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THE YAMABE INVARIANT FOR
NON-SIMPLY CONNECTED MANIFOLDS

BORIS BOTVINNIK & JONATHAN ROSENBERG

Abstract
The Yamabe invariant is an invariant of a closed smooth manifold defined us-
ing conformal geometry and the scalar curvature. Recently, Petean showed
that the Yamabe invariant is nonnegative for all closed simply connected
manifolds of dimension ≥ 5. We extend this to show that Yamabe invariant
is nonnegative for all closed manifolds of dimension ≥ 5 with fundamental
group of odd order having all Sylow subgroups abelian. The main new ge-
ometric input is a way of studying the Yamabe invariant on Toda brackets.
A similar method of proof shows that all closed oriented manifolds of di-
mension ≥ 5 with non-spin universal cover, with finite fundamental group
having all Sylow subgroups elementary abelian, admit metrics of positive
scalar curvature, once one restricts to the “complement” of manifolds whose
homology classes are “toral.” The exceptional toral homology classes only
exist in dimensions not exceeding the “rank” of the fundamental group, so
this proves important cases of the Gromov-Lawson-Rosenberg Conjecture
once the dimension is sufficiently large.

1. Introduction

The positive solution of the Yamabe problem [27] tells us that if M
is a compact smooth manifold (without boundary), then every confor-
mal class C of Riemannian metrics on M contains a metric (known as a
Yamabe metric) of constant scalar curvature with the following special
property. Its scalar curvature is the infimum of the scalar curvature sg,
taken over all metrics in C with constant scalar curvature and total vol-
ume 1. The value of this scalar curvature is called the Yamabe constant
Y (M, C) of C. Equivalently, Y (M, C) can be defined to be the minimum
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over metrics g ∈ C of the Einstein-Hilbert functional

I(g) =

∫
M sg d volg

volg(M)
n−2

n

.

It is therefore natural to ask if there is a “best” Yamabe metric, and if
so what its scalar curvature is. That motivates the following definition
from [12]. The Yamabe invariant of M is defined by

Y (M) = sup
C

Y (M, C).(1.1)

This supremum is not always attained, so the answer to the question
about whether M has a “best” metric of constant scalar curvature might
be “no.” The best that is known is that there are singular metrics (with
singularities at a finite number of points) which serve as the “best”
approximation to an Einstein metric on M .

Nevertheless, Y (M) is a diffeomorphism invariant of M . It also
turns out that Y (M) > 0 if and only if M admits a metric of positive
scalar curvature, a much-studied condition ([7], [8], [9], [22] [30], [31],
[24], [25], [4]). However, Y (M) = 0 is possible even when M admits no
scalar-flat metric.

In dimension 2, Gauss-Bonnet quickly shows that Y (M) = 4πχ(M).
In dimension 4, Y (M) can be positive, 0, or negative, and a lot is
known about it from Seiberg-Witten theory ([16] and [19]). Similarly,
there is a conjectural connection between Y (M) and “geometrization”
when dimM = 3 (see for instance [2]). But even when dimM = 3,
and especially when dimM > 4, it is not yet known if there are any
manifolds with Y (M) < 0. (The obvious candidates for such manifolds
are hyperbolic manifolds, but for all we know they could have vanishing
Yamabe invariant.) In fact, Petean [20] has proved that Y (M) ≥ 0 for
any simply connected manifold of dimension at least 5.

In this paper we study the Yamabe invariant for manifolds with
finite fundamental groups. Our first main result is the following.

Theorem 1.1. Let M be a closed, connected, oriented manifold
with finite fundamental group π, dim M ≥ 5. Suppose all Sylow sub-
groups of π are abelian. Assume either that M is spin and the order
of π is odd, or else that the universal cover of M is non-spin. Then
Y (M) ≥ 0.

The proof of this result is somewhat involved. First of all, we use
surgery tools (developed in the study of positive scalar curvature) to
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reduce the assertion of Theorem 1.1 to special situations. In partic-
ular, we show that it is enough to study the case when π is a finite
abelian p-group. The central objects to understand here are the bor-
dism groups Ωn(Bπ) and ΩSpin

n (Bπ), and the proof amounts to the
fact that all elements of these bordism groups may be represented by
manifolds with nonnegative Yamabe invariant. A computation of these
groups is quite hard, and the actual answer is known only for elementary
abelian groups of odd order and few other cases (see [10]). Instead we
use the Künneth formula to build manifolds with nonnegative Yamabe
invariant to represent generators of these bordism groups. There are
two types of “building blocks”: tensor products (which are realized by
direct products of manifolds) and torsion products (which geometrically
are just Toda brackets).

We recall that Toda bracket 〈M, P, L〉 is defined when M ×P = ∂V
and P × L = ∂U . Then the manifold

W = V × L ∪M×P×L M × U

represents the Toda bracket 〈M, P, L〉.
As usual, to prove new geometric results we have to employ some

new geometric techniques. Roughly, we show (under some restrictions)
that if Y (M) and Y (L) are ≥ 0 (resp., > 0), then Y (W ) ≥ 0 (resp.,
> 0). We prove this by analytical means using elementary differential
geometry.

Our second main result is the following.

Theorem 1.2. Let M be a closed, connected, oriented manifold
with finite fundamental group π. Suppose all Sylow subgroups of π are
elementary abelian of rank ≤ r. Assume that the universal cover of
M is non-spin and that dim M > max(4, r). Then M has a metric of
positive scalar curvature.

To put these results in context, it’s worth recalling what is known
about positive scalar curvature for manifolds with finite fundamental
group. For such manifolds (of dimension ≥ 5) whose universal cover is
non-spin, there are no known obstructions to positive scalar curvature.
For spin manifolds of dimension ≥ 5 with finite fundamental group,
the only known obstructions to positive scalar curvature come from the
index theory of the Dirac operator ([24], [25]), and it is known that
“stably” these are the only obstructions [24]. In fact in [22], it was
conjectured (on the basis of extremely spotty evidence) that the index
theory of the Dirac operator provides the only obstructions to positive
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scalar curvature on manifolds of dimension ≥ 5 with finite fundamental
group. This conjecture has sometimes been called the Gromov-Lawson-
Rosenberg Conjecture. However, the “stable” theorem by itself does not
actually answer the question of whether any particular manifold with
vanishing Dirac obstructions admits a metric of positive scalar curva-
ture. It is known [4] that for spin manifolds of dimension ≥ 5 with
finite fundamental group with periodic cohomology, the Dirac obstruc-
tions are the only obstructions to positive scalar curvature. A similar
theorem was proved by Schultz [29], and independently by Botvinnik
and Gilkey [3], for spin manifolds of dimension ≥ 5 with fundamental
group Z/p×Z/p, p an odd prime. But very little was previously known
about positive scalar curvature for manifolds with elementary abelian
fundamental group of rank > 2. The proof of Theorem 1.2 is based on
a reduction to the results of [3], again using Toda brackets.

The outline of the paper is as follows. Section 2 recalls the surgery
and bordism theorems necessary for attacking the problems. Section 3
contains our basic geometric results on Toda brackets. Section 4 puts
together the topological and geometrical tools to prove Theorem 1.1 and
related results, and Section 5 proves Theorem 1.2 and related results.

We would like to thank Sergey Novikov for his encouragement and
support, and the referee for his careful reading of the manuscript. In
particular, the referee noticed mistakes dealing with the non-orientable
case in the original version of this paper. Further treatment of this case
will be addressed in a subsequent paper. This work described in this
paper was partially supported by NSF grant DMS-0103647.

2. Basic topological reduction tools

To warm up, we recall the following result of Petean for simply
connected manifolds:

Theorem 2.1 ([20]). If Mn is a connected, simply connected closed
manifold of dimension n ≥ 5, then Y (M) ≥ 0.

The proof of this fact is based on the following surgery theorem:

Theorem 2.2 (Petean, Yun [21]). If M is a closed manifold with
connected components Mi, and if another closed connected manifold
M ′ can be obtained from M by surgeries in codimension ≥ 3, and if
Y (Mi) ≥ 0 for each i, then Y (M ′) ≥ 0.

Proof. This is really three theorems in one. If Y (Mi) > 0 for all
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i, then M admits a metric of positive scalar curvature, hence so does
M ′, by the surgery theorem of Gromov-Lawson and Schoen-Yau ([8]
and [28]—some of the details are carefully redone in Theorem 3.1 of
[25]), and so Y (M ′) > 0. If M is disconnected and Y (Mi) = 0 for
some components and Y (Mj) > 0 for other components, then we may
first replace M by the connected sum of its components, which has
Y ≥ 0 by iterated application of Case (b) of [21], Theorem 1. (See
also [12].) This reduces us to the case where M is connected. If M is
connected and Y (M) ≤ 0, then the Corollary to Theorem 1 of [21] says
Y (M ′) ≥ Y (M), so if Y (M) is exactly 0, Y (M ′) ≥ 0. q.e.d.

In this paper we will discuss what can be learned about the Yamabe
invariant for non-simply connected manifolds, using Theorem 2.2.

Many of the basic facts about manifolds of positive scalar curvature,
which are proved using the surgery theorem of Gromov-Lawson and
Schoen-Yau, have obvious counterparts for manifolds with nonnegative
Yamabe invariant, obtained by substituting Theorem 2.2 in the proof.
The proofs are almost identical to those in the positive scalar curvature
case, so while we will give complete statements of the results, we will
be brief when it comes to details of the proofs.

First we need to convert the Surgery Theorem, Theorem 2.2, to a
Bordism Theorem. We repeat some definitions from [24] and [25]:

Definition 2.3. Let B → BO be a fibration. A B-structure on a
manifold is defined to be a lifting of the (classifying map of the) stable
normal bundle to a map into B. Then one has bordism groups ΩB

n of
manifolds with B-structures, defined in the usual way. (For instance, if
B = BSpin, mapping as usual to BO, then ΩB

n = ΩSpin
n .) We note that

given a connected closed manifold M , there is a choice of such a B for
which M has a B-structure and the map M → B is a 2-equivalence.

Examples 2.4. The following special cases show that many of the
classical bordism theories arise via this construction.

1. If M is a spin manifold, choose B = Bπ × BSpin, where π =
π1(M), and let B → BO be the projection onto the second factor
composed with the map BSpin → BO induced by Spin → O.
Map M to the first factor by means of the classifying map for
the universal cover, and to the second factor by means of the spin
structure. The map M → B is a 2-equivalence since it induces
an isomorphism on π1 and π2(B) = 0. The associated bordism
theory is ΩSpin

∗ (Bπ).
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2. If M is oriented and the universal cover M̃ of M is non-spin, choose
B = Bπ × BSO, where π = π1(M), and let B = BSO → BO be
the obvious map. Map M to the first factor by means of the
classifying map for the universal cover, and to the second factor
by means of the orientation. The map M → B is a 2-equivalence
since it induces an isomorphism on π1 and π2(B) ∼= π2(BSO) ∼=
π1(SO) ∼= Z/2, with the map π2(M) → π2(B) corresponding to
w2(M̃). The associated bordism theory is Ω∗(Bπ).

3. If M is not orientable and the universal cover of M is non-spin,
let π = π1(M), and let B be defined by the homotopy pull-back
diagram

B ��

��

Bπ

w1

��
BO

w1 �� RP∞,

where the maps labeled w1 are defined by the first Stiefel-Whitney
class. Note that BO has fundamental group Z/2 and that w1 : BO
→ RP∞ induces an isomorphism on π1, so that B has fundamen-
tal group π. The map B → BO can be taken to be a fibration
with fiber Bπ′, where π′ = ker w1 is the fundamental group of
the oriented double cover of M . Then the maps of M to Bπ by
means of the classifying map for the universal cover and to BO
by means of the classifying map for the stable normal bundle de-
fine a map from M to B which is a 2-equivalence for the same
reason as in the last example. We will denote the associated bor-
dism theory by Ω∗(Bπ; w1); it is a “twisted version” of oriented
bordism. In the special case where π splits as π′ × Z/2, with
π′ = ker(w1 : π → Z/2), then B becomes simply Bπ′ × BO, and
the associated bordism theory is N∗(Bπ′). In general, Ω∗(Bπ; w1)
is more complicated to describe, though the following theorem
often tells as much as one needs to know about it.

Theorem 2.5 (Kurazono [13]). In Example 2.4(3), if w : π → Z/2
is surjective, there is an Atiyah-Hirzebruch spectral sequence

Hs(Bπ,Ωt ⊗ Zw) ⇒ Ωs+t(Bπ; w),

where Zw denotes the local coefficient system on Bπ locally isomorphic
to Z, with the twist given by the map w : π → Z/2 ∼= Aut(Z).
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The simply connected cases of the positive scalar curvature analogue
of the following theorem were proved in [8]; the general case of the
positive scalar curvature analogue, with this formulation, is in [24] and
[25].

Theorem 2.6 (Bordism Theorem). Let Mn be a connected B-
manifold with n = dimM ≥ 5, and assume that the map M → B is a
2-equivalence. Then Y (M) ≥ 0 if and only if the B-bordism class of M
lies in the subgroup of ΩB

n generated by B-manifolds with nonnegative
Yamabe invariant.

Sketch of proof. Let N be a B-manifold B-bordant to M . The
hypotheses combine (via the method of proof of the s-Cobordism The-
orem) to show that M can be obtained from N by surgeries in codi-
mension ≥ 3. Then if each component of N has nonnegative Yamabe
invariant, one can apply Theorem 2.2 to conclude that the same is true
for M . This does it since addition in ΩB

n comes from disjoint union
and additive inverses correspond to reversal of orientation, etc., which
doesn’t affect the Yamabe invariant of the underlying manifold. q.e.d.

Fortunately for applications, one can do better than this. For sim-
plicity, we restrict attention to the three cases discussed in Examples 2.4.

Theorem 2.7 (Jung, Stolz). Let Mn be a compact connected man-
ifold with n = dimM ≥ 5.

1. If, as in Example 2.4(1), M is spin with fundamental group π,
then Y (M) ≥ 0 if and only if the class of M → Bπ in kon(Bπ)
lies in the subgroup ko≥0

n (Bπ) generated by classes of M ′ → Bπ
with M ′ a spin manifold with nonnegative Yamabe invariant, and
M ′ → Bπ a map (not necessarily an isomorphism on π1). Here
ko∗ is the homology theory corresponding to the connective real
K-theory spectrum.

2. If, as in Example 2.4(2), M is oriented with fundamental group π,
and the universal cover of M is not spin, then Y (M) ≥ 0 if and
only if the class of M → Bπ in Hn(Bπ, Z) lies in the subgroup
H≥0

n (Bπ, Z) generated by classes of M ′ → Bπ with M ′ an oriented
manifold with nonnegative Yamabe invariant, and M ′ → Bπ a
map (not necessarily an isomorphism on π1).

3. If, as in Example 2.4(3), M is non-orientable with fundamen-
tal group π and first Stiefel-Whitney class w : π → Z/2, and if
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the universal cover of M is not spin, then Y (M) ≥ 0 if and
only if the class of M → Bπ in Hn(Bπ, Zw) lies in the subgroup
H≥0

n (Bπ, Zw) generated by classes of M ′ → Bπ, with M ′ a man-
ifold with nonnegative Yamabe invariant, M ′ → Bπ a map, and
w1(M ′) factoring through w.

Sketch of proof. It was proved by Jung and Stolz (see [24], [25],
and [26]) that the kernel of the map ΩSpin

n (Bπ) → kon(Bπ) in Case
1, the kernel of the map Ωn(Bπ) → Hn(Bπ, Z) in Case 2, and the
kernel of the map Ωn(Bπ; w) → Hn(Bπ, Zw) (the edge homomorphism
of the spectral sequence of Theorem 2.5) in Case 3 are represented by
manifolds with positive scalar curvature. Thus the result immediately
follows from Theorem 2.6. q.e.d.

This is now enough machinery to deal with “easy” torsion-free fun-
damental groups:

Theorem 2.8. Let Mn be a closed connected n-manifold with a
fundamental group π which is either free abelian or of homological di-
mension ≤ 4. (This includes the fundamental groups of aspherical 2-
manifolds, 3-manifolds, and 4-manifolds.) Assume either that M is spin
or that its universal cover is non-spin. In the spin case, also assume
that the Atiyah-Hirzebruch spectral sequence Hp(Bπ, koq) ⇒ ko∗(Bπ)
collapses. (This is automatic if π is of homological dimension ≤ 3.)
Then if n ≥ 5, M has nonnegative Yamabe invariant.

Proof. By Theorem 2.7, it’s enough to show that for each of these
groups π, H≥0

n (Bπ, Zw) exhausts Hn(Bπ, Zw) for each w : π → Z/2,
trivial or not, and ko≥0

n (Bπ) exhausts kon(Bπ) for n ≥ 5. The oriented
non-spin case is easy, since for π free abelian and any n, Hn(Bπ, Z)
is generated additively by the classes of tori, which carry flat metrics
and thus have Yamabe invariant zero, whereas if π has homological di-
mension ≤ 4, Hn(Bπ, Z) vanishes for n ≥ 5. In the non-oriented case,
if π has homological dimension ≤ 4, it is still true that Hn(Bπ, Zw)
vanishes for n ≥ 5, for any twist w. If π is free abelian and w is
nonzero, then we can always split π as π′ × Z, where w is trivial on
π′ and nontrivial on the Z factor. Since H∗(BZ, Zw) is nonzero only
in degree 0 when w �= 0, H∗(Bπ, Zw) splits by the Künneth Theorem
as H∗(Bπ′, Z) ⊗ H0(BZ, Zw). Since H∗(Bπ′, Z) is generated by tori,
H∗(Bπ, Zw) is generated by products with a torus factor, and the non-
oriented result follows by Proposition 3.2. So consider the spin case.
When π is free abelian, the Atiyah-Hirzebruch spectral sequence col-
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lapses and

kon(Bπ) ∼=
⊕

p+q=n

Hp(Bπ, Z) ⊗ koq.

Thus this group is generated by the classes of f : T p×N q → Bπ, where
the map f factors through T p. Since, as pointed out in [20], ko∗ is
generated by the classes of manifolds of nonnegative Yamabe invariant,
we have the desired result. The other cases are similar but easier. q.e.d.

Most of this paper will now deal with the opposite extreme, the case
where π1(M) is finite. In this case, the following results reduce us to
the case where the fundamental group is a p-group.

Lemma 2.9. Suppose Mn is a closed connected manifold with Y (M)
≥ 0, and suppose M̃ is a finite covering of M . Then Y (M̃) ≥ 0.

Proof. Let m be the number of sheets of the covering M̃ → M . By
assumption, given ε > 0, we can choose a conformal class C on M with
Y (M, C) ≥ −ε. That means there is a metric g on M with unit volume
and constant scalar curvature s ≥ −ε. Lift the metric g up to M̃ .
That gives a metric on M̃ with volume m and scalar curvature s ≥ −ε.
Rescaling, we get a metric on M̃ with unit volume and scalar curvature
≥ −m− 2

n ε. This being true for all ε > 0, it follows that Y (M̃) ≥ 0.
q.e.d.

Proposition 2.10. If π1 and π2 are groups and if ϕ : π1 → π2 is a
group homomorphism, then ϕ sends H≥0

n (Bπ1, Z) to H≥0
n (Bπ2, Z) and

ko≥0
n (Bπ1) to ko≥0

n (Bπ2). It also sends H≥0
n (Bπ1, Zw) to H≥0

n (Bπ2, Zw)
when the diagram

π1 ϕ
��

w

����
��

��
��

π2

w����
��

��
��

Z/2

commutes. If π1 is a subgroup of π2 of finite index, then the transfer
map on Hn or kon sends H≥0

n (Bπ2, Z) to H≥0
n (Bπ1, Z), H≥0

n (Bπ2, Zw)
to H≥0

n (Bπ1, Zw|π1
), and ko≥0

n (Bπ2) to ko≥0
n (Bπ1).

Proof. The first statement is obvious from the definitions in The-
orem 2.7. The second statement follows from Lemma 2.9, since the
transfer is realized geometrically via coverings. q.e.d.
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Theorem 2.11 (Kwasik, Schultz [14]). Let Mn be a closed con-
nected n-manifold with finite fundamental group π. Assume either that
M is spin or that its universal cover is non-spin. For each prime p, let
ip : πp ↪→ π be the inclusion of a Sylow p-subgroup of π, and let

tp : Hn(Bπ, Z) → Hn(Bπp, Z),
tp : Hn(Bπ, Zw) → Hn(Bπp, Zw◦ip),

tp : kon(Bπ) → kon(Bπp)

be the transfer maps. Then M has nonnegative Yamabe invariant if and
only if tp([M ]) lies in the subgroup H≥0

n (Bπp, Z) in the oriented non-
spin case, or in ko≥0

n (Bπ) in the spin case, for each p dividing the order
of π. In the non-orientable non-spin case, M has nonnegative Yamabe
invariant if and only if t2([M ]) lies in H≥0

n (Bπp, Z) for all odd primes
dividing |π| and in H≥0

n (Bπ2, Zw◦i2) (with respect to the restriction of
the twist w).

Proof. The proof is almost word-for-word as in [14], but we review
the argument. The “only if” statement is contained in Proposition 2.10.
As for the “if” statement, let A = H̃n(Bπ, Z), H̃n(Bπ, Zw), or k̃on(Bπ),
and let B be the subgroup H̃≥0

n (Bπ, Z), H̃≥0
n (Bπ, Zw), or k̃o≥0

n (Bπ).
Similarly let Ap = H̃n(Bπp, Z), H̃n(Bπp, Zw◦tp), or k̃on(Bπp), and let
Bp be the subgroup H̃≥0

n (Bπp, Z), H̃≥0
n (Bπp, Zw◦tp), or k̃o≥0

n (Bπp). (We
can work with reduced homology since H∗(pt) = H≥0∗ (pt) and ko∗(pt) =
ko≥0∗ (pt).) Note that A is a finite group and B is a subgroup; we are
trying to show that an element [M ] of A lies in B if tp([M ]) ∈ Bp for all
p. Now αp = ip ◦ tp is an endomorphism of A which is an isomorphism
on A(p), since [π : πp] is a unit modulo p. If tp([M ]) ∈ Bp for all p, then
αp([M ]) ∈ ip(Bp) ⊆ B for all p, by Proposition 2.10. So that means the
image of [M ] in A(p) lies in B(p) for all p, and thus [M ] lies in B. q.e.d.

Theorem 2.12 (Kwasik, Schultz [14]). Let π be a finite group,
and let

e : Ω∞Σ∞Bπ+ → Ω∞Σ∞Bπ+

be an idempotent in the stable homotopy category (giving a stable split-
ting of Bπ). Then e maps H≥0

n (Bπ, Z), H≥0
n (Bπ, Zw), and ko≥0

n (Bπ)
into themselves.

Sketch of proof. As pointed out in [14], the proof of the Segal
Conjecture implies that the stable splittings of Bπ are essentially linear
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combinations of products of transfer maps and maps induced by group
homomorphisms, so the result then follows from Proposition 2.10. q.e.d.

3. Analytic tools

In this section we present a number of analytic results that can be
used to study the classes of manifolds with positive scalar curvature or
with nonnegative Yamabe invariant. First we need a basic characteri-
zation of manifolds in the latter class.

Proposition 3.1. Let Mn be a closed n-manifold. Then:

(i) If M does not admit a metric of positive scalar curvature, then

Y (M) = − inf
g

(∫
M

|sg|n
2 dvolg

) 2
n

.(3.1)

Here the infimum is taken over all Riemannian metrics g on M ,
and sg denotes the scalar curvature of g.

(ii) Suppose that for each ε > 0, there exists a metric g on M with
volume 1 and |sg| < ε. Then Y (M) ≥ 0. The converse is true if
n ≥ 3 or if Y (M) = 0.

Proof. Statement (i) is Proposition 1 in [16]. As for (ii), suppose
the condition is satisfied. If Y (M) > 0, then we have nothing to prove,
and if not, (i) shows that Y (M) ≥ 0. In the converse direction, suppose
Y (M) ≥ 0. If n ≥ 3 and if Y (M) > 0, then by a theorem of Kazdan
and Warner [11], M admits a metric g with sg ≡ 0, and obviously we
may rescale g to have volume 1 without changing this condition. If, on
the other hand, Y (M) = 0, that means, by definition of the Yamabe
invariant (recall Equation (1.1)), that for all ε > 0, there exists a metric
g on M with volume 1 and sg ≤ 0 constant and > −ε. So again the
condition of (ii) is satisfied. q.e.d.

Another basic fact is the following:

Proposition 3.2. Suppose Mm and Nn are closed manifolds, n =
dim N ≥ 1, and Y (N) ≥ 0. Then Y (M × N) ≥ 0.

Proof. If Y (N) > 0, then N admits a metric of positive scalar
curvature and so does M × N , so Y (M × N) > 0. If Y (N) = 0, then
by Proposition 3.1, given ε > 0, there exists a metric gε on N with
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volume 1 and |sg| < ε. Choose any metric g′ on M with volume 1. If
we give M ×N the product metric gε × tg′ (where tg′ means g′ rescaled
by multiplying all distances by t), then this product metric has scalar
curvature t−2sg′ + sgε and volume tm. So the integral in (3.1) (with
M × N in place of M) is∫∫ ∣∣t−2sg′ + sgε

∣∣n+m
2 dvoltg′dvolε ≤ tm

∣∣Ct−2 + ε
∣∣n+m

2 ,(3.2)

for some constant C (the maximum of |sg′ | over M) independent of t
and ε. So the idea is to take t large, and then given t, to take ε of order
t−2. In Equation (3.2), we see that the integral on the left-hand side is
bounded by a constant times

tm
(
t−2
)n+m

2 = t−n,

which goes to zero as t → ∞. Thus by Proposition 3.1, the result
follows. q.e.d.

Next, we discuss the extension of the minimal hypersurface tech-
nique of [28] to the study of nonnegative Yamabe invariant. Suppose
Mn is a closed manifold with metric g, and suppose Hn−1 is a stable
minimal hypersurface in M . In [28], it was shown that if sg > 0, then
Y (H, [g]) > 0, where g denotes the induced metric on H and [g] is its
conformal class. In particular, there is a metric in [g] with positive
scalar curvature, and this can be used to rule out positive scalar cur-
vature metrics on many non-simply connected manifolds. Now it is not
true that just because Y (M) ≥ 0, then Y (H) ≥ 0, since by Propo-
sition 3.2, we can get a counterexample by taking M = H × S1 and
Y (H) < 0 (say with n − 1 = 2 or 4). However, the same estimates
used in the proof of Theorem in [28] show that if sg ≥ K, where K is a
constant, then because the second variation of the (n − 1)-dimensional
volume of H is positive, one has∫

H

(s − K)φ2

2
+
∫

H
|∇φ|2 > 0(3.3)

for all functions φ ∈ C∞(H) not vanishing identically. (Here s, the
scalar curvature of H, and ∇ are to be computed with respect to the
induced metric g.) Assume n > 3 and consider the “conformal Lapla-
cian”

LH =
4(n − 2)
n − 3

∆H + s
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of H, where ∆H is the usual (nonnegative) Laplacian. (Recall that the
dimension of H is n − 1, not n.) Then for φ as above we have

1
2
〈LHφ, φ〉(3.4)

=
2(n − 2)
n − 3

∫
H
|∇φ|2 +

∫
H

sφ2

2

=
n − 1
n − 3

∫
H
|∇φ|2 +

(∫
H

(s − K)φ2

2
+
∫

H
|∇φ|2

)
+

K

2

∫
H

φ2

>
K

2

∫
H

φ2.

Note the use of Equation (3.3) at the last step. This implies that if K
is close to 0, then the conformal Laplacian LH is not too negative, and
thus Y (H, g) is not too negative, provided that the (n− 1)-dimensional
volume of H is not too large.

If n = 3, things are even easier: we instead take φ ≡ 1 in Equa-
tion (3.3) and apply Gauss-Bonnet. These arguments thus prove the
following two results:

Theorem 3.3. Let Mn be a closed manifold with metric g, and
suppose Hn−1 is a stable minimal hypersurface in M . Also suppose that
the metric g is scalar-flat. Then Y (H) ≥ 0.

Proof. Immediate from the above estimates. q.e.d.

Theorem 3.4. Let M2 be a closed oriented surface of genus g >
1, and let N3 = S1 × M2. Then Y (N) = 0 by Proposition 3.2. (It
cannot be strictly positive, by [9], Theorem 8.1, for example.) Thus
there is a sequence gi of metrics on N3 with volume 1 and constant
scalar curvatures si, with the scalar curvatures tending to 0 as i → ∞.
On the other hand, for any such sequence of metrics, diam(N, gi) → ∞.

Proof. Choose the metrics gi as in the statement of the theorem.
Choose minimal submanifolds Mi which are absolutely area-minimizing
in the homology class [M2] ∈ H2(S1 × M2, Z) for the metric gi. By
inequality (3.3) with φ ≡ 1,

lim inf
i→∞

∫
Mi

(si − si) dvolgi
≥ 0.(3.5)

On the other hand, each Mi must be a surface of genus > 1, since it
represents a nontrivial homology class in the infinite cyclic cover R×M2,
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while each mapping of a sphere into this space is null-homotopic and
each mapping of a torus into this space factors through a circle (since
each abelian subgroup of π1(M) is cyclic) and is thus trivial in H2. So
by Gauss-Bonnet,

∫
Mi

sidvolgi
≤ −4π. Comparing this with Equation

(3.5), we see the area of Mi with respect to gi must tend to ∞ as
i → ∞, while the average value of si must go to 0, and in particular,
diam(Mi, gi) → ∞. This in turn means diam gi → ∞, since otherwise
we could choose representatives for the homology class [M ] in (N, gi)
with bounded diameters, a contradiction. q.e.d.

The next two results are the most significant in this paper; they will
be used in the next section to deal with “Toda brackets,” among the
most intractable of bordism classes.

Theorem 3.5. Let M0 and M1 be closed manifolds, not necessar-
ily connected, that admit metrics of positive scalar curvature. Suppose
M0 = ∂W0 and M1 = ∂W1 for some compact manifolds with boundary,
W0 and W1. Form a new manifold

M = (W0 × M1) ∪M0×M1 (M0 × W1)

of dimension n0 + n1 + 1, where n0 and n1 are the dimensions of M0

and M1. Then M admits a metric of positive scalar curvature.

Proof. We start by choosing metrics of positive scalar curvature, g0

and g1, on M0 and M1, respectively. Extend them to metrics g0 and
g1 on W0 and W1, which are product metrics in neighborhoods of the
boundaries. The trick is to write M as a union of four pieces (not two)
as follows:

M = (W0 × M1) ∪M0×M1 (T0 × M1)
∪M0×M1 (M0 × T1) ∪M0×M1 (M0 × W1) ,

where the “tubes” T0 and T1 are (as smooth manifolds) M0 × I and
M1 × I, respectively. Call the pieces here A0, T0 × M1, M0 × T1, and
A1 in that order. Since g0 and g1 have positive scalar curvature, we
can choose (very small) constants t0 > 0 and t1 > 0 so that the metric
g0 × t1g1 on A0 and the metric t0g0 × g1 on A1 have positive scalar
curvature. Now all we have to do is choose the metric gT0 on T0 to
interpolate between t0g0 and g0 and the metric gT1 on T1 to interpolate
between t1g1 and g1. If the tubes T0 and T1 are “very long,” it is
possible to do this so that T0 and T1 have positive scalar curvature, by
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the “Isotopy implies concordance” theorem, [8], Lemma 3. (In fact, in
this case, one can write down an explicit warped product metric that
does the trick.) Then all the metrics fit together to give a metric of
positive scalar curvature on M . q.e.d.

The next theorem is quite similar, but considerably more delicate.

Theorem 3.6. Let M0 and M1 be closed manifolds, not necessar-
ily connected, each with nonnegative Yamabe invariant. (When Mi is
disconnected, we mean that each component is required to have nonneg-
ative Yamabe invariant.) Suppose M0 = ∂W0 and M1 = ∂W1 for some
compact manifolds with boundary, W0 and W1. Form a new manifold

M = (W0 × M1) ∪M0×M1 (M0 × W1)

of dimension n0 + n1 + 1, where n0 and n1 are the dimensions of M0

and M1. Then, excluding the case where Y (M0) = 0, n1 = 2, and
Y (M1) > 0, it follows that Y (M) ≥ 0.

Proof. We follow the same approach as in the proof of Theorem 3.5.
If Y (M0) and Y (M1) are both strictly positive, we’re done by Theo-
rem 3.5, so we may assume at least one of M0 and M1 has Y = 0. Then
we’re excluding the case where the other manifold is a disjoint union
of copies of S2 or RP2, so by Proposition 3.1, we may assume both
manifolds have metrics of unit volume which are almost scalar-flat. By
Proposition 3.1, it is enough to show that M has a metric for which the
integral in (3.1) is as small as one likes. We will estimate the integral
separately over the four pieces of M (as in the last proof) and add the
results. Fix ε > 0 and choose metric g0 and g1 on M0 and M1, respec-
tively, each with volume 1 and with small constant scalar curvatures, s0

and s1, respectively, with |s0|, |s1| < ε. Extend g0 and g1 to metrics g0

and g1 on W0 and W1, which are product metrics in neighborhoods of
the boundaries. Then the scalar curvature of the metric g0× t1g1 on A0

is sg0
+ t−2

1 s1 and the scalar curvature of the metric t0g0 × g1 on A1 is
sg1

+t−2
0 s0. (The constants t0 and t1 will be chosen later.) Furthermore,

the volumes of these metrics are vol(g0) × tn1
1 for A0 and vol(g1) × tn0

0

for A1. Letting t0 and t1 go to 0, we see there are constants c0 > 0 and
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c1 > 0 with

∫∫
A0

∣∣sg0
+ t−2

1 s1

∣∣n0+n1+1
2 dvolg0

dvolt1g1 ≤ c0t
−(n0+n1+1)
1 ε

n0+n1+1
2 tn1

1 ,

(3.6)

∫∫
A1

∣∣sg1
+ t−2

0 s0

∣∣n0+n1+1
2 dvolt0g0dvolg1

≤ c1t
−(n0+n1+1)
0 ε

n0+n1+1
2 tn0

0 .

(3.7)

The right-hand sides of (3.6) and (3.7) can be rewritten as

c0t
−(n0+1)
1 ε

n0+n1+1
2 = c0ε

n1/2

(
ε

t21

)n0+1
2

and

c1t
−(n1+1)
0 ε

n0+n1+1
2 = c1ε

n0/2

(
ε

t20

)n1+1
2

,

respectively.
Next we need to deal with the tubes T0 and T1. We give these

warped product metrics of the form fi(x)gi × gR, i = 0, 1, where gR is
the standard metric on the line, and x is the parameter along the length
of the tube. The function fi will be chosen to interpolate between 0 and
ti. If we write fi = exp(−ui), we need to choose ui as in the following
picture, so that the graph has vanishing first and second derivatives at
both ends:

0 l
0

log(1/ti)

x

u(x)

Here l, to be taken large, is the length of the tube. Since ti < 1 and
vol(gi) = 1, the volume of Ti will be bounded by l, as will the volume
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of T0 ×M1 or M0 ×T1, when we take the product with the metric g1 on
M1 or g0 on M0. The scalar curvature of Ti is given by Equation (7.35)
on p. 157 of [9], which gives:

1
f2

i

si − ni(ni − 1)
f2

i

(fi
′)2 − 2ni

fi
fi

′′.

Since f = exp(−ui), fi
′

fi
= −ui

′ and fi
′′

fi
= (ui

′)2 − ui
′′. Now we can

choose ui so that ui
′ is bounded by a constant times log(1/ti)

l and ui
′′ is

bounded by a constant times log(1/ti)
l2

. Thus the scalar curvature of Ti

is bounded in absolute value by

ε

t2i
+ di

(log(1/ti))
2

l2

for some constant di. Thus the integrals over T0×M1 and M0×T1 give:∫∫
T0×M1

|sT0 + s1|
n0+n1+1

2 dvolT0dvolg1(3.8)

≤ l

∣∣∣∣∣ε +
ε

t20
+ d0

(log(1/t0))
2

l2

∣∣∣∣∣
n0+n1+1

2

,∫∫
M0×T1

|sg0 + sT1 |
n0+n1+1

2 dvolg0dvolT1(3.9)

≤ l

∣∣∣∣∣ε +
ε

t21
+ d1

(log(1/t1))
2

l2

∣∣∣∣∣
n0+n1+1

2

.

Now all we have to do is choose the parameters t0, ε, and l to make
all of (3.6), (3.7), (3.8), and (3.9) simultaneously small. We do this as
follows. First choose t0 and t1 very small. Then choose l large enough
so that the terms

l

∣∣∣∣∣(log(1/ti))
2

l2

∣∣∣∣∣
n0+n1+1

2

=
(log(1/ti))

n0+n1+1

ln0+n1

are small. Then finally choose ε/t2i extremely small so that

l

(
ε

t2i

)n0+n1+1
2

is also small. That does it. q.e.d.



192 b. botvinnik & j. rosenberg

4. Applications to non-negativity of the Yamabe invariant

We’re now ready for the first main result of this paper.

Theorem 4.1. Let Mn be a closed, connected, orientable n-mani-
fold with abelian fundamental group, with non-spin universal cover, and
with n ≥ 5. Then M has nonnegative Yamabe invariant.

Proof. By Theorem 2.7, it’s enough to show that H≥0∗ (Bπ1(M), Z)
exhausts the image in H∗(Bπ1(M), Z) of Ω∗(Bπ1(M)). Write π1(M)
as Zk × π, with π finite abelian. Since the homology of a free abelian
group is torsion free, the Künneth Theorem gives

Hn(Bπ1(M), Z) ∼=
⊕

p+q=n

Hp(BZk, Z) ⊗ Hq(Bπ, Z),

and so the homology of Bπ1(M) is generated by classes of products
of tori with homology classes of Bπ. So by Proposition 3.2, we only
have to show that H≥0∗ (Bπ, Z) exhausts the image in H∗(Bπ, Z) of
Ω∗(Bπ1(M)). In other words, we are reduced to the case of finite abelian
groups. By Theorem 2.11, we can further assume that π1(M) is a finite
abelian p-group for some prime p. We will come back to finite abelian
p-groups after a short digression. q.e.d.

Lemma 4.2. Let π be a cyclic group of prime power order pk. Then
each class in Hn(Bπ, Z) is represented by an oriented manifold with
nonnegative Yamabe invariant, and if n > 1, by an oriented manifold
with positive scalar curvature.

Proof. Note that H2n+1(Bπ, Z) is cyclic of order pk, with a generator
represented by the lens space S2n+1/π → Bπ, and H2n(Bπ, Z) vanishes
for n > 0. Since the lens space has positive scalar curvature except in
the exceptional case n = 0, when it has a flat metric, the statement is
immediate. q.e.d.

Proof of Theorem 4.1, continued. Recall that we have already re-
duced to the case where the fundamental group π of M is a finite abelian
p-group, hence a finite product of cyclic p-groups. We have to deal with
the Tor terms in the Künneth Theorem, and also consider the possibility
that the Thom map (sending the class of an oriented manifold to its ho-
mology fundamental class) Ω∗(Bπ) → H∗(Bπ, Z) may not be surjective,
and may not be split onto its image. Thus the argument will require
some care. We prove the theorem by induction on the rank (the number
of cyclic factors in a product decomposition) of π. If the rank is 1, π
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is cyclic and we are done by Lemma 4.2. So assume the result is true
for p-groups of smaller rank, and write π = π′ × Z/pk, where we may
assume that pk is less than or equal to the order of every cyclic factor of
π′, and thus less than or equal to the order of every cyclic factor of the
homology of Bπ′. First assume that p = 2. This case is easier because
MSO localized at 2 is a direct sum of Eilenberg-Mac Lane spectra (see
[18] and [33], or [23] for a review of the literature), and thus H∗(Bπ, Z)
can be identified with a direct summand in Ω∗(Bπ), and similarly for
π′. By inductive hypothesis, each cyclic factor (say of order 2s, s ≥ k)
in Hj(Bπ′, Z) is generated by the class of a manifold M ′ → Bπ′, where
M ′ has nonnegative Yamabe invariant. If n − j is odd, then we get a
corresponding tensor term in the Künneth formula for the homology of
Bπ, and it is represented by a product of M ′ with either S1 or a lens
space, and so it is represented by a manifold with nonnegative Yamabe
invariant. If n − j ≥ 2 is even, there is a contribution to Hn(Bπ, Z) of
the form

TorZ

(
Hj(Bπ′, Z), Hn−j−1(BZ/2k, Z)

)
= TorZ(Z/2s, Z/2k),

which we need to represent by a manifold of nonnegative Yamabe in-
variant. Since Tor1Z is left exact and TorZ(Z/2s, Z/2k) is cyclic of order
2k, the map

TorZ(Z/2k, Z/2k) → TorZ(Z/2s, Z/2k)

induced by the inclusion Z/2k ↪→ Z/2s is an isomorphism, so without
loss of generality, we may replace M ′ by something representing a mul-
tiple of its homology class, and assume s = k. Choose M ′′ → BZ/2k,
with M ′′ either S1 or a lens space, of dimension n − j − 1, generating
Hn−j−1(BZ/2k, Z). We may assume the bordism classes of M ′ → Bπ′

and M ′′ → BZ/2k both have order 2k. Then their Tor product in the
homology of Bπ may be represented by the cobordism Massey product
〈M ′, 2k, M ′′〉 (see [1]), or in other words, by a Toda bracket construction
as in Theorem 3.6. More precisely, choose W0 bounding 2kM ′ over Bπ′

and W1 bounding 2kM ′′ over BZ/2k, and glue together W0 × M ′′ and
M ′ ×W1 along their common boundary. By Theorem 3.6, the resulting
manifold is represented by a manifold with nonnegative Yamabe invari-
ant. (Note that the exceptional case of that theorem never arises.) This
completes the inductive step.

Now consider the case where p is odd. In this case, it’s important
to point out that the inductive hypothesis is simply that the image of
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Ω∗(Bπ′) → H∗(Bπ′, Z) is represented by manifolds with nonnegative
Yamabe invariant, as this map is not usually surjective. However, in
this case we have one additional tool in our arsenal, namely Landwe-
ber’s Künneth Theorem for oriented bordism [15]. More precisely, we
apply Theorem A of [15], which applies since H̃∗(BZ/pk, Z) consists
entirely of odd torsion and the Atiyah-Hirzebruch spectral sequence
H̃∗(BZ/pk, Ω∗) ⇒ Ω̃∗(BZ/pk) collapses for dimensional reasons. (Ω∗
localized at p is free over Z(p) and concentrated in degrees divisible
by 4, and H̃∗

(
BZ/pk, Z(p)

)
is nonzero only in odd degrees.) Note also

that the proof of Landweber’s Theorem shows that Ω∗(BZ/pk)(p) has
homological dimension 1 over Ω∗(pt)(p). Now observe that we have a
commutative diagram with exact rows:

0 �� Ω∗(Bπ′)⊗Ω∗Ω∗(BZ/pk) ��

α

��

Ω∗(Bπ) ��

β

��

Tor1Ω∗
(
Ω∗(Bπ′),Ω∗(BZ/pk)

)
��

γ

��

0

0 �� H∗(Bπ′)⊗ZH∗(BZ/pk) �� H∗(Bπ) �� TorZ

(
H∗(Bπ′),H∗(BZ/pk)

)
�� 0,

(4.1)

in which the vertical arrows are induced by the natural transforma-
tion Ω∗ → H∗. Note that the map Ω∗(BZ/pk) → H∗(BZ/pk) is sur-
jective, and denote the image of Ω∗(Bπ′) → H∗(Bπ′) by RH∗(Bπ′)
(for “representable homology”). The image of α is then obviously
RH∗(Bπ′) ⊗Z H∗(BZ/pk); classes here are represented by products of
manifolds of nonnegative Yamabe invariant (because of the inductive
hypothesis), so these have nonnegative Yamabe invariant. The image
of β is by definition RH∗(Bπ), whereas the image of γ is evidently
contained in TorZ

(
RH∗(Bπ′), H∗(BZ/pk)

)
. We need to examine the

structure of Tor1Ω∗
(
Ω∗(Bπ′), Ω∗(BZ/pk)

)
. For this we use an explicit

free Ω∗-resolution of Ω̃∗(BZ/pk) found in [6, §50], at least in the case
k = 1; this resolution is also a consequence of [15, Lemma 5.3]. Namely,
if z2j−1 is the class of the standard lens space L2j−1(pk; 1, . . . , 1) in
Ω̃∗(BZ/pk), then the z2j−1 generate Ω̃∗(BZ/pk) as an Ω∗-module, and
satisfy relations of the form

pkz2j−1 + xj
4z2j−5 + xj

8z2j−9 + · · · = 0,

where xj
4� ∈ Ω4�. Then there is an exact sequence of graded Ω∗-modules

0 →
∞⊕

j=1

Ω∗ε2j−1
∂−→

∞⊕
j=1

Ω∗δ2j−1
ε−→ Ω̃∗(BZ/pk) → 0,
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with the ε2j−1 and δ2j−1 generators (of degree 2j − 1) of graded free
modules, and with ε(δ2j−1) = z2j−1, and with

∂(ε2j−1) = pkδ2j−1 + xj
4δ2j−5 + xj

8δ2j−9 + · · · .

From this we can read off Tor1Ω∗
(
Ω∗(Bπ′), Ω∗(BZ/pk)

)
; in total degree

2
, it can be identified with

ker

 �⊕
j=1

Ω2(�−j)+1(Bπ′)ε2j−1
id⊗∂−−−→

�⊕
j=1

Ω2(�−j)+1(Bπ′)δ2j−1

(4.2)

∼=
Y ∈

�⊕
j=1

Ω2j−1(Bπ′) : AY = 0

 ,

where (indexing elements of Ω2j−1(Bπ′) by their degrees) the lower-
triangular system AY = 0 has the explicit form

pk 0 0 . . .
∗ pk 0 . . .
∗ ∗ pk . . .
...

...
...

. . .




y1

y5

y9
...

=


0
0
0
...

 ,


pk 0 0 . . .
∗ pk 0 . . .
∗ ∗ pk . . .
...

...
...

. . .




y3

y7

y11
...

=


0
0
0
...

,

the ∗’s indicating elements of the torsion-free part of Ω∗. Under the
map Ω∗ → H∗, all the xj

4�’s go to zero, so the lower-triangular matrix
A maps to the scalar matrix pkI.

Now we can write down generators for the Tor term in the upper
right in (4.1). In the language of [1, §5.10], they are “matrix cobordism
Massey products” 〈Y, At, Z〉, where Y is a row vector in Ω∗(Bπ′) (the
transpose of the column vector in (4.2)) and Z is a column vector in
Ω∗(BZ/pk). We can explicitly construct a representative for such a class
as a Toda bracket. To give a concrete example, consider the generator
of Tor1Ω∗(Ω∗(BZ/3), Ω∗(BZ/3)) in total degree 6 (thus contributing to
Ω7(BZ/3 × BZ/3)) corresponding to the relation x4z1 + 3z5 = 0. The
classes z1 and z5 in Ω∗(BZ/3) are represented by lens spaces L1 = S1

and L5, and there is a simply connected 4-manifold X4 representing x4.
Choose N2 (a “pair of pants”) bounding 3L1 over BZ/3 and a bordism
W 6 between −X4 × L1 and 3L5 over BZ/3. Then our Toda bracket is
constructed in four pieces by gluing first L5 × N2, then W 6 × L1, then
L1 × W 6, and then N2 × L5. (See Figure 1.)
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L5 × N2 W 6 × L1 L1 × W 6 N2 × L5

3L5 × L1 L1 × X4 × L1 L1 × 3L1

Figure 1: Construction of a matrix Toda bracket.

In the notation of [1], this is the matrix Toda bracket〈(
z1 z5

)
,

(
3 x4

0 3

)
,

(
z5

z1

)〉
.

The general case works essentially the same way — the matrix Toda
bracket is assembled out of products, glued together along their bound-
aries, where at least one of the factors is either a generator of Ω∗(Bπ′),
which by inductive hypothesis has nonnegative Yamabe invariant, or
else a lens space generator of Ω∗(BZ/pk), which also has nonnegative
Yamabe invariant. Now invoke Theorem 3.6. Again, the exceptional
case of that Theorem never arises in our context. So this shows that
the image of γ is represented by manifolds of nonnegative Yamabe in-
variant. Chasing diagram (4.1) now shows that RH∗(Bπ) is represented
by manifolds with nonnegative Yamabe invariant, which completes the
inductive step for the case p odd. q.e.d.

Corollary 4.3. Let Mn be a closed, connected, oriented n-manifold
with finite fundamental group π, with non-spin universal cover, and with
n ≥ 5. Also assume all Sylow subgroups of π are abelian. Then M has
nonnegative Yamabe invariant.

Proof. This is immediate from Theorem 4.1 and Theorem 2.11.
q.e.d.

In the odd order case, we can carry this over to the spin case as well:

Theorem 4.4. Let Mn be a closed, connected, spin n-manifold with
finite fundamental group π of odd order, and with n ≥ 5. Also assume
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all Sylow subgroups of π are abelian. Then M has nonnegative Yamabe
invariant.

Proof. By Petean’s theorem [20], this is true when π is trivial. As
before, it’s enough to consider the case of an abelian p-group, p odd. But
for π of odd order, the natural map Ω̃Spin∗(Bπ) → Ω̃∗(Bπ) is an isomor-
phism, since the “forget spin structure” map of spectra MSpin → MSO
is an equivalence after localizing at p (see [18]). We prove the result
by induction on the rank of π. Thus write π = π′ × Z/pk, and as-
sume by inductive hypothesis that the theorem is true for π′. Since
Ω̃Spin∗(Bπ′) → Ω̃∗(Bπ′) and Ω̃Spin∗(BZ/pk) → Ω̃∗(BZ/pk) are isomor-
phisms, we have by Landweber’s Theorem [15] an exact sequence

(4.3) 0 → ΩSpin
∗ (Bπ′) ⊗

ΩSpin
∗

ΩSpin
∗ (BZ/pk) → ΩSpin

∗ (Bπ)

→ Tor1
ΩSpin

∗

(
ΩSpin
∗ (Bπ′), ΩSpin

∗ (BZ/pk)
)→ 0.

By inductive hypothesis, each element of ΩSpin
s (Bπ′) is represented by

a map M ′ → Bπ′, with M ′ a spin s-manifold with nonnegative Yamabe
invariant, and similarly each element of ΩSpin

t (BZ/pk) is represented
by a map M ′′ → BZ/pk, with M ′′ a spin t-manifold with nonnegative
Yamabe invariant. Then [M ′ → Bπ′] ⊗ [M ′′ → BZ/pk] in the ten-
sor term on the left side of (4.3) is represented by M ′ × M ′′ → Bπ,
which has nonnegative Yamabe invariant. Furthermore, the Tor term
Tor1

ΩSpin
∗

([M ′ → Bπ′], [M ′′ → BZ/pk]) on the right of (4.3) is generated
by matrix Toda brackets, just as in the proof of Theorem 4.1. As before,
it follows from Theorem 3.6 that these Toda brackets have nonnegative
Yamabe invariant, and this completes the inductive step. q.e.d.

5. Applications to positive scalar curvature

It turns out that the method of proof of Theorem 4.1, if we replace
Theorem 3.6 by Theorem 3.5, gives substantial results on the positive
scalar curvature problem for manifolds with finite abelian fundamental
group for which the universal cover is non-spin, since all of the ho-
mology generators constructed above have positive scalar curvature by
Theorem 3.5, except for those involving Toda brackets and products
of one-dimensional homology classes. We proceed to formalize this as
follows:
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Definition 5.1. Let π be a finitely generated abelian group. Call
a class in Hn(Bπ, Z) toral if it is represented by a map Tn → Bπ. Note
that any such map is determined up to homotopy by the associated
map Zn → π on fundamental groups, which we may assume without
loss of generality to have image of rank n ≤ r, where r = rankπ, that
is, the minimal number of cyclic factors when we write π as a direct
sum of cyclic groups, so toral classes only exist in degrees n ≤ r. Let
Htoral

n (Bπ, Z) ⊆ Hn(Bπ, Z) be the subgroup generated by the toral
classes, and call this the toral subgroup.

Proposition 5.2. Let π be an elementary abelian p-group of rank
r, that is, (Z/p)r. Then for all n ≥ 1, Hn(Bπ, Z) is also elementary
abelian, of rank equal to

n∑
j=1

(−1)n−j

(
j + r − 1

r − 1

)
.

The toral subgroup Htoral
n (Bπ, Z) is a direct summand in Hn(Bπ, Z), of

rank the binomial coefficient
(

r
n

)
. (Note that this vanishes for n > r.)

Proof. The homology groups Hn(BZ/p, Z) vanish for n > 0 even
and are Z/p for n odd. So by iterated applications of the Künneth
Theorem, all integral homology groups of π (other than H0, which is
Z), are elementary abelian p-groups. Consider the Poincaré series

P (r, t) = 1 +
∞∑

n=1

tn dimZ/p Hn(B(Z/p)r, Z).

Then

P (1, t) = 1 + t + t3 + t5 + · · · = 1 +
t

1 − t2
=

1 + t − t2

1 − t2
.(5.1)

The Künneth Theorem gives the recursion relation

P (r + 1, t) = P (r, t)P (1, t) + t (P (r, t) − 1) (P (1, t) − 1) ,(5.2)

where the first term comes from the “tensor terms” and the second term
comes from the “Tor terms.” Putting together Equations (5.1) and (5.2)
yields by induction on r the formula

P (r, t) =
1 + t(1 − t)r

(1 − t)r(1 + t)
=

t

1 + t
+

1
(1 − t)r(1 + t)

.
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For n ≥ 1, the coefficient of tn in this expression is

(−1)n+1 +
n∑

j=0

(−1)n−j

(
j + r − 1

r − 1

)
,

which is the expression in the statement of the Proposition. On the
other hand, the toral subgroup is generated just by the products of

distinct generators of H1, so in degree n, we have
(

r
n

)
possibilities.

q.e.d.

Definition 5.3. For any space X, we denote by RH∗(X) the image
of the Thom map Ω∗(X) → H∗(X, Z), and call it the representable ho-
mology. (This already made an appearance in the proof of Theorem 4.1.)
Note that RH∗ is a homotopy functor (in fact, RHs(X) = E∞

s,0 in the
bordism spectral sequence Hs(X, Ωt) ⇒ Ω∗(X)), though not a homol-
ogy theory. By Lemma 4.2, RH∗(Bπ) = H∗(Bπ, Z) when π is a cyclic
group. Clearly Htoral∗ (Bπ, Z) ⊆ RH∗(Bπ) when Htoral∗ is defined as in
Definition 5.1.

The following fact, which is somewhat surprising, will be our key
technical tool:

Proposition 5.4. Let π be an elementary abelian p-group of rank 2,
where p is an odd prime. Then RHodd(Bπ) is generated (as an abelian
group) by the images of RH∗(Bσ), as σ runs over the cyclic subgroups
of π.

Proof. This is proved in [3], using explicit calculations of the eta-
invariants of lens spaces. q.e.d.

The parallel to this when p = 2 is the following:

Proposition 5.5. Let π = (Z/2) × (Z/2). Then H2k−1(Bπ, Z) is
generated (as an abelian group) by manifolds of positive scalar curvature
mapping to Bπ, for all k > 1.

Proof. Recall that MSO localized at 2 is an Eilenberg-Mac Lane
spectrum, so the map Ω∗(Bπ) → H∗(Bπ, Z) is split surjective. In par-
ticular, RH∗(Bπ) = H∗(Bπ). By the Künneth Theorem, H2k−1(Bπ, Z)
is a vector space over F2 with basis consisting of z2k−1 ⊗ 1, 1 ⊗ z2k−1,
and the homology Toda brackets 〈z2j−1, 2, z2k−2j−1〉, 1 ≤ j ≤ k − 1.
Here z2j−1 is the class of RP2j−1 ↪→ RP∞ in H2j−1(BZ/2, Z). Clearly
the classes z2k−1 ⊗ 1 and 1⊗ z2k−1 have positive scalar curvature when
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k > 1. The classes 〈z2j−1, 2, z2k−2j−1〉 have positive scalar curvature
when 1 < j < k − 1, by Theorem 3.5. So it remains to deal with Toda
brackets involving z1. There is one special case: H3(Bπ, Z) turns out to
be spanned by z3 ⊗ 1 and 1⊗ z3 together with the class of the diagonal
embedding ∆ of RP3 in RP∞, as one can see by observing that

∆∗ : H∗(Bπ, Z/2) = F2[u, v] → H∗(RP3, Z/2) = F2[x]/(x4)

sends both of the generators u and v to x, so that ∆∗([RP3]) pairs
nontrivially with both u2v and v2u, and thus can’t be in the span of the
classes z3 ⊗ 1 and 1 ⊗ z3. In fact 〈z1, 2, z1〉 = z3 ⊗ 1 + 1 ⊗ z3 + ∆∗(z3).
So it remains to deal with Toda brackets 〈z1, 2, z2j−1〉. (The case of
〈z2j−1, 2, z1〉, 1 < j < k− 1 is the same by symmetry.) For this we need
the fact that S1 and RP2j−1 have orientation-reversing diffeomorphisms
commuting up to homotopy with the nontrivial maps S1 → RP∞ or
RP2j−1 → RP∞. Thus S1 � S1 ∼= S1 � (−S1) bounds a cylinder S1 × I
(over RP∞), and similarly RP2j−1 � RP2j−1 ∼= RP2j−1 � (−RP2j−1)
bounds the cylinder RP2j−1 × I (over RP∞). So 〈z1, 2, z2j−1〉 can be
constructed by gluing together (S1×I)×RP2j−1 and S1×(RP2j−1×I).
Since the standard metric on RP2j−1 has positive scalar curvature for
j > 1 and the standard metric on S1×I is flat, it is clear that we obtain
a metric of positive scalar curvature on the Toda bracket. q.e.d.

Before proceeding further, we would like to remind the reader of
some known results on Ω∗(Bπ), where π is an elementary abelian p-
group of rank r with p an odd prime. Recall that

(Ω∗)(p)
∼= Z(p)[x4, x8, . . . , x4k, . . . ]

with |x4k| = 4k. Let P = Z(p)[ x4i | 2i �= p� − 1 ], and M(P ) denote
the corresponding generalized Moore spectrum (just a wedge of shifted
sphere spectra, localized at p). Then there is a splitting of the spectrum

MSO(p) = BP ∧ M(P ) ∼=
∨

multiindices i

Σ4|i|BP, where 2ik �= p� − 1.

(5.3)

Here BP∗ = Z(p)[v1, . . . , vk, . . . ], |vj | = 2(pj − 1). In particular, we
have a BP∗-module isomorphism (Ω∗)(p)

∼= BP∗⊗P . Our goal is to de-
scribe the representable homology RH∗(Bπ), which is the image of the
map Ω∗(Bπ) → H∗(Bπ; Z). Since π is an elementary abelian p-group
with p odd, it is enough to work in the p-local category; thus we will
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work with the group RH∗(Bπ)(p) = Im
(
Ω∗(Bπ)(p) → H∗(Bπ; Z(p))

)
.

Clearly RH0(Bπ)(p) = RH0(Bπ) ⊗ Z(p), and RHj(Bπ)(p) = RHj(Bπ)
for q > 0. Let ϕ0 : MSO(p) → BP be the projection on the first BP
from (5.3). Let h∗ : BP∗(Bπ) → H∗(Bπ; Z(p)) be the standard homo-
morphism. Then the map Ω∗(Bπ)(p) → H∗(Bπ; Z(p)) is decomposed
as

Ω∗(Bπ)(p)
ϕ0∗−→ BP∗(Bπ) h∗−→ H∗(Bπ; Z(p)).

Thus it is enough to work with BP∗(Bπ). We need the following
results on the structure of BP∗(BZ/p), see, say [10]. We have that
BP ∗(CP∞) = BP ∗[[x]], where x ∈ BP 2(CP∞) is the first Chern class.
Here we identify BP−∗ = BP∗. Start with the standard fibration

BZ/p−→CP∞ p−→ CP∞,

where the map p : CP∞ = K(Z, 2) → K(Z, 2) = CP∞ induces mul-
tiplication by p on π2. Then p∗ : BP ∗(CP∞) → BP ∗(CP∞) is given
as

p∗(x) = [p](x) =
∑
i≥0

aix
2i+1, ai ∈ BP4i.

(We have re-indexed from the way things are written in [10], since if p
is odd, then BP∗ is concentrated in degrees divisible by 4.) In partic-
ular, BP ∗(BZ/p) ∼= BP ∗[[x]]/[p](x). Let In = (p, v1, . . . , vn−1). The
coefficients ai satisfy:

• ai ∈ In for i < (pn − 1)/2;

• a(pn−1)/2 ≡ vn mod In, in particular, a0 = p, and ai = 0 for
0 < i < (p − 1)/2, and a(p−1)/2 = v1.

The BP∗-module B̃P ∗(BZ/p) is generated by elements

z2m−1 ∈ BP2m−1(BZ/p)

(represented by the standard lens spaces), subject to the relations:

Rm =
m−1∑
i=0

aizm−4i = 0.(5.4)

Now we are ready to prove the following result.
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Theorem 5.6. Let π be an elementary abelian p-group of rank r,
where p is an odd prime. Then RH∗(Bπ) is generated (as an abelian
group) by elements x1 ⊗ · · · ⊗ xj ∈ H∗(Bσ1) ⊗ · · · ⊗ H∗(Bσj), with
σ1 × · · · × σj ↪→ π, j ≤ r, and with each σi a cyclic p-group. (However,
the embedding σ1 ×· · ·×σj ↪→ π is not necessarily the “standard” one.)

Proof. We prove this by induction on the rank r. When r = 1, the
statement is trivially true, and when r = 2, this is Proposition 5.4. Now
assume the result for smaller values of r, and write π = π′×Z/p, where
π′ has rank r − 1. We use the BP -version of the diagram (4.1):

0 �� BP∗(Bπ′)⊗BP∗BP∗(BZ/p) ��

α

��

BP∗(Bπ) ��

β

��

Tor1BP∗
(
BP∗(Bπ′),BP∗(BZ/p)

)
��

γ

��

0

0 �� H∗(Bπ′)⊗ZH∗(BZ/p) �� H∗(Bπ) �� TorZ

(
H∗(Bπ′),H∗(BZ/p)

)
�� 0,

(5.5)

The image of α is taken care of by inductive hypothesis. Also by induc-
tive hypothesis, the image of γ is generated by the images of

(5.6) Tor1BP∗
(
BP∗(Bσ1) ⊗BP∗ BP∗(Bσ2) ⊗BP∗ . . .

⊗BP∗ BP∗(Bσj), BP∗(BZ/p)
)

for the various subgroups σ1 × . . . σj ↪→ π′. The image of (5.6) is
contained in a copy of RH∗

(
B(Z/p)r−1

)
if j < r − 1, which is also

covered by the inductive hypothesis. So we may assume j = r − 1.
To simplify notation, write H∗ for H̃∗(BZ/p) and (as in [10]) N∗ for
B̃P ∗(BZ/p). Thus we are reduced to studying the image of the map

γ : Tor1BP∗
( r−1︷ ︸︸ ︷
N∗ ⊗BP∗ · · · ⊗BP∗ N∗, N∗

)→ TorZ

( r−1︷ ︸︸ ︷
H∗ ⊗Z · · · ⊗Z H∗, H∗

)
.

(5.7)

The BP∗-module on the left in (5.7) is computed in [10, Theorem 4.1];
this subquotient of BP∗(Bπ) is a direct sum

Tor1BP∗
(
(N∗)⊗

r−1
, N∗
) ∼= pr−1−1⊕

j=1

(N∗)⊗
r−1

y2j

of copies of
(
N∗
)⊗r−1

, shifted up in degrees by 2j, 0 < j < pr−1. Simi-
larly, since H∗ is a direct sum of cyclic groups of degree p in odd degrees
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and (H∗)⊗
r−1

is an elementary abelian p-group, the Z-module on the
right in (5.7) is a subquotient of H∗(Bπ) of the form

⊕∞
j=1(H∗)⊗

r−1
y2j , a

direct sum of copies of
(
H∗
)⊗r−1

, shifted up in degrees by 2j, 0 < j < ∞.
Since N∗ surjects onto H∗ under the map BP∗(BZ/p) → H∗(BZ/p; Z),
we see that the image of the map (5.7) is precisely a direct sum of copies
of
(
H∗
)⊗r−1

, shifted up in degrees by 2j, 0 < j < pr−1. We need to
show that this graded group is generated by products of lens spaces.

Let I = (i1, . . . , ir−1) be a multi-index with all the ik’s odd, and
let zI = zi1 ⊗ · · · ⊗ zir−1 be the corresponding product of lens spaces

(or the element of
(
N∗
)⊗r−1

or
(
H∗
)⊗r−1

represented by this product).
Then we need to show that zIy2j ∈ RH∗(Bπ) is represented by linear
combinations of products of lens spaces, for 0 < j < pr−1. The ele-
ment zIy2j ∈ RH∗(Bπ) is represented by the homology Toda bracket

〈zI , p, z2j−1〉. So if zI has order p in
(
N∗
)⊗r−1

and z2j−1 has order p in
N∗, we can lift the homology Toda bracket to a BP -Toda bracket of the
same form. Suppose j = 1 or 2 and some ik in I is = 1 or 3. Then the
lens spaces z2j−1 and zik have order p in N∗, and so zI also has order p
in BP∗(Bπ′); hence we have (in BP∗)

〈zI , p, z2j−1〉(5.8)
= 〈zi1 ⊗ · · · ⊗ zik−1

⊗ zik ⊗ zik+1
⊗ · · · ⊗ zir−1 , p, z2j−1〉

= ±zi1 ⊗ · · · ⊗ zik−1
⊗ 〈zik , p, z2j−1〉 ⊗ zik+1

⊗ · · · ⊗ zir−1

by the product property of Toda brackets, [1, 2.1, axiom 3]. The bracket
in the middle is of rank 2, so we can apply Proposition 5.4 to it, and
so our element is represented by a linear combination of products of
lens spaces. This takes care of the case where j = 1 or 2 and some ik
in I is = 1 or 3. In general, we are interested only in the image of γ.
Notice that the elements of Tor1BP∗

(
(N∗)⊗

r−1
, N∗
)

are represented by
BP∗-matrix Toda brackets. Since the BP∗-module N∗ is given in terms
of the generators zm and the relations Rm, it is enough to consider the
Toda brackets of the form:

〈(
zik zik−4 . . .

)
, A,

 ...
z2j−5

z2j−1

〉
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and〈
zi1 ⊗ · · · ⊗ zik−1

⊗ (zik , zik−4, . . .
)⊗ zik+1

⊗ · · · ⊗ zir−1 , A,


...

z2j−5

z2j−1


〉

,

where A is the matrix 
p 0 0 0 . . .
a1 p 0 0 . . .
a2 a1 p 0 . . .
a3 a2 a1 p . . .
...

...
...

...
. . .

 .

If we now replace zik in (5.8) by the row vector
(
zik zik−4 . . .

)
, and

replace p in (5.8) by A and z2j−1 on the right of (5.8) by

 ...
z2j−5

z2j−1

, then

such matrix Toda brackets generate the desired subgroup of RH∗(Bπ),
and the argument goes through just as before. q.e.d.

Definition 5.7. Let π be a finite elementary abelian p-group, say
(Z/p)r, and let H∗ denote homology with Z coefficients. We define
RHatoral∗ (Bπ), the atoral quotient of representable homology, to be the
quotient group RH∗(Bπ)/Htoral∗ (Bπ).

Theorem 5.8. Let π be an elementary abelian p-group, and let
n ≥ 5. Let H∗ denote homology with Z coefficients. Then every class in
RHatoral∗ (Bπ) is represented by an oriented manifold of positive scalar
curvature. In particular, if n > rankπ, then every orientable n-mani-
fold with fundamental group π and with non-spin universal cover has a
metric of positive scalar curvature.

Proof. First consider the case where p is odd. We apply Theo-
rem 5.6. This reduces us to the case of classes of the form x1⊗· · ·⊗xj ∈
H∗(Bσ1) ⊗ · · · ⊗ H∗(Bσj), with each xi represented by either S1 or a
lens space. The class is toral if all the xi’s are 1-dimensional. The re-
maining products have positive scalar curvature and project onto the
atoral quotient.

Finally consider the case where p = 2. In this case all homology
classes are representable, and we argue by induction on rankπ. To
start the induction, Lemma 4.2 takes care of the case where rankπ = 1.
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Proposition 5.5 takes care of the case where rankπ = 2. So assume
rankπ > 2 and write π = π′ × (Z/2) = π′′ × (Z/2) × (Z/2) We may
assume by inductive hypothesis that the theorem is true for π′ and π′′.
The Künneth Theorem gives a short exact sequence

0 �� H∗(Bπ′)⊗ZH∗(BZ/2) �� H∗(Bπ) �� TorZ

(
H∗(Bπ′),H∗(BZ/2)

)
�� 0,

(and similarly for H∗(Bπ′) in terms of H∗(Bπ′′)), and each element
of the Tor term is represented by Toda brackets. Also, Htoral∗ (Bπ) is
contained in the image of H∗(Bπ′)⊗H∗(BZ/2). The group H∗(Bπ′)⊗
H∗(BZ/2) is spanned by product classes z ⊗ z2k−1, which are toral
exactly when z is toral and k = 1, and which are obviously represented
by manifolds of positive scalar curvature otherwise.

Thus it remains to show that every element of

Tor
(
H∗(Bπ′), H∗(BZ/2)

)
is represented by a manifold of positive scalar curvature. Consider a
Toda bracket 〈z, 2, z2k−1〉. We may further reduce to the case where
either z = z′′ ⊗ z2j−1 or z = 〈z′′, 2, z2j−1〉, with z′′ ∈ H∗(Bπ′′). There
are several cases. If z = z′′ ⊗ z2j−1, then

〈z′′ ⊗ z2j−1, 2, z2k−1〉 = z′′ ⊗ 〈z2j−1, 2, z2k−1〉,
and we may apply Proposition 5.5 to the second factor, which is always
represented by a manifold of positive scalar curvature.

It remains to deal with an iterated Toda bracket〈〈z′′, 2, z2j−1〉, 2, z2k−1

〉
.

In this case we need the associativity formula [1, 2.1.6]:〈〈z′′, 2, z2j−1〉, 2, z2k−1

〉
+
〈
z′′, 〈2, z2j−1, 2〉, z2k−1

〉
+
〈
z′′, 2, 〈z2j−1, 2, z2k−1〉

〉
= 0.

The bracket 〈2, z2j−1, 2〉 in the middle term lies in H2j(BZ/2) = 0, so
the middle term can be eliminated. In the last term, we can apply
Proposition 5.5 to conclude that 〈z2j−1, 2, z2k−1〉 is represented by a
manifold of positive scalar curvature. If z′′ has positive scalar curvature,
we are done by Theorem 3.5. But if z′′ is toral, we may split off a z1

factor and reduce to a lower-rank case. So in either event, we are done
by induction. q.e.d.
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In the case of odd order elementary abelian groups, it is not so hard
to prove the analogue of Theorem 5.8 for the spin case, largely because
of the fact that for p odd, MSpin → MSO is a p-local equivalence. The
details are carried out in the sequel paper [5].

Problem 5.9. Are toral homology classes (for an elementary abe-
lian p-group) represented by manifolds of positive scalar curvature? We
suspect not, but we know of no way to approach this question.

Problem 5.10. Is Theorem 4.4 true without the odd order assump-
tion? We presume so, but the proof would necessarily be much more
complicated, since computing ko∗(Bπ) for a 2-group is quite difficult.

Problem 5.11. Is Theorem 5.8 true for arbitrary abelian p-groups?
Again we suspect so, but the necessary calculations are difficult.
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