)

∪ (Mk ∩ (Bσ(0) × R) ∩Gk ∩ {X : ϕ0
k(X) ≥ λ}) .

Lemma 3.5 ([8]). If σ ∈ (0, 1/2] and λ ∈ (0, 1/4], then

(3.14) Hn(Lσ/2,λk ) ≤ c σ−(2+µ) λ−(2+µ)ε2+µk ,

where µ = 4
(n−2) and c = c(n).

Proof. This is a coarser version of Lemma 3 of [8], sufficient for our
purposes. All of the steps of its proof are contained in [8], but we include
here a complete proof since the lemma does not appear in a quotable
form in [8].

If x ∈ Ωk ∩Bσ(0) ∩ {ϕ0
k ≥ λ}, we have that

λ2 ≤ (ϕ0
k(x)
)2(3.15)

= sup { (g0
k(X)

)2 : X ∈Mk ∩ p−1(x) }
≤ gk(x, u+

k (x)) + gk(x, u−k (x)) + χp(Mk∩Bσ(0)×R)\Gk)(x)

=
|Du+

k (x)|2
1 + |Du+

k (x)|2 +
|Du−k (x)|2

1 + |Du−k (x)|2 + χp(Mk∩Bσ(0)×R)\Gk)(x).

Integrating both sides of the above inequality, we obtain

λ2Ln(Ωk ∩Bσ(0) ∩ {ϕ0
k ≥ λ})(3.16)

≤
∫

Ωk∩Bσ(0)∩{ϕ0
k≥λ}

|Du+
k (x)|2

1 + |Du+
k (x)|2

+
∫

Ωk∩Bσ(0)∩{ϕ0
k≥λ}

|Du−k (x)|2
1 + |Du−k (x)|2

+ Hn(Mk ∩ (Bσ(0) × R) \Gk)
≤
∫
Mk

(
1 − (νk.en+1)2

)
+ Hn(Mk ∩ (Bσ(0) × R) \Gk)

≤ ε2k + c ε2k ≤ c ε2k.

Thus,

(3.17) Ln(Ωk ∩Bσ(0) ∩ {ϕ0
k ≥ λ}) ≤ c λ−2ε2k

and therefore, since u±k have bounded gradient, we get
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(3.18) Hn(Mk ∩ (Bσ(0) × R) ∩Gk ∩ {ϕ0
k ≥ λ}) ≤ c λ−2ε2k.

In view of Lemma 3.3 (d), it follows from inequality (3.18) that

(3.19) Hn(Lσ,λk ) ≤ cλ−2ε2k.

Next, we use the Sobolev inequality of [6] to show that the n-dimen-
sional Hausdorff measure of (Lσ,λk ) is in fact of lower order than ε2k.

The Sobolev inequality on Mk says that

(3.20)
(∫

Mk

|f |2κ dHn

) 1
κ

≤ c

∫
Mk

|∇Mkf |2 dHn

for every locally Lipschitz function f with compact support inMk, where
κ = n

(n−2) .

Let ζ : [0,∞) → R be a Lipschitz function satisfying 0 ≤ ζ ≤ 1,
ζ(r) ≡ 1 for 0 ≤ r ≤ σ/2, ζ ≡ 0 for r ≥ σ and |ζ ′| ≤ 3/σ. Set
f(X) = ζ(r(X))ψ(λ)

k (X) in inequality (3.20), where r(X) = |p(X)| for
X ∈Mk. This yields(

Hn(Lσ/2,λk )
) 1

κ ≤ c

∫
Mk

ζ2(r(X))|∇Mkψ
(λ)
k (X)|2(3.21)

+ c σ−2

∫
Mk∩(Bσ(0)×R)

(ψ(λ)
k (X))2.

Since ∇Mkψ
(λ)
k = 0 on Mk \Gk, this implies that

(
Hn(Lσ/2,λk )

) 1
κ ≤ c λ−2

∫
Mk∩(Bσ(0)×R)

|Ak|2(X)ζ2(r(X))

(3.22)

+ c σ−2 Hn((Mk ∩ (Bσ(0) × R)) ∩ {ϕ0
k ≥ λ/2})

≤ c λ−2

∫
Mk

(
1 − (νk(X).en+1)2

) |∇Mkζ2(r(X))|

+ c σ−2Hn(Lσ,λ/2k ).

The last inequality of the above follows from Lemma 3.2. Observing
that |∇Mk r(X)| ≤ 1 and |ζ ′| ≤ 3/σ, we conclude from inequalities
(3.22), (3.19) and the definition of εk that

(3.23) Hn
(
L
σ/2,λ
k

)
≤ c σ−2κλ−2κε2κk .

This completes the proof of the lemma. q.e.d.
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Remark. In particular, choosing σ = 1/2 and λ = 1/4, we have

(3.24) Hn
(
Mk ∩ (B1/4(0) × R) \Gk

) ≤ c ε2+µk

where µ = 4
n−2 .

Next, we define a third cut off function ψk on B1/2(0) by setting

ψk(x) =

{
1 − β(ϕ0

k(x)) if p−1(x) ∩Mk �= ∅ and p−1(x) ∩Mk ⊆ Gk

0 otherwise,

where β : [0,∞) → R is a C2 function such that

β(t) =

{
0 if t ≤ 1/8,
1 if t ≥ 1/4

and 0 ≤ β
′(t) ≤ 16 for all t.

Extend ψk to B1/2(0)×R by setting ψk(x, xn+1) = ψk(x). Since θk ∈
[1/4, 1/2], it follows from the definition of ϕ0

k that ψk(X) = 1−ψ(1/4)
k (X)

for X ∈Mk.
Also, ψk is locally Lipschitz in B1/2(0) (since ϕ0

k is locally Lipschitz)
and, by inequality (3.11), we have that

(3.25) |Dψk(x)| ≤ 384max {|Ak|(X) : X ∈Mk ∩ p−1(x)}.
Furthermore, ψk(X) = 0 for X ∈ Mk \ Gk and ψk(X) = 1 for X ∈

Gk ∩ {X : ϕ0
k(X) ≤ 1/8}. By Lemma 3.5, Hn({X ∈ Mk : ϕ0

k(X) ≥
1/8}) ≤ c ε2+µk and therefore,

(3.26) Hn
(
B1/2(0) \ {x : ψk(x) ≡ 1}) ≤ c ε2+µk .

So, in particular, ψk(x) → 1 for Ln-a.e. x ∈ B1/2(0).
Two more important properties of ψk are that

(3.27)
∫
B1/2(0)

|Dψk| ≤ c ε
2+µ/2
k

and

(3.28)
∫
B1/2(0)

|Dψk|2 ≤ c ε
2+µ/2
k .

To see estimate (3.27), first observe that Sk ≡ spt (Dψk) ⊆ {x ∈
B1/2(0) : ϕ0

k(x) ≥ 1/8}. Therefore, writing Mσ
k = Mk ∩ (Bσ(0) × R),
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we see that

∫
B1/2(0)

|Dψk| =
∫
Sk

|Dψk|

(3.29)

≤ c

∫
{X∈M1/2

k :ϕ0
k(X)≥1/8}

|Ak|

≤ c
(
Hn({X ∈M

1/2
k : ϕ0

k(X) ≥ 1/8})
)1/2

(∫
M

1/2
k

|Ak|2
)1/2

≤ c ε
1+µ/2
k εk = c ε

2+µ/2
k .

Here, we have used Lemma (3.2), the definition of εk and the fact that
Hn({X ∈ M

1/2
k : ϕ0

k(X) ≥ 1/8}) ≤ c ε2+µk . This last assertion follows
from Lemma 3.5 with σ = 1/2 and λ = 1/8.

To see estimate (3.28), we proceed similarly.

∫
B1/2(0)

|Dψk|2 =
∫
Sk

|Dψk|2
(3.30)

≤ c

∫
{X∈M1/2

k :ϕ0
k(X)≥1/8}

|Ak|2

≤ c
(
Hn({X ∈M

1/2
k : ϕ0

k(X) ≥ 1/8})
)1/2

(∫
M

1/2
k

|Ak|4
)1/2

≤ c
(
Hn({X ∈M

1/2
k : ϕ0

k(X) ≥ 1/8})
)1/2

(∫
M

3/4
k

|Ak|2
)1/2

≤ c ε
1+µ/2
k εk = c ε

2+µ/2
k .

Note that here we have used Lemma 3.4 with a choice of ϕ that satisfies
e.g., ϕ ≡ 1 on Mk ∩ (B1/2(0) × R), ϕ ≡ 0 outside Mk ∩ (B3/4(0) × R)
and |∇Mk ϕ| ≤ 8.

4. First blow-up

Let ζ̃ : Bn+1
2 (0) → R be a C1 function with compact support. Taking

X = ζ̃ en+1 in the identity (2.8) gives

(4.1)
∫
Mk

∇Mk xn+1 · ∇Mk ζ̃ = 0.



A RIGIDITY THEOREM 449

Our goal in this section is to use the identity (4.1) and the results
of Section 3 to obtain convergence in a suitable sense as k → ∞ of the
sequences of functions obtained by blowing up (i.e., dividing) ψku

+
k and

ψku
−
k by the tilt excess εk. Here, ψk is the cut-off function defined in

Section 3. (Notice that we have εk > 0 for all k because if εk = 0, then
Mk must obviously be a (multiplicity 1) hyperplane which is impossible
by (3.6).) We shall also establish a number of important properties of
the limit functions, among which is a symmetry property between them.
(See part (e) of Lemma 4.6.) This symmetry will be very useful for our
later analysis because it will enable us to avoid having to address the
complexities that would otherwise arise from the two-valued nature of
the problem.

Extend u+
k and u−k to be zero in B1/2(0) \ Ωk, and set v+

k = u+
k /εk,

v−k = u−k /εk. Also, set v(1)
k = u

(1)
k /εk and v

(2)
k = u

(2)
k /εk. (Recall that

u
(1)
k and u(2)

k are our respective abbreviations for the C2 functions ux, (1)k

and u
x, (2)
k of Lemma 3.3 defined locally in Ωk. Thus, v(1)

k and v
(2)
k are

C2 functions defined locally in Ωk.)
We shall also use the following notation:

(4.2) |Duk| = |Du+
k | + |Du−k | and |Dvk| = |Dv+

k | + |Dv−k |.
Lemma 4.6. There exist functions v+, v− ∈ W 1,2(B1/4(0)) with

v+ ≥ v− such that, after passing to a subsequence,
(a) ψk v

+
k → v+ strongly in L2(B1/4(0)) and weakly in W 1,2(B1/4(0)).

(b) ψk v
−
k → v− strongly in L2(B1/4(0)) and weakly in W 1,2(B1/4(0)).

(c) v+ and v− are not both identically equal to zero on B1/4(0).
(d) v+ �≡ v−.
(e) v++v− is a linear function. Hence, by rotation, we assume without

loss of generality that v+ + v− ≡ 0.
(f) ψk |Dv+

k | → |Dv+| strongly in L2(B1/4(0)).
(g) ψk |Dv−k | → |Dv−| strongly in L2(B1/4(0)).
(h) |Dv+|, |Dv−| ∈ W 1,2(B1/4(0)) and ψk|Dvk| → |Dv+| + |Dv−|

weakly in W 1,2(B1/4(0)).

Terminology. The functions v+ and v− (and their graphs) will
be referred to as the (first) blow-up of the sequence of hypersurfaces
Mk ∩ (B1/2(0) ×R) (or of the sequences of functions ψku+

k and ψku
−
k .)

Before giving the proof of Lemma 4.6, we derive an estimate (inequal-
ity (4.6)) for the energy of ψk v

±
k in the region where |ψk v±k | is small.

We will need this estimate in the proof of Lemma 4.6. To obtain this
estimate, we proceed as follows.
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Let δ > 0 be arbitrary and ζ ∈ C1
c (B1(0)). There exists a C1

c (B1(0)×
R) cut-off function ζ̃ that agrees with ζ1 in a neighborhood of Mk, where
ζ1(x, xn+1) = ζ(x). Replace ζ̃ in identity (4.1) by Fδ(xn+1)ζ̃2, where Fδ
is defined by

Fδ(t) =


−δ if t < −δ,
t if |t| ≤ δ,

δ if t > δ.

This yields

∫
Mk∩{|xn+1|≤δ}

|∇Mkxn+1|2ζ̃2(4.3)

= −2
∫
Mk

Fδ(xn+1)ζ̃∇Mk ζ̃ · ∇Mkxn+1

≤ 2 δ
∫
Mk

|ζ̃||∇Mk ζ̃||∇Mkxn+1|

≤ c δ

(∫
Mk

ζ̃2 |∇Mk ζ̃|2 |∇Mkxn+1|2
)1/2

.

Now, choose ζ such that ζ ≡ 1 on B1/4(0), ζ ≡ 0 outside B1/2(0) and
|Dζ| ≤ 4 everywhere. Writing the integral on the left-hand side of the
above as the sum of integrals over G+

k ∩{|xn+1| ≤ δ}, G−
k ∩{|xn+1| ≤ δ}

and (Mk \ Gk) ∩ {|xn+1| ≤ δ} and using the fact that |∇Mkxn+1|2 =
1 − (νk · en+1)2 on the right hand side, we obtain from inequality (4.3)
that ∫

Ωk∩B1/4(0)∩{|u+
k |≤δ}

|Du+
k |2√

1 + |Du+
k |2

(4.4)

+
∫

Ωk∩B1/4(0)∩{|u−k |≤δ}

|Du−k |2√
1 + |Du−k |2

≤ c δεk.

Setting δ = εεk in the above inequality, we deduce that for arbitrary
ε > 0,

(4.5)
∫

Ωk∩B1/4(0)∩{|v+k |≤ε}
|Dv+

k |2 +
∫

Ωk∩B1/4(0)∩{|v−k |≤ε}
|Dv−k |2 ≤ c ε.
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In view of inequality (3.28), estimate (4.5) implies that
(4.6)∫

B1/4(0)∩{|ψkv
+
k |≤ε}

|D(ψkv
+
k )|2 +

∫
B1/4(0)∩{|ψkv

−
k |≤ε}

|D(ψkv
−
k )|2 ≤ c ε

for sufficiently large k depending on ε. This is the desired energy esti-
mate.

Proof of Lemma 4.6. To prove parts (a) and (b) of the lemma, we first
show that {ψk v+

k } and {ψk v−k } are bounded in L2(B1/4(0)). Note that
this is equivalent to proving that the “height-excess” of Mk relative
to Rn (≡

√∫
Mk∩Bn+1

1/2
(0) |xn+1|2) is bounded from above by a constant

times the tilt-excess εk. We first establish this bound (in a varifold set-
ting) for the cones Ck. The statement for Mk (chosen sufficiently close
to Ck) then follows directly from the definition of varifold convergence.

The monotonicity formula (2.6) applied to the cone Ck says that

(4.7)
∫
B1/2(0)×G(n)

|pS⊥X|2
|X|n+2

dCk(X,S) = 0,

where G(n) denotes the set of hyperplanes in Rn+1.
On the other hand, writingX = (x′, xn+1) and letting νS = (ν ′S , ν

n+1
S )

denote the unit normal to the hyperplane S and noting that pS⊥X =
X · νS = x′ · ν ′S + xn+1νn+1

S , we obtain using (a + b)2 ≥ 1
2a

2 − b2 with
a = xn+1 νn+1

S and b = (ν ′S · x′) that∫
Bn+1

1/2
(0)×G(n)

|pS⊥X|2
|X|n+2

dCk(X,S)(4.8)

≥ 2n+2

∫
Bn+1

1/2
(0)×G(n)

|pS⊥X|2 dCk(X,S)

≥ 2n+1

∫
Bn+1

1/2
(0)×G(n)

(xn+1)2(νn+1
S )2 dCk(X,S)

− 2n+2

∫
Bn+1

1/2
(0)×G(n)

(ν ′S · x′)2 dCk(X,S)

≥ 2n+1

∫
Bn+1

1/2
(0)×G(n)

(xn+1)2(νn+1
S )2 dCk(X,S)

− 2n
∫
Bn+1

1/2
(0)×G(n)

|ν ′S |2 dCk(X,S)

= 2n+1

∫
Bn+1

1/2
(0)×G(n)

(xn+1)2(νn+1
S )2 dCk(X,S)
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− 2n
∫
Bn+1

1/2
(0)×G(n)

(1 − (νn+1
S )2) dCk(X,S)

≥ 2n+1

∫
Bn+1

1/2
(0)×G(n)

(xn+1)2 dCk(X,S)

− 3.2n−1

∫
Bn+1

1/2
(0)×G(n)

(1 − (νn+1
S )2) dCk(X,S).

Combining equation (4.7) and inequality (4.8), we obtain that

0 <
∫
Bn+1

1/2
(0)×G(n)

(xn+1)2 dCk(X,S)(4.9)

≤ 3
4

∫
Bn+1

1/2
(0)×G(n)

(1 − (νn+1
S )2) dCk(X,S).

The first inequality of the above follows from item (3) of hypothe-

sis (�), Section 1. By the definition of varifold convergence (2.1), we
then have that for Mk chosen sufficiently close to Ck (depending on k),

(4.10)
∫
Mk∩Bn+1

1/2
(0)

(xn+1)2 ≤
∫
Mk∩Bn+1

1/2
(0)

1 − (νn+1
k )2.

This implies in particular that for sufficiently large k,

(4.11)
∫
B1/4(0)

(ψku
+
k )2 + (ψku

−
k )2 ≤ ε2k

or, equivalently, that

(4.12)
∫
B1/4(0)

(ψkv
+
k )2 + (ψkv

−
k )2 ≤ 1

as required.
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Next, we show that D(ψkv
±
k ) are bounded in L2(B1/4(0)), by esti-

mating as follows:∫
B1/4(0)

|D(ψk v
+
k )|2 + |D(ψkv

−
k )|2(4.13)

≤ 2
ε2k

∫
B1/4(0)

|Dψk|2 (|u+
k |2 + |u−k |2)

+
2
ε2k

∫
B1/4(0)

ψ
2
k(|Du+

k |2 + |Du−k |2)

≤ c ε
µ/2
k +

4
ε2k

∫
B1/4(0)

ψ
2
k|Du+

k |2√
1 + |Du+

k |2
+

ψ
2
k|Du−k |2√

1 + |Du−k |2

≤ c ε
µ/2
k +

4
ε2k

∫
Gk

1 − (νk · en+1)2

≤ c ε
µ/2
k + 4,

where we have used inequality (3.28) and the fact that |Du±k | ≤ 1.
In view of inequalities (4.12) and (4.13), Rellich’s compactness lemma

implies that there exist functions v+, v− ∈ W 1,2(B1/4(0)) such that,
after passing to a subsequence,
(4.14)
ψk v

+
k → v+ strongly in L2(B1/4(0)) and weakly in W 1,2(B1/4(0))

and

(4.15)
ψk v

−
k → v− strongly in L2(B1/4(0)) and weakly in W 1,2(B1/4(0)).

This proves parts (a) and (b) of the Lemma 4.6.
To prove part (c), we first show that the tilt-excess εk is bounded from

above by a constant times the height-excess. To do this, first notice that
replacing ζ̃ in identity (4.1) with xn+1ζ̃2, where ζ̃ ∈ C1

c (B
n+1
2 (0)), and

using the Cauchy–Schwarz inequality, we obtain that∫
Mk

|∇Mkxn+1|2ζ̃2(4.16)

≤ 2
∫
Mk

|ζ̃||xn+1||∇Mk ζ̃||∇Mkxn+1|

≤ 2
(∫

Mk

|∇Mkxn+1|2ζ̃2

)1/2 (∫
Mk

|xn+1|2|∇Mk ζ̃|2
)1/2

.
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Hence,

(4.17)
∫
Mk

|∇Mkxn+1|2ζ̃2 ≤ 4
∫
Mk

|xn+1|2|∇Mk ζ̃|2.

Now, let ζ ∈ C1
c (R

n) be such that ζ = 1 on B1/8(0), ζ = 0 outside
B1/4(0) and |Dζ| ≤ 16, and let ζ1 be the extension of ζ to Rn+1 such
that ζ1 is constant in en+1 direction. i.e., ζ1(x′, xn+1) = ζ(x′). Choosing
ζ̃ in inequality (4.17) to be a C1

c (B1(0) × R) function such that ζ̃ ≡ ζ1
in a neighborhood of Mk ∩ (B1(0) × R), we obtain that

(4.18)
∫
Mk∩(B1/8(0)×R)

|∇Mkxn+1|2 ≤ 128
∫
Mk∩(B1/4(0)×R)

|xn+1|2.

Notice that since Ck is a cone (i.e., since η0, λ �Ck = Ck for every λ > 0),
we have that

∫
Bn+1

1/8
(0)×G(n)

|∇S xn+1|2 dCk(X,S)(4.19)

= c

∫
Bn+1

3/2
(0)×G(n)

|∇S xn+1|2 dCk(X,S).

Therefore, for Mk chosen to approximate Ck sufficiently closely (de-
pending on k) we have, by the definition of varifold convergence and
the fact that ∫

Bn+1
1 (0)×G(n)

|∇S xn+1|2 dCk(X,S) > 0

(which follows from hypotheses (�), item (3)), that

(4.20)
∫
Mk∩(B1/8(0)×R)

|∇Mkxn+1|2 ≥ c

∫
Mk∩(B1(0)×R)

|∇Mkxn+1|2.

Since |∇Mkxn+1|2 = 1 − (νk · en+1)2, we obtain from inequalities (4.18)
and (4.20) that

(4.21) ε2k ≤ c

∫
Mk∩(B1/4(0)×R)

|xn+1|2

as required. Here, c = c(n).
Now, expressing the integral on the right-hand side of inequality

(4.21) as the sum of integrals over Gk ∩ (B1/4(0)×R) and (Mk \Gk)∩
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(B1/4(0) × R), we have that
(4.22)

ε2k ≤ c

(∫
Ωk∩B1/4(0)

(u+
k )2 + (u−k )2 +

∫
(Mk\Gk)∩(B1/4(0)×R)

|xn+1|2
)
.

Using inequalities (3.24) and (3.26), we then have that

(4.23) ε2k ≤ c (ε2+µk ) + c

∫
B1/4(0)

(ψku
+
k )2 + (ψku

−
k )2.

For sufficiently large k (depending only on n), we may absorb the first
term on the right-hand side of the above into the left-hand side, and
the resulting inequality yields

(4.24)
∫
B1/4(0)

(ψkv
+
k )2 + (ψkv

−
k )2 ≥ c > 0,

where c = c(n). Letting k → ∞ in this gives

(4.25)
∫
B1/4(0)

(v+)2 + (v−)2 ≥ c > 0

proving part (c) of Lemma 4.6.
To see part (d), notice that if v+ ≡ v−, then geometrically, we have

a single hyperplane as the blow-up, and it is standard, then, that for
sufficiently large k, each Mk must itself be a hyperplane. (To see why,
repeat the blow-up argument with the tilt-excess of each ofMk∩(B1(0)×
R) measured relative to the “optimal” reference hyperplane; i.e., the
hyperplane with respect to which the tilt-excess is the minimum among
all tilt-excesses with respect to hyperplanes.) By (3.6), however, it is
not possible that Mk is a hyperplane, proving part (d).

For part (e), by identity (4.1), we have that

(4.26)
∫
Gk

∇Mk xn+1 · ∇Mk ζ̃ = −
∫
Mk\Gk

∇Mk xn+1 · ∇Mk ζ̃.

Let ζ be an arbitrary function in C1
c (B1/4(0)) and set ζ1(x′, xn+1) =

ζ(x′). Taking ζ̃ in identity (4.26) to be a C1
c (B1/4(0)×R) function that

agrees with ζ1 in a neighborhood of Mk ∩ (B1/4(0) ×R) and using also
that |∇Mkxn+1| ≤ 1, we obtain that
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∣∣∣∣∣
∫
Gk∩(B1/4(0)×R)

∇Mk xn+1 · ∇Mkζ1

∣∣∣∣∣(4.27)

≤ sup |Dζ|Hn
(
(Mk \Gk) ∩ (B1/4(0) × R)

)
≤ c sup |Dζ| ε2+µk ,

where we have used estimate (3.24).
Now, observe that for any two C1 functions ϕ, ψ on B1(0), if we let

ϕ̃(x, xn+1) = ϕ(x) and ψ̃(x, xn+1) = ψ(x), then

∇Mk φ̃ = pTxMk
Dφ̃

= Dφ̃− (νk ·Dφ̃)νk

= Dφ̃− ((νk − (νk · en+1)en+1) ·Dφ̃)νk

and hence,

(4.28) |∇Mk ψ̃ · ∇Mk φ̃−Dψ̃ ·Dφ̃| ≤ (1 − (νk · en+1)2)|Dψ̃||Dφ̃|.
Letting ũ+

k (x, xn+1) = u+
k (x), ũ−k (x, xn+1) = u−k (x) and using in-

equalities (4.27) and (4.28), we then estimate as follows:∣∣∣∣∣
∫
G+

k

Dũ+
k ·Dζ1 +

∫
G−

k

Dũ−k ·Dζ1
∣∣∣∣∣(4.29)

≤
∣∣∣∣∣
∫
G+

k

∇Mk ũ+
k · ∇Mkζ1 +

∫
G−

k

∇Mk ũ−k · ∇Mkζ1

∣∣∣∣∣
+
∫
G+

k

(
1 − (νk · en+1)2)

) |Dũ+
k ||Dζ1|+

+
∫
G−

k

(
1 − (νk · en+1)2)

) |Dũ−k ||Dζ1|
≤
∣∣∣∣∫
Gk

∇Mk xn+1 · ∇Mkζ1

∣∣∣∣+ sup |Dζ|
∫
Gk

(
1 − (νk · en+1)2

)
≤ 2 c sup |Dζ| ε2k.

Dividing both sides of the above inequality by εk and using the area
formula to express each of the integrals on the left-hand side as an

integral over Ωk, and noting that
√

1 + |Du+
k |2,
√

1 + |Du−k |2 ≤ 2, we
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obtain, by letting k → ∞ (and using inequalities (3.26) and (3.28)) that

(4.30)
∫
B1/4(0)

(D(v+ + v−)) ·Dζ = 0.

Since ζ is an arbitrary C1 function with compact support in B1/4(0),
it follows from Weyl’s lemma that v+ + v− is smooth and harmonic in
B1/4(0). Also, v+ and v− are homogeneous of degree one (and hence
defined everywhere in Rn), because, by item (5) of hypotheses (�),
Section 1, graphu+

k ∪graphu−k approximates a cone. Applying the max-
imum principle in B1/4(0) to each of the partial derivatives Dj(v+ +v−)
(which are homogeneous of degree zero), we conclude that v++v− is lin-
ear. By rotation, we assume without loss of generality that v++v− ≡ 0.
This completes the proof of parts (e).

To prove parts (f), (g) and (h) of the lemma, we first show that the
sequence {ψk |Dvk|} is bounded in W 1,2(B1/4(0)). Note that ψk |Dvk|
is locally Lipschitz, and hence is in W 1,∞

loc (B1/4(0)). (Indeed, |Dv+
k | +

|Dv−k | = |Dv(1)
k | + |Dv(2)

k | is a C2 function in Ωk; even though indi-
vidually Dv

(1)
k and Dv

(2)
k are only locally defined, their sum has an

unambiguous meaning everywhere in Ωk and is in C2(Ωk).) Note also
that sptψk ⊆ Ωk. We estimate as follows:∫

B1/4(0)

(
ψk |Dvk|

)2(4.31)

≤ 2
ε2k

∫
B1/4(0)

ψ
2
k (|Du+

k |2 + |Du−k |2)

≤ 4
ε2k

∫
B1/4(0)

ψ
2
k

 |Du+
k |2√

1 + |Du+
k |2

+
|Du−k |2√

1 + |Du−k |2


=

4
ε2k

∫
Gk

(
1 − (νk.en+1)2

)
≤ 4.

∫
B1/4(0)

|D(ψk |Dvk|)|2(4.32)

≤ 2
ε2k

∫
B1/4(0)

|Dψk|2 |Duk|2 + ψ
2
k |D(|Duk|)|2

≤ sup |Duk|2 2
ε2k

∫
B1/4(0)

|Dψk|2
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+
2
ε2k

∫
B1/4(0)

ψ
2
k |D(|Duk|)|2

≤ c

(
ε
µ/2
k +

2
ε2k

∫
Mk∩(B1/4(0)×R)

|Ak|2
)

≤ c.

We have used inequality (3.28) and Lemma 3.1.
Thus, by Rellich’s compactness lemma, there exists w∈W 1,2(B1/4(0))

such that, after passing to a subsequence,

(4.33) ψk |Dvk| → w

weakly in W 1,2(B1/4(0)), strongly in L2(B1/4(0)) and pointwise a.e. in
B1/4(0).

For parts (f) and (g), we want to establish the L2 convergence of
ψkDv

+
k and ψkDv

−
k separately; thus, we would like to get L2 bounds

on the gradients of these functions. However, ψ̄kDv+
k and ψ̄kDv

−
k do

not belong to the Sobolev space W 1,2(B1/4(0)) because the functions
v+
k and v−k have “corners.” To get around this difficulty, we work with

a suitable symmetric combination of v+
k and v−k . Then, corners would

not cause a problem because our symmetric expression in v+
k and v−k

will always be smooth (in fact, real analytic) as can be seen by re-
writing it in terms of the real analytic functions v(1)

k and v
(2)
k . Notice

that even though the functions v(1)
k and v(2)

k are only defined locally, the
unordered pair {v+

k , v
−
k } is the same as the unordered pair {v(1)

k , v
(2)
k },

and hence any symmetric expression in v+
k and v−k will continue to have

an unambiguous meaning when v+
k and v−k are replaced by v(1)

k and v(2)
k

respectively. The explicit technique we adopt is as follows.
Take ε > 0 and let γε : R → R be a C1 cut-off function with γε(t) =

0 if t ≤ ε, γε(t) = 1 if t > 2ε, γε(t) ≥ 0 and γ′ε(t) ≤ 2/ε for all
t. Let V ε

k = ψk(γε(v
+
k )Dv+

k + γε(v−k )Dv−k ). Notice that V ε
k is locally

Lipschitz, and hence is in W 1,∞
loc (B1/4(0)). (This is because, as indicated

in the preceding paragraph, the unordered pair {v+
k , v

−
k } is the same as

the unordered pair {v(1)
k , v

(2)
k } and therefore, V ε

k = ψkγε(v
(1)
k )Dv(1)

k +
γε(v

(2)
k )Dv(2)

k .) It follows from inequality (4.31) that:∫
B1/4(0)

|V ε
k |2 ≤ c
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and, by inequalities (3.27), (4.31), (3.1) and the fact that |DDu+
k | +

|DDu−k | ≤ |Ak| pointwise, that∫
B1/4(0)

|DV ε
k | ≤

c

ε2
.

Therefore, by the compactness of the embedding W 1, 1 (B1/4 (0)) →
L1(B1/4(0)), there exists V ε ∈ L1(B1/4(0)) such that, after passing to
a subsequence, V ε

k → V ε in L1(B1/4(0)) and pointwise a.e. in B1/4(0).
Now, notice that since we may write V ε

k = ψkD(Γε(v+
k )+Γε(v−k )), where

Γ′(t) = γ(t), we have, for an arbitrary vector-valued C1
c function ζ on

B1/4(0), that

∫
B1/4(0)

ζ · V ε
k =
∫
B1/4(0)

ζ · ψkD(Γε(v+
k ) + Γε(v−k ))(4.34)

= −
∫
B1/4(0)

ζ ·Dψk(Γε(v+
k ) + Γε(v−k ))

−
∫
B1/4(0)

div ζ ψk(Γε(v
+
k ) + Γε(v−k )).

Taking the limit as k → ∞ on both sides of the above, and using
inequality (3.28) to conclude that the first of the integrals on the right-
hand side converges to zero, we obtain that

∫
B1/4(0)

ζ · V ε = −
∫
B1/4(0)

div ζ(Γε(v+) + Γε(v−))(4.35)

=
∫
B1/4(0)

ζ ·D(Γε(v+) + Γε(v−))

for every C1
c (B1/4(0)) vector field ζ. Therefore, V ε = D(Γε(v+) +

Γε(v−)) = γε(v+)Dv++γε(v−)Dv− = γε(v+)Dv+. Thus, we have shown
that, after passing to a subsequence,

(4.36) ψk(γε(v
+
k )Dv+

k + γε(v−k )Dv−k ) → γε(v+)Dv+

in L1(B1/4(0)) and pointwise a.e. in B1/4(0).
Similarly, we obtain that

(4.37) ψk(γε(−v+
k )Dv+

k + γε(−v−k )Dv−k ) → γε(−v−)Dv−

in L1(B1/4(0)) and pointwise a.e. in B1/4(0).
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However, ψkγε(v
−
k )Dv−k , ψkγε(−v+

k )Dv+
k → 0 in L2; in fact

(4.38)
∫
{v−k ≥ε}

(ψk |Dv−k |)2,
∫
{v+k ≤ε}

(ψk |Dv+
k |)2 → 0.

This follows from (the generalized) Lebesgue Dominated Convergence
Theorem because |ψkγε(v−k )Dv−k |2 and |ψkγε(−v+

k )Dv+
k |2 are bounded

by (ψk|Dvk|)2 and, by (4.33), the latter converges pointwise a.e. and
in L1 to w2. Also, the pointwise a.e. limits of χ{v−k ≥ε} ψkDv

−
k and

χ{v+k ≤ε} ψkDv
+
k are both zero because |ψkDv±k | are bounded by 2|w|,

ψ̄k v
−
k → v− ≤ 0, ψ̄k v+

k → v+ ≥ 0 and ψ̄k → 1 a.e. in B1/4(0).
We, therefore, have that

(4.39) ψkγε(v
+
k )Dv+

k → γε(v+)Dv+

and

(4.40) ψkγε(−v−k )Dv−k → γε(−v−)Dv−

in L1(B1/4(0)) and pointwise a.e. in B1/4(0).
Now, it follows by letting k → ∞ in the estimate (4.6) and using the

lower semi-continuity of energy that

(4.41)
∫
B1/4(0)∩{|v+ |≤ε}

|Dv+|2 +
∫
B1/4(0)∩{|v− |≤ε}

|Dv−|2 ≤ c ε.

In view of inequalities (4.6), (4.41), (4.38) (all with 2 ε in place of
ε) and the Cauchy–Schwarz inequality, we may let ε → 0 in (4.39) and
(4.40) to conclude that

(4.42) ψkDv
+
k → Dv+

and

(4.43) ψkDv
−
k → Dv−

in L1(B1/4(0)) and pointwise a.e. in B1/4(0).
This in particular shows that the function w in (4.33) must be equal

to |Dv+| + |Dv−|, and therefore that

(4.44) ψ̄k |Dvk| → |Dv+| + |Dv−|
strongly in L2(B1/4(0)), weakly in W 1,2(B1/4(0)) and pointwise a.e. in
B1/4(0). Since w ∈W 1,2(B1/4(0)), part (h) of the lemma follows.

To complete the proof of parts (f) and (g), we show that the con-
vergence in (4.36) and (4.37) is indeed in L2(B1/4(0)). This would fol-
low immediately if we could prove that DV ε

k are uniformly bounded in
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L2(B1/4(0)), but the terms resulting from differentiating the γε factor
of V ε

k are of degree 4 in the partial derivatives of vk and hence are not
in L2 uniformly. Therefore, we modify V ε

k further by cutting off re-
gions where |Dvk| is large. Thus, we let V ε,K

k = ϕK(|Dvk|)V ε
k , where

K > 0 is a (large) fixed number and ϕK ∈ C1(R) with ϕK(t) ≡ 1 for
t ≤ K/2, ϕK(t) ≡ 0 for t ≥ K and |DϕK(t)| ≤ 4/K for all t. It is
easy to see then, by inequalities (4.31), (3.28), (3.1) and the fact that
|DDu+

k | + |DDu−k | ≤ c |Ak| pointwise, that∫
B1/4(0)

|V ε,K
k |2 ≤ c

and ∫
B1/4(0)

|DV ε,K
k |2 ≤ cK4

ε2
.

Therefore, there exists a function V ε,K ∈W 1,2(B1/4(0)) such that

V ε,K
k → V ε,K

in L2(B1/4(0)), weakly in W 1,2(B1/4(0)) and pointwise a.e. in B1/4(0)
as k → ∞. However, by (4.36) and (4.44), we know that

V ε,K
k → ϕK(|Dv+| + |Dv−|) γε(v+)Dv+

pointwise a.e., and therefore, we have that

(4.45) V ε,K
k → ϕK(|Dv+| + |Dv−|) γε(v+)Dv+

in L2(B1/4(0)), weakly in W 1,2(B1/4(0)) and pointwise a.e. in B1/4(0)
as k → ∞.

Now, Ln{x ∈ B1/4(0) : |Dvk(x)| ≥ K/2} → 0 uniformly in k as
K → ∞ because by (4.44), |Dvk| converge in L1(B1/4(0)). Therefore,
in view of the fact that V ε

k converge in L1(B1/4(0)) (by (4.36)), we have
by Lebesgue Dominated Convergence theorem that

(4.46)
∫
B1/4(0)∩{x : |Dvk|≥K/2}

|V ε
k |2 → 0

uniformly in k as K → ∞. In view of (4.44) and (4.45), letting k → ∞
in (4.46), we also have that

(4.47)
∫
B1/4(0)∩{x:|Dv+|+|Dv−|≥K/2}

|γε(v+)Dv+|2 → 0

as K → ∞.
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By (4.46) and (4.47), we may let K → ∞ in (4.45) to conclude
that the convergence in (4.36) is in L2(B1/4(0)). A similar argument
shows that the convergence in (4.37) is in L2(B1/4(0)). In view of (4.38),
this implies that the convergence in (4.39) and (4.40) is in L2(B1/4(0)).
Finally, in view of inequalities (4.6) and (4.41), we may let ε → 0 in
(4.39) and (4.40) to conclude that the convergence in (4.42) and (4.43)
is in L2(B1/4(0)). This completes the proof of parts (f) and (g). q.e.d.

Remark. We have that

(4.48) v+ �≡ 0.

This follows from parts (d) and (e) of Lemma 4.6.

In the following lemma, we prove several integral identities and esti-
mates involving v+ which we will use in the next section. Notice that
since v− = −v+, these identities and estimates also hold with v− in
place of v+.

Lemma 4.7. Let ε ∈ (0, 1/2), y ∈ B1/8(0) and σ ∈ (0, 1/8] be arbi-
trary. Then

(i)
∫
B1/4(0) |Dv+|2ζ=− ∫B1/4(0) v

+Dv+ ·Dζ for every ζ∈C1
c (B1/4(0)).

(ii)
∫
Bσ(y) |Dv+|2 =

∫
∂Bσ(y) v

+ ∂v+

∂R where ∂v+

∂R (x) = Dv+(x) · x−yσ .

(iii)
∫
Bσ/2(y)

|Dv+|2 ≤ 8σ−2
∫
Bσ(y) (v+)2.

(iv)
∫
Bσ/2(y)∩{x:v+(x)≤εσ−n/2‖v+‖L2(Bσ(y))} |Dv

+|2 ≤ cεσ−2
∫
Bσ(y) (v+)2.

Here, c = c(n).

Proof. We begin by replacing ζ̃ with xn+1ζ̃ in identity (4.1) to deduce
that

(4.49)
∫
Mk

|∇Mk xn+1|2ζ̃ = −
∫
Mk

xn+1∇Mk xn+1 · ∇Mk ζ̃

for every ζ̃ ∈ C1
c (R

n+1).
Let ζ ∈ C1

c (B1/4(0)) be arbitrary. There exists a ζ̃ ∈ C1
c (B1/4(0)×R)

such that ζ̃ ≡ (ψk)2ζ1 in a neighborhood of Mk where ζ1(x, xn+1) =
ζ(x). (Here again, ψk is the cut-off function defined in Section 3.)
Therefore, identity (4.49) holds with (ψk)2ζ1 in place of ζ̃, and we obtain
that
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∫
Gk

|∇Mk xn+1|2(ψk)2ζ1
(4.50)

= −
∫
Gk

xn+1∇Mk xn+1 · ∇Mk ((ψk)
2ζ1)

−
∫
Mk\Gk

|∇Mk xn+1|2(ψk)2ζ1 + xn+1∇Mk xn+1 · ∇Mk ((ψk)
2ζ1).

Since ∇Mk ((ψk)2ζ1) = pTxMk
D((ψk)2ζ1) = D((ψk)2ζ1) − (D((ψk)2ζ1) ·

νk)νk and ∇Mkxn+1 = en+1 − (νk.en+1)νk, we have that (since ζ1 is
independent of xn+1), ∇Mk((ψk)2ζ1)·∇Mkxn+1 = −(D((ψk)2ζ1)·νk)(νk ·
en+1) and |∇Mkxn+1|2 = 1− (νk ·en+1)2. Substituting these expressions
into the identity (4.50), and using also the fact that νk = (−Du+

k , 1)/(1+
|Du+

k |2)1/2 on G+
k and νk = (−Du−k , 1)/(1 + |Du−k |2)1/2 on G−

k , we
deduce, after dividing both sides of (4.50) by ε2k, that

∫
B1/4(0)

 (ψk|Dv+
k |)2√

1 + |Du+
k |2

+
(ψk|Dv−k |)2√
1 + |Du−k |2

 ζ
(4.51)

= −
∫
B1/4(0)

ψkv
+
k ψkDv

+
k ·Dζ√

1 + |Du+
k |2

−
∫
B1/4(0)

ψkv
−
k ψkDv

−
k ·Dζ√

1 + |Du−k |2
−

− 1
ε2k

∫
B1/4(0)

2

 ψkζu
+
kDu

+
k√

1 + |Du+
k |2

+
ψkζu

−
kDu

−
k√

1 + |Du−k |2

 ·Dψk

− 1
ε2k

∫
Mk\Gk

|∇Mk xn+1|2(ψk)2ζ1 + xn+1∇Mk xn+1 · ∇Mk (ψk)
2ζ1.

Since |Du±k | → 0 a.e. (because e.g., ψkDu
±
k = εkψkDv

±
k and ψkDv

±
k →

Dv±, ψk → 1 a.e.), the integral on the left-hand side of the above
converges, by Lemma 4.6 (e) and (f), to

∫
B1/4(0)(|Dv+|2 + |Dv−|2)ζ.

On the right-hand side, the first and the second integrals converge
to
∫
B1/4(0) v

+Dv+ · Dζ and
∫
B1/4(0) v

−Dv− · Dζ, respectively, because√
1 + |Du±k |2 → 1 a.e., ψkv

±
k → v± in L2(B1/4(0)) and ψkDv

±
k → Dv±

in L2(B1/4(0)) by Lemma 4.6. The third integral on the right-hand side
converges to zero by estimate (3.27) because u±k , Du±k , ψk and ζ are
bounded. And by estimate (3.24), the last integral on the right-hand
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side converges to zero also because the integrand is bounded. Thus, tak-
ing the limit as k → ∞ on both sides and using v− ≡ −v+, we obtain
from (4.51) that

(4.52)
∫
B1/4(0)

|Dv+|2ζ = −
∫
B1/4(0)

v+Dv+ ·Dζ

for every ζ ∈ C1
c (B1/4(0)). This is part (i) of the lemma.

Parts (ii) and (iii) of the lemma are direct consequences of part (i).
To see (ii), first observe that by approximation, we may take ζ in the
identity in (i) to be Lipschitz. For 0 < σ, τ ≤ 1/8, let γ : [0, 1] → R be
defined by γ(s) = 1 for 0 ≤ s ≤ σ, γ(s) = 0 for σ+ τ ≤ s ≤ 1 and linear
elsewhere. Taking ζ(x) = γ(|x− y|) in (i) and letting τ → 0, we obtain
that

(4.53)
∫
Bσ(y)

|Dv+|2 =
∫
∂Bσ(y)

v+∂v
+

∂R

for all y ∈ B1/8(0) and all σ ∈ (0, 1/8], where ∂v+

∂R (x) = Dv+(x).x−yσ ,
proving part (ii).

To see (iii), first replace ζ in the identity in part (i) by ζ2 to get

(4.54)
∫
B1/4(0)

|Dv+|2ζ2 = −2
∫
B1/4(0)

v+ζDv+ ·Dζ.

Using Cauchy–Schwarz inequality on the right-hand side of (4.54) yields

(4.55)
∫
B1/4(0)

|Dv+|2ζ2 ≤ 4
∫
B1/4(0)

(v+)2|Dζ|2.

Now, choose the cut-off function ζ such that ζ ≡ 1 in Bσ/2(y), ζ ≡ 0 in
B1/4(0) \Bσ(y) and |Dζ| ≤ 2/σ. This gives the required estimate that

(4.56)
∫
Bσ/2(y)

|Dv+|2 ≤ 8σ−2

∫
Bσ(y)

(v+)2

for all y ∈ B1/8(0) and σ ∈ (0, 1/8].
Finally, to prove part (iv), we recall the inequality (4.3). Choosing

ζ ∈ C1
c (B1(0)) to be a standard cut-off function satisfying ζ(t) ≡ 1 on

Bσ/2(y), ζ ≡ 0 outside B3σ/4(y) and |Dζ| ≤ 8/σ, and taking ζ̃ in (4.3)
to be the extension of ζ to Rn+1 that is constant in the xn+1 direction,
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we obtain from (4.3) that∫
Mk∩(Bσ/2(y)×R)∩{|xn+1|≤δ}

|∇Mkxn+1|2(4.57)

≤ c δ σ−1

∫
Mk∩(B3σ/4(y)×R)

|∇Mkxn+1|

≤ c δ σ−1

(∫
Mk∩Gk∩(B3σ/4(y)×R)

|∇Mkxn+1| + ε2+µk

)
,

where we have used inequality (3.24). Since |Du±k | ≤ 1, it follows that
Mk ∩ G+

k ∩ (B3σ/4(y) × R) ⊆ Bn+1
3σ/2(y

+) and Mk ∩ G−
k ∩ (B3σ/4(y) ×

R) ⊆ Bn+1
3σ/2(y

−) for suitable y+, y− ∈ Rn+1, and therefore by the
monotonicity inequality for Mk and the Cauchy–Schwarz inequality, it
follows from (4.57) that

∫
Mk∩(Bσ/2(y)×R)∩{|xn+1|≤δ}

|∇Mkxn+1|2
(4.58)

≤ c δ σ−1

σn/2 (∫
Mk∩Gk∩(B3σ/4(y)×R)

|∇Mkxn+1|2
)1/2

+ ε1+µk σn


for sufficiently large k depending on σ.

By making an appropriate choice of ζ in inequality (4.17), we have
on the other hand that

(4.59)
∫
Mk∩B3σ/4(y)×R

|∇Mkxn+1|2 ≤ c σ−2

∫
Mk∩Bσ/2(y)×R

(xn+1)2.

Combining inequalities (4.58) and (4.59), we have that∫
Mk∩(Bσ/2(y)×R)∩{|xn+1|≤δ}

|∇Mkxn+1|2(4.60)

≤ c δ σ−2

σn/2 (∫
Mk∩Bσ(y)×R

(xn+1)2
)1/2

+ ε1+µk σn

 .
It follows from this, the boundedness of |Du±k | and inequality (3.26)
that
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∫
Bσ/2(y)∩{ψk|u+

k |≤δ}
ψk|Du+

k |2 +
∫
Bσ/2(y)∩{ψk|u−k |≤δ}

ψk|Du−k |2
(4.61)

≤ c δ σn−2

σ−n/2 (∫
Bσ(y)

(ψk u
+
k )2 + (ψk u

−
k )2
)1/2

+ ε
1+µ/2
k

 .
Choosing δ = δk ≡ 1

2ε

(
σ−n/2

(∫
Bσ(y)(ψku

+
k )2 + (ψku

−
k )2
)1/2

+ ε
1+µ/2
k

)
in (4.61) and dividing both sides by ε2k, and using also inequalities (3.28)
and (3.26), we obtain from inequality (4.61) that∫

Bσ/2(y)∩{|ψkv
+
k |≤ δk

εk
}
ψk|Dv+

k |2 +
∫
Bσ/2(y)∩{|ψkv

−
k |≤ δk

εk
}
ψk|Dv−k |2(4.62)

≤ c ε σ−2

(∫
Bσ(y)

(ψkv
+
k )2 + (ψkv

−
k )2 + εµk

)
.

The estimate in part (iv) now follows by letting k → ∞ in this and
observing that δk

εk
→ ε σ−n/2‖v+‖L2(Bσ(y)). This completes the proof of

the lemma. q.e.d.

We also have the following important lemma. We will use this lemma
to prove monotonicity of the “frequency function” of Section 5, a key
ingredient in the proof of Theorem 1.1.

Lemma 4.8. v+ satisfies the following harmonic identity:

(4.63)
n∑

i,j=1

∫
Bσ(y)

(δij |Dv+|2 − 2Div
+Djv

+)Diζ
j = 0

for all y ∈ B1/8(0), σ ∈ (0, 1/8] and ζj ∈ C1
c (Bσ(y)), j = 1, . . . , n.

Proof. Let y ∈ B1/8(0), σ ∈ (0, 1/8] be arbitrary and suppose ζj ∈
C1
c (Bσ(y)), j = 1, 2 . . . , n. First, extend each ζj to Bσ(y) × R by set-

ting ζ̃j(x, xn+1) = ζj(x) and then let ζj1 be a C1
c (Bσ(y) × R) function

that agrees with ζ̃j in a neighborhood of Mk ∩ (Bσ(y) ×R). Let Zk be
the locally Lipschitz vector field defined by Zk = ψ

2
k (ζ1

1 , ζ
2
1 , . . . , ζ

n
1 , 0),

where ψk is the cut-off function defined in Section 3. Notice that
sptZk ⊂⊂ Bσ(y) ∩ Ωk. We shall use identity (2.8) with Zk in place
of X. First, we compute divMk

Zk.
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Let νk = (ν1
k , ν

2
k , . . . , ν

n+1
k ) denote the unit normal on Mk. Then,

divMk
Zk =

n+1∑
i=1

ei · ∇Mk(ψ2
kζ
i
1)(4.64)

=
n+1∑
i=1

ei · pTxMk
D(ψ2

k ζ
i
1)

=
n+1∑
i=1

ei ·
(
D(ψ2

k ζ
i
1) − (D(ψ2

k ζ
i
1) · νk)νk

)
=

n+1∑
i=1

Di(ψ
2
k ζ

i
1) −

n+1∑
i=1

n+1∑
j=1

Dj(ψ
2
k ζ

i
1)ν

j
kν

i
k

=
n∑

i,j=1

(
δij − νikν

j
k

)
Dj(ψ

2
k ζ

i
1).

Using (4.64) in (2.8), we then obtain

(4.65)
n∑

i,j=1

∫
Mk

(
δij − νikν

j
k

)
Dj(ψ

2
k ζ

i
1) = 0.

This can be written as

(4.66)
n∑

i,j=1

∫
Gk

(
δij − νikν

j
k

)
Dj(ψ

2
k ζ

i
1) = Fk,

where Fk =
∑n

i,j=1

∫
Mk\Gk

(
δij − νikν

j
k

)
Dj(ψ

2
k ζ

i
1). Now

∫
Mk\Gk

|(δij − νik ν
j
k)Dj(ψ

2
k ζ

i
1)|(4.67)

≤
∫
Mk\Gk

|δij − νik ν
j
k||ψk|2|Djζ

i
1|

+ 2
∫
Mk\Gk

|δij − νik ν
j
k|ψk|Djψk||ζi1|.

The integrand of the first integral on the right-hand side of inequality
(4.67) is bounded, and by inequality (3.24),

Hn
(
(Mk \Gk) ∩ (B1/2(0) × R)

) ≤ c ε2+µk .



468 N. WICKRAMASEKERA

Since |δij − νik ν
j
k||ζi1|ψk is bounded, we also have by inequality (3.27)

that the second integral on the right-hand side of inequality (4.67) is
bounded by c ε2+µ/2k . Therefore, Fk/ε2k → 0 as k → ∞.

Since νik = −Diu
+
k�

1+|Du+
k |2

on G+
k and νik = −Diu

−
k�

1+|Du−k |2
on G−

k , we obtain

from Equation (4.66) and the area formula that

n∑
i,j=1

∫
Bσ(y)

(√
1 + |Du+

k |2 +
√

1 + |Du−k |2
)
δij Dj(ψ

2
k ζ

i)

(4.68)

−
n∑

i,j=1

∫
Bσ(y)

 Diu
+
k Dju

+
k√

1 + |Du+
k |2

+
Diu

−
k Dju

−
k√

1 + |Du−k |2

Dj(ψ
2
k ζ

i) = Fk.

By the divergence theorem, we also trivially have that

(4.69)
n∑

i,j=1

∫
Bσ(y)

2 δij Dj(ψ
2
kζ
i) = 0.

Now, subtract (4.69) from (4.68) and divide both sides by ε2k. The
left-hand side of the resulting identity is then the sum over i, j of the
integrals

(I1)
1
ε2k

∫
Bσ(y)

2|Du+
k |2

1 +
√

1 + |Du+
k |2

δijζ
iψkDjψk,

(I2)
∫
Bσ(y)

|Dv+
k |2

1 +
√

1 + |Du+
k |2

δijψ
2
kDjζ

i,

(I3)
1
ε2k

∫
Bσ(y)

 2Diu
+
k Dju

+
k√

1 + |Du+
k |2

 ζiψkDjψk,

(I4)
∫
Bσ(y)

 Div
+
k Djv

+
k√

1 + |Du+
k |2

ψ2
kDjζ

i

and similar integrals with u−k in place of u+
k . Since Div

+
k → Div

+,
|Du+

k | → 0 and ψk → 1 pointwise a.e. in B1/4(0), we see by the
generalized Lebesgue Dominated Convergence Theorem that the
integrals in (I2) and (I4) converge to 1

2

∫
Bσ(y) |Dv+|2δijDjζ

i and∫
Bσ(y)Div

+Djv
+Djζ

i, respectively. (The integrands in (I2) and (I4)
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are bounded by cψ2
k|Dv+

k |2 which converges a.e. and in L1 to c |Dv+|.)
The integrals in (I1) and (I3) converge to zero by estimate (3.27) because

|Du+
k |2

1+
�

1+|Du+
k |2

and Diu
+
k Dju

+
k�

1+|Du+
k |2

are bounded. Thus, the lemma follows by

subtracting (4.69) from (4.68) and letting k → ∞ in the resulting iden-
tity after dividing it through by ε2k. q.e.d.

Next, we establish boundedness of the gradient of v+, a result that
will play a very important role in Section 5, where we uncover the
geometry of the blow-up.

Lemma 4.9. |Dv+|2 is sub-harmonic in B1/4(0), and hence, by the
mean value property, |Dv+| is bounded in B1/8(0).

Proof. We use the identity

(4.70) ∆Mk
(1 − νk · en+1) = (νk · en+1)|Ak|2.

Let ϕ be a smooth, non-negative function with compact support in
B1/4(0). Extend ϕ to B1/4(0) × R by ϕ̃(x, xn+1) ≡ ϕ(x) and let ϕ1 be
any smooth function with compact support in B1/4(0) × R that agrees
with ϕ̃ in a neighborhood of Mk ∩ (B1/4(0) × R).

Multiplying both sides of identity (4.70) by ψkϕ1 and integrating over
Mk gives

(4.71)
∫
Mk

ψkϕ1 ∆Mk
(1 − (νk · en+1)) =

∫
Mk

ψkϕ1 (νk · en+1) |Ak|2.

Integrating by parts on the left-hand side of Equation (4.71) and de-
composing the integral on the right-hand side as integrals over Gk and
Mk \Gk, we obtain that

∫
Mk

∇Mk (ψkϕ1) · ∇Mk(1 − (νk · en+1))

(4.72)

= −
∫
Gk

ψkϕ1 (νk · en+1) |Ak|2 −
∫
Mk\Gk

ψkϕ1 (νk · en+1) |Ak|2.

The first integral on the right-hand side of (4.72) is non-negative
because the integrand is non-negative on Gk. Therefore, we have that
(4.73)∫
Mk

∇Mk (ψk ϕ1)·∇Mk (1−(νk ·en+1)) ≤ −
∫
Mk\Gk

ψk ϕ1(νk ·en+1)|Ak|2.
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We estimate the integral on the right-hand side of inequality (4.73)
as follows: ∣∣∣∣∣

∫
Mk\Gk

ψkϕ1 (νk · en+1) |Ak|2
∣∣∣∣∣(4.74)

≤ sup |ϕ1|
∫

(Mk\Gk)∩(B1/4(0)×R)
|Ak|2

≤ sup |ϕ1|
(Hn((Mk \Gk) ∩ (B1/4(0) × R))

) 1
2

·
(∫

(Mk\Gk)∩(B1/4(0)×R)
|Ak|4

) 1
2

≤ c sup |ϕ1| ε1+µ/2k

(∫
Mk∩(B1(0)×R)

|Ak|2
) 1

2

≤ c sup |ϕ1| ε2+µ/2k .

Note that we have used Lemmas 3.4 and 3.1 here. Inequality (4.74)
implies that

(4.75)
1
ε2k

∫
Mk\Gk

ψkϕ1 (νk · en+1) |Ak|2 → 0

as k → ∞.
Now, we split the integral on the left-hand side of inequality (4.73)

in the usual way as follows:∫
Mk

∇Mk (ψkϕ1) · ∇Mk(1 − (νk · en+1))(4.76)

=
∫
Gk

∇Mk (ψkϕ1) · ∇Mk(1 − (νk · en+1))+

+
∫
Mk\Gk

∇Mk (ψkϕ1) · ∇Mk(1 − (νk · en+1)).

Since ∇Mk ϕ1 is bounded and |∇Mk (1− (νk · en+1))| ≤ |Ak|, Cauchy–
Schwarz inequality, Lemma 3.1, inequalities (3.24) and (3.28) imply that
the second integral on the right-hand side of Equation (4.76) is bounded
from above by c ε2+µ/2k . Thus,

(4.77)
1
ε2k

∫
Mk\Gk

∇Mk (ψkϕ1) · ∇Mk(1 − (νk · en+1)) → 0

as k → ∞.
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Using the area formula and the fact that

∇Mkζ1 · ∇Mkζ2 = Dζ1 ·Dζ2 − (Dζ1 · νk)(Dζ2 · νk)
the first integral on the right-hand side of Equation (4.76) can be ex-
pressed as follows:∫

Gk

∇Mk (ψkϕ1) · ∇Mk(1 − νk · en+1)(4.78)

=
1
2

∫
B1/4(0)

D(ψkϕ) ·D(|Du+
k |2)

1 + |Du+
k |2

+
D(ψkϕ) ·D(|Du−k |2)

1 + |Du−k |2

− 1
2

∫
B1/4(0)

(D(ψkϕ) ·Du+
k )(D(|Du+

k |2) ·Du+
k )

(1 + |Du+
k |2)5/2

+
(D(ψkϕ) ·Du−k )(D(|Du−k |2) ·Du−k )

(1 + |Du−k |2)5/2
.

We remark here that even though the individual terms D|Du+
k | and

D|Du−k | may not belong to the Sobolev space W 1,2(B1/4(0)), the in-
tegrands of both integrals on the right hand side of the above are in
W 1,2(B1/4(0)), because they are symmetric expressions in u+

k and u−k
and hence can be expressed unambiguously in terms of the smooth func-
tions u(1)

k , u(2)
k and the derivatives of u(1)

k and u(2)
k (since the unordered

pair {u+
k , u

−
k } is the same as the unordered pair {u(1)

k , u
(2)
k }).

Since |Du+
k | → 0 a.e., after dividing by ε2k, the second integral on the

right-hand side of Equation (4.78) converges to zero. Using inequality
(3.27) and integration by parts, we also see that, after dividing by ε2k,
the first integral on the right-hand side of Equation (4.78) converges to

1
2

∫
B1/4(0)

Dϕ · (D(|Dv+|2) +D(|Dv−|2)) .
Since v− = −v+, it follows that

∫
B1/4(0)Dϕ ·D(|Dv+|2) ≤ 0. q.e.d.

Corollary 4.10. v+ is smooth and harmonic everywhere in B1/8(0)\
Zv+ , where Zv+ ≡ {z ∈ B1/8(0) : v+(z) = 0}.

Proof. The identity of Lemma 4.7, part (i) says that v+ satisfies
∆(v+)2 = 2 |Dv+|2 weakly in B1/4(0). By Lemma 4.9, |Dv+| is bounded
in B1/8(0). Therefore, by elliptic regularity theory [4], (v+)2 is in
C1,α(B1/8(0)) for every α < 1. Hence, v+ is C1,α everywhere in (B1/8(0)\
Zv+). Therefore, |Dv+| is C0,α everywhere in (B1/8(0) \Zv+) and by el-
liptic regularity again, v+ is in C2,α everywhere in (B1/8(0) \ Zv+). By
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Lemma 4.7, part (i) again, we then have that v∆v = 0, and hence,
∆v(x) = 0, at every point x ∈ B1/8(0) \ Zv+ . q.e.d.

Preparatory to the analysis of Section 5, we next want to describe
how we can blow up v+ iteratively. In Section 5, we shall prove that
the graph of v+ is equal to the union of two n-dimensional half spaces
of Rn+1 intersecting along an (n− 1)-dimensional subspace of Rn. The
key step there will be a dimension reducing process which will be used
to prove that the zero set Zv+ of v+ is an (n− 1)-dimensional subspace
of Rn+1. This involves blowing up v+ at a point z ∈ Zv+ ; by that, we
mean choosing an arbitrary sequence of radii ρi ↓ 0 and taking a sub-
sequential limit (w1, say) of the sequence of functions obtained by re-
scaling v+ at z, where the domain variables of v+ (i.e., the Rn variables)
are translated and scaled so that the ball Bρi(z) becomes the unit ball
centered at the origin, and the dependent variable is scaled by dividing
by the (scale invariant) L2 norm of v+ over Bρi(z) (provided of course
this quantity is non-zero, a fact that will be proved in Section 5). See
the Definition (4.79). The dimension reducing argument of Section 5
relies on being able to repeat this process—i.e., being able to blow up
the blow-up w1 at a zero of w1 and then blow up the second blow-up (w2,
say) at a zero of w2 and so on—preserving each time all of the regularity
properties of v+, we have established so far in Lemmas 4.7–4.9. This
can indeed be done, and we conclude the present section with a detailed
discussion of this iterative blow-up procedure including a proof of the
fact that each blow-up does indeed inherit all of the properties of v+

established in Lemmas 4.7–4.9.
Since it is convenient to prove this claim as an abstract result usable

iteratively with each blow-up, we switch notation at this point and
introduce an abstract function v in place of v+.

So, suppose v is a Lipschitz function in B1/4(0), v does not identically
vanish in any ball Bρ(z) ⊆ B1/4(0) and that Lemmas 4.7–4.9 hold with
v in place of v+.

Let z ∈ B1/8(0) and ρ ∈ (0, 1/8] be arbitrary. (In Section 5, where we
take v to be, in turn, v+ and its subsequent blow-ups, we shall choose
z to be a zero of v, but here it is an arbitrary point.) For x ∈ B1(0),
define

(4.79) ṽz,ρ(x) =
v(z + ρx)

ρ−n/2‖v‖L2(Bρ(z))

.

ṽz,ρ is well defined by hypothesis. (In Section 5, once we have more
tools at our disposal, we shall prove that v+ as well as its subsequent
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blow-ups do not identically vanish on any ball Bρ(z) ⊆ B1/4(0). See
Lemma 5.15.)

It follows directly from the definition (4.79) that

(4.80)
∫
B1/2(0)

ṽ2
z,ρ ≤ 1

and part (iii) of Lemma 4.7 with z, ρ in place of y, σ implies that

(4.81)
∫
B1/2(0)

|Dṽz,ρ|2 ≤ 8.

Now let {ρi} be a sequence of positive numbers with ρi ↓ 0 as i → ∞
and write ṽi = ṽz,ρi . The inequalities (4.80) and (4.81) imply that there
exists a function w ∈W 1,2(B1/2(0)) such that, for a subsequence of {i}
(which we also denote {i}), ṽi → w strongly in L2(B1/2(0)), weakly
in W 1,2(B1/2(0)) and pointwise a.e. in B1/2(0). This convergence is
in fact strong in W 1,2(B1/4(0)). Equivalently, the energy convergence∫
B1/4(0) |Dṽi|2 → ∫B1/4(0) |Dw|2 holds. To prove this, we shall first use

the technique employed in the proof of parts (e) and (f) of Lemma 4.6
to obtain L1 convergence of the gradients.

Take ε > 0 and let γε be a non-negative C1(R) cut-off function with
γε(t) ≡ 0 for t ≤ ε, γε(t) ≡ 1 for t ≥ 2 ε and |γ′ε| ≤ 4/ε. The sequence
γε(ṽi)Dṽi is uniformly bounded in W 1,1(B1/2(0)), and hence converges
to some vector valued function Ṽ ε in L1(B1/2(0)) and pointwise a.e.
in B1/2(0). Since we may write γε(ṽi)Dṽi = DΓε(ṽi), where Γ′

ε(t) =
γε(t), we can integrate by parts to get

∫
ζ · γε(ṽi)Dṽi = − ∫ div ζ Γε(ṽi).

Letting i→ ∞ in this shows that Ṽ ε = γε(w)Dw. Thus,

(4.82) γε(ṽi)Dṽi → γε(w)Dw

in L1(B1/2(0)) and pointwise a.e. in B1/2(0).
By the definition of ṽi and part (iv) of Lemma 4.7, we know that

(4.83)
∫
B1/2(0)∩{x:�vi(x)≤ε}

|Dṽi| ≤ c ε.

Letting i→ ∞ in (4.83) and using Fatou’s Lemma, we also have that

(4.84)
∫
B1/2(0)∩{x :w(x)≤ε}

|Dw| ≤ c ε.

Hence, we can let ε→ 0 in (4.82) to conclude that

(4.85) Dṽi → Dw



474 N. WICKRAMASEKERA

in L1(B1/2(0)) and pointwise a.e. in B1/2(0).
Next, observe that |Dṽi|2 are weakly subharmonic in B1(0) because

by Lemma 4.9, |Dv|2 is weakly subharmonic in B1/4(0). By the mean
value property and inequality (4.81), we then have that |Dṽi| are uni-
formly (i.e., independently of i) bounded in B1/4(0). This and (4.85)
imply that

(4.86)
∫
B1/4(0)

|Dṽi|2 →
∫
B1/4(0)

|Dw|2

giving the required energy convergence. We have thus shown that

(4.87) ṽi → w strongly in W 1,2(B1/4(0)).

It also follows from (4.87) and the fact that |Dṽi| are uniformly bounded
that |Dw| is bounded in B1/4(0) and therefore, that w is Lipschitz and
the convergence in (4.87) is uniform on compact subsets of B1/4(0).

We also have that Lemmas 4.7–4.9 all hold with w in place of v. This
is easily seen in view of (4.87) and the fact that these lemmas hold with
ṽi in place of v.

We have thus established the following abstract implication.

Lemma 4.11. Suppose v is Lipschitz in B1/4(0), not identical to 0 on
any ball Bρ(z) ⊆ B1/4(0) and that Lemmas 4.7–4.9 hold with v in place
of v+ and with arbitrary y ∈ B1/8(0) and σ ∈ (0, 1/8]. Let z ∈ B1/8(0),
ρi ∈ (0, 1/8] be arbitrary with ρi ↓ 0. Then,

(a) after passing to a subsequence, {ṽz,ρi} converge in W 1,2(B1/4(0))
to a function w. Here, ṽz,ρ is as in (4.79). w is Lipschitz in
B1/4(0) and the convergence is uniform on compact subsets of
B1/4(0)
and

(b) Lemmas 4.7–4.9 hold with w in place of v+ and with arbitrary
y ∈ B1/8(0) and σ ∈ (0, 1/8].

5. Geometric picture of the first blow-up

In this section, we complete the analysis of the blow-up v+ by proving
that the graph of v+ is equal to the union of two n-dimensional half
spaces of Rn+1 intersecting along an (n−1)-dimensional subspace of Rn.
Central to the argument here is a dimension reducing procedure using
a frequency function (defined below), a method first used by Almgren,
Jr. [2] to study multi-valued Dirichlet energy minimizing functions.
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Definition. Let f be a Lipschitz function on a domain Ω ⊆ Rn.
For z ∈ Ω and 0 < ρ < dist (z, ∂ Ω) for which

∫
∂Bρ(z) f

2 �= 0, we define
the frequency function Nf,z(.) of f at z by

(5.1) Nf,z(ρ) =
ρ
∫
Bρ(z) |Df |2∫
∂Bρ(z) f

2
.

We shall use the frequency function of v+ at points of its zero set
Zv+ ≡ {z ∈ Rn : v+(z) = 0} to show that Zv+ is an (n−1)-dimensional
subspace of Rn and that v+ is invariant under translation by any ele-
ment of Zv+ ; from this, it will follow that the the graph of v+ consists
of two half spaces. Proposition 5.18 at the end of this section gives the
proof of these claims.

In order to prove Proposition 5.18, we need to establish several key
properties of the frequency functions associated with v+ and its succes-
sive blow-ups and some consequences of these properties. We obtain
these results in Lemmas 5.12–5.17. The proof of Proposition 5.18 will
be based on these lemmas, and will require us to use the lemmas itera-
tively with successive blow-ups of v+. In view of this, we will establish
Lemmas 5.13–5.17 for an abstract function v, which we can replace v+

and its blow-ups in the applications of the lemmas. So, suppose

(i) v is a Lipschitz function with domain B1/4 ≡ Bn
1/4(0).(5.2)

(ii) Lemmas 4.7–4.9 hold with v in place of v+.

Lemma 5.12. Suppose hypotheses (5.2) hold. Then,

Nv,z(ρ) =
ρ d
dρ

∫
Sn−1 v

2
z,ρ

2
∫
Sn−1 v2

z,ρ

for z ∈ B1/8(0) and ρ ∈ (0, 1/8) with
∫
Sn−1 v

2
z,ρ �= 0.

Proof. This is a direct consequence of Lemma 4.7, part (ii). q.e.d.

Lemma 5.13. Suppose hypotheses (5.2) hold. Let z ∈ B1/8(0),
ρ1, ρ2 ∈ (0, 1/8) with 0 < ρ1 < ρ2. Suppose

∫
∂Bρ(z) v

2 �= 0 for every
ρ ∈ (ρ1, ρ2). Then, Nv,z(ρ) is a monotonically non-decreasing function
of ρ for ρ ∈ (ρ1, ρ2).

Proof. The harmonic identity (4.63) implies that

(5.3)
d

dρ

(
ρ2−n

∫
Bρ(z)

|Dv|2
)

= 2ρ2−n
∫
∂Bρ(z)

∣∣∣∣ ∂v∂R
∣∣∣∣2



476 N. WICKRAMASEKERA

for almost all ρ ∈ (0, 1/8), where ∂v
∂R (x) = Dv(x) · x−z

|x−z| is the radial
derivative. This follows by taking (xj − zj) ζl in place of ζj in identity
(4.63) and letting l → ∞, where ζl is a sequence of C∞

c (Bρ(z)) functions
converging to the characteristic function of the ball Bρ(z). (We omit the
details here. This is exactly the argument used to derive the standard
monotonicity formula for stationary harmonic maps, and can be found
e.g., in [12], Chapter 2.)

Now, by a change of variables in the denominator of (5.1), we have

that Nv,z(ρ) =
ρ2−n

�
Bρ(z)

|Dv|2�
Sn−1 v2z,ρ

, where vz,ρ(x) = v(z + ρx). Using this,

Equations (5.3), (4.53) and the fact that
(
∂vz,ρ

∂R

)
(ω) = ρ ∂

∂ρv(z + ρω),
we compute as follows:

d

dρ
Nv,z(ρ)

(5.4)

=
d
dρ

(
ρ2−n ∫

Bρ(z) |Dv|2
)

∫
Sn−1 v2

z,ρ

−
2ρ1−n ∫

Bρ(z) |Dv|2
∫
Sn−1 vz,ρ

∂vz,ρ

∂R(∫
Sn−1 v2

z,ρ

)2
=

2ρ1−n
(
ρ
∫
Sn−1 v

2
z,ρ

∫
∂Bρ(z)

∣∣ ∂v
∂R

∣∣2 − ∫∂Bρ(z) v
∂v
∂R

∫
Sn−1 vz,ρ

∂vz,ρ

∂R

)
(∫

Sn−1 v2
z,ρ

)2
=

2ρ−1

(∫
Sn−1 v

2
z,ρ

∫
Sn−1

∣∣∣∂vz,ρ

∂R

∣∣∣2 − (∫Sn−1 vz,ρ
∂vz,ρ

∂R

)2
)

(∫
Sn−1 v2

z,ρ

)2 .

The lemma follows from the above and the Cauchy–Schwarz inequal-
ity. q.e.d.

Lemma 5.14. Suppose hypotheses (5.2) hold. Let z ∈ B1/8(0),
ρ1, ρ2 ∈ (0, 1/8) with 0 < ρ1 < ρ2. Suppose that

∫
∂Bρ(z) v

2 �= 0 for
every ρ ∈ (ρ1, ρ2]. Then, for τ , σ with ρ1 < τ ≤ σ ≤ ρ2, we have that

(5.5)

∫
Sn−1 v

2
z,τ

τN2
≥
∫
Sn−1 v

2
z,σ

σN2
,

where N2 = 2Nv,z(ρ2).

Proof. By monotonicity of Nv,z(ρ) and Lemma 5.12, we have that
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(5.6)
ρ d
dρ

∫
Sn−1 v

2
z,ρ∫

Sn−1 v2
z,ρ

≤ N2

for ρ ∈ (ρ1, ρ2). The lemma follows by integrating this differential in-
equality over [τ, σ]. q.e.d.

Lemma 5.15. Suppose hypotheses (5.2) hold and that v is homoge-
neous (of any degree) from the origin. (Thus, v is defined everywhere
in Rn and v(rx) = rα v(x) for some α and all r > 0, x ∈ Rn.) Then,
either v ≡ 0 in Rn or

∫
∂ Bρ(z) v

2 �= 0 for every z ∈ Rn and every ρ > 0.

Proof. Let z ∈ Rn be arbitrary. If v is not identically equal to zero,
there exists ρ0 > 0 such that

∫
∂ Bρ0 (z) v

2 �= 0. By continuity, there

exist ρ1, ρ2 with 0 < ρ1 < ρ0 < ρ2 such that
∫
∂ Bρ(z) v

2 �= 0 for every
ρ ∈ (ρ1, ρ2]. Applying Lemma 5.14 with σ = ρ2, τ = τj , where {τj} is a
sequence with ρ1 < τj < ρ2 and τj ↓ ρ1, and taking the limit as j → ∞,
we then have that

∫
∂ Bρ1 (z) v

2 �= 0. (Note that since the domain of v is all
of Rn, the restrictions z ∈ B1/8(0) and ρ1, ρ2 ∈ (0, 1/8) in Lemma 5.14
are unnecessary.) This argument then shows that

∫
∂ Bρ(z) v

2 �= 0 for all
ρ ∈ (0, ρ0]. Homogeneity of v obviously implies that

∫
∂ Bρ(z) v

2 �= 0 for
all ρ > ρ0. q.e.d.

Definition. Write Nv(z) = limρ→0Nv,z(ρ) whenever the limit exists.
Note that by Lemmas 5.15 and 5.13, if hypotheses (5.2) hold and v is
homogeneous (of any degree) from the origin, this limit exists for every
point z ∈ Rn.

Lemma 5.16. Suppose hypotheses (5.2) hold. Then, v is homoge-
neous of degree α from a point z ∈ B1/8(0) (that is, v(z + r1ω) =(
r1
r2

)α
v(z + r2ω) for all r1, r2 ∈ (0, 1/8) and all ω ∈ Sn−1 ) if and only

if Nv,z(ρ) is constant for ρ ∈ (0, 1/8) and α = Nv(z) = Nv,z(ρ).

Proof. Suppose v is homogeneous of degree α from z ∈ B1/8(0) and
let ρ0 ∈ (0, 1/8) be fixed. By Lemma 5.12, we have that for ρ ∈ (0, 1/8),

Nv,z(ρ) =
ρ d
dρ

∫
Sn−1 v

2(z + ρω)dHn−1(ω)

2
∫
Sn−1 v2(z + ρω)dHn−1(ω)

(5.7)

=
ρ d
dρ

(
ρ
ρ0

)2α ∫
Sn−1 v

2(z + ρ0 ω)dHn−1(ω)

2
(
ρ
ρ0

)2α ∫
Sn−1 v2(z + ρ0 ω)dHn−1(ω)
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=
ρ 2α ρ2α−1

∫
Sn−1 v

2(z + ρ0ω)dHn−1(ω)
2 ρ2α

∫
Sn−1 v2(z + ρ0ω)dHn−1(ω)

= α.

Conversely, supposeNv,z(ρ) is independent of ρ for ρ ∈ (0, 1/8). Then,
d
dρ Nv,z(ρ) = 0. By Equation (5.4), this means that

(5.8)
∂vz,ρ
∂ρ

(ω) = β vz,ρ(ω)

for some constant β, all ρ ∈ (0, 1/8) and all ω ∈ Sn−1. (This is pre-
cisely the condition under which equality holds in the Cauchy–Schwarz
inequality.) Using

(
∂vz,ρ

∂ρ

)
(ω) = ρ ∂

∂ρv(z+ρω) in Equation (5.8) and in-
tegrating the resulting differential identity from r1 to r2, where r1, r2 ∈
(0, 1/8), we obtain that

(5.9) v(z + r1 ω) =
(
r1
r2

)β
v(z + r2 ω).

Applying the first part of the lemma, we conclude that β = Nv,z(ρ) =
Nv(z). q.e.d.

Remark. Since v+ is homogeneous of degree 1 from the origin,
Lemma 5.16 implies that Nv+(0) = 1.

Lemma 5.17. Suppose hypotheses (5.2) hold and that v is homo-
geneous from the origin. (Note that the degree of homogeneity then
is Nv(0) by Lemma 5.16.) Then, Nv(z) ≤ Nv(0) for every z ∈ Rn.
The equality holds if and only if v is homogeneous of degree Nv(0)
from z, which holds if and only if v is cylindrical in the direction of
z. (Cylindrical in the direction of z means v(x) = v(x + tz) for all
x ∈ Rn and all t ∈ R.)

Proof. For arbitrary σ, ρ with 0 < σ < ρ, Nv,z(ρ) − Nv,z(σ) =∫ ρ
σ

dNv,z

ds ds. Letting σ ↓ 0 in this, we get

(5.10) Nv,z(ρ) = Nv(z) +
∫ ρ

0

dNv,z

ds
ds.

On the other hand, using homogeneity of v from the origin, we have
that
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Nv,z(ρ) =
ρ
∫
Bρ(z) |Dv|2∫
∂Bρ(z) v

2

(5.11)

≤
(

ρ

ρ+ |z|
)(∫

∂Bρ+|z|(0)
v2∫

∂Bρ(z) v
2

)(
(ρ+ |z|) ∫Bρ+|z|(0)

|Dv|2∫
∂Bρ+|z|(0)

v2

)

=
(

ρ

ρ+ |z|
)(∫

∂Bρ+|z|(0)
v2∫

∂Bρ(z) v
2

)
Nv(0).

Observe that as ρ ↑ ∞, ρ
ρ+|z| → 1 and, since v is homogeneous of de-

gree Nv(0) from the origin,

�
∂Bρ+|z|(0)

v2�
∂Bρ(z)

v2
= (ρ+|z|)n−1+2Nv(0)

�
Sn−1 v

2(x)

ρn−1+2Nv(0)
�

Sn−1 v2( z
ρ
+x)

→
1, so combining Equations (5.10) and (5.11) and letting ρ ↑ ∞, we
obtain that

(5.12) Nv(z) +
∫ ∞

0

dNv,z

ds
ds ≤ Nv(0).

Thus, Nv(0) ≥ Nv(z). If the equality holds, then dNv,z

ds ≡ 0. By Lemma
5.16, this means that

(5.13) v(z + rx) = rNv(0)v(z + x) for all x and r > 0.

Conversely, if (5.13) holds, then by Lemma 5.16, Nv(z) = Nv(0).
That v is cylindrical in z-direction when Nv(z) = Nv(0) follows read-

ily from the fact that v is homogeneous of the same degree from the
origin and from z. To see this, let x ∈ Rn and t ∈ R be arbitrary, and
choose λ > 0 such that t = λ− λ−1. Then, writing Nv(0) = Nv(z) = α,
we have that

v(x) = λ−α v(λx) = λ−α v(z + (λx− z))(5.14)

= λα v(z + λ−2(λx− z)) = v(λ(z + λ−2(λx− z)))

= v(x+ t z), as required.

Finally, if (5.14) holds for all x ∈ Rn and all t ∈ R, then for r > 0,
v(z + r x) = v(r x) = rNv(0)v(x) = rNv(0)v(z + x), and therefore by
Lemma 5.16, Nv(z) = Nv(0). This completes the proof of the lemma.

q.e.d.

Using the results of the preceding lemmas, we are now ready to prove
the following.
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Proposition 5.18.

(1) The zero set Zv+ ≡ {x ∈ Rn : v+(x) = 0} of v+ is an (n − 1)-
dimensional subspace of Rn.

(2) graph v+ = H(1) ∪ H(2) where H(1) and H(2) are n-dimensional
half-spaces of Rn+1 with H(1) ∩Rn = H(2) ∩ Rn = H(1) ∩ H(2) =
Z+
v .

Remark. Since v− = −v+, Proposition 5.18 implies that graph v+ ∪
graph v− is equal to the union of four n-dimensional half spaces of
Rn+1 meeting along an (n − 1)-dimensional subspace of Rn. In fact,
since |Dv+| ∈ W 1,2(B1/4(0)) (by Lemma 4.6 (h)), H(1) and H(2) must
make equal angles with Rn, and therefore, graph v+∪graph v− must be
equal to a pair of hyperplanes intersecting transversely along an (n−1)-
dimensional subspace of Rn. �

Proof of Proposition 5.18. By continuity of v+, Zv+ is closed. First, we
claim that

(5.15) Hn−1(Zv+ ∩B1/16(0)) > 0.

If this is not true, then for any ε > 0, there exists a finite collection
of balls Bri(yi) ⊆ B1/16(0), i = 1, . . . , N , such that Zv+ ∩ B1/16(0) ⊆
∪Ni=1Bri(yi) and

∑N
i=1 r

n−1
i ≤ ε. For 1 ≤ i ≤ N , let ζi : B1/16(0) → R

be a C1 cut off function satisfying ζi(x) = 0 if x ∈ Bri(yi), ζi(x) = 1
if x ∈ B1/16(0) \ B2ri(yi), 0 ≤ ζi ≤ 1 and |Dζi| ≤ 2/ri everywhere in
B1/16(0). Define ζε : B1/16(0) → R by ζε(x) =

∏N
i=1 ζi(x). It is clear

from this definition that ζε is a C1 function with compact support in
B1/16(0) \ Zv+ .

Let ζ be an arbitrary C1 function with compact support in B1/16(0).
By Corollary 4.10, v+ is smooth and harmonic in B1/16(0) \ Zv+ and
therefore, we have that

(5.16)
∫
B1/16(0)

∆v+ζεζ = 0.

Integrating by parts in the above equation, we obtain that

(5.17)
∫
B1/16(0)

ζεDv
+ ·Dζ = −

∫
B1/16(0)

ζDv+ ·Dζε.

On the other hand, since |Dv+| is bounded (by Lemma 4.9), we may
estimate as follows:
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∣∣∣∣∣
∫
B1/16(0)

ζDv+ ·Dζε
∣∣∣∣∣ ≤ sup |ζ||Dv+|

∫
B1/16(0)

|Dζε|(5.18)

≤ c sup |ζ||Dv+|
N∑
i=1

Hn(B2ri(yi))
ri

≤ c sup |ζ||Dv+|
N∑
i=1

rn−1
i

≤ c sup |ζ||Dv+| ε.
In view of inequality (5.18), letting ε → 0 in Equation (5.17) and

noting that ζε → 1, we conclude that v+ is harmonic in B1/16(0). Since
v+ is homogeneous of degree one, v+ must be linear (by the maximum
principle applied to each Div

+), and therefore, since v+ is non-negative
with v+(0) = 0, v+ must be identically equal to zero, which is a contra-
diction. This proves (5.15).

We shall prove shortly that for every z ∈ Zv+ ∩ (B1/16(0) \ {0}),
v+ is cylindrical in the direction of z. Since, by (5.15), there exist
(n − 1) points z1, . . . , zn−1 ∈ Zv+ ∩ (B1/16(0) \ {0}) that are linearly
independent as vectors in Rn, we shall then have that v+(x) = 0 for
all x ∈ span {zi}. Because v+ is not identically equal to zero, this must
mean that Zv+ = span {zi}, establishing the first part of the proposition.

So to complete the proof of the first part, consider an arbitrary point
z ∈ Zv+ ∩ (B1/16(0) \ {0}). Let {ρi} be a sequence of positive num-

bers with ρi ↓ 0 as i → ∞. Let ṽ+
z,ρi be the blow-up sequence as in

(4.79) with v+ in place of v and ρi in place of ρ. By Lemma 5.15, ṽ+
z,ρi

are well defined. By Lemma 4.11, ṽ+
z,ρi converge (after passing to a

subsequence) to a Lipschitz function w1 strongly in W 1,2(B1/4(0)) and
uniformly on compact subsets of B1/4(0), and Lemmas 4.7–4.9 hold with
w1 in place of v+.

We next establish the following key properties of w1:
(a1) w1 is not identically equal to zero on any ball Bρ(0), 0 < ρ < 1/4.
(b1) w1 is homogeneous of degree Nv+(z) from the origin. Hence w1

extends to all of Rn as a homogeneous function.
(c1)

∫
∂ Bσ(q) w

2
1 > 0 for all q ∈ Rn and all σ > 0.

(d1) w1 is cylindrical in the direction of z.
(e1) {tz : t ∈ R} ⊆ Zw1 , where Zw1 is the zero set of w1.
(f1) w1 is harmonic where it is non-zero.
(g1) Hn−1(Zw1) > 0.
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Proof of (a1). Let ρ0 ∈ (0,dist (z, ∂ B1/4(0))) be fixed. Taking τ =
σρ, ρ2 = ρ0 and v = v+ in Lemma 5.14, we have that

(5.19) ρ−N0

∫
Sn−1

v+2
z,σρ ≥

∫
Sn−1

v+2
z,σ

for all σ ∈ (0, ρ0], where N0 = 2Nv+,z(ρ0). Now, for sufficiently large i,
ρi ≤ ρ0, so for each such i, multiply both sides of the above inequality
by σn−1 and integrate over [0, ρi] to obtain

ρ−(N0+n−1)

∫ ρi

0
(σρ)n−1

∫
Sn−1

v+2
z,σρ(x) dHn−1(x) dσ(5.20)

≥
∫ ρi

0
σn−1

∫
Sn−1

v+2
z,σ(x) dHn−1(x) dσ.

This is the same as

(5.21) ρ−(N0+n)

∫
Bρ(0)

v+2
z,ρi

≥
∫
B1(0)

v+2
z,ρi

or

(5.22)
∫
Bρ(0)

ṽ+
2

z,ρi
≥ ρN0+n.

Passing to the limit as i→ ∞, we conclude that

(5.23)
∫
Bρ(0)

w2
1 ≥ ρN0+n.

Proof of (b1). For arbitrary ρ ∈ (0, 1/8], we have that

(5.24)
ρ
∫
Bρ(0) |Dṽ+

z,ρi |2∫
∂Bρ(0) ṽ

+
2

z,ρi

=
ρ ρi
∫
Bρ ρi (z)

|Dv+|2∫
∂Bρ ρi(z)

v+2 .

Letting i→ ∞ in this, we obtain that

(5.25) Nw1,0(ρ) =
ρ
∫
Bρ(0) |Dw1|2∫
∂Bρ(0) w

2
1

= Nv+(z).

In view of (a1), this shows that
∫
∂ Bρ(0) w

2
1 > 0 for all ρ ∈ (0, 1/8],

and that Nw1,0(ρ) is independent of ρ for ρ ∈ (0, 1/8]. Therefore, we
have that Nw1(0) = Nv+(z). By Lemma 4.11, the identities (4.53)
and (4.63) hold with w1 in place of v+, and therefore, the identity (5.4)
holds with w1 in place of v, z = 0 and ρ ∈ (0, 1/8]. (We do not however
have this for general z yet because we do not know if Nw1,z(ρ) is well
defined at a general point z.) Constancy of Nw1,0(ρ) then implies, by
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the argument of the “if” direction of Lemma 5.16 with w1 in place of v+

and z = 0, that w1 is homogeneous from the origin. Notice that since w1

is technically not defined on all of Rn at this point, homogeneity means
that w1(r1 ω) =

(
r1
r2

)α
w1(r2 ω) for some α ≥ 0 and all r1, r2 ∈ (0, 1/8]

and all ω ∈ Sn−1. We then extend w1 to all of Rn so that w1 is
homogeneous of degree α from the origin, and thus w1(r ω) = rαw1(ω)
for all r > 0 and all ω ∈ Sn−1. By Lemma 5.16 with w1 in place of v
and z = 0, it follows that the degree of homogeneity α is then equal to
Nv+(z).

Proof of (c1). By Lemma 4.11, the hypotheses (5.2) hold with w1

in place of v. By (a1) and (b1) above,
∫
∂ Bρ(0) w

2
1 > 0 for every ρ > 0.

Hence, Lemma 5.15 applies with w1 in place of v. In view of (a1), this
proves (c1).

Proof of (d1). Let x ∈ B1/16(0) and t ∈ [−1, 1]. Using the homo-
geneity of v+ from the origin, we have

w1(x+ t z) = lim
i→∞

ṽ+
z,ρi(x+ t z) = lim

i→∞
v+(z + ρi(x+ tz))

ρ
−n/2
i ‖v+‖L2(Bρi (z))

(5.26)

= lim
i→∞

(1 + t ρi)
v+(z + ρi(1 + t ρi)−1x)

ρ
−n/2
i ‖v+‖L2(Bρi (z))

= lim
i→∞

ṽ+
z,ρi((1 + t ρi)−1x) = w1(x),

where we have used the uniform convergence of ṽ+
z,ρi to w1 in B1/8(0).

The result for arbitrary x ∈ Rn and t ∈ R follows from this and the
homogeneity of w1 from the origin.

Proof of (e1). Since v+(z) = 0, it follows that w1(0) = 0 because w1 is
the pointwise limit of ṽ+

z,ρi in B1/8(0). The result follows immediately
from this by taking x = 0 in Equation (5.26).

Proof of (f1). First, observe that since |Dv+|2 is subharmonic in
B1/2(0) and hence bounded in B1/4(0), so is every |Dṽ+

z,ρi|2. Passing
to the limit, we obtain that |Dw1|2 is weakly sub-harmonic in B1/4(0)
and hence bounded in B1/8(0). Also, since v+ satisfies v+∆v+ = 0

weakly (i.e. ∆(v+2) = 2|Dv+|2 weakly), so do all ṽ+
z,ρi , and again

passing to the limit, we see that ∆(w2
1) = 2|Dw1|2 weakly. By elliptic

regularity [4], boundedness of |Dw1|2 implies that w2
1 ∈ C1,γ(B1/8(0))

so that w1 is C1,γ , where it is non-zero. Thus, |Dw1| is C0,γ, where w1
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is non-zero, and this in turn implies w2
1 is C2,γ , where w1 is non-zero.

Thus, we have that w1 is smooth and harmonic where it is non-zero.

Proof of (e1). If Hn−1(Zw1) = 0, then the argument used to establish
(5.15) implies w1 is harmonic in B1/8(0). Since w1 ≥ 0 with w1(0) =
0, by the maximum principle, w1 must be identically equal to zero,
contradicting (a1).

Now, we repeat the above blow up procedure; first with w1 in place
of v+ and a point q1 ∈ Zw1 ∩ B1/16(0) \ {tz : t ∈ R} in place of z
to obtain a limit w2 in place of w1, and then with w2 in place of v+

and a point q2 ∈ Zw2 ∩ B1/16(0) \ span {z, q1} in place of z to obtain
a limit w3 in place of w1 and so on. Proceeding this way, we obtain a
sequence of functions {wi}n−1

i=1 , corresponding to a sequence {qi}n−2
i=0 of

linearly independent blow up points in B1/16(0). Here, q0 = z. Apply-
ing Lemma 4.11 with wi−1, wi, qi−1 in place of v+, w and z, we see
inductively that Lemmas 4.7–4.9 hold with wi in place of v+ for each
i, 1 ≤ i ≤ (n − 2). Here, w0 = v+. This in turn enables us to use
Lemmas 5.13–5.17 with wi in place of v+, and consequently, prove that
wi satisfies the following properties:

(ai) wi is not identical to zero.
(bi) wi is homogeneous of degree Nwi−1(qi−1) from the origin.
(ci)
∫
∂ Bσ(q) w

2
i > 0 for all q ∈ Rn and all σ > 0.

(di) wi is cylindrical in the directions of q0, q1, q2, . . . , qi−1. Hence, wi is
invariant under translations by the elements of span {q0, q1, q2, . . . ,
qi−1}.

(ei) span {q0, q1, q2, . . . , qi−1} ⊆ Zwi .
(fi) wi is harmonic where it is non-zero.
(gi) Hn−1(Zwi) > 0.

Furthermore, repeated application of Lemma 5.17 yields that

(5.27) 1 = Nv+(0) ≥ Nv+(z) = Nw1(0)

≥ Nw1(q1) = Nw2(0) ≥ · · · = Nwn−1(0).

Since by the property (d(n−1)), wn−1 is invariant under translations
by the elements of an (n − 1)-dimensional subspace L (≡ the subspace
spanned by {q0, q1, . . . , qn−2}) contained in its zero set and since wn−1

is not identically equal to zero and harmonic where it is non-zero, it
follows that wn−1 is linear in each of the two components of Rn \ L.
This then readily implies that wn−1 is homogeneous of degree one from
the origin and therefore, by Lemma 5.16, we have that

(5.28) Nwn−1(0) = 1.
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The resulting equality in (5.27) yields

(5.29) Nv+(0) = Nv+(z).

Lemma 5.17 then readily implies that v+ is cylindrical in z-direction,
as was required.

The second assertion of the proposition follows readily. Since v+ is
non-negative and invariant under translation by the elements of its zero
set Zv+ which is an (n−1)-dimensional subspace, ṽ+ ≡ v+|Z⊥

v+
is a non-

negative function of a single variable whose zero set consists of the origin.
Furthermore, ṽ+ is harmonic away from the origin since v+ is harmonic
away from Zv+ . Thus the graph of ṽ+ must consists of two rays. (Alter-
natively, we may use the homogeneity of ṽ+ here.) This means that the
graph of v+ must consist of two n-dimensional half-spaces meeting along
Zv+ , completing the proof of the proposition. q.e.d.

6. Second Blow-up

In this section, we complete the proof of case (a) of Theorem 1.1
by using a second blow-up argument. Since the first blow-up of the
hypersurfaces Mk off hyperplanes (taken to be Rn) is equal to the
union of two hyperplanes intersecting along an (n − 1)-dimensional
subspace (see Proposition 5.18 and the remark thereafter), for suf-
ficiently large k, Mk is closer to the union Hk of two hyperplanes
(Hk ≡ graph εk v+ ∪ graph εk v−, see notation below) than it is to Rn.
More precisely, the L2 height excess βk (see definition (6.9) below) of
Mk relative to Hk (in a suitable ball) is of lower order than its excess
εk relative to Rn. The idea now is to blow up Mk by βk. Following
the work of L. Simon in [11], we will show in the present section that
this second blow-up too is the union of four half-spaces meeting along a
common (n− 1)-dimensional axis, which gives a contradiction implying
that Mk are pairs of transverse hyperplanes for infinitely many k. (See
paragraph entitled Completion of the Proof of Theorem 1.1 in
Case (a) at the end of the present section.) We note here that in [11],
Simon shows how to blow up a sequence of multiplicity one minimal
submanifolds off a sequence of multiplicity one cones converging to a
multiplicity one cone. Our setting differs from his in that the sequence
Hk converges to a multiplicity two hyperplane, and hence modification
and replacement of some of the arguments of Simon is necessary here.

For notational convenience, we assume in this section that conver-
gence in Lemma 4.6 of the sequences ψkv

±
k is in W 1,2(Bn

1 (0)) (rather
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than in W 1,2(Bn
1/4(0))).

We now introduce some further notation.

Let H = graph v+ ∪ graph v−, where v+ and v− are the first blow-up
as in Sections 4 and 5. By Proposition 5.18, H is equal to the union of
two hyperplanes intersecting along an (n − 1)-dimensional subspace T
of Rn. Without loss of generality, we take T to be { 0 } × Rn−1.

In the present section, our notation for points in various Euclidean
spaces is chosen to be consistent with that of [11]. Thus, (x1, x2, y1, . . . ,
yn−1) will denote a general point in Rn+1 and e1, e2, . . . , en+1 the stan-
dard orthonormal basis vectors in Rn+1. We identify Rn with the hy-
perplane {x1 = 0 } of Rn+1 and Rn−1, R2 with the subspaces {x1 =
x2 = 0 }, { y1 = . . . = yn−1 = 0 } respectively. If we write (x, y)
to denote a point in Rn, we are thinking of Rn as R × Rn−1, with
x ∈ R and y ∈ Rn−1. If (x, y) denotes a point in Rn+1, we are taking
Rn+1 ≡ R2 × Rn−1 with x ∈ R2 and y ∈ Rn−1.

Let

Rn+ ≡ { (x, y) ∈ Rn : x > 0 } and Rn− ≡ { (x, y) ∈ Rn : x < 0 }.
Let

H(1)
k = graph εk v+|Rn + ,

H(2)
k = graph εk v+|Rn − ,

H(3)
k = graph εk v−|Rn − ,

H(4)
k = graph εk v−|Rn + ,

where εk is the tilt-excess defined in Section 3, L(i)
k = H(i)

k ∩ R2 for
i = 1, . . . , 4, Hk = ∪4

i=1H
(i)
k and Lk = ∪4

i=1 L(i)
k .

The fact that the first blow-up H, away from Rn−1, consists of
smooth, disjoint pieces suggests that for sufficiently large k, the two
“sheets” of Mk are well separated (i.e. their union is embedded) at
least in the graphical region Gk away from a small tubular neighbor-
hood of Rn−1. This is indeed the case. Precisely, we claim that for every
τ ∈ (0, 1/8],

(6.1) (G+
k ∩G−

k ) \ T̃k = ∅
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for sufficiently large k (depending on τ), where

T̃k = {(ξ1, ξ2) ∈ R2 : (ξ1)2 + ε2k(ξ
2)2 ≤ τ ε2k } × Rn−1.

To see (6.1), we use an argument of R. Hardt and L. Simon [5], based
on the monotonicity formula (2.9). If the claim is false, then for every
k in a subsequence of the indices {k} (which we also denote {k}), there
exists a point yk ∈ (G+

k ∩G−
k )\ T̃k. Since this implies that ΘMk

(yk) ≥ 2,
we have by the monotonicity formula (2.9) with σ ↓ 0 and ρ ≤ τ/2 that

(6.2)

ωnρ
n

∫
Mk∩Bn+1

ρ (yk)

((x− yk) · ν)2
|x− yk|n+2

= Hn(Mk∩Bn+1
ρ (yk))−2ωnρn ≤ c ε2kρ

n

where c = c(n). (The last inequality in (6.2) is easily seen by writing
Hn(Mk ∩Bn+1

ρ (yk)) = Hn(Gk ∩Bn+1
ρ (yk))+Hn((Mk \Gk)∩Bn+1

ρ (yk))
and expressing Hn(Gk ∩ Bn+1

ρ (yk)) as the sum of integrals of√
1 + |D(ψku

±
k )|2 plus a term which is of lower order (by (3.26)) and

noting that by inequality (3.24), Hn((Mk \Gk) ∩Bn+1
ρ (yk)) ≤ c ε2+µk .)

The integral on the left hand side of (6.2) can be estimated from
below as follows.

∫
Mk∩Bn+1

ρ (yk)

((x− yk) · ν)2
|x− yk|n+2

(6.3)

≥
∫
Bn

ρ (y′k)

((x′ − y′k) ·D(ψku
+
k ) − (ψku

+
k − y1

k))
2

(|x′ − y′k|2 + |ψku+
k − y1

k|2)
n+2

2

√
1 + |D(ψku

+
k )|2

+
∫
Bn

ρ (y′k)

((x′ − y′k) ·D(ψku
−
k ) − (ψku

−
k − y1

k))
2

(|x′ − y′k|2 + |ψku−k − y1
k|2)

n+2
2

√
1 + |D(ψku

−
k )|2

where we used the notation x′ = (x2, . . . , xn+1) and y′k = (y2
k, . . . , y

n+1
k ).

Since u±k ,Du
±
k → 0 a.e. and y1

k → 0, Fatou’s lemma and (6.3) imply
that

lim inf
k→∞

1
ε2k

∫
Mk∩Bn+1

ρ (yk)

((x− yk) · ν)2
|x− yk|n+2

(6.4)

≥
∫
Bn

ρ (y′)
R2−n

(
∂(u+/R)
∂R

)2

+R2−n
(
∂(u−/R)
∂R

)2

dx′
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where ∂
∂R denotes the radial derivative, R = |x′ − y′|, y′ = lim y′k is

such that dist (y′,Rn−1) ≥ τ > 0 and u± = lim ε−1
k (u±k − y1

k) (i.e.
u± = v± − y1 where y1 = lim ε−1

k y1
k) having distinct values at y′. Thus

we finally conclude from (6.2) that

(6.5)
∫
Bn

ρ (y′)
R2−n

(
∂(u+/R)
∂R

)2

+R2−n
(
∂(u−/R)
∂R

)2

dx′ ≤ c <∞

which of course cannot be true, because at least one of the two smooth
functions u± has value �= 0 at y′. This proves (6.1).

Now let τk ↓ 0 be a given sequence of positive numbers. In view
of (6.1), we have that for an appropriately chosen subsequence of the
hypersurfaces Mk (which we denote Mk again),

(6.6) (G+
k ∩G−

k ) \ Tk = ∅
for all k, where

(6.7) Tk = {(ξ1, ξ2) ∈ R2 : (ξ1)2 + ε2k(ξ
2)2 ≤ τk ε

2
k } × Rn−1.

We may now use Schoen-Simon regularity theorem (Theorem 1 of
[8], applied in fixed sized balls in Bn

1 (0) away from Rn−1) to conclude
that for all sufficiently large k, Mk ∩ (Bn+1

1 (0) \ Tk) is the union of four
disjoint smooth hypersurfaces. (Notice that even though Schoen-Simon
regularity theorem as it is stated in [8] assumes embeddedness of the
hypersurfaces everywhere, the proof of it only requires embeddedness
of the graphical part, which we now have by (6.6).) Applying Allard’s
regularity theorem ([1], [10]) to each of these hypersurfaces, we obtain
that for sufficiently large k, Mk ∩ (Bn+1

1 (0) \ Tk) = ∪4
i=1 graph g(i)

k with
g
(i)
k ∈ C2(U (i)

k ,H(i)⊥
k ) satisfying

(6.8) sup
U

(i)
k

|g(i)
k | + |∇H

(i)
k g

(i)
k | ≤ c βk,

where U (i)
k = H(i)

k ∩ (Bn+1
1 (0) \ Tk) for i = 1, . . . , 4 and

(6.9) βk =

(∫
Mk∩Bn+1

1 (0)
dist2 (x,Hk) dHn(x)

)1/2

.

Observe that by writing Mk ∩Bn+1
1/4 (0) as the union of Gk ∩Bn+1

1/4 (0)

and (Mk \ Gk) ∩ Bn+1
1/4 (0) and using (6.9), the definition of Hk, parts
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(a), (b) of Lemma 4.6 and inequalities (3.24) and (3.26), it is easy to
see that

(6.10) βk/εk → 0.

Now, for i = 1, 4, H(i)
k = graph l(i)k |Rn + and for i = 2, 3, H(i)

k =
graph l(i)k |Rn − where l(i)k , 1 ≤ i ≤ 4, are linear functions over Rn with
|Dl(i)k | ≤ c εk. Thus, letting g̃

(i)
k (X) = g

(i)
k (l(i)k (X),X), where X ∈

Bn
1 (0)∩ (Rn+ \pTk) if i = 1, 4 and X ∈ Bn

1 (0)∩ (Rn− \pTk) if i = 2, 3
(where p is the orthogonal projection of Rn+1 onto Rn), we obtain that

(6.11) Mk ∩ (Bn+1
1 (0) \ Tk) = ∪4

i=1 graph g̃(i)
k

with g̃(i)
k satisfying

(6.12) sup
pU

(i)
k

|g̃(i)
k | + |Dg̃(i)

k | ≤ c βk.

Let w(i)
k = β−1

k g̃
(i)
k . By elliptic estimates for g(i)

k , we have that for
j ≤ 3 and for every compact K ⊂ B1(0) \ ({0} ×Rn−1),

(6.13) supK∩Rn + |Djw
(i)
k | ≤ c

for i = 1, 4, and

(6.14) supK∩Rn− |Djw
(i)
k | ≤ c

for i = 2, 3, where c = c(K). This implies that there exist functions
w(i), 1 ≤ i ≤ 4, with w(1), w(4) ∈ C2(Rn+ ∩ Bn

1 (0)) and w(2), w(3) ∈
C2(Rn− ∩Bn

1 (0)) such that

(6.15) w(i) is homogeneous of degree one,

(6.16) ∆w(i) = 0

and

(6.17) w
(i)
k → w(i)
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in the C2-norm on each compact subset of the domain of w(i). Note
that (6.15) is a consequence of item (5) of hypotheses (�) of Sec-
tion 1. The functions w(i) collectively are the “second blow-up”. We
intend to prove, following [11], that for each i, the graph of w(i) is an
n-dimensional half-space of Rn+1, and that these four half spaces meet
along a common (n− 1)-dimensional axis.

Except in two dimensions, (i.e. when n = 2), just the conditions
(6.15) and (6.16) need not imply that each w(i) is linear in its domain.
However, as in [11], we can show that the w(i) satisfy certain additional
properties (given below by the L2 estimates of (6.53), (6.54), (6.55) and
(6.56)) which, together with (6.15) and (6.16), do indeed guarantee that
the w(i) are linear, and furthermore, that the graphs of w(i) form a pair
of hyperplanes. Lemma 6.23 below will establish this assertion.

Before discussing the aforementioned additional properties of the
w(i), we want to make one more important point here; namely, that
in [11], the L2 estimates analogous to our estimates (6.53)– (6.56) are
proved under a certain “no-large-gaps” assumption (hypothesis (∗∗) of
Remark 1.14 therein) regarding singMk; (See Lemma 6.19 below for a
precise statement of this. singMk in our case means the set of points
of self-intersection of the immersion Mk. These are the points z where
ΘMk

(z) ≥ 2.) In our setting where we assume co-dimension one stabil-
ity (unlike in [11]), Mk do indeed satisfy this hypothesis for sufficiently
large k. This is a consequence of Lemma 3.2. We precisely state and
prove this assertion in the following lemma.

Lemma 6.19. If k is sufficiently large, there are no “large gaps” in
the set { z ∈Mk ∩Bn+1

1 (0) : ΘMk
(z) ≥ 2 }. Precisely,

{0}×{y ∈ Rn−1 : |y| ≤ 1/2} ⊂ ({z ∈Mk ∩Bn+1
1 (0) : ΘMk

(z) ≥ 2})
δk

for sufficiently large k, where (S)δ means the δ-neighborhood of the set
S, δk = c

√
τk (τk as in (6.7)) and c = c(n).

Proof. It suffices to show that

(6.18) Hn−1(Ek) ≤ c
√
τk,

where c = c(n) and

Ek = {y ∈ Bn−1
1/2 (0) : ΘMk

(z) < 2∀ z ∈Mk ∩ p−1(y) ∩Bn+1
1 (0)}.
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Since Mk is smooth, we have that

Ek = {y ∈ Bn−1
1/2 (0) : ΘMk

(z) = 1∀ z ∈Mk ∩ p−1(y) ∩Bn+1
1 (0)}.

By Sard’s theorem,

Hn−1({y ∈ Bn−1
1/2 (0) : ΘMk

(z) = 1∀ z ∈Mk ∩ p−1(y) ∩Bn+1
1 (0)})

= Hn−1(Ẽk),

where

Ẽk =
{
y ∈ Bn−1

1/2 (0) : Mk ∩ p−1(y) ∩Bn+1
1 (0)

is a smooth, 1-dim manifold}.
For y ∈ Ẽk, let Σk

y ≡ Mk ∩ p−1(y) ∩ (B2
2τk

(0) × {(0, y)}). By the
definition of Ẽk, Σk

y is the union of two disjoint, smooth curves of finite
length. Suppose γky (s), 0 ≤ s ≤ Lky is the arc length parameterization
of one of them. Here Lky is the length of this curve.

Since the two curves that make up Σk
y are disjoint, the two end points

γky (0) and γky (L) cannot lie in the 1st and the 3rd quadrants, or in the

2nd and the 4th quadrants. This means that dist (γky (0),H
(i)
k ) ≤ c βk and

dist (γky (L),H(j)
k ) ≤ c βk, where {i, j} = {1, 2}, {2, 3}, {3, 4} or {4, 1}.

Therefore, since the angle between H(i)
k and H(j)

k is ≥ c εk for such {i, j},
we have that

(6.19) |νk(γky (L)) − νk(γky (0))| ≥ c εk.

We also have that

νk(γky (L)) − νk(γky (0)) =
∫ L

0

d

ds
νk(γky (s)) ds(6.20)

=
∫ L

0
D
γ̇k

y (s)
νk(γky (s)) · γ̇ky (s) ds

= −
∫ L

0
(Ak)γk

y (s) ds

where (Ak)γk
y (s) = Ak(γ̇ky (s), γ̇ky (s)).

Combining inequality (6.19) and equation (6.20), we get that
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(6.21)
∫ L

0
|(Ak)γk

y (s)| ds ≥ c εk,

which gives

(6.22) c εkHn−1(Ẽk) ≤
∫
�Ek

∫ L

0
|(Ak)γk

y (s)| ds dHn−1(y).

Using the co-area formula and the Cauchy-Schwarz inequality (and
observing that the Jacobian Jp ≤ 1), we obtain from inequality (6.22)
that

c εkHn−1(Ẽk)(6.23)

≤
∫
Mk∩(B2

2τk
(0)×Bn−1

1/2
(0))

|Ak| dHn

≤
(
Hn(Mk ∩ (B2

2τk
(0) ×Bn−1

1/2 (0))
)1/2

×
(∫

Mk∩(B2
2τk

(0)×Bn−1
1/2

(0))
|Ak|2

)1/2

.

Now, by the monotonicity formula (2.9), we have that, for every
ρ ∈ (0, 1/2] and every x ∈Mk ∩Bn+1

1/2 (0),

Hn(Mk ∩Bn+1
ρ (x))

ωnρn
≤
Hn(Mk ∩Bn+1

1/2 (x))

ωn(1/2)n
(6.24)

≤ 2n
Hn(Mk ∩Bn+1

1 (0))
ωn

≤ 2n.3

for sufficiently large k.
Using the above inequality in each of the balls of a (finite) collection of

balls of radius εk covering B2
2τk

(0)×Bn−1
1 (0), and noting that the number

of such balls required is ≤ vol (B2
2τk

(0)×Bn−1
1 (0))

vol (Bn+1
τk

(0))
= C(n)

τn−1
k

, we obtain that

(6.25) Hn(Mk ∩ (B2
2τk

(0) ×Bn−1
1/2 (0)) ≤ c τk.

Since B2
2τk

(0)×Bn−1
1/2 (0)) ⊂ Bn+1

3/4 (0), using Lemma 3.2 with a choice
of ϕ that satisfies ϕ ≡ 1 in B3/4(0), ϕ ≡ 0 outside B7/8(0) and |Dϕ| ≤
16, we have that
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(6.26)
∫
Mk∩(B2

2τk
(0)×Bn−1

1/2
(0))

|Ak|2 ≤ c ε2k.

It follows from inequalities (6.23), (6.25) and (6.26) that Hn−1(Ẽk) ≤
c τ

1
2
k . This completes the proof of the lemma. q.e.d.

Lemma 6.20. [[11], Lemma 3.4] For sufficiently large k, if Z ∈
Mk ∩Bn+1

1/2 (0) is such that ΘMk
(Z) ≥ 2, then,

(i)
∫
Mk∩Bn+1

1/4
(Z)

(νk ·((x,y)−Z))2

|(x,y)−Z|n+2 ≤ c
∫
Mk∩Bn+1

1 (0) dist2 ((x, y), τZHk),

(ii)
∫
Mk∩Bn+1

1/4
(Z)

∑n−1
j=1 (νk · e2+j)2 ≤ c

∫
Mk∩Bn+1

1 (0) dist2 ((x, y), τZHk)

and
(iii)

∫
Mk∩Bn+1

1/4
(Z)

dist2
((x,y),τZHk)

|(x,y)−Z|n+3/2 ≤ c
∫
Mk∩Bn+1

1 (0) dist2 ((x, y), τZHk)

where c depends only on n and τZ is the translation X �→ X − Z.

Proof. By translation and scaling, we may assume Z = 0. The proof is
essentially as in the proof of Lemma 3.4 of [11]. The only change is that
the definition of the function uk and the graphical part Gk (= graphuk)
(which correspond to u and G respectively in the proof of Lemma 3.4
of [11]) have to be different here. In [11], uk, Gk together with the
estimate

(6.27)
∫
Mk∩(Bn+1

1/2
(0)\Gk)

r2 +
∫
Uk∩Bn+1

1/2
(0)

(|uk|2 + r2|Duk|2
) ≤ Cβ2

k

are obtained via the regularity result (1.8) there. (c.f. Lemma 2.6 of
[11].) Since (1.8) of [11] depends on the assumption that M belongs to
a multiplicity 1 class (the crucial point being 1.3(b) of [11] holds) we
cannot use the same approach here. Instead, we proceed differently to
argue that (6.27) holds for a suitable two valued graph Gk over a domain
Uk in the plane {0} × Rn. (Thus uk will be a two valued function over
a domain Uk ⊂ Bn

1 (0) which satisfies (6.27).)

To see this we use the notation that, for ρ < 1/2 and |y| < 1, Aρ(y) =
{(rω, z) : (r − ρ/2)2 + |z − y|2 < ρ2/16, ω ∈ S1}, Ãρ(y) = {(rω, z) :
(r − ρ/2)2 + |z − y|2 < ρ2/32, ω ∈ S1}.

Take any ρ ∈ (0, 1/2) and for δ = δ(n) and c = c(n, α) small (to be
chosen) consider the alternatives:

(a)
∫
Mk∩Aρ(y) h

2
k < cρn+2 and

∫
Mk∩ �Aρ(y)

d2
k > δ

∫
Mk∩Aρ(y) h

2
k,

(b)
∫
Mk∩Aρ(y) h

2
k ≥ cρn+2 and

∫
Mk∩ �Aρ(y) d

2
k > δ

∫
Mk∩Aρ(y) h

2
k,
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(c)
∫
Mk∩Aρ(y) d

2
k < cρn+2 and

∫
Mk∩ �Aρ(y) d

2
k ≤ δ

∫
Mk∩Aρ(y) h

2
k, and

(d)
∫
Mk∩Aρ(y) d

2
k ≥ cρn+2 and

∫
Mk∩ �Aρ(y)

d2
k ≤ δ

∫
Mk∩Aρ(y) h

2
k

where hk is the distance to the plane x1 = 0 and dk is the distance to
the pair of planes Hk.

In case of alternative (a), provided c = c(n, α) is sufficiently small, we
can use the Schoen-Simon approximate graphical decomposition (as in
Lemma 3.3 above) relative to the single plane x1 = 0 to get a 2-valued
graph G

(k)
ρ (y) = graphu(k)

ρ, y of small gradient over a domain U
(k)
ρ (y) in

the x1 = 0 plane such that (see (3.24))

(6.28)

Hn(Mk∩ Ãρ(y)\G(k)
ρ (y)) ≤ Cρ−2

∫
Mk∩Aρ(y)

h2
k ≤ Cδ−1ρ−2

∫
Mk∩ �Aρ(y)

d2
k

and

(6.29)
∫
U

(k)
ρ (y)

(
|u(k)
ρ, y|2 + r2|Dukρ, y|2

)
≤ C

∫
Mk∩ �Aρ(y)

d2
k.

Note that (6.28) implies

(6.30)
∫
Mk∩ �Aρ(y)\G(k)

ρ (y)
r2 ≤ C

∫
Mk∩Aρ(y)

d2
k.

In case of alternative (c) note that we have
∫
Mk∩Aρ(y) h

2
k ≥ Cρn+2ε2k

(since by definition of alternative (c), it follows that there is a subset
of Mk ∩ Aρ(y) of measure ≥ Cρn, C = C(n), on which hk ≥ 1

16ε
2
kρ

2)
and so, for small enough δ depending only on n, by the argument lead-
ing to the estiamte (6.5), (which shows that we can’t have two sheets
joining up when the L2 distance from x1 = 0 is much bigger than the
L2 distance to a pair of almost parallel planes) we conclude that either
(i) Mk ∩ Ãρ(y) decomposes into two regular graphs over the respective
planes Hk,1, Hk,2 of Hk or else (ii) the whole Mk ∩ Ãρ(y) is contained
in an δεkρ/2 neighborhood of one of the planes, and we can apply an
argument similar to that for alternative (a), except that it is done rela-
tive to the plane Hk, 1 or Hk, 2 instead of the plane x1 = 0. In either of
the cases (i) and (ii), by composing the defining functions of the graphs
thus obtained with the functions that express the planes Hk, 1, Hk, 2 as
graphs over x1 = 0, we get a 2 valued function u(k)

ρ, y with small gradient
over a domain U

(k)
ρ (y) in x1 = 0 satisfying (6.29) and (6.30).
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The alternatives (b) and (d) give trivially that
∫
Mk∩ �Aρ(y) r

2 ≤ C∫
Mk∩Aρ(y) d

2
k, so we take G(k)

ρ (y) = ∅ in these cases.
Thus all alternatives lead to the conclusions (6.29) and (6.30). Defin-

ing Uk = ∪ρ∈(0,1/2), y∈Bn−1
1 (0)U

(k)
ρ (y) and the (2-valued) function uk over

Uk by setting uk|U (k)
ρ (y)

≡ u
(k)
ρ, y, an elementary covering argument com-

pletes the proof of (6.27). Note that uk is well defined by unique contin-
uation of solutions to the minimal surface equation. With the estimate
(6.27), the proof of the lemma can be completed as in Lemma 3.4 of
[11]. q.e.d.

Lemma 6.21. [[11], Theorem 3.1 with minor modification]
For sufficiently large k, if Z = (ξ, η) ∈ Mk ∩ Bn+1

1/2 (0) is such that
ΘMk

(Z) ≥ 2, then,
(i) |ξ⊥0 |2 + ε2k |ξ|2 ≤ c β2

k ,

(ii)
∫
Mk∩Bn+1

1/4
(Z)

∑n−1
j=1 (νk · e2+j)2 +

∫
Mk∩Bn+1

1/4
(Z)

d2k
|(x,y)−Z|n−1/4 ≤ c β2

k

and
(iii)

∑4
i=1

∫
U

(i)
k ∩Bn+1

1/4
(Z)

|g(i)k (x,y)−ξ⊥k (x,y)|2
|(x,y)−Z|n+3/2 ≤ c β2

k

where ξ⊥0 means the orthogonal projection of (ξ, 0) onto (Rn)⊥, ξ⊥k(x, y)
means the orthogonal projection of (ξ, 0) onto (T(x′,y)Hk)⊥ where x′ is
the nearest point projection of x onto Lk, (T(x′,y)Hk ≡ subspace con-

taining H(i)
k if (x′, y) ∈ H(i)

k ), dk(x, y) = dist ((x, y),Hk) and c depends
only on n.

Proof. To prove (i), notice that since Z ∈ Tk, there exist θk > 0 with
θk ↘ 0 such that for

X = (x, y) ∈Wk ≡Mk ∩
(
Bn+1

1 (0) \ (B2
θk

(0) × Rn−1)
)
,

(6.31) dist (X, τZHk) = |(x, y) − (x′, y) − ξ⊥k |
where τZ is the translation X �→ X − Z. (This is because for X ∈ Wk,
the nearest of the four half spaces of Hk to X and X+Z are the same.)

Since

(6.32) |(x, y) − (x′, y)| = dk(X),

it follows that

(6.33) |ξ⊥k | ≤ dist (X, τZHk) + dk(X)
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for X ∈Wk. We also have that for each ρ0 ∈ (0, 1/8] and all sufficiently
large k (depending on ρ0),

(6.34) |ξ⊥0 |2 + ε2k |ξ|2 ≤ c ρ−n0

∫
Mk∩Wk∩Bn+1

ρ0
(Z)

|ξ⊥k |2

and that

(6.35) |ξ⊥k | ≤ c (|ξ⊥0 | + εk |ξ|).

The inequality (6.35) holds because for each i, the angle between H(i)
k

and Rn is ≤ c εk, and hence

(6.36) |ξ⊥k − ξ⊥0| ≤ c εk|ξ|.

To see estimate (6.34), first notice that for sufficiently large k,

ε2k |ξ|2 ≤ c ρ−n0

∫
Mk∩Wk∩Bn+1

ρ0
(Z)

|ξ⊥k |2.

This is true because for sufficiently large k, Z ∈ Tk and therefore,
for any given ρ0, there exists k0 = k0(ρ0) such that for each k ≥ k0

there exists a subset Sk (depending on Z) of Mk ∩Wk ∩ Bρ0(Z) with
Hn(Sk) ≥ 1

2ωnρ
n
0 such that for every X = (x, y) ∈ Sk, the angle between

(ξ, 0) and the nearest of {L(i)
k }4

i=1 to (x, 0) is ≥ c εk, or, equivalently,
|ξ⊥k(X)| ≥ c εk|ξ|. Integrating this last inequality over Sk yields that
ε2k |ξ|2 ≤ c ρ−n0

∫
Mk∩Wk∩Bn+1

ρ0
(Z) |ξ⊥k |2. Inequality (6.34) then follows

from this and inequality (6.36) because |ξ⊥0 |2 ≤ 2 |ξ⊥0 −ξ⊥k |2+2 |ξ⊥k |2.

By inequalities (6.34) and (6.33), we have that

(6.37)

|ξ⊥0 |2+ε2k |ξ|2 ≤ c ρ−n0

(∫
Mk∩Bn+1

ρ0
(Z)

dist2 (X, τZHk) +
∫
Mk∩Bn+1

1 (0)
d2
k

)

where c is independent of k and ρ0.

By Lemma 6.20, we have that
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ρ
−n−3/2
0

∫
Mk∩Bn+1

ρ0
(Z)

dist2 (X, τZHk)(6.38)

≤ c

∫
Mk∩Bn+1

1 (0)
dist2 (X, τZHk)

≤ c

∫
Mk∩Bn+1

1 (0)
d2
k + c

∫
Mk∩Bn+1

1 (0)
|ξ⊥k |2

and in view of inequality (6.35), this implies that

ρ−n0

∫
Mk∩Bn+1

ρ0
(Z)

dist2 (X, τZHk)(6.39)

≤ c ρ
3/2
0

∫
Mk∩Bn+1

1 (0)
d2
k + c ρ

3/2
0

(
|ξ⊥0 |2 + ε2k |ξ|2

)
.

Combining inequalities (6.37) and (6.39) and choosing ρ0 = ρ0(n)
sufficiently small, we obtain that

(6.40) |ξ⊥0 |2 + ε2k|ξ|2 ≤ c

∫
Mk∩Bn+1

1 (0)
d2
k.

This is part (i) of the lemma.

To prove part (ii), first notice that we have by the triangle inequality
that

(6.41) |dist ((x, y), τZHk) − dist ((x, y),Hk)| ≤ |ξ⊥i
k |

for some i, 1 ≤ i ≤ 4, where ξ⊥i
k denotes the orthogonal projection of

(ξ, 0) onto the direction normal to H(i)
k . Since |ξ⊥i

k |2 ≤ c (|ξ⊥0 |2 + ε2k|ξ|2)
for each i, it follows from part (i) that

(6.42) |dist ((x, y), τZHk) − dist ((x, y),Hk)| ≤ c βk.

By Lemma 6.20 (together with the obvious fact that |(x, y)−Z|n+3/2 ≤
|(x, y) − Z|n−1/4 for (x, y) ∈ B1/4(Z)) we have that

(6.43)∫
Mk∩Bn+1

1/4
(Z)

dist2 ((x, y), τZHk)
|(x, y) − Z|n−1/4

≤ c

∫
Mk∩Bn+1

1 (0)
dist2 ((x, y), τZHk).
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By inequalities (6.42), (6.43) and the fact that
∫
Mk∩Bn+1

1/4
(Z) |X −

Z|−n+1/4 ≤ c(n) (which is a consequence of the volume growth estimate
Hn(Mk ∩Bn+1

r (Z)) ≤ c rn), we conclude that

(6.44)
∫
Mk∩Bn+1

1/4
(Z)

d2
k

|(x, y) − Z|n−1/4
≤ c β2

k

which, together with Lemma 6.20, gives part (ii).

Finally, for part (iii), observe that by part (i), equation (6.31) holds
for (x, y) ∈ U

(i)
k , so we have by (6.31) that

(6.45) dist ((x, y) + g
(i)
k (x, y), τZHk) = |g(i)

k (x, y) − ξ⊥k(x, y)|.
The estimate of part (iii) follows from Lemma 6.20, the area formula,

inequality (6.42), equation (6.45) and the estimate of part (i). This
completes the proof of the lemma. q.e.d.

Lemma 6.22. [[11], Corollary 3.2] For sufficiently large k,

(i)
4∑
i=1

∫
U

(i)
k ∩Bn+1

1/8
(0)

|g(i)
k (x, y) − (κ1

k e
⊥k
1 + κ2

k e
⊥k
2 )(x, y)|2

r
3/2
k

≤ c β2
k

and

(ii)
∫
Mk∩Bn+1

1/8
(0)

d2
k

r
1/4
k

≤ c β2
k .

Here c depends only on n, rk(x, y) = max {r, δk} (r = |x|) with δk as in
Lemma 6.19, e⊥k

j (x, y), j = 1, 2, means the orthogonal projection of ej
onto (T(x,y)Hk)⊥ where e1, e2 are the standard basis vectors of R2 and
κjk(x, y) = κ̃jk(r, y) with

κ̃jk : Dk ≡ {(r, y) : r > 0, y ∈ Rn−1, (rωik, y) ∈ U ik for i = 1, . . . , 4} → R

(where ωik = Lik ∩ S1) satisfying

sup(r,y)∈Dk

(
(κ̃1
k)

2 + ε2k ((κ̃1
k)

2 + (κ̃2
k)

2)
) ≤ c β2

k .
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Proof. To prove (ii), let z ∈ Bn−1
1/2 (0) and ρ ∈ (δk, 1/8) be arbitrary.

Here δk is as in Lemma 6.19. By Lemma 6.19, there exists Z ∈Mk with
ΘMk

(Z) ≥ 2 such that |Z − (0, z)| ≤ δk. Thus, if X ∈ Bn+1
ρ (0, z) then

|X − Z| ≤ 2ρ and therefore, using part (ii) of Lemma 6.21, we obtain
that

ρ−n+1/4

∫
Mk∩Bn+1

ρ (0,z)
d2
k ≤ 2n−1/4

∫
Mk∩Bn+1

ρ (0,z)

d2k
|X−Z|n−1/4(6.46)

≤ 2n−1/4
∫
Mk∩Bn+1

1/4
(Z)

d2k
|X−Z|n−1/4

≤ c β2
k .

We can cover Bn+1
1/2 (0) ∩ (B2

ρ/2(0) × Rn−1) by a collection of balls

Bn+1
ρ (0, zj) with zj ∈ Bn−1

1/2 (0) such that the number of balls in the

collection is ≤ c(n)
ρn−1 . Using such a covering, we obtain from inequality

(6.46) that

(6.47) ρ−3/4

∫
Mk∩Bn+1

1/2
(0)∩(B2

ρ/2
(0)×Rn−1)

d2
k ≤ c β2

k

for ρ ∈ (δk, 1/8).

The required inequality now follows from Fubini’s theorem by multi-
plying both sides of (6.47) by ρ−1/2 and integrating with respect to ρ
over (δk, 1/8).

To prove (i), for ρ ∈ (δk, 1/8), let {Bn+1
ρ (0, zj)} be the same covering

as the one used in the proof of (ii) above. As before, for each j, there
exists by Lemma 6.19 Zj = (ξj , ηj) ∈ Mk with ΘMk

(Zj) ≥ 2 and |Zj −
(0, zj)| ≤ δk. Furthermore, writing ξj = (ξ1j , ξ

2
j )(∈ R2) and noting that

ξ⊥0
j = (ξ1j , 0), we have by part (i) of Lemma 6.21 that

(6.48)
(|ξ1j |2 + ε2k

(|ξ1j |2 + |ξ2j |2
)) ≤ c β2

k

and by part (iii) of Lemma 6.21, that

(6.49)
4∑
i=1

ρ−n−3/2

∫
U

(i)
k ∩Bn+1

ρ (0,zj)
|g(i)
k (x, y) − (ξ1j e

⊥k
1 + ξ2j e

⊥k
2 )(x, y)|2 ≤ c β2

k .
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For each k and each (r, y) ∈ (δk, 1/8] ×Bn−1
1/4 (0), choose κ̃1

k(r, y) and
κ̃2
k(r, y) such that

(6.50) |κ̃1
k(r, y)|2 + ε2k

(|κ̃1
k(r, y)|2 + |κ̃2

k(r, y)|2
) ≤ c β2

k

and

4∑
i=1

|g(i)
k (r ωik, y) − (κ̃1

k(r, y) e
⊥k
1 (r ωik, y) + κ̃2

k(r, y) e
⊥k
2 (r ωik, y))|2(6.51)

= inf
4∑
i=1

|g(i)
k (r ωik, y) − (λ1 e

⊥k
1 (r ωik, y) + λ2 e

⊥k
2 (r ωik, y))|2

where ωik = L(i)
k ∩ S1 and the inf is taken over all λ = (λ1, λ2) ∈ R2

such that λ2
1 + ε2k (λ2

1 + λ2
2) ≤ c β2

k , with c = c(n) as in inequality (6.48).

It follows from inequality (6.49) then that

4∑
i=1

ρ−n−3/2

∫
U

(i)
k ∩Bn+1

ρ (0,zj)
|g(i)
k (x, y) − (κ1

k e
⊥k
1 + κ2

k e
⊥k
2 )(x, y)|2

≤ c β2
k .

Summing over j, we obtain from this that

4∑
i=1

ρ−5/2

∫
U

(i)
k ∩(B2

ρ/2
(0)×Rn−1)

|g(i)
k (x, y) − (κ1

k e
⊥k
1 + κ2

k e
⊥k
2 )(x, y)|2

≤ c β2
k

and the inequality of part (i) of the lemma follows from this by inte-
grating it with respect to ρ over (δk, 1/8). This completes the proof of
the lemma. q.e.d.

We now return to our second blow-up w(i), i = 1, . . . 4, as in (6.15),
(6.16) and (6.17). The estimate of Lemma 6.22 (ii) in particular implies
that for i = 1, . . . , 4,

(6.52)
∫
U

(i)
k ∩Bn+1

1/8
(0)∩

�
B2

δk
(0)×Rn−1

� |g(i)
k |2 ≤ c δ

1/4
k β2

k.
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This means that the convergence in (6.17) is strong in L2(Rn+ ∩
B1/16(0)) for i = 1, 4 and in L2(Rn−∩B1/16(0)) for i = 2, 3. Therefore,
by part (i) of Lemma 6.22, we have that

(6.53)
∫ 1/16

0

∫
Bn−1

1/16
(0)

|w(1)(x2, y) − (κ1(r, y) − κ2(r, y))|2
r3/2

<∞,

(6.54)
∫ 1/16

0

∫
Bn−1

1/16
(0)

|w(2)(−x2, y) − (κ1(r, y) + κ2(r, y))|2
r3/2

<∞,

(6.55)
∫ 1/16

0

∫
Bn−1

1/16
(0)

|w(3)(−x2, y) − (κ1(r, y) − κ2(r, y))|2
r3/2

<∞

and

(6.56)
∫ 1/16

0

∫
Bn−1

1/16
(0)

|w(4)(x2, y) − (κ1(r, y) + κ2(r, y))|2
r3/2

<∞

for bounded functions κ1 , κ2 : (0, 1/16] ×Bn−1
1/16(0) → R.

Lemma 6.23. The part of the union of the closures of the graphs of
functions w(1) and w(3) in B1/16(0)×R is equal to the graph of a single
harmonic function over B1/16(0). Similarly, the part of the union of the
closures of the graphs of w(2) and w(4) in B1/16(0) × R is equal to the
graph of a single harmonic function over B1/16(0).

Hence in particular, since w(i) are homogeneous of degree 1, the sec-
ond blow-up consists of two intersecting hyperplanes.

Proof. Here we shall assume that H = graphv+ ∪ graph v− is the
union of the two hyperplanes given by x1 = ±x2. Thus Hk is given by
x1 = ±εkx2. (We may arrange this by replacing εk by cεk for a suitable
fixed constant c independent of k.) Let ψ : R → R be a C2 cut-off
function with ψ(t) ≡ 1 if t ≤ 1/8, ψ(t) ≡ 0 if t ≥ 1/4, |ψ′(t)| ≤ 16 and
|ψ′′(t)| ≤ 128 for all t. For each k, let ψk : R → R be a C2 cut-off
function with ψk(t) ≡ 1 if t ∈ (−∞,− εk

2 ], ψk(t) ≡ 0 if t ∈ [ εk2 ,∞),
|ψ′(t)| ≤ 2ε−1

k and |ψ′′(t)| ≤ 4ε−2
k for all t.

Let τ ∈ (0, 1/163) be arbitrary and ζ ∈ C2
c (B1/16(0)) with D2 ζ ≡ 0

in B1/16(0) ∩ {|x2| ≤ τ}. By the first variation formula, we have that
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(6.57)
∫
Mk

∇ (x1 − εkx
2) · ∇(ζ̃ψ(|ν ′k|2)ψk(ν2

k)) = 0

where ζ̃ is a C1
c (B1/16(0)×R) function which agrees with ζ1(x1, x2, . . . ,

xn+1) ≡ ζ(x2, . . . , xn+1) in a neighborhood of Mk ∩ (B1/16(0) × R),
νk = (ν1

k , ν
2
k , . . . , ν

n+1
k ) is the unit normal vector field to Mk and we use

the notation ν ′k = (ν2
k , . . . , ν

n+1
k ).

Now

(6.58)
∫
Mk

∇ (x1− εkx2) ·∇(ζ̃ψ(|ν ′k|2)ψk(ν2
k)) = I

(k)
1 +I

(k)
2 +I

(k)
3 +I

(k)
4

where

I
(k)
1 =

∫
Mk\T

ψ(|ν ′k|2)ψk(ν2
k)∇ (x1 − εkx

2) · ∇ ζ̃

I
(k)
2 =

∫
Mk∩T

ψ(|ν ′k|2)ψk(ν2
k)∇ (x1 − εkx

2) · ∇ ζ̃

I
(k)
3 = 2

n+1∑
j=2

∫
Mk

ζ̃ψk(ν2
k)ψ

′(|ν ′k|2)νjk(e1 − εke
2) · ∇ νjk

and
I
(k)
4 =

∫
Mk

ζ̃ψ(|ν ′k|2)ψ′
k(ν

2
k)(e

1 − εke
2) · ∇ν2

k .

Here T = B2
τ/2(0) × Rn−1. We estimate each of I(k)

1 , . . . , I
(k)
4 as fol-

lows:

For I(k)
3 and I(k)

4 , first note that the support of the integrand is con-
tained in the set Mk ∩ {|ν ′k|2 ≤ 1/4}, and hence, νk can locally be
written as a function of just the variables x2 and y. Hence, by direct
computation, the integrand F

(k)
3 of I(k)

3 can locally be written as

F
(k)
3 = −2

n+1∑
j=2

ζ̃ψk(ν2
k)ψ

′(|ν ′k|2)νjk
(
εkD2ν

j
k + (ν1

k − εkν
2
k)

n+1∑
i=2

νikDiν
j
k

)
= −ζ̃ψk(ν2

k)ψ
′(|ν ′k|2)ν2

k

(
εk + (ν1

k − εkν
2
k)ν

2
k

)
D2ν

2
k + S

(k)
3(6.59)

where S
(k)
3 is the sum of all the terms of F (k)

3 having a factor νjk,
j = 3, . . . , (n+ 1). Thus
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(6.60) |S(k)
3 | ≤ C|ζ||Ak|

√√√√n+1∑
j=3

(νjk)
2.

Now

(6.61) D2ν
2
k = −

n+1∑
i=3

Diν
i
k

which is the minimal surface equation for minimal graphs over the x2, y
plane. Using this in (6.59) and integrating by parts (which can be jus-
tified using a suitable partition of unity), we conclude that, in view of
the fact that for all sufficiently large k, the supports of ψ′(|ν ′k|2) and
ψ′′(|ν ′k|2) are contained in Mk ∩ T ,

|I(k)
3 | ≤ C sup |ζ|

∫
Mk∩T∩Bn+1

1/8
(0)

|Ak|
√√√√n+1∑

j=3

(νjk)
2

+C sup |Dζ|
∫
Mk∩T∩Bn+1

1/8
(0)

√√√√n+2∑
j=3

(νjk)
2

≤ C sup (|ζ| + |Dζ|)√τβk.(6.62)

Here we have used the fact that |ψ′
k| ≤ Cε−1

k , that |ν2
k | ≤ Cεk at every

point in the support of ψ′
k(ν

2
k), that Hn(Mk ∩ T ∩ Bn+1

1/8 (0)) ≤ Cτ and

the estimate
∫
Mk∩Bn+1

1/8
(0)

∑n+1
j=3 (νjk)

2 ≤ Cβ2
k. This last estimate follows

from Lemma 6.21, part (ii).

To estimate I(k)
4 , note that by (6.61) and direct computation as be-

fore, the integrand F
(k)
4 of I(k)

4 can locally be written as

(6.63) F
(k)
4 = ζ̃ψ(|ν ′k|2)ψ′

k(ν
2
k)
(
εk + (ν1

k − εkν
2
k)ν

2
k

) n+1∑
j=3

Djν
j
k − S

(k)
4

where

(6.64) S
(k)
4 = ζ̃ψ(|ν ′k|2)ψ′

k(ν
2
k)(ν

1
k − εkν

2
k)

n+1∑
j=3

νjkDjν
2
k .

Thus



504 N. WICKRAMASEKERA

(6.65) |S(k)
4 | ≤ C|ζ||ψ′

k(ν
2
k)||Ak|

√√√√n+1∑
j=3

(νjk)2.

Using this and integrating the terms involving Djν
j
k, j = 3, . . . , (n+

1), by parts (which again can be justified using a partition of unity)
we see that since for all sufficiently large k, the support of ψ′

k(ν
2
k) is

contained in Mk ∩ T ∩ {|ν2
k | ≤ 1

2εk},

|I(k)
4 | ≤ C sup (|ζ| + |Dζ|)

∫
Mk∩T∩{|ν2

k |≤ 1
2
εk}∩Bn+1

1/8
(0)

√√√√n+1∑
j=3

(νjk)2 +

+ ε−1
k

∫
Mk∩T∩{|ν2

k|≤ 1
2
εk}∩Bn+1

1/8
(0)

|Ak|
√√√√n+1∑

j=3

(νjk)
2

 .(6.66)

Note that here we have used the fact that |ψ′
k| ≤ Cε−1

k , |ψ′′
k | ≤ Cε−2

k

and that |ν2
k | ≤ Cεk at every point of the support of ψ′

k(ν
2
k).

Using Cauchy-Schwarz inequality and Lemma 6.24 below, we con-
clude from this that

(6.67) |I(k)
4 | ≤ C sup (|ζ| + |Dζ|)τ1/6βk.

To estimate I(k)
2 , note that since ζ̃ is independent of x1 everywhere

and independent of x2 in T , we have that on Mk∩T , the integrand F (k)
2

of I(k)
2 is given by

(6.68) F
(k)
2 = −ψ(|ν ′k|2)ψk(ν2

k)(ν
1
k − εkν

2
k)

n+1∑
j=3

Djζν
j
k


and hence

(6.69) |I(k)
2 | ≤ C sup |Dζ|√τβk.

Finally, note that for all sufficiently large k, ψ(|ν ′k|2) ≡ 1 on Mk \ T ,
ψk(ν2

k) ≡ 0 on (graph g(2)
k ∪graph g(4)

k )\T and ψk(ν2
k) ≡ 1 on (graph g(1)

k ∪
graph g(3)

k ) \ T. Thus, since x1 = εkx
2 + g̃

(i)
k · e1 on graph g(i)

k , i = 1, 3,
we have that
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(6.70)

lim
k→∞

β−1
k I

(k)
1 =

∫
Rn +\{|x2|≤τ/2}

Dw(1) ·Dζ+
∫
Rn−\{|x2|≤τ/2}

Dw(3) ·Dζ.

Integrating by parts in this keeping in mind that D2ζ ≡ 0 in {|x2| < τ},
we see that

(6.71) lim
k→∞

β−1
k I

(k)
1 =

∫
Rn +\{|x2|≤τ/2}

(w(1)(x2, y) + w(3)(−x2, y))∆ ζ

for any C2
c (B1/16(0)) function with D2ζ = 0 in a neighborhood of

x2 = 0 and which is even in the x2 variable. Hence, in view of the
estimates (6.62), (6.67) and (6.69) together with the fact that the func-
tion w(1)(x2, y) +w(3)(−x2, y) is in L2(Rn+ ∩B1/4(0)), we conclude by
dividing (6.57) by βk and first letting k → ∞ and then letting τ → 0 that

(6.72)
∫
Rn +∩B1/16(0)

(w(1)(x2, y) + w(3)(−x2, y))∆ζ = 0

for any ζ ∈ C2
c (B1/16(0)) with D2ζ ≡ 0 in some neighborhood of

x2 = 0 which is even in the x2 variable. By approximation, (6.72)
holds for every C2

c (B1/16(0)) function which is even in the x2 variable.

Now let w(1 3)
e be the even reflection in the x2 variable of the function

w(1)(x2, y) + w(3)(−x2, y). Then by (6.72),

(6.73)
∫
B1/16(0)

w(1 3)
e ∆ζ = 0

for every ζ ∈ C2
c (B1/16(0)) even in the x2 variable. Also, since w(1 3)

e

is even in the x2 variable, (6.73) trivially holds for any C2(B1/16(0))
function which is odd in the x2 variable. Hence we conclude that (6.73)
holds for arbitrary ζ ∈ C2

c (B1/16(0)) and therefore that w(1 3)
e is har-

monic in B1/16(0).

Next note that the conditions (6.53) and (6.55) imply that

(6.74) lim
ρ→0+

ρ−1

∫ ρ

0

∫
Bn−1

1/16
(0)

|w(1)(x2, y) − w(3)(−x2, y)|2 = 0.

Thus, if w(1 3)
o is the odd reflection in the x2 variable of the func-

tion w(1)(x2, y) − w(3)(−x2, y) (which is harmonic in B1/16(0) ∩ {x2 >
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0}), then (6.74) implies that w(1 3)
o extends to a harmonic function in

B1/16(0). Now define a function w(1 3) on B1/16(0) \ {x2 = 0} by set-
ting w(1 3)(x2, y) = w(1)(x2, y) if x2 > 0 and w(1 3)(x2, y) = w(3)(x2, y) if
x2 < 0. Then w(1 3) = 1

2(w(1 3)
e +w(1 3)

o ) everywhere in B1/16(0)\{x2 = 0}
and hence we have shown that w(1 3) extends to all of B1/16(0) as a har-
monic function. i.e. that the union of the closures of the graphs of w(1)

and w(3) in B1/16(0) × R is equal to the graph of a single harmonic
function over B1/16(0).

Repeating the entire argument with (1−ψk) in place of ψk and using
(6.54), (6.56) in place of (6.53), (6.55), we also conclude that the union
of the closures of the graphs of w(2) and w(4) in B1/16(0) × R is equal
to the graph of a single harmonic function over B1/16(0).

Finally, since w(i) are homogeneous of degree 1, we conclude that the
second blow-up consists of 2 intersecting hyperplanes. q.e.d.

Lemma 6.24. For each τ ∈ (0, 1/163), if Tτ = {(x, y) ∈ R2×Rn−1 :
|x| < τ}, then we have

∫
Mk∩{|ν2

k |≤ 1
2
εk}∩Tτ∩Bn+1

1/8
(0)

n+1∑
j=3

(νjk)
2 ≤ Cτ1/3β2

k ,

for all sufficiently larg k depending on τ. Here C = C(n).

Proof. Let a2 = 1
82 − 1

166 . For each (0, η) ∈ Ba(0) ∩ {0} × Rn−1 such
that there is at least one ξ ∈ R2 with ΘMk

(ξ, η) ≥ 2, let ξ(η) be any
one of the points ξ ∈ R2 with ΘMk

(ξ, η) ≥ 2. By (6.18), for large
enough k the set Sk of such η has (n− 1)-dimensional measure close to
full measure on Ba(0)∩ {0} ×Rn−1 and by Lemma 6.20 and inequality
(6.42), for each η ∈ Sk,

(6.75)∫
Mk∩B1/8

(
(x− ξ(η)) · νxk (x, y) + (y − η) · νyk(x, y)

)2
|(x− ξ(η), y − η)|n+2

dHn(x, y) ≤ Cβ2
k,

where νxk (x, y) = (ν1
k(x, y), ν

2
k(x, y)) and νyk(x, y) = (ν3

k(x, y), . . . , ν
n+1
k

(x, y)). Sk is a closed set, and we can integrate with respect to η ∈ Sk
and use Fubini’s theorem, whence
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∫
Mk∩B1/8

∫
Sk

(
(x− ξ(η)) · νxk (x, y) + (y − η) · νyk(x, y)

)2
|(x− ξ(η), y − η)|n+2

(6.76)

dηdHn(x, y) ≤ Cβ2
k.

Using the change of variable ψ = y − η ∈ y − Sk in the inner integral,
we have

∫
Mk∩B1/8

∫
y−Sk

(
(x− ξ(y − ψ)) · νxk (x, y) + ψ · νyk(x, y)

)2
|(x− ξ(y − ψ), ψ)|n+2

(6.77)

dψdHn(x, y) ≤ Cβ2
k,

and so, making the change of variable ψ �→ 2ψ in (6.77)

∫
Mk∩B1/8

∫
1
2
(y−Sk)

(
(x− ξ(y − 2ψ)) · νxk (x, y) + 2ψ · νyk(x, y)

)2
|(x− ξ(y − 2ψ), 2ψ)|n+2

(6.78)

dψdHn(x, y) ≤ Cβ2
k,

which evidently implies

∫
Mk∩B1/8

∫
1
2
(y−Sk)

(
(x− ξ(y − 2ψ)) · νxk (x, y) + 2ψ · νyk(x, y)

)2
|(x− ξ(y − 2ψ), ψ)|n+2

(6.79)

dψdHn(x, y) ≤ Cβ2
k.

For any τ ∈ (0, 1/16) we know that |ξ(η)| < τ/2 for all η such that ξ(η)
is defined, so (6.77), (6.79) evidently imply

∫
Mk∩B1/8

∫
Sk(y)

(
(x− ξ(y − ψ)) · νxk (x, y) + ψ · νyk(x, y)

)2
|(xτ , ψ)|n+2

(6.80)

dψdHn(x, y) ≤ Cβ2
k,

and

∫
Mk∩B1/8

∫
Sk(y)

(
(x− ξ(y − 2ψ)) · νxk (x, y) + 2ψ · νyk (x, y)

)2
|(xτ , ψ)|n+2

(6.81)

dψdHn(x, y) ≤ Cβ2
k,
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respectively, for all sufficiently large k (depending on τ), where Sk(y) =
(y − Sk) ∩ 1

2(y − Sk) and xτ is defined by xτ = x if |x| > τ and xτ =
τ |x|−1x if |x| < τ .

Taking differences we conclude

∫
Mk∩B1/8

∫
Sk(y)

((
ξ(y − 2ψ) − ξ(y − ψ)

) · νxk (x, y) + ψ · νyk(x, y)
)2

|(xτ , ψ)|n+2

(6.82)

dψdHn(x, y) ≤ Cβ2
k.

Now by Lemma 6.21, sup |ξ1(η)|+εk|ξ2(η)| ≤ γβk for some γ = γ(n) >
1. Letting Mk,+ = {(x, y) ∈Mk∩B1/8 : |νyk | ≥ 4τ−1γβk, |ν2

k | ≤ 1
2εk}, we

have |(ξ(y− 2ψ)− ξ(y−ψ)
) · νxk (x, y) +ψ · νyk(x, y)| ≥ 1

4 |ψ||νyk (x, y)| for
all (x, y) ∈Mk,+ and all ψ ∈ (y − Sk) with ψ · νyk(x, y) ≥ 1

2 |ψ| |νyk (x, y)|
and |ψ| ∈ (τ, 1/8), and hence

(6.83)∫
Mk,+

∫
Ω(x,y)

|(xτ , sω)|−n−2s2|νyk (x, y)|2 sn−2 ds dω dHn(x, y) ≤ Cβ2
k,

where Ω(x, y) is the region in {0}×Rn−1 given by Ω(x, y) = (y−Sk)∩
1
2(y − Sk) ∩ {sω : s ∈ (τ, 1/8), ω ∈ Σ(x, y)}, with Σ(x, y) = {ω ∈ Sn−2 :
ω · νyk(x, y) ≥ 1

2 |νyk(x, y)|}. Thus

(6.84)∫
Mk,+

|νyk(x, y)|2
(∫

Ω(x,y)
(r2τ + s2)−(n+2)/2sn ds dω

)
dHn(x, y) ≤ Cβ2

k,

where rτ = |xτ |.
Now since Sk has almost full measure for sufficiently large k, we

deduce that there is a fixed constant C > 0, independent of τ ∈
(0, 1/16) and (x, y) ∈ Mk,+, such that, for k large enough,

∫
Ω(x,y)(r

2
τ +

s2)−(n+2)/2sn ds dω ≥ Cr−1
τ for each (x, y) ∈Mk∩B1/8, and hence (6.84)

implies

(6.85)
∫
Mk,+

|νyk(x, y)|2r−1
τ dHn(x, y) ≤ Cβ2

k,

so
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(6.86) τ−1

∫
Mk,+∩Tτ

|νyk(x, y)|2 dHn(x, y) ≤ Cβ2
k,

and hence in particular

(6.87) τ−1

∫
Mk,+∩Tτ3

|νyk(x, y)|2 dHn(x, y) ≤ Cβ2
k.

Of course since we trivially have

(6.88) τ−1

∫
(Mk∩{|ν2

k |≤ 1
2
εk}∩B1/8\Mk,+)∩Tτ3

|νyk(x, y)|2 dHn(x, y) ≤ Cβ2
k,

C = C(n), (by the definition of Mk,+ and the fact that Hn (Mk ∩ Tσ ∩
B1/8) ≤ Cσ for any σ ∈ (0, 1/16)), we then deduce that

(6.89) τ−1

∫
Mk∩{|ν2

k|≤ 1
2
εk}∩Tτ3∩B1/8

|νyk(x, y)|2 dHn(x, y) ≤ Cβ2
k.

Replacing τ with τ1/3, we deduce that for any τ ∈ (0, 1/163) and k
suffciently large

(6.90)
∫
Mk∩{|ν2

k |≤ 1
2
εk}∩Tτ∩B1/8

|νyk (x, y)|2 dHn(x, y) ≤ Cτ1/3β2
k

with C = C(n) as claimed. q.e.d.

Completion of the Proof of Theorem 1.1 in Case (a): First observe
that the entire analysis in the present section can be carried out with
the sequence {Hk}∞k=1 replaced by an arbitrary sequence {H̃k}∞k=1 with

dH
(
Hk ∩Bn+1

1 (0), H̃k ∩Bn+1
1 (0)

)
≤ c βk,

where, for each k, H̃k is a pair of hyperplanes and c is any fixed posi-
tive constant independent of k. Now let β(m)

k be the infimum of the L2

height-excesses of Mk ∩Bn+1
1 (0) over all pairs of hyperplanes. To prove

Theorem 1.1, we want to show that under hypotheses (�), β(m)
k = 0

for infinitely many k. So suppose β(m)
k > 0 for all sufficiently large

k. For each such k, choose H̃k, such that the L2 height-excess β̃k of
Mk ∩ Bn+1

1 (0) relative to H̃k satisfies β(m)
k ≤ β̃k ≤ 2β(m)

k . For each k,
choose an orthogonal transformation qk so that qk H̃k has axis coinciding
with {0}×Rn−1, is symmetric about {0}×Rn and qk H̃k → {0}×Rn.
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Repeating the analysis of the present section with qk H̃k, qkMk, β̃k in
place of Hk, Mk, βk, we obtain blow-ups w̃(i) in place of w(i) (w(i) as
in 6.17). By Lemma 6.23, the closures of graph w̃(i), i = 1, . . . , 4 form
a pair of hyperplanes. In view of the estimate (6.52) (with β̃k, d̃k in
place of βk, dk where d̃k(x, y) = dist ((x, y), qk H̃k)), this implies that
the excess of Mk ∩Bn+1

1 (0) relative to a new pair of hyperplanes (given
by q−1

k ∪4
i=1 graph (β̃kw̃(i) + h

(i)
k ) where h

(i)
k are the functions whose

graphs are the four half-spaces of qk H̃k) is of lower order than β̃k. For
sufficiently large k, this contradicts the definition of β(m)

k since we chose
H̃(i)
k such that β̃k ≤ 2β(m)

k .

This concludes the proof of case (a) of Theorem 1.1. q.e.d.

7. Transverse Case

In this section, we indicate how case (b) of Theorem 1.1 follows from
case (a) and the work in Section 6.

Suppose the theorem is false in case (b). Then we would have a se-
quence {Ck} of cones in I and a sequence {Pk} of transverse pairs of hy-
perplanes for k = 1, 2, . . ., such that dH (spt ‖Ck‖∩Bn+1

2 (0), spt ‖Pk‖∩
Bn+1

2 (0)) → 0 as k → ∞ and Ck �= a pair of hyperplanes for every k.
After passing to a subsequence, Pk → P0 for some pair of hyperplanes
P0 and so dH (spt ‖Ck‖ ∩ Bn+1

2 (0), spt ‖P0‖ ∩ Bn+1
2 (0)) → 0. If P0 is

a multiplicity 2 hyperplane, case (a) of the theorem implies that Ck is
equal to a pair of hyperplanes for each sufficiently large k, giving a con-
tradiction. Thus P0 must be a transverse pair of hyperplanes. We may
assume without loss of generality that the axis of P0 is {0} × Rn−1,
and let us label Pi

0, i = 1, . . . , 4, the four half-spaces whose union is
P0 \ ({0} × Rn−1). We claim that in this case, for sufficiently large k,
Ck must be a transverse pair of hyperplanes, giving the necessary con-
tradiction again.

To prove this claim, we only need to see that, the blow up argument,
with appropriate changes, of Section 6 (up to the estimates (6.53)–
(6.56)), can be carried out in the present setting with a suitably chosen
sequence of smooth, stable immersions Mk approximating Ck (in the
sense described in item (5) of hypotheses (�), Section 1), with the
sequence Hk replaced by a sequence Fk. Here, for each k, Fk is the
union of any four distinct, n-dimensional half-spaces Fik, i = 1, . . . , 4,
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(which respectively replace Hi
k, i = 1, . . . , 4, of Section 6) meeting along

a common (n − 1)-dimensional axis, with

dH (Fk∩Bn+1
2 (0),P0∩Bn+1

2 (0)) ≤ c dH (spt ‖Ck‖∩Bn+1
2 (0),P0∩Bn+1

2 (0))

where c is an arbitrary, fixed, positive constant independent of k. By
repeating the argument of Section 6 after making the necessary modi-
fications (listed below), we then see that by Lemma 4.2 (case l = 1) of
[11], the blow-up of the Mk’s, where the blow up constants βk are now
given by

βk =

√∫
Mk∩Bn+1

1 (0)
dist2 (x,Fk)dHn(x),

is the union of four distinct n-dimensional half spaces meeting along
a common axis. This is a contradiction, implying that for sufficiently
large k, each Mk is itself a union of four half spaces meeting along a
common axis, and hence, by stationarity, a pair of hyperplanes. This
contradiction follows by exactly the argument in the paragraph entitled
“Completion of the Proof of Theorem 1.1 in Case (a)” at the
end of Section 6.

Thus, to complete the proof of case (b) of the theorem, we only need
to observe the necessary modifications to various lemmas of Section 6
in order to be able to carry out the blow up argument in the current
setting. We list them below:

(1) First notice that since Mk → P0, (e.g. in the sense of Hausdorff
distance), it follows that for sufficiently large k, Mk∩(Bn+1

1 (0)\Tk)
is equal to four disjoint, embedded sheets smoothly converging, re-
spectively, to the four half-spaces Pi

0, i = 1, . . . , 4, that make up
P0. Here Tk = B2

γ(βk)(0) × Rn−1 where γ is a function satisfying
γ(t) ↓ 0 as t ↓ 0.

(2) Observe the necessary notational differences. The Fk are a se-
quence converging to P0, whereas previously, the Hk were con-
verging to a hyperplane which we took to be Rn. Thus, anything
that was written as a graph over Rn+ or Rn− before (e.g. graph
of each of the functions g̃ik, w

i
k and wi, i = 1, . . . , 4) must now be

written as a graph over the appropriate half space of P0.
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(3) In the statement of Lemma 6.19, τk must be replaced by γ(βk),
where γ is as in item (1) above. In the proof of this lemma, in
place of equation (6.19), we now have

|νk(γky (L)) − νk(γky (0))| ≥ c(P0)

where c(P0) is a fixed positive constant independent of k and de-
pending only on the angle between the two hyperplanes of P0. The
rest of the proof needs to be modified accordingly. The right hand
side of equation (6.26) becomes an absolute constant independent
of k. This follows from the stability inequality (2.10).

(4) The inequality in part (i) of Lemma 6.21 should be replaced by

|ξ|2 ≤ c β2
k .

To see this, observe that the reason there is a factor of ε2k multi-
plying the term |ξ|2 in that inequality is that the angle between
Hi
k and Rn, for each i, is equal to c εk, which is converging to

0. However, in the present setting, the angles between Fik and
Rn remain bounded away from zero by a constant depending only
on P0, allowing the modification indicated. (This modification
in fact amounts to “undoing” the modification already made to
the corresponding result of [11] in obtaining Lemma 6.21. Thus,
the version of the lemma needed for the present section is exactly
Theorem 3.1 of [11].)

(5) In Lemma 6.22, the inequality

sup
(
(κ1
k)

2 + ε2k((κ
1
k)

2 + (κ2
k)

2)
) ≤ c β2

k

must be replaced by

sup
(
(κ1
k)

2 + (κ2
k)

2
) ≤ c β2

k .

This is a direct consequence of the modification in (3) above.
(Again, this means that we are simply reverting to the exact ver-
sion of corollary 3.2 of [11].)

(6) In place of the L2 conditions (6.53)–(6.56), we have in the present
setting the conditions

∫ 1/16

0

∫
Bn−1

1/16
(0)

|w(i)(rωi, y) − (κ1(r, y)e⊥1 + κ2(r, y)e⊥2 )|2
r3/2

<∞

for i = 1, . . . , 4, where ωi is such that Pi
0 = {(rωi, y) : r > 0, y ∈

Rn−1}, κ1, κ2 are bounded functions and e⊥j , j = 1, 2, means the
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orthogonal projection of ej onto the direction normal to Pi
0. We

also have that

lim
r→0+

∂2

∂r ∂yj

4∑
i=1

w(i)(rωi, y) = 0

for each j = 1, . . . , (n−1), uniformly for |y| ≤ 1. The proof of this
is exactly as in [11], pp. 635–639.

(7) The proof that graphwi are four n-dimensional half-spaces meet-
ing along a common axis is now completed as in Lemma 4.2, case
l = 1 of [11].
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