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Â-GENUS ON NON-SPIN MANIFOLDS WITH S1

ACTIONS AND THE CLASSIFICATION OF
POSITIVE QUATERNION-KÄHLER 12-MANIFOLDS

HAYDEÉ HERRERA & RAFAEL HERRERA

Abstract

We prove that the Â-genus vanishes on certain non-spin manifolds. Namely,
Â(M) vanishes on any oriented, compact, connected, smooth manifold M
with finite second homotopy group and endowed with non-trivial (isomet-
ric) smooth S1 actions. This result extends that of Atiyah and Hirzebruch
on spin manifolds endowed with smooth S1 actions [1] to manifolds which
are not necessarily spin.

We prove such vanishing by means of the elliptic genus defined by Ocha-
nine [23, 24], showing that it also has the special property of being “rigid
under S1 actions” on these (not necessarily spin) manifolds.

We conclude with a non-trivial application of this new vanishing theo-
rem by classifying the positive quaternion-Kähler 12-manifolds. Namely, we
prove that every quaternion-Kähler 12-manifold with a complete metric of
positive scalar curvature must be a symmetric space.

Introduction

This article is divided into two parts. The first part is devoted to
proving the following vanishing theorem:

Theorem 1. Let M be a 2n-dimensional, oriented, compact, con-
nected, smooth manifold with finite second homotopy group and endowed
with a smooth S1 action. Then,

Â(M) = 0.
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We prove this theorem by means of the “rigidity under S1 actions”
of the elliptic genus [23, 24, 6, 14, 18, 31, 32] on these manifolds. This,
in fact, consists of showing the rigidity of certain elliptic operators (see
Theorem 3). This vanishing is new since it does not follow from results
on spin (spinc or spinh) manifolds. The manifolds under consideration
are not necessarily spin (nor spinc, nor spinh). Hence, Theorem 1 ex-
tends that of Atiyah and Hirzebruch on spin manifolds endowed with
smooth S1 actions [1].

The second part of the paper is devoted to a classification problem in
Riemannian Geometry. Namely, the classification of the 12-dimensional
quaternion-Kähler manifolds with a complete metric of positive scalar
curvature. Complete quaternion-Kähler manifolds with positive scalar
curvature have only been classified in 4 dimensions by Hitchin [16], and
in 8 dimensions by Poon and Salamon [27]. In this paper, we show that
all such manifolds belong to the list of 12-dimensional symmetric spaces
given by Wolf in [33], which is accomplished by applying the vanishing
Theorem 1 at a crucial point.

Theorem 2. A complete 12-dimensional quaternion-Kähler mani-
fold with positive scalar curvature is isometric to one of the following
symmetric spaces:

1. The quaternionic projective space HP
3.

2. The complex Grassmannian Gr2(C5).
3. The real Grassmannian Gr4(R7).
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Poon, B. Wong and P. Baier for valuable conversations and encourage-
ment, as well as Yale University and IHÉS for their hospitality, financial
support and stimulating research environments during the preparation
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Part I

1. Â and elliptic genera on non-spin manifolds

The main theorem of this part, Theorem 1, states the vanishing of
the characteristic number Â(M) on certain non-spin manifolds. Such
manifolds admit no spin structure and, therefore, have neither spin bun-
dle, nor spinors, nor Dirac operator. This means that the characteristic
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number Â(M) is, a priori, a rational number and that we cannot esti-
mate it in the usual index-theoretical way.

Instead, by noticing that the elliptic genus defined by Ochanine
[23, 24] has two standard representations as Laurent series, one involv-
ing indices of (well-defined) signature operators on the manifold and the
other twisted Â-genera, we study it in our context and prove a rigid-
ity result under circle actions which eventually leads to the vanishing
theorem.

The elliptic genus has been well studied on spin manifolds. Witten
gave an interpretation of the elliptic genus [31, 32] as the localized value
of the equivariant signature (to the fixed point set of a circle action) on
the loop space of the manifold, and predicted various rigidity theorems
for elliptic operators on the original spin manifold. These theorems were
proved by Taubes [30], Bott and Taubes [6], and Liu [21], and have been
generalized further by others [13, 17, 9].

In the same vein of ideas, we shall prove a rigidity theorem for
certain elliptic operators on π2-finite manifolds with circle actions (see
Theorem 3), a case that has not been studied so far. The proof is
carried out along the lines of [6] and the key point is to prove a couple
of spin-like properties of these manifolds in Lemmas 1 and 2 by using
[7].

This part is organized as follows: In §§1.1 we review the definition of
the elliptic genus and state the rigidity theorem. In §§1.2-1.3 we prove
the rigidity theorem, and in §§1.4 we prove our main result, Theorem 1.

1.1 Elliptic genus and rigidity

Let D : Γ(E) −→ Γ(F ) be an elliptic operator acting on sections of the
vector bundles E and F over a compact manifold M . The index of D
is the virtual vector space

ind(D) = ker(D) − coker(D).

If M admits a circle action preserving D, i.e. such that S1 acts on E
and F , and commutes with D, ind(D) admits a Fourier decomposition
into complex 1-dimensional irreducible representations of S1

ind(D) =
∑

am Lm,

where am ∈ Z and Lm is the representation of S1 on C given by eiθ �→
eimθ.
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Definition 1. The elliptic operator D is called rigid if am = 0
for all m �= 0, i.e., ind(D) consists of the trivial representation with
multiplicity a0.

The elliptic operator D is called universally rigid if it is rigid under
any S1 action on M by isometries.

We shall be concerned with the elliptic operators associated with the
signature operator. Let

∧±
c be the even and odd complex differential

forms on an oriented, compact, 2n-dimensional, smooth manifold M
under the Hodge ∗-operator, respectively. The signature operator

ds :
∧+

c −→ ∧−
c

is elliptic and the virtual dimension of its index equals the signature
of M , τ(M). If W is a complex vector bundle on M endowed with a
connection, we can twist the signature operator to forms with values in
W

ds ⊗ W :
∧+

c (W ) −→ ∧−
c (W ).

This operator is also elliptic and the virtual dimension of its index is
denoted by τ(M, W ).

Definition 2. Let M be an oriented, compact, 2n-dimensional
smooth manifold, and T = TM ⊗ C its tangent bundle. Let Ri be
the sequence of bundles defined by the formal series

R(q, T ) =
∞∑
i=0

qiRi =
∞⊗
i=1

∧
qiT ⊗

∞⊗
j=1

SqjT,

where StT =
∑∞

k=0 tk SkT ,
∧

tT =
∑∞

k=0 tk
∧k

T , and SkT ,
∧k

T denote
the k-th symmetric and exterior tensor powers of T , respectively. The
elliptic genus of M is defined as

τq(M) = τ(M, R(q, T )) =
∞∑
i=0

qi · τ(M, Ri).(1)

The first few terms of the sequence R(q, T ) are

R0 = 1, R1 = 2T R2 = 2(T⊗2 + T ), . . .

so that, in particular, the constant term of τq(M) is τ(M).
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Theorem 3 (Rigidity Theorem). Let M be an oriented, compact,
connected, smooth 2n-manifold endowed with smooth S1 actions. In
addition, assume that π2(M) is finite. Then, each of the operators ds ⊗
Ri is universally rigid.

1.2 Proof of the rigidity theorem

The manifolds under consideration posses a very special property in-
duced by the π2-finiteness, which is proved in [7] and which is used at
a key point in the proof to replace the spin condition. We recall the
notation from [6] and their main line of argument for the convenience of
the reader and to give appropriate context to Lemmas 1 and 2 below.

Applying the Atiyah-Segal G-signature theorem [2], we have

τq(M) =
∑
{P}

µ(P )

where P runs over the connected components of the fixed point set of the
S1 action (cf. [6, p. 155]). The contribution µ(P ) of P to τq(M) is given
by the index of the signature operator on P twisted by an appropriate
power series of vector bundles on P (see [6] for details).

The contributions µ(P ) are meromorphic functions on the 2-dimen-
sional torus Tq2 = C

∗/q2 (the quotient of the multiplicative group of
non-zero complex numbers C

∗ by the subgroup generated by the element
q2 �= 0). The proof of the rigidity theorem is equivalent to showing that
τq(M) =

∑
{P} µ(P ) has no poles at all on Tq2 .

Define the translation taτq(M) of τq(M) by a ∈ C
∗, to be given

by the map at the character level λ �→ aλ. The rigidity theorem for
τq(M) will follow from showing that none of the translations taτq(M),
by points a ∈ Tq2 of finite order, has a pole on the circle |λ| = 1. It is
enough to consider k ranging over N and a ranging over the roots of the
form

a = αs, αk = q,

with k and s relatively prime. The translations tαsτq(M) can be ex-
pressed as twists of τq on the connected components Mk of the fixed
point submanifold of the subgroup Zk ⊂ S1, generated by e2πi/k ∈ S1,
which do contain fixed points of the S1 action. In fact, the translation
tαsτq(M) is the index of the signature operator on M ′

k twisted by an
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appropriate power series in certain bundles Tr, where M ′
k is the sub-

manifold Mk with a specific orientation. We explain the meaning of r
and Tr, and the choice of orientation of Mk below (cf. [6, (8.13)]).

Remark. The submanifolds Mk are intermediate steps between
M and the fixed point set {P} of the S1 action. Therefore, we shall
be interested only in those connected components of Mk that contain
connected components P of fixed points of S1 (cf. [6, p. 153]). Moreover,
the submanifolds Mk must be orientable in order to define a signature
operator and the translations taτq(M). We ensure the orientability of
these components by the following lemma whose proof is postponed
until Subsection 1.3:

Lemma 1. Let M be an oriented, 2n-dimensional, smooth man-
ifold endowed with a smooth S1 action. Consider Zk ⊂ S1 and its
corresponding action on M . If k is odd then the fixed point set Mk of
the Zk action is orientable. If k is even and Mk contains a fixed point
of the S1 action, Mk is also orientable.

The translations tαsτq(M) converge on some annulus containing the
unit circle |λ| = 1 to the Laurent series of a meromorphic function on
Tq2 which has no poles on the unit circle.

The bundles Tr

The subgroup Zk acts on the normal bundle of Mk in M so that T = TM
splits over Mk as

T |Mk
= TMk ⊕ T#

1 ⊕ . . . ⊕ T#
k/2−1 ⊕ T#

[k/2],(2)

where each T#
r is an irreducible real representation of Zk, and [k/2] is

the greatest integer smaller than or equal to k/2. The S1 action on
M induces an S1 action on Mk, whose differential induces an action on
T |Mk

, preserving the decomposition, and making each T#
r an S1 bundle

over Mk, for r = 1, . . . , [(k − 1)/2]. Each T#
r , with r �= k/2 if k is even,

is endowed with a complex structure such that λ ∈ S1 acts by λr, for
r = 1, . . . , [(k − 1)/2]. Hence, T#

r comes from a complex vector bundle
Tr. For k even, the action on T#

k/2 = Tk/2 is multiplication by −1, and
it does not necessarily come from a complex vector bundle.

The T#
r inherit an orientation from the complex structure on Tr,

for r = 1, . . . , [(k − 1)/2]. Hence, if k is odd, TMk has an induced
orientation. If k is even, however, we only know that TMk ⊕ Tk/2 is
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orientable. On the other hand, Lemma 1 guarantees that Mk is also
orientable. Let us, therefore, choose an orientation. In this way, Tk/2

inherits an orientation from M and Mk.

The orientation of M ′
k

Observe that M is oriented and that the submanifolds P and Mk are ori-
entable. The orientation of Mk should be chosen to be compatible with
the orientations of the components P as follows: Let P be a connected
component of the fixed point set of the S1 action. Along P

TM |P = TP ⊕
l⊕

i=1

E#
i ,

where E#
i denotes the canonical underlying real bundle of the complex

bundle Ei on which S1 acts by sending λ to λmi (|mi| �= |mj | unless
i = j). Let di = rankC(Ei).

When k is odd, the decomposition in (2) determines an orientation
on TMk denoted by +1. If P ⊂ Mk, choose the exponents along P so
that each mj �≡ 0 (mod k) is congruent to some r ∈ {1, . . . , (k − 1)/2}.
Choose the orientation of TP and the sign of those mj ≡ 0 (mod k) so
that the induced orientation on TM |P is the given one. The induced
orientation on TMk|P will be the +1 orientation. For each mj , let
(lj , ωj) ∈ Z × {1, . . . , k − 1} be such that

s · mj = lj · k + ωj ,(3)

and define

ε(P ) =
∑

j

dj · lj .(4)

The orientation for M ′
k is now defined as +1 · (−1)ε(P ), if Mk ⊇ P .

Lemma 2 below ensures that this orientation is well defined.
When k is even, TM |Mk

decomposes according to (2). Since⊕k/2−1
r=1 T#

r is naturally oriented, TMk ⊕ Tk/2 inherits an orientation.
Let us choose an orientation for TMk and call it +1, which induces an
orientation on Tk/2. If P ⊂ Mk, select the exponents at P as follows:
If mj �≡ 0, k/2 (mod k), make the choice as before so that (mj)mod k ∈
{1, . . . k/2−1}. Choose the signs for those mj ≡ 0, k/2 (mod k) and the
orientation of TP to make the induced orientation of (TMk ⊕ Tk/2)|P
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correct. This ensures that the induced orientation of TM |P is correct.
The induced orientation of TMk|P , however, may not be the correct one
(+1). Let ε0 = 0, 1, with ε0 = 0 if the induced orientation on TMk|P is
correct, and ε0 = +1 if the induced orientation on TMk|P is incorrect.
For each mj , define (lj , ωj) by (3) and set

ε(P ) = ε0 +
∑

j

dj · lj .(5)

The orientation of M ′
k is again +1·(−1)ε(P ), if Mk ⊃ P . This orientation

is well defined by the following lemma, whose proof is postponed until
Subsection 1.3:

Lemma 2. Let M be an oriented, compact, 2n-dimensional, smooth
manifold with π2(M) finite and endowed with a smooth S1 action. Let
k ∈ N and Mk be a connected component of the fixed point set of Zk ⊂
S1. Let s ∈ Z be relatively prime to k, and P , P ′ ⊂ Mk be connected
fixed point submanifolds of the S1 action. Use the prescription above,
(4) or (5) respectively, to define the numbers ε(P ) and ε(P ′). Then
(−1)ε(P ) = (−1)ε(P ′).

Provided with all the conditions above, the function of q

tαsτq(M),

is regular on an annulus containing the unit circle for all k ∈ N, so that
tαsτq(M) has no poles on the unit circle |λ| = 1. Hence, τq(M) has no
poles at all on Tq2 , and must be constant.

1.3 The lemmas

Remark. Notice that Lemma 1 is valid on any compact smooth
manifold with a circle action. It does not require any special condition
on neither the fundamental group, nor (co)homology, nor homotopy
type.

Remark. The content of the Lemma 2 essentially says that a
compact smooth non-spin manifold with π2 finite behaves under circle
actions in the same way as (or better than) spin manifolds.

Proof of Lemma 1. We begin by recalling an argument from [30,
pp. 488–489]. First, note that the case when k is odd follows from (2).
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Let k = 2 and denote the S1 action on M by ϕ : S1 × M −→ M .
Let T0 = TM2 and T1 be the normal bundle of M2 (with respect to an
appropriate metric on the fibers). Since ϕ(π, ·) is the identity on M2,
ϕ(π, ·)∗ : T0 −→ T0 is the identity map, and ϕ(π, ·)∗ : T1 −→ T1 is the
involution induced by the Z2 action. Given an S1 invariant metric on
M , there is a metric on T1 with respect to which ϕ(π, ·)∗ = −I, where
I is the identity automorphism.

Suppose that T0 is not orientable. Then there exists a loop in M2,
f : S1 −→ M2, on which T0 is not trivial, i.e. w1(f∗T0) �= 0 and f∗T0

∼=(
S1 ×Z2 R

)×R
l−1, where l = dim M2. Similarly, since w1(T0) = w1(T1)

f∗T1
∼= (S1 ×Z2 R

)× R
m−1, where m = rank(T1).

With the help of ϕ and f we define another map

f1 : S1 × S1 −→ M2,

(t, s) �→ f1(t, s) = ϕ(t/2, f(s)),

which represents a 2-torus mapped into M2 ⊂ M , by letting the original
loop follow its orbit under the S1 action. For fixed s, f1(·, f(s))∗T0 =
f(s)∗ϕ∗T0, so that

f∗
1 T0

∼= S1 × (S1 ×Z2 R
)× R

l−1.(6)

For the bundle T1, f1(·, f(s))∗T1 = f(s)∗ϕ∗T1, so that

f∗
1 T1

∼= S1 ×Z2

((
S1 ×Z2 R

)× R
m−1

)
,(7)

where Z2 acts on
((

S1 ×Z2 R
)× R

m−1
)

as multiplication by ±1.
The Z2 cohomology of S1 × S1 has generators z1, z2 which restrict

trivially to the second S1 and to the first S1, respectively. The total
Stiefel-Whitney class of f∗

1 T0 can be obtained from (6)

w(f∗
1 T0) = 1 + z2,(8)

and that of f∗
1 T1 from (7)

w(f∗
1 T1) = 1 + mmod(2) · z1 + z2 + (m − 1)mod(2) · z1 ∧ z2.(9)

From (8) and (9), the total Stiefel-Whitney class of f∗
1 (TM)

w(f∗
1 TM) = 1 + mmod(2) · z1 + (mmod(2) + (m − 1)mod(2)) · z1 ∧ z2,

(10)
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which implies

w2(f∗
1 TM) �= 0.(11)

On the other hand, the 2-torus is homotopic to a sphere with S1

acting on it by rotations. Indeed, let p ∈ M2 be a fixed point of the S1

action, and let p′ be a point in the original loop f(S1). Consider a path
γ in M2 joining p and p′. Let S1 act on γ to generate a disk, whose
“central” point is p. This disk is attached to the 2-torus by a circle (its
border) which is an orbit of the S1 action. We can think of it as the
image of an equivariant map from the 2-sphere to M , where S1 acts
on S2 by rotations with its north and south poles as fixed points being
mapped to the same point p. Let us denote this map by f2 : S2 −→ M2,
and note that

w2(f∗
2 TM) = w2(f∗

1 TM) �= 0(12)

by (11).
Observe that w2(f∗

2 TM) is now the reduction mod 2 of the Chern
class c1(f∗

2 TM) on S2 (cf. [6, Lemmas 9.1]). Furthermore, c1(f∗
2 TM) is

even by [6, Lemmas 9.2], since the north and south pole of our sphere
are mapped to the same point. This contradicts (12) (and (11)).

For even k > 2, use the same arguments together with the fact that
c1(E) = 0 for any bundle E −→ S1 × S1 to which the rotations around
an S1 lift. q.e.d.

Sketch of proof of Lemma 2. Since Lemma 2 is the analogue of [6,
Lemma 8.1] in our set-up, we shall only point out the relevant change
in the proof.

Let k ∈ N, P and P ′ be two distinct connected fixed point submani-
folds of S1 in Mk. Let p ∈ P and p′ ∈ P ′. Consider a path joining p and
p′ which avoids other fixed points of S1. Let S1 act on it to generate
a sphere with “north” and “south” poles p and p′ respectively. Let the
sets of integers {mi} and {m′

i} denote the exponents of the S1 action
on TpM and Tp′M respectively.

By [6, Lemma 9.1], the number

ε(P ) − ε(P ′) ≡ c ·
(∑

i

(mi − m′
i)

)
(mod 2),

where c is a constant. In other words, we must check that the parity of
this sum of exponents is even. This is an immediate consequence of the
following theorem by G. Bredon:
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Theorem 4 ([7]). Let N be a smooth manifold with a smooth S1

action and assume that π2i(N) is finite for 1 ≤ i ≤ r − 1. Let x and
y be two fixed points of the S1 action. Then TxN − TyN is divisible
by (1 − L)r in the representation ring R(S1), where L is the standard
representation of S1.

In our set up π2(M) is finite, then the virtual representation TpM −
Tp′M decomposes as follows:

TpM − Tp′M = (1 − L)2 ⊗
∑

j

bjL
j

 ,

where L ∼= C is the standard representation of S1 and {bj ∈ Z} is a
finite set of integers. This means that∑

i

(mi − m′
i) =

∑
j

bj · j − 2
∑

j

bj · (j + 1) +
∑

j

bj · (j + 2) = 0,

which proves the assertion. q.e.d.

Let us contrast the content of the previous paragraph with the fol-
lowing example of a manifold with smooth S1 actions, but with infinite
π2:

Example. Given our interest in 12-dimensional manifolds in Part
II, let us consider the complex S1 representation V = L0 ⊕ L1 ⊕ L2 ⊕
L3⊕L4, with the obvious S1 action on each complex line. The complex
Grassmannian Gr2(V ) is non-spin and has an induced S1 action with
fixed points. We have, for instance, the following fixed points with their
corresponding exponents:

• The complex 2-plane p1 = L0 ⊕L1 with exponents (1, 2, 2, 3, 3, 4),
which add up to 15.

• The complex 2-plane p2 = L0⊕L2 with exponents (−1, 1, 1, 2, 3, 4),
which add up to 10.

The difference of the sums of the exponents is 5 �≡ 0 (mod 2), failing to
satisfy Lemma 2. This is due to the fact that Gr2(V ) is neither spin
nor has finite π2. In fact, π2(Gr2(V )) = Z. Furthermore, one can check
directly that Gr2(V ) does not satisfy Theorem 1

Â(Gr2(V )) �= 0.
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1.4 Vanishing of the Â-genus

As a consequence of the rigidity theorem, we get the vanishing Theo-
rem 1.

Remark. The manifold M may be neither spin, nor spinc, nor
spinh. In such a case, Â(M) is only defined as a characteristic number
and does not represent the index of an elliptic operator. Thus, Â(M)
does not even have to be an integer. The prescribed homotopy type,
however, yields this number as zero.

Proof of Theorem 1. We can assume that dim(M) = 4n. Given that
S1 acts on M , the equivariant genus τq(M)g is defined for any g ∈ S1

as

τq(M)g =
∑

τ(M, Ri)g · qi,

where τ(M, Ri)g = tr|g ker(ds⊗Ri)−tr|gcoker(ds⊗Ri). The coefficients
of its q-development are now equivariant twisted signatures. Thus, ac-
cording to Theorem 3, the value of τq(M)g does not depend on g.

Applying the Atiyah-Segal G-signature theorem [2], τq(M)g can be
expressed in terms of the fixed point set Mg of g and the action of g on
the normal bundle of Mg ⊂ M . In particular, let g be the orientation
preserving involution in Z2 ⊂ S1. Note that the submanifold Mg = M2

may not be connected. We denote the transversal self-intersection of
M2 by M2 ◦ M2. In [15, p. 315], Hirzebruch and Slodowy showed that

τq(M)g = τq(M2 ◦ M2).

On the other hand, applying the rigidity theorem (Theorem 3), τq(M) =
τq(M)g, i.e.

τq(M) = τq(M2 ◦ M2).(13)

The codimension of M2 is positive and even, so that the elliptic genus
τq(M) can be computed from the elliptic genera of submanifolds of M
of codimension at least 4.

Let us now recall the expansion of τq(M) at the other cusp [14]

τ̃q(M) =
1

qn/2

∞∑
j=0

Â(M, R′
j) · qj ,
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where R′
j is the sequence of virtual tensor bundles given by

R′(q, T ) =
⊗

k=2m+1

∧
−qkT ⊗

⊗
k=2m+2

SqkT,

and Â(M, R′
j) =

〈
Â(M) · ch(R′

j), [M ]
〉

may only be defined as a char-
acteristic number (since M will not, in general, be spin). The first few
terms of the sequence are

R′
0 = 1, R′

1 = −T, R′
2 =

∧2
T + T, . . .

This expansion is obtained by considering q = eπit and changing the
t coordinate in (1) by t → −1/t, and then by t → 2t (cf. [14]). This
expansion has, a priori, a pole of order n/2.

On the other hand, by (13) we also have the following:

τ̃q(M) = τ̃q(M2 ◦ M2),(14)

whose right hand side has a pole of order at most (n/2− 1/2), since the
dimension of any connected component of M2 ◦ M2 is at most 4n − 4.
Therefore (14) implies that the first coefficient on the left hand side
vanishes, i.e.,

Â(M) = 0.

q.e.d.

Example. It is known that for every m ∈ N, the real 8m + 4-
dimensional Grassmannians Gr4(R2m+5) of 4-planes in R

2m+5 are non-
spin and π2(Gr4(R2m+5)) = Z2. The Â-genus can be computed explic-
itly

Â(Gr4(R2m+5)) = 0,

in accordance with our theorem. In fact, not only the Â-genus vanishes
on these manifolds, but the entire elliptic genus [12]

τq(Gr4(R2m+5)) = 0.

Example. Borel and Hirzebruch proved in [5, Theorm 23.3.(iii)]
the following result: Let G be a compact connected Lie group and U
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a closed connected subgroup of G containing a maximal torus. If the
second Betti number of G/U is zero, then

Â(G/U) = 0.

Notice that the space G/U is not necessarily spin. Hence, it remains an
interesting problem to determine whether the other coefficients of the
elliptic genus have any integrality properties on the non-spin spaces.

Furthermore, given the subject of interest in Part II we have the
following corollary:

Corollary 1. Let M be an oriented, compact, connected, smooth 12-
dimensional manifold with π2(M) finite and endowed with a smooth S1

action. Suppose that M2, the fixed point manifold of Z2 ⊂ S1, contains
no connected component of dimension 8. Then,

τq(M) ≡ 0,

and, in particular,

τ(M) = 0.

Proof. This follows from (14) since the Laurent expansion on the
right hand side has no half-integral powers of q at all, which means that
the genus must vanish identically. q.e.d.

The theorems in this first part can be generalized further. For in-
stance, one can consider other versions of the elliptic genus twisted with
more general vector bundles on the manifolds and also prove rigidity
theorems with respect to smooth S1 actions. Furthermore, it is clear
that the more information one obtains at the level of fixed point sets,
the more vanishing theorems one may deduce. Along these lines, there
is room for an analysis similar to that of Hirzebruch and Slodowy [15]
for homogeneous spaces with vanishing second Betti number.

We shall explore these possibilities in the near future. In the mean-
time, let us pass to Part II to give a non-trivial application of the van-
ishing Theorem 1.
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Part II

2. Quaternion-Kähler 12-manifolds

Let us consider R
4n ∼= H

n as a right module over the quaternions H,
whose elements are column vectors with entries in H. Let A ∈ Sp(n),
q ∈ Sp(1) and

µ : Sp(n) × Sp(1) −→ GL(n, H) ⊆ GL(4n, R)

be the representation defined by µ(A, q)(X) = AXq−1, for X ∈ H
n.

Since ker(µ) = Z2, we define Sp(n)Sp(1) = Sp(n) ×Z2 Sp(1), where we
identify Sp(n) and Sp(1) with subgroups of GL(4n, R) so that

Sp(n)Sp(1) ⊂ SO(4n) ⊂ GL(4n, R).

An oriented, connected, irreducible, Riemannian 4n-manifold M
is called a quaternion-Kähler manifold, n ≥ 2, if its linear holonomy
is contained in Sp(n)Sp(1). We shall call M positive if its metric is
complete and has positive scalar curvature. When n = 1 we add the
condition that the manifold M must be Einstein and self-dual, since
Sp(1)Sp(1) = SO(4).

A quaternion-Kähler manifold is Einstein, which renders three dif-
ferent types according to the scalar curvature being positive, negative
or zero. The quaternion-Kähler manifolds with zero scalar curvature
happen to be locally hyperkähler.

In the case of positive scalar curvature, Wolf showed in [33] that each
compact centerless Lie group G is the isometry group of a quaternion-
Kähler symmetric space given as the conjugacy class of a copy of Sp(1)
in G, determined by a highest root of G. They are called “Wolf spaces”
and are the only known examples with complete metrics of positive
scalar curvature. Moreover, we know that there are only finitely many
positive quaternion-Kähler manifolds for each n (cf. [20]). These facts
have given some support to the following conjecture:

Conjecture 1. Every positive quaternion-Kähler manifold is iso-
metric to a (symmetric) Wolf space.

Two decades ago, Hitchin proved in [16] that this conjecture is true
in 4 dimensions (n = 1), namely that the 4-manifold must be isometric
to S4 or CP

2. A decade ago, Poon and Salamon proved it in 8 di-
mensions (n = 2, see [27]). They proved that a positive 8-dimensional
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quaternion-Kähler manifold M is isometric to the quaternionic projec-
tive space HP

2, or the complex Grassmannian Gr2(C4), or the excep-
tional space G2/SO(4). They carried out a careful study of the standard
twistor space Z of M as a polarized algebraic variety, and were able to
pin down the few candidates of polarized varieties that can occur as
twistor spaces. In the last few years, more supporting evidence for the
conjecture has been produced, such as the results in [20, 4, 3, 26].

By using Theorem 1, we are now able to produce a proof of the
conjecture in 12 dimensions (n = 3). Theorem 2 states that a positive
quaternionic Kähler 12-manifold must be a Wolf space.

Our approach is very different from those in [16, 27], since the main
ingredients turn out to be topological and differential geometric, rather
than algebraic geometric. Moreover, the study is carried out almost
entirely on the (Riemannian) quaternion-Kähler manifolds, not on their
twistor spaces.

Part II is organized as follows: In §§2.1 we review preliminaries of
quaternionic Kähler geometry. In §§2.2 we review the index theory of
certain elliptic operators on quaternion-Kähler manifolds. In §§2.3 we
give the proof of Theorem 2, and some immediate applications.

2.1 Preliminaries on quaternion-Kähler geometry

The existence of the Sp(3)Sp(1)-structure induces an isomorphism

T ∗M ⊗ C ∼= E ⊗ H,

where E and H denote the locally defined vector bundles over M asso-
ciated to the standard (faithful) complex representations of Sp(3) and
Sp(1) on E = C

6 and H = C
2, respectively.

Consider the globally defined bundle Z = P(H) −→π M with fiber
CP

1, usually called the standard twistor space of M . It parameterizes
orthogonal almost-complex structures at each tangent space of M , and
Z itself is a complex manifold. When the scalar curvature is positive,
Z has a canonical Kähler structure.

The quaternionic structure of M is characterized by a 4-form u com-
ing from the second Chern class of the quaternionic line bundle H,
i.e., u = −c2(H). The multiple 4u = −c2(S2H) is integral and non-
degenerate [28], and we shall call it the quaternionic class. There is a
complex line bundle L −→ Z such that locally π∗H ∼= L1/2 ⊕L−1/2 and
l2 = 4π∗u, where l = c1(L). Such a class l is represented by a Kähler
form on Z, which gives the following result to be used in Theorem 2,
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communicated to the authors by S. Salamon (see [22, 29] for similar
results):

Lemma 3. Let M be a compact connected quaternion-Kähler 12-
manifold of positive scalar curvature. The symmetric bilinear form Q
on H4(M) defined by

Q(α, β) =
∫

M
α ∧ β ∧ (4u),

where α, β ∈ H4(M), is positive definite.

Proof. This result follows from the Hodge-Riemann bilinear relations
[11] on the twistor space Z of M . Indeed, since Z is a CP

1-fibration
over M

H4(Z) ∼= π∗(H4(M)) ⊕ {l} ⊗ π∗(H2(M))

and, at the same time,

H4(Z) = P 2,2 ⊕ L1(P 1,1) ⊕ {l2}
is the Lefschetz decomposition into primitive subspaces, where L1

represents the map given by wedging with the Kähler form. Clearly,
π∗(H4(M)) ∼= P 2,2 ⊕ {l2} so that by twistor transform∫

M
α ∧ β ∧ (4u) =

1
2

∫
Z

π∗(α) ∧ π∗(β) ∧ l3,

for α, β ∈ H4(M), and the result follows from the fact that this bilinear
form is positive definite on P 2,2 ⊕ {l2}. q.e.d.

Remark. Here, we have restricted the statement to dimension 12
although it is valid in higher degrees and dimensions.

Given the content of Conjecture 1, it is clear that the (real) dimen-
sion d of the isometry group G of M is a key differential geometric
invariant to be determined. Indeed, in 8 dimensions, d played a cen-
tral role in the classification and it was seen to be the only relevant
characteristic number of M . Similarly, d also plays a central role in 12
dimensions, as well as the pairing

v(M) =
〈
(4u)3, [M ]

〉
which we shall call the quaternionic volume, and which now constitutes
a separate parameter.
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2.2 Quaternionic spinors

Let ∆ be the 26-dimensional faithful spin representation of Spin(12).
The representation ∆ splits as

∆ = ∆+ ⊕ ∆−,

where ∆± are two copies of the 25-dimensional irreducible representation
of Spin(11) ⊂ Spin(12). Clifford multiplication of an element of ∆+ by
an element of T = T ∗M gives an element of ∆−.

There is an anti-linear mapping

σ : ∆ −→ ∆ with σ2 = (−1)3 = −1

which allows us to see ∆ as a complex space underlying a quaternionic
one (σ = j). Combining σ with an invariant Hermitian metric on ∆, we
get an equivariant isomorphism ∆ ∼= ∆∗.

The irreducible representations of Sp(1) are the symmetric tensor
powers SqH of H = C

2, with dim(SqH) = q+1. The tensor products of
these representations behave according to the Clebsch-Gordan formula

SjH ⊗ SkH ∼=
min(j,k)∑

r=0

Sj+k−2rH,

and to the K-theory formula

(H − 2)⊗m =
m∑

j=0

(−1)j

{(
2m

j

)
−
(

2m

j − 2

)}
Sm−jH,(17)

which can be easily proved by induction.
We can define the Dirac operator with coefficients in SqH by (cf.

[20])

D(SqH) : Γ(∆+ ⊗ SqH) −→ Γ(∆− ⊗ SqH),

with index

f(q) = indD(SqH) =
〈
Â(M) · ch(SqH), [M ]

〉
,(18)

provided that q ≥ 0 and 3+q is even. The parity condition ensures that
the corresponding coupled Dirac operator is globally defined. Moreover,
f(q) is a polynomial in q.
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Theorem 5 ([20, 28]). Let M be a 12-dimensional positive quater-
nion-Kähler manifold. Then

π1(M) = 0,

π2(M) =


0 iff M is homothetic to HP

3,
Z iff M is homothetic to Gr2(C5),
finite with 2-torsion otherwise.

and M is spin if and only if M is homothetic to HP
3.

The polynomial f(q) satisfies

f(−q − 2) = −f(q),

and

f(q) =


0 if q = −3,−1, 1,
1 if q = 3,
d = dim(G) if q = 5.

2.3 Proof of the classification theorem

Note that Theorem 5 does not provide any relation between the param-
eters d and v. Thus, the strategy of the proof is to pin down the pairs
(d,v) that can occur for actual positive quaternion-Kähler manifolds.
Applying Theorem 5, we can assume that π2(M) is finite, i.e., M �∼=
Gr2(C5). We know that d ≥ 5 (cf. [28]), so that M admits smooth S1

actions.
We know that v is an integer and v ≥ 1 since 4u = −c2(S2H) is an

integral cohomology class. Let us consider the (locally defined) virtual
bundle H − 2 whose Chern character is

ch(H − 2) = u +
1
12

u2 +
1

360
u3,

since −u = c2(H). Clearly,〈
Â(M) · ch((H − 2)⊗3), [M ]

〉
=

v
64

,

〈
Â(M) · ch((H − 2)⊗4), [M ]

〉
= 0,
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and 〈
Â(M) · ch((H − 2)⊗5), [M ]

〉
= 0.

Applying formula (17) to these identities, gives the following system of
equations:

v
64

= f(3) − 6f(2) + 14f(1) − 14f(0),(19)

0 = f(4) − 8f(3) + 27f(2) − 48f(1) + 42f(0),
0 = f(5) − 10f(4) + 44f(3) − 110f(2) + 165f(1) − 132f(0).

The key point in the proof is to find another zero of f(q).

Lemma 4. Let M be a positive quaternion-Kähler 12-dimensional
manifold different from Gr2(C5). Then

f(0) = 0.

Proof. We know that π2(M) is finite and that M admits smooth
S1 actions. Thus, by Theorem 1

Â(M) = 0,

which means f(0) = 0. q.e.d.

Remark. Clearly, the conclusion of Lemma 4 also holds for any
positive quaternion-Kähler manifold different from the complex Grass-
mannian and which admits a smooth S1 action.

The system (19) therefore reduces to

v =
12
5

d − 112
5

.(20)

This relation between d and v greatly reduces the problem of determin-
ing the possible values of (d,v). In particular, it implies that d ≥ 11,
already hinting that the manifold must be homogeneous.

Hence, Equation (20) gives us the following list of integral pairs:

(i) (d,v) = (11, 4),

(ii) (d,v) = (16, 16),

(iii) (d,v) = (21, 28),



Â-genus on non-spin manifolds 361

(iv) (d,v) = (26, 40),

(v) (d,v) = (31, 52),

(vi) (d,v) = (36, 64).

The pair (vi) must give rise to the quaternionic projective space,
since the isotropy group K at any point of M must have dimension at
least 24 and is contained in Sp(3)Sp(1).

The pairs (i) and (ii) are ruled out since the quadratic form Q in
Lemma 3 is positive definite, i.e.,

v2 − 64v − 16vd + 576 − 288d + 36d2 < 0.

The pairs (iv) and (v) are ruled out since there are no semi-simple
Lie groups of the given dimension and rank less than or equal to 3, the
upper bound found by Bielawski [4].

The pair (iii) is the only one in which we have to do more work.
Since d = 21, the isotropy group K at any point must have dimension
9 ≤ dim(K) ≤ 21. By [28], the curvature tensor R of M splits as R =
tR0 + R1, where R0 is the curvature tensor of quaternionic projective
space, t is the scalar curvature, and R1 is a section of S4E. Therefore,
in order to measure the covariant derivative ∇R it suffices to look at
∇R1 as a section of S5E ⊗ H, which must be invariant under K.

Consider the map given by the composition of the isotropy repre-
sentation and projection onto the second factor

Lie(K) −→ sp(3) ⊕ sp(1) −→ sp(1).

There are two cases: Either the map is surjective or is identically zero.
By checking the possible groups K, we see that if the map is surjective,
there are no groups K with invariants in S5E⊗H, so ∇R1 = 0. On the
other hand, if the map is zero, the only candidate for K with possible
invariants in S5 ⊗H is Sp(2), so that the orbits of G on M have dimen-
sion 11. This is not possible due to the classification of cohomogeneity
one quaternion-Kähler manifolds in [8, 25]. q.e.d.

As we have seen, the new vanishing Theorem 1 has a powerful ap-
plication to geometry. The keys to the proof of the vanishing are the
rigidity property under smooth S1 actions and the dimension of the
fixed point manifolds of S1. This situation provides strong evidence for
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Conjecture 1 since it is feasible to gain very detailed information on fixed
point manifolds of S1 actions (see [3, 26]) in the quaternion-Kähler set-
up. It is therefore feasible to obtain further vanishing theorems on these
manifolds, which will completely pin down their topology and geometry
(see Corollary 1).

We conclude by simply stating immediate applications of our re-
sult to certain manifolds which fiber over positive quaternion-Kähler 12-
manifolds. By using [19, 10] we have the following corollaries:

Corollary 2. Let Z be a (compact) Fano contact manifold of com-
plex dimension 7, which admits a Kähler-Einstein metric. Then Z is a
homogeneous space, isometric to the twistor space of a Wolf space.

Corollary 3. Let S be a compact regular 3-Sasakian 15-manifold.
Then S is homogeneous.
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