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RIGIDITY FOR QUASI-MÖBIUS GROUP ACTIONS

MARIO BONK & BRUCE KLEINER

Abstract
If a group acts by uniformly quasi-Möbius homeomorphisms on a compact
Ahlfors n-regular space of topological dimension n such that the induced
action on the space of distinct triples is cocompact, then the action is quasi-
symmetrically conjugate to an action on the standard n-sphere by Möbius
transformations.

1. Introduction

It has been known since the time of Poincaré that the limit set of
a subgroup of PSL(2,C) obtained by a small deformation of a discrete
cocompact subgroup of PSL(2,R) ⊆ PSL(2,C) will be a nowhere dif-
ferentiable curve unless it is round. Much later R. Bowen [3] made
this more precise by proving that such a limit curve is either a round
circle or has Hausdorff dimension strictly greater than 1. The group
PSL(2,C) is isomorphic to the group of orientation preserving isome-
tries of hyperbolic 3-space. Therefore, it is a natural question whether
similar results hold for subgroups of the isometry group Isom(Hn+1) of
hyperbolic (n+1)-space when n ≥ 2, or, what is the same, for groups of
Möbius transformations acting on the standard n-sphere S

n. Rigidity
results in this vein were obtained by Sullivan [12, p. 69] and Yue [15,
Theorem 1.5].

In the present paper we generalize these results further by consider-
ing uniformly quasi-Möbius group actions on compact metric spaces Z
that induce cocompact actions on the space Tri(Z) of distinct triples of
Z. The following theorem is our main result.
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Theorem 1.1. Let n ∈ N, and let Z be a compact, Ahlfors n-
regular metric space of topological dimension n. Suppose G � Z is a
uniformly quasi-Möbius action of a group G on Z, where the induced
action G � Tri(Z) is cocompact. Then G � Z is quasi-symmetrically
conjugate to an action of G on the standard sphere S

n by Möbius trans-
formations.

The terminology will be explained in the body of the paper. Note
that part of the conclusion is that Z is homeomorphic to S

n.
When G is a hyperbolic group, then up to quasi-symmetry, the

boundary ∂∞G carries a unique “visual” metric d with respect to which
the canonical action G � ∂∞G is uniformly quasi-Möbius. In this case
the induced action on Tri(∂∞G) is discrete and cocompact, so Theo-
rem 1.1 may be applied if (∂∞G, d) is quasi-symmetrically equivalent
to an Ahlfors n-regular space whose topological dimension is equal to
n. Note that when d is a visual metric on ∂∞G, then (∂∞G, d) will
be Ahlfors Q-regular for some Q > 0, but in general Q will exceed the
topological dimension of ∂∞G.

In order to state our next result, we recall (see the discussion in
Section 7) that if X is a CAT(−1)-space, then any point p ∈ X de-
termines a canonical metric on ∂∞X, and any two such metrics are bi-
Lipschitz equivalent by the identity map. In particular, we may speak
of the Hausdorff dimension of any subset of ∂∞X, since this number is
independent of the choice of the canonical metric. We then have the fol-
lowing corollary of Theorem 1.1 which generalizes a result by Bourdon
[2, 0.3 Théorème (Hn case)].

Theorem 1.2. Suppose n ∈ N, n ≥ 2. Let G � X be a prop-
erly discontinuous, quasi-convex cocompact, and isometric action on a
CAT(−1)-space X. If the Hausdorff dimension and topological dimen-
sion of the limit set Λ(G) ⊆ ∂∞X are both equal to n, then X contains
a convex, G-invariant subset Y isometric to H

n+1 on which G acts co-
compactly.

The terminology and the notation will be explained in Section 7.
Note that the ineffective kernel N of the induced action G � Y is
finite, and G/N is isomorphic to a uniform lattice in Isom(Hn+1).

In contrast to Theorem 1.1 where the case n = 1 is allowed, we
assume n > 1 in the previous theorem, in order to be able to apply
Bourdon’s result. It is an interesting question whether the statement is
also true for n = 1. See the discussion in Section 7.
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The proof of Theorem 1.1 can be outlined as follows. First, we use
the dimension assumption to get a Lipschitz map f : Z → S

n such that
the image of f has positive Lebesgue measure. According to a result
by David and Semmes one can rescale f and extract a limit mapping
φ : X → R

n defined on a weak tangent space of Z which has bounded
multiplicity, i.e., point inverses φ−1(y) have uniformly bounded cardi-
nality. We then show that φ is locally bi-Lipschitz somewhere. This is
deduced from Theorem 3.4, a purely topological ingredient in the proof.
This theorem gives a criterion for a map into R

n of bounded multiplicity
to be a covering on a dense open subset of its domain, and may be of in-
dependent interest. A consequence of these considerations is that some
weak tangent of Z is bi-Lipschitz equivalent to R

n. The assumptions on
the group action can then be used to prove that Z is quasi-symmetrically
equivalent to S

n. Once this is established, the theorem follows from a
result by Tukia.

Our method of proving Theorem 1.1 can also be applied in other
contexts. In [8, Question 5] Heinonen and Semmes ask whether every
linearly locally contractible Ahlfors n-regular metric n-sphere Z that
is quasi-symmetrically three point homogeneous is quasi-symmetrically
equivalent to the standard n-sphere S

n. One can show that the answer
to this question is positive, if we make the stronger assumption that Z
is three point homogeneous by uniform quasi-Möbius homeomorphisms.
(see the discussion in Section 6).

Acknowledgement. A previous version of this paper was based
on some rather deep results on the uniform rectifiability of metric spaces
satisfying some topological nondegeneracy assumptions. The state-
ments we needed are implicitly contained in the works of David and
Semmes, but not stated explicitly. The approach taken in this version
uses a much more elementary result by David and Semmes. The au-
thors are indebted to Stephen Semmes for conversations about these
issues and thank him especially for directing their attention to the re-
sults in Chapter 12 of [6].

Notation. The following notation will be used throughout the
paper. Let Z be a metric space. The metric on Z will be denoted by
dZ , and the open and the closed ball of radius r > 0 centered at a ∈ Z
by BZ(a, r) and BZ(a, r), respectively. We will drop the subscript Z
if the space Z is understood. If A ⊆ Z and d = dZ , then d|A is the
restriction of the metric d to A. We use diam(A) for the diameter, A
for the closure, and #A for the cardinality of a set A ⊆ Z. If z ∈ Z
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and A,B ⊆ Z, then dist(z,A) and dist(A,B) are the distances of z
and A and of A and B, respectively. If A ⊆ Z and r > 0, then we let
Nr(A) := {z ∈ Z : dist(z,A) < r}. The Hausdorff distance of two sets
A,B ⊆ Z is defined by

distH(A,B) := max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
.

Suppose X and Y are metric spaces. If f : X → Y is a map, then we
let Im(f) := {f(x) : x ∈ X}. If A ⊆ X, then f |A denotes the restriction
of the map f to A. If g : X → Y is another map, we let

dist(f, g) := sup
x∈X

dist(f(x), g(x)).

The identity map on a set X will be denoted by idX .

2. Quasi-Möbius maps and group actions

Let (Z, d) be a metric space. The cross-ratio of a four-tuple of dis-
tinct points (z1, z2, z3, z4) in Z is the quantity

[z1, z2, z3, z4] :=
d(z1, z3)d(z2, z4)
d(z1, z4)d(z2, z3)

.

Suppose X and Y are metric spaces and η : [0,∞) → [0,∞) is a
homeomorphism. An injective map f : X → Y is an η-quasi-Möbius
map if for every four-tuple (x1, x2, x3, x4) of distinct points in X, we
have

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4]).

Note that by exchanging the roles of x1 and x2, one gets the lower bound

η([x1, x2, x3, x4]−1)−1 ≤ [f(x1), f(x2), f(x3), f(x4)].

Hence f is a homeomorphism onto its image f(X), and the inverse map
f−1 : f(X) → X is also quasi-Möbius.

The map f is η-quasi-symmetric if

dY (f(x1), f(x2))
dY (f(x1), f(x3))

≤ η

(
dX(x1, x2)
dX(x1, x3)

)

for every triple (x1, x2, x3) of distinct points in X.



rigidity for quasi-möbius group actions 85

Finally, f is called bi-Lipschitz if there exists a constant L ≥ 1 (a
bi-Lipschitz constant for f) such that

(1/L)dX(x1, x2) ≤ dY (f(x1), f(x2)) ≤ LdX(x1, x2),

whenever x1, x2 ∈ X.
We mention some basic properties of these maps (see [14]):

(1) The post-composition of an η1-quasi-Möbius map by an η2-quasi-
Möbius map is an η2 ◦ η1-quasi-Möbius map. Similar statements
are true for quasi-symmetric maps and bi-Lipschitz maps.

(2) A bi-Lipschitz map is quasi-symmetric and quasi-Möbius. A quasi-
symmetric map is quasi-Möbius. A quasi-Möbius map defined on
a bounded space is quasi-symmetric.

(3) Let X and Y be compact metric spaces, and suppose fk : X → Y
is an η-quasi-Möbius map for k ∈ N. Then we have that:

(a) the sequence (fk) subconverges uniformly to an η-quasi-Mö-
bius map, or

(b) there is a point x0 ∈ X so that the sequence (fk|X\{x0})
subconverges uniformly on compact subsets of X \ {x0} to a
constant map.

The alternative (b) can be excluded by a normalization condition;
namely, that each map fk maps a uniformly separated triple of
points in X to a uniformly separated triple in Y .

We will need the following extension of property (3).

Lemma 2.1. Suppose (X, dX) and (Y, dY ) are compact metric
spaces, and let fk : Dk → Y for k ∈ N be an η-quasi-Möbius map defined
on a subset Dk of X. Suppose

lim
k→∞

distH(Dk, X) = 0,

and that for k ∈ N there exist triples (x1
k, x

2
k, x

3
k) and (y1

k, y
2
k, y

3
k) of

points in Dk and Y , respectively, such that

fk(xi
k) = yi

k for k ∈ N, i ∈ {1, 2, 3},

dX(xi
k, x

j
k) ≥ δ and dY (yi

k, y
j
k) ≥ δ for k ∈ N, i, j ∈ {1, 2, 3}, i �= j,
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where δ > 0 is independent of k.
Then the sequence (fk) subconverges uniformly to a quasi-Möbius

map f : X → Y , i.e., there exists a monotonic sequence (kν) in N such
that

lim
ν→∞dist(fkν , f |Dkν

) = 0.

Suppose in addition that

lim
k→∞

distH(fk(Dk), Y ) = 0.

Then the sequence (fk) subconverges uniformly to quasi-Möbius homeo-
morphism f : X → Y .

The lemma says that a sequence (fk) of uniformly quasi-Möbius
maps defined on denser and denser subsets of a space X and mapping
into the same space Y subconverges to a quasi-Möbius map defined on
the whole space X, if each map fk maps a uniformly separated triple in
X to a uniformly separated triple in Y . Moreover, a surjective limiting
map can be obtained if the images of the maps fk Hausdorff converge
to the space Y .

Proof. The assumptions imply that the functions fk are equicontin-
uous (cf. [14, Thm. 2.1]). The proof of the first part of the lemma then
follows from standard arguments based on the Arzelà-Ascoli theorem,
and we leave the details to the reader.

To prove the second part, note that according to the first part, by
passing to a subsequence if necessary, we may assume that

dist(fk, f |Dk
) → 0 for k → ∞.

Let D′
k := fk(Dk) and gk := f−1

k : D′
k → X. The maps gk are uniformly

quasi-Möbius. Hence, by our additional assumption we can apply the
first part of the lemma to the sequence (gk). Again by selecting a
subsequence of (gk) if necessary, we may assume that

dist(gk, g|D′
k
) → 0 for k → ∞,

where g : Y → X is a quasi-Möbius map. Since gk ◦ fk = idDk
and

fk ◦gk = idD′
k
, we obtain from the uniform convergence of the sequences

(fk) and (gk) that g ◦ f = idX and f ◦ g = idY . Hence f is a bijection
and therefore a quasi-Möbius homeomorphism. q.e.d.

Let Z be an unbounded locally compact metric space with metric
d = dZ , let p ∈ Z be a base point, and let Ẑ = Z∪{∞} be the one-point



rigidity for quasi-möbius group actions 87

compactification of Z. In order to define a metric on Ẑ associated with
the pointed space (Z, p) let hp : Ẑ → [0,∞) be given by

hp(z) :=




1
1 + d(z, p)

for z ∈ Z,

0 for z = ∞.

Moreover, let

ρp(x, y) = hp(x)hp(y)d(x, y) for x, y ∈ Z,

ρp(x,∞) = ρp(∞, x) = hp(x) for x ∈ Z, ρp(∞,∞) = 0. Note that
if an argument of the functions hp and ρp is the point at infinity, the
corresponding value can be obtained as a limiting case of values at
arguments in Z. Essentially, the function ρp is the metric on Ẑ that
we are looking for. This distance function is an analog of the chordal
metric on the Riemann sphere. Unfortunately, ρp will not satisfy the
triangle inequality in general. We remedy this problem by a standard
procedure.

If x, y ∈ Ẑ we define

d̂p(x, y) := inf
k−1∑
i=0

ρp(xi, xi+1),

where the infimum is taken over all finite sequences of points x0, . . . , xk ∈
Ẑ with x0 = x and xk = y.

Lemma 2.2. The function d̂p is a metric on Ẑ whose induced
topology agrees with the topology of Ẑ. The identity map idZ : (Z, d) →
(Z, d̂p|Z) is an η-quasi-Möbius homeomorphism where η(t) = 16t.

Proof. The first part of the lemma immediately follows if we can
show that

1
4
ρp(x, y) ≤ d̂p(x, y) ≤ ρp(x, y) for x, y ∈ Ẑ.(2.3)

The second part also follows from this inequality by observing that if
(z1, z2, z3, z4) is a four-tuple of distinct points in Z, then

d̂p(z1, z3)d̂p(z2, z4)

d̂p(z1, z4)d̂p(z2, z3)
≤ 16

ρp(z1, z3)ρp(z2, z4)
ρp(z1, z4)ρp(z2, z3)

= 16
d(z1, z3)d(z2, z4)
d(z1, z4)d(z2, z3)

.

The right-hand inequality in (2.3) follows from the definition of d̂p.
In order to prove the left-hand inequality, we may assume hp(x) ≥ hp(y)
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without loss of generality. Moreover, we may assume x ∈ Z and so
hp(x) > 0, because otherwise x = y = ∞ and the inequality is true.

If x0, . . . , xk is an arbitrary sequence with x0 = x and xk = y, we
consider two cases:

If hp(xi) ≥ 1
2hp(x) > 0 for all i ∈ {0, . . . , k}, then xi ∈ Z, and the

triangle inequality applied to d gives

k−1∑
i=0

ρp(xi, xi+1) ≥ 1
4
hp(x)2

k−1∑
i=0

d(xi, xi+1)(2.4)

≥ 1
4
d(x, y)hp(x)hp(y) =

1
4
ρp(x, y).

Suppose there exists j ∈ {0, . . . , k} such that hp(xj) < 1
2hp(x). Note

that it follows from the definitions that |hp(u) − hp(v)| ≤ ρp(u, v) for
u, v ∈ Ẑ. Moreover, since hp(y) ≤ hp(x) we have d(x, p) ≤ d(y, p) in
case y ∈ Z. This implies

d(x, y)
1 + d(y, p)

≤ 2
d(y, p)

1 + d(y, p)
≤ 2,

which leads to ρp(x, y) ≤ 2hp(x). This is also true if y = ∞. We arrive
at

k−1∑
i=0

ρp(xi, xi+1) ≥
k−1∑
i=0

|hp(xi) − hp(xi+1)| ≥ 1
2
hp(x) ≥ 1

4
ρp(x, y).(2.5)

The desired inequality follows from (2.4) and (2.5). q.e.d.

Let (Z, d) be a metric space. We write G � Z, if G is a group
that acts on Z by homeomorphisms. The image of a point z ∈ Z under
the group element g is denoted by g(z). The action G � Z is called
faithful if the only element in G that acts as the identity on Z is the
unit element.

If η : [0,∞) → [0,∞) is a homeomorphism, then an action G � Z
is an η-quasi-Möbius action if each g ∈ G induces an η-quasi-Möbius
homeomorphism of Z. An action G � Z is uniformly quasi-Möbius if
it is η-quasi-Möbius for some homeomorphism η : [0,∞) → [0,∞). If Z
is locally compact, then the action G � Z is called cocompact if there
exists a compact set K ⊆ Z such that

Z =
⋃
g∈G

g(K).
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We denote by

Tri(Z) := {(z1, z2, z3) ∈ Z3 : z1 �= z2 �= z3 �= z1}
the space of distinct triples in Z. If G � Z is a group action, then there
is a natural induced action G � Tri(Z) defined by

g(z1, z2, z3) := (g(z1), g(z2), g(z3))

for g ∈ G and (z1, z2, z3) ∈ Tri(Z).
Suppose G � Z is an action on a compact space Z. Then the

induced action G � Tri(Z) is cocompact if and only if there exists
δ > 0 such that for every triple (z1, z2, z3) ∈ Tri(Z) there exists a group
element g ∈ G such that

d(g(zi), g(zj)) ≥ δ for i, j ∈ {1, 2, 3}, i �= j.

This condition means that every triple in Tri(Z) can be mapped to a
uniformly separated triple by some map g ∈ G.

3. Maps of bounded multiplicity

The goal of this section is to study continuous maps of bounded
multiplicity between a space of topological dimension n and R

n. The
main result is Theorem 3.4 which may be of independent interest.

Definition 3.1. If f : X → Y is a continuous map between metric
spaces X and Y , then y ∈ Y is a stable value of f if there is ε > 0 such
that y ∈ Im(g) for every continuous map g : X → Y with dist(f, g) < ε.

Note that the set of stable values of a map f : X → R
n is an open

subset of R
n.

Recall that a map is light if all point inverses are totally disconnected.
We will prove the following proposition.

Proposition 3.2. Let X be a compact metric space of topological
dimension at least n, and let f : X → R

n be a light continuous map.
Then f has stable values.

This statement and its proof are related to the well-known fact (cf.
[9, pp. 91–92]) that such a map f cannot decrease topological dimension.

Definition 3.3. A map f : X → Y between two spaces has bounded
multiplicity if there is a constant N ∈ N such that #f−1(y) ≤ N for all
y ∈ Y .
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Using Proposition 3.2 we will prove:

Theorem 3.4. Suppose X is a compact metric space, every non-
empty open subset of X has topological dimension at least n, and f : X→
R

n is a continuous map of bounded multiplicity. Then there is an open
subset V ⊆ Im(f) with V = Im(f), such that U := f−1(V ) is dense in
X and f |U : U → V is a covering map.

In particular, there exist nonempty open sets U1 ⊆ X and V1 ⊆ R
n

such that f |U1 is a homeomorphism of U1 onto V1. It is in this form
that we will use Theorem 3.4 in the proof of Theorem 1.1.

Let X be a topological space, and let U = {Ui : i ∈ I} be a cover of
X by open subsets Ui indexed by some set I. The nerve of U , denoted
by Ner(U), is a simplicial complex whose simplices corresponds to the
finite subsets I ′ ⊆ I for which

UI′ :=
⋂
i∈I′

Ui �= ∅.

The order of U is the supremum of all numbers #I ′ such that UI′ �=
∅. We denote the topological dimension of X by dimtop(X) (cf. [10,
Def. I.4]). A compact metric space X has topological dimension at
most n, if and only if open covers of order at most n+ 1 are cofinal in
the family of all open covers of X, i.e., every open cover has an open
refinement which has order at most n+ 1. The order of an open cover
U is equal to dimtop(Ner(U)) + 1.

In order to prove Proposition 3.2 we discuss a general construction
that associates a fine cover with a light continuous map f : X → Y from
a compact metric space X to a separable metric space Y . Pick ε > 0.

If y ∈ Y , then f−1(y) is compact and totally disconnected, so
the diameter of connected components of Nδ(f−1(y)) tends to zero
as δ → 0. Hence there is a number ry > 0 such that Nry(f−1(y))
can be decomposed as a finite disjoint union of open sets with di-
ameter less than ε; moreover, there is a number sy > 0 such that
f−1(B(y, sy)) ⊆ Nry(f−1(y)). Let B be a finite cover of Im(f) by balls
of the form B(y, sy).

Suppose U = {Ui : i ∈ I} is a cover of Im(f) by open subsets of Y .
Let I ′ := {i ∈ I : Ui ∩ Im(f) �= ∅}, and assume that U ′ := {Ui : i ∈ I ′}
refines B. Then f−1(U ′) := {f−1(Ui) : i ∈ I ′} is an open cover of X
such that for all i ∈ I ′, we have f−1(Ui) ⊆ Nry(f−1(y)) for some y ∈ Y ,
which implies that f−1(Ui) may be written as a finite disjoint union of
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open subsets with diameter less than ε. Choosing such a decomposition
of f−1(Ui) for each i ∈ I ′ yields a collection of open sets V = {Vj : j ∈ J}
which covers X, and a map α : J → I ′ ⊆ I such that Vj is an open set
appearing in the decomposition of f−1(Uα(j)). Note that α induces a
simplicial map φ : Ner(V) → Ner(U) since

Vj1 ∩ · · · ∩ Vjk
�= ∅ ⇒ f−1(Uα(j1)) ∩ · · · ∩ f−1(Uα(jk)) �= ∅

⇒ Uα(j1) ∩ · · · ∩ Uα(jk) �= ∅.
In fact, φ is injective on simplices, since if j, j′ ∈ J are distinct and
α(j) = α(j′), then Vj and Vj′ are disjoint fragments of the same open
set f−1(Uα(j)) = f−1(Uα(j′)), and so Vj ∩Vj′ = ∅. In particular, we have
dimtop(Ner(V)) ≤ dimtop(Ner(U)).

Suppose {ρi : i ∈ I} is a partition of unity in Y subordinate to U .
Here and in the following we interpret subordination in the sense that
{ρi �= 0} ⊆ Ui for all i ∈ I. We can produce a partition of unity {νj : j ∈
J} in X subordinate to V as follows: let νj := χ

Vj
· (ρα(j) ◦ f

)
, where

χ
Vj

is the characteristic function of Vj . Using the functions {ρi : i ∈ I}
as barycentric coordinates in Ner(U), and the functions {νj : j ∈ J} as
barycentric coordinates in Ner(V), we obtain induced continuous maps
ρ : Y → Ner(U) and ν : X → Ner(V) such that φ ◦ ν = ρ ◦ f .

We note that since ε > 0 was chosen arbitrarily, if we have a cofinal
family of covers U of Im(f) of order at most N , then the corresponding
family of covers V of X will be cofinal and its members will have order
at most N ; this implies that dimtop(Y ) ≥ dimtop(Im(f)) ≥ dimtop(X).

Proof of Proposition 3.2. For ε > 0 we now apply the construction
above in the special case that Y = R

n, dimtop(X) ≥ n, and the open
cover U = {Ui : i ∈ I} of R

n is the open star cover associated with
a triangulation of R

n (more precisely, I is the set of vertices of the
triangulation, and Ui is the open star of the vertex i ∈ I). Since f(X) is
compact, the associated cover U ′ will refine a given cover of f(X) if the
triangulation of R

n is chosen fine enough. We have a homeomorphism
ρ : R

n → Ner(U) (we conflate simplicial complexes with their geometric
realizations), and an induced partition of unity {ρi : i ∈ I} coming from
the barycentric coordinate functions of the map ρ.

Since the family of open covers of X induced by our construction
is cofinal in the family of all open covers of X, we can choose ε > 0
small enough so that the induced cover V of X does not admit an open
refinement W of order at most n.
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Lemma 3.5. Some n-simplex σ of Ner(V) has an interior point ξ
which is a stable value of ν : X → Ner(V).

Proof. Suppose not. Then we may form a set S by choosing one
interior point from each n-simplex of Ner(V), and perturb ν slightly on a
small neighborhood of ν−1(S) to get a map ν ′ : X → Ner(V) such that its
barycentric coordinate functions are subordinate to V, and Im(ν ′)∩S =
∅. (See the first part of the proof of Lemma 3.7 for the idea of how to
construct this perturbation.) Then we may compose ν ′ with the “radial
projection” in each n-simplex which maps Ner(V) \ S to the (n − 1)-
skeleton [Ner(V)]n−1 of Ner(V). In this way we get a map ν ′′ from X to
[Ner(V)]n−1 whose barycentric coordinates are subordinate to V; pulling
back the open star cover of Ner(V) by ν ′′, we get a refinement of V of
order at most n, which is a contradiction. q.e.d.

If ξ is as in the lemma, then φ(ξ) ∈ Ner(U) is clearly a stable value
of φ ◦ ν : X → Ner(U); but f = ρ−1 ◦ φ ◦ ν where ρ−1 is a homeomor-
phism, so ρ−1(φ(ξ)) is a stable value of f . This completes the proof of
Proposition 3.2. q.e.d.

Definition 3.6. Let X be a topological space, and f : X → R
n be

a map. Then x ∈ X is a stable point of f if f(x) is a stable value of f |U
for every neighborhood U of x.

Lemma 3.7. Suppose X is metric space, and f : X → R
n is a

continuous map. Then y ∈ R
n is a stable value of f if and only if y is

a stable value of f |f−1(W ) for every neighborhood W of y. When X is
a compact metric space and f−1(y) is totally disconnected, then y is a
stable value of f if and only if the fiber f−1(y) contains a stable point.

Proof. We will only prove the “only if” implications; the other im-
plications are immediate.

Suppose W ⊆ R
n is an open neighborhood of y, and y is an unstable

value of f |U , where U := f−1(W ). Choose δ > 0 such that B(y, δ) ⊆W ,
and let V := f−1(Rn \B(y, δ)). Pick ε > 0. As y is an unstable value of
f |U , we can find a map gU : U → R

n such that dist(gU , f |U ) < min(ε, δ)
and y �∈ Im(gU ). Define gV : V → R

n to be the restriction of f to V .
Combining gU and gV using a partition of unity subordinate to the cover
{U, V }, we get a continuous map g : X → R

n such that dist(g, f) < ε
and g−1(y) = ∅. Since ε > 0 was arbitrary, we have shown that y is not
a stable value of f .

Now supposeX is compact, f−1(y) is totally disconnected, and every
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point x ∈ f−1(y) is unstable. By the compactness of f−1(y) we can find
a finite cover B = {B(x1, r1), . . . , B(xk, rk)} of f−1(y) by balls where
xi ∈ f−1(y) and y is an unstable value of f |B(xi,ri) for each 1 ≤ i ≤ k.
When δ > 0 is sufficiently small, then f−1(B(y, δ)) can be decomposed
into a disjoint union of open sets U1, . . . , Uj so that the cover {Ui} of
f−1(y) refines B. This means that y is an unstable value of f |Ui for each
i, which implies that y is an unstable value of f |f−1(B(y,δ)). This is a
contradiction to what we proved in the first part of the proof. q.e.d.

Now let X be a compact metric space such that dimtop(U) ≥ n for
all nonempty open subsets U ⊆ X, and f : X → R

n be a continuous
map of bounded multiplicity.

Lemma 3.8. For all y ∈ R
n and all ε > 0, there is δ > 0 such that

for all y′ ∈ B(y, δ) and all stable points x ∈ f−1(y), there is a stable
point in f−1(y′) ∩B(x, ε).

Proof. Let {x1, . . . , xk} be the stable points in f−1(y) and pick
i ∈ {1, . . . , k}. Since xi is stable point, y is a stable value of f |B(xi,ε/2).
So any y′ sufficiently close to y is also a stable value of f |B(xi,ε/2) and by
Lemma 3.7 for such y′ we will have a stable point in f−1(y′) ∩B(xi, ε).
This holds for all i, so the lemma follows. q.e.d.

We define the stable multiplicity function µ : R
n → N by letting µ(y)

be the number of stable points in f−1(y).

Lemma 3.9. If µ is locally maximal at y ∈ R
n, then every x ∈

f−1(y) is stable.

Proof. Let U ⊆ R
n be a neighborhood of y such that µ(y′) ≤

µ(y) for all y′ ∈ U . Let x1, . . . , xk be the stable points in f−1(y), and
suppose x ∈ f−1(y) \ {x1, . . . , xk}. Pick ε > 0 such that the balls
B(x, ε), B(x1, ε), . . . , B(xk, ε) are disjoint.

Choose δ > 0 as in the previous lemma. Since dimtop(V ) ≥ n
for all nonempty open subsets V ⊆ X, and f : X → R

n is a contin-
uous map of bounded multiplicity and in particular light, it follows
from Proposition 3.2 that the stable values of f |B(x,ε/2) are dense in
Im(f |B(x,ε/2)). Hence we can find a stable value y′ of f |B(x,ε/2) lying
in U ∩ B(y, δ). Then f−1(y′) has a stable point in each of the balls
B(x, ε), B(x1, ε), . . . , B(xk, ε), so µ(y′) ≥ k + 1; this is a contradiction.

q.e.d.
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Proof of Theorem 3.4. Let V ⊆ Im(f) ⊆ R
n be the set where the

stable multiplicity function µ is locally maximal; clearly V is dense in
Im(f). By Lemma 3.8, V is an open subset of R

n, and µ is locally
constant on V . By Lemma 3.9, the map y → #f−1(y) is a locally
constant function on V . It is therefore clear by Lemma 3.8 that f is
locally injective near any x ∈ U := f−1(V ), and hence f |U is a covering
map. If W is a nonempty open set in X, then f(W ) has nonempty
interior by Proposition 3.2. Hence f(W ) meets V , since V is dense in
Im(f). It follows that W meets U = f−1(V ). This implies that U is
dense in X. q.e.d.

4. Weak Tangents

In this section we briefly review some results on weak tangents. For
more details see [6] and [4].

A pointed metric space is a pair (Z, p), where Z is a metric space
(with metric dZ) and p ∈ Z. A sequence (Zk, pk) of pointed metric
spaces is said to converge to a pointed metric space (Z, p), if for every
R > 0 and for every ε > 0 there exist N ∈ N, a subset M ⊆ BZ(p,R),
subsets Mk ⊆ BZk

(pk, R) and bijections fk : Mk → M such that for
k ≥ N :

(i) p ∈M , pk ∈Mk, and fk(pk) = p,

(ii) the set M is ε-dense in BZ(p,R), and the sets Mk are ε-dense in
BZk

(pk, R),

(iii) |dZk
(x, y) − dZ(fk(x), fk(y))| < ε whenever x, y ∈Mk.

The definitions for pointed space convergence given in [6] and [4] are
different, but equivalent.

A complete metric space S is called a weak tangent of the metric
space Z, if there exist a sequence of numbers λk > 0 with λk → ∞ for
k → ∞ and points q ∈ S, pk ∈ Z such that the sequence of pointed
spaces (λkZ, pk) converges to the pointed space (S, q). Here we denote
by λZ for λ > 0 the metric space (Z, λdZ). In other words, λZ agrees
with Z as a set, but is equipped with the metric obtained by rescaling
the original metric by the factor λ > 0. The set of all weak tangents of
a metric space Z is denoted by WT(Z). If X, Y , Z are metric spaces,
and X is a weak tangent of Y and Y is a weak tangent of Z, then
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X is a weak tangent of Z, i.e., X ∈ WT(Y ) and Y ∈ WT(Z) imply
X ∈ WT(Z).

A metric space Z is called uniformly perfect if there exists a constant
λ ≥ 1 such that for every z ∈ Z and 0 < R ≤ diam(Z) we have
B(z,R) \B(z,R/λ) �= ∅.

For Q > 0 we denote by HQ the Q-dimensional Hausdorff measure
on a metric space Z. A complete metric space Z of positive diameter is
called Ahlfors Q-regular, where Q > 0, if there exists a constant C ≥ 1
such that

1
C
RQ ≤ HQ(B(z,R)) ≤ CRQ,

whenever z ∈ Z and 0 < R ≤ diam(Z).
A metric space Z is called doubling, if there exists a number N ∈ N

such that every open ball of radius R in Z can be covered by at most
N open balls of radius R/2. The space Z is called proper, if closed balls
in Z are compact.

Every Ahlfors regular space is uniformly perfect and doubling. A
complete doubling space is proper. If Z is a compact metric space that
is uniformly perfect and doubling, and X ∈ WT(Z), then X is an un-
bounded doubling metric space. Since X is also complete by definition,
this space will be proper.

Suppose f : X → Y is a map between a metric space X and a
doubling metric space Y . The map is called regular if it is Lipschitz and
if there exists a constant N ∈ N such that the inverse image of every
open ball B in Y can be covered by at most N open balls in X with the
same radius as B.

Note that this last condition implies that f is of bounded multi-
plicity. Indeed, we have #f−1(y) ≤ N for y ∈ Y . For suppose that
there are N + 1 distinct points x1, . . . , xN+1 ∈ f−1(y). Let ε > 0 be
the minimum of the distances dX(xi, xj) for i �= j. Consider the ball
B = B(y, ε/2). By our assumption on f the preimage f−1(B) ⊇ f−1(y)
can be covered by N open balls B1, . . . , BN ⊆ X of radius ε/2. But
this is impossible, because each ball Bi can contain at most one of the
points x1, . . . , xN+1.

The proof of the following proposition can be found in [6, Prop.
12.8].

Proposition 4.1. Let X and Y be metric spaces, and f : X → Y
be a Lipschitz map. Suppose that X is compact and Ahlfors Q-regular,
where Q > 0, Y is complete and doubling, and HQ(f(X)) > 0.

Then there exist weak tangents S ∈ WT(X), T ∈ WT(Y ), and a
regular map g : S → T .
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We will need the following lemmas.

Lemma 4.2. Suppose X is a metric space, and f : X → R
n is

regular. Assume that there is an open ball B ⊆ R
n and a set U ⊆ f−1(B)

such that the map g := f |U : U → B is a homeomorphism. Then g is a
bi-Lipschitz map.

It is understood that U is equipped with the restriction of the metric
dX to U , and B with the Euclidean metric.

Proof. Since f is Lipschitz, the map g is also Lipschitz. It remains to
obtain an upper bound for dX(x, y) in terms of |f(x)− f(y)|, whenever
x, y ∈ U , x �= y. Let R := 2|f(x) − f(y)| > 0, B′ := B(x,R) and
S ⊆ B′ ∩ B be the Euclidean line segment connecting f(x) and f(y).
Then E := g−1(S) is a compact connected set in U containing x and y.
On the other hand, E ⊆ f−1(B′). If N ∈ N is associated with f as in
the definition of a regular map, then it follows that E can be covered
by N open balls of radius R. Now we invoke the following elementary
fact whose proof is left to the reader: If E is a compact connected set
in a metric space covered by open balls, then the diameter of E is at
most twice the sum of the radii of the balls.

In our situation we get the estimate

dX(x, y) ≤ diam(E) ≤ 2NR = 4N |f(x) − f(y)|,

which proves that g is a bi-Lipschitz homeomorphism. q.e.d.

Lemma 4.3. Suppose X and Y are complete doubling metric
spaces. Suppose there exist a point x ∈ X, a neighborhood U of x and
a bi-Lipschitz map f : U → V := f(U) such that V is a neighborhood of
y := f(x).

Then there exist S ∈ WT(X), T ∈ WT(Y ), and a bi-Lipschitz home-
omorphism g : S → T .

The lemma says that under the given hypotheses the spaces X and
Y have bi-Lipschitz equivalent weak tangents.

Proof. For λ > 0 consider the pointed metric spaces (λU, x) and
(λV, y), where λU and λV denote the metric spaces whose underlying
sets are U and V equipped with the restrictions of the metric dX and
dY , respectively, rescaled by the factor λ > 0. The map f consid-
ered as a map between (λU, x) and (λV, y) preserves base points and
is bi-Lipschitz with a constant independent of λ. Since X and Y are
complete and doubling, it follows that in the terminology of David and
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Semmes [6, Sect. 8.5] the mapping packages f : (λU, x) → (λV, y) sub-
converge for λ → ∞ to a mapping g : S → T . Here S and T are
limits of the pointed spaces (λkU, x) and (λkV, y), respectively, where
λk is a sequence of positive numbers with λk → ∞ as k → ∞. Since
U and V are neighborhoods of x and y, respectively, it follows that
S ∈ WT(X) and Y ∈ WT(Y ) (cf. [6, Lem. 9.12]). Moreover, since the
bi-Lipschitz constant of f : (λU, x) → (λV, y) is independent of λ, the
map g will be bi-Lipschitz. There is a slight problem here, because it is
not clear whether g will be surjective. This problem can be addressed
similarly as in the second part of the proof of Lemma 2.1. We may
assume that the sequence λk is such that not only the mapping pack-
ages f : (λkU, x) → (λkV, y) converge, but also the mapping packages
f−1 : (λkV, y) → (λkU, x), to h : T → S, say. Then g ◦ h = idT which
implies that g is onto, and hence a bi-Lipschitz homeomorphism. q.e.d.

5. Weak tangents and quasi-Möbius actions

In this section we study weak tangents of compact metric spaces
which admit a uniformly quasi-Möbius action for which the induced
action G � Tri(Z) is cocompact. As the reader will notice, all the
results in this section remain true under the weaker assumption that
every triple of distinct points in Z can be blown up to a uniformly
separated triple by a uniform quasi-Möbius homeomorphism of Z, i.e.,
an η-quasi-Möbius homeomorphism with η independent of the triple.

Lemma 5.1. Let Z be a uniformly perfect compact metric space.
Suppose that for each k ∈ N we are given a ball Bk = B(pk, Rk) ⊆ Z,
distinct points x1

k, x
2
k, x

3
k ∈ B(pk, λkRk) with

dZ(xi
k, x

j
k) > δkRk for i, j ∈ {1, 2, 3}, i �= j,

where λk, δk > 0, and an η-quasi-Möbius homeomorphism gk : Z → Z
such that for yi

k := gk(xi
k) we have

dZ(yi
k, y

j
k) > δ′ for i, j ∈ {1, 2, 3}, i �= j,

where η and δ′ > 0 are independent of k.

(i) Suppose for k ∈ N the set Dk ⊆ Bk is (εkRk)-dense in Bk, where
εk > 0. If limk→∞ λk = 0 and the sequence (εk/δ2k)k∈N is bounded,
then

distH(gk(Dk), Z) → 0 for k → ∞.
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(ii) If limk→∞ λk = 0, then

diam(Z \ gk(Bk)) → 0 for k → ∞.

In plain words (i) essentially says that if we blow up a triple (x1, x2,
x3) that lies in a ball B to a uniformly separated triple, then a set D in
B will be blown up to a rather dense set in Z, if the triple (x1, x2, x3)
lies deep inside B and its separation is much larger than distH(D,B).

An immediate consequence of the previous lemma is the fact that
if U is an open set in a uniformly perfect compact metric space Z and
G � Z is a uniformly quasi-Möbius group action such that G � Tri(Z)
is cocompact, then there exists a sequence (gk) in G such that

diam(Z \ gk(U)) → 0 for k → ∞.(5.2)

Indeed, consider a ball B(p,R) ⊆ U and a sequence (λk) which sat-
isfies limk→∞ λk = 0. By the uniform perfectness of Z we can find
a triple of distinct points x1

k, x
2
k, x

3
k ∈ B(p, λkR) for k ∈ N. Since

G � Tri(Z) is cocompact, we can find group elements gk that map
the triples (x1

k, x
2
k, x

3
k) to uniformly separated triples. It then follows

from part (ii) of Lemma 5.1 that (5.2) holds.

Proof of Lemma 5.1. Let d = dZ . Consider fixed k ∈ N and drop
the subscript k for simplicity. The image of a point z ∈ Z under g = gk

will be denoted by z′ := g(z).
(i) Pick an arbitrary point in Z, and write it in the form x′ = g(x)

where x = xk ∈ Z. We have to find a point in D′ := g(D) close to x′.
Case 1: x ∈ B(p,R). There is a point y ∈ D∩B with d(x, y) ≤ εR.

Since the minimal distance between the points x1, x2, x3 is at least δR,
we can find two of them, call them a and b, so that d(y, a) ≥ δR/2 and
d(x, b) ≥ δR/2. Hence

d(x′, y′)d(a′, b′)
d(x′, b′)d(a′, y′)

≤ η

(
d(x, y)d(a, b)
d(x, b)d(a, y)

)
≤ η(8ελ/δ2).

Rearranging factors, this implies that

d(x′, y′) ≤ diam(Z)2η(8ελ/δ2)/δ′ ≤ C1η(C2λ).

The last expression becomes uniformly small as λ→ 0.
Case 2: x �∈ B(p,R). Since ε ≤ C3δ

2 ≤ C4λ
2, we may assume that

ε > 0 is small. Then by the uniform perfectness of Z and the (εR)-
density of D in B, we can find a point y ∈ D ∩ B so that d(y, p)/R is
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uniformly bounded away from zero, d(y, p)/R ≥ c0 > 0 say. Note that
c0 does not depend on k. We may assume that λ < c0/2 ≤ 1/2. Then
setting a = x1 and b = x2 we get

d(x′, y′)d(a′, b′)
d(x′, b′)d(a′, y′)

≤ η

(
d(x, y)d(a, b)
d(x, b)d(a, y)

)

≤ η

(
4λd(x, p)

(d(x, p) − λR)(c0 − λ)

)
≤ η(16λ/c0).

Rearranging factors, this implies that

d(x′, y′) ≤ diam(Z)2η(16λ/c0)/δ′ ≤ C5η(C6λ).

Again the last expression becomes uniformly small as λ→ 0.
Since y′ ∈ D′, the first part of the lemma follows.
(ii) Suppose x′ and y′ are arbitrary points in Z \g(B), and let a = x1

and b = x2. By an estimate similar to the one in Case 2 above we find
that if λ ∈ (0, 1/2], then d(x′, y′) ≤ C7η(C8λ), where C7, C8 > 0 are
independent of x′, y′ and k. Hence diam(Z \ g(B)) ≤ C7η(C8λ), and
the claim follows. q.e.d.

Before we state the next lemma we recall that in Section 2 we have
defined a metric d̂p on the one-point compactification X̂ of an un-
bounded locally compact pointed metric space (X, p) associated with
the metric d = dX and the base point p.

Lemma 5.3. Suppose Z is a compact metric space that is uni-
formly perfect and doubling, and G � Z is a uniformly quasi-Möbius
action for which the induced action G � Tri(Z) is cocompact.

If (S, p) ∈ WT(Z), then there exist a quasi-Möbius homeomorphism
h : (Ŝ, d̂p) → Z. Moreover, h|S : S → Z \{h(∞)} is also a quasi-Möbius
homeomorphism.

In other words, up to quasi-Möbius homeomorphism the space Z is
equivalent to the one-point compactification Ŝ of a weak tangent (S, p)
of Z if we equip Ŝ with the canonical metric d̂p. Conversely, up to
quasi-Möbius homeomorphism any weak tangent of Z is equivalent to
Z with one point removed.

Proof. Note that as a weak tangent of a compact uniformly perfect
doubling metric space, S is unbounded and proper.

From the definition of pointed space convergence it follows that for
k ∈ N there exist subsets D̃k ⊆ BS(p, k) ⊆ S that are (1/k)-dense in
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BS(p, k), numbers Λk > 0 with Λk → ∞, points pk ∈ Z, sets Dk ⊆
BΛkZ(pk, k) ⊆ ΛkZ that are (1/k)-dense in BΛkZ(pk, k) with respect
to the metric dΛkZ = ΛkdZ and bijections fk : D̃k → Dk such that
fk(p) = pk and

1
2
dS(x, y) ≤ ΛkdZ(fk(x), fk(y)) ≤ 2dS(x, y) for x, y ∈ D̃k.(5.4)

Moreover, it can be arranged that each set D̃k contains the points of a
fixed triple (q1, q2, q3) ∈ Tri(S).

Let xi
k := fk(qi) for i ∈ {1, 2, 3} and k ∈ N. Since the action

G � Tri(Z) is cocompact, for k ∈ N we can find gk ∈ G such that the
triples

(y1
k, y

2
k, y

3
k) := gk(x1

k, x
2
k, x

3
k) ∈ Tri(Z)

are uniformly separated.
The density condition for the sets Dk rephrased in terms of the

metric dZ says that Dk is (1/(kΛk))-dense in BZ(pk, k/Λk) with respect
to dZ . Moreover, in terms of the metric dZ , the triple (x1

k, x
2
k, x

3
k) has

separation comparable to 1/Λk and is contained in a ball centered at pk

whose radius is also comparable to 1/Λk. It follows from Lemma 5.1(i)
(with Rk = k/Λk, εk = 1/k2, λk, δk � 1/k) that for D′

k := gk(Dk) we
have

lim
k→∞

distH(D′
k, Z) = 0,(5.5)

where distH refers to the Hausdorff distance in Z.
The density condition for the sets D̃k ⊆ S ⊆ Ŝ and the inequality

(2.3) for the metric d̂p imply that

lim
k→∞

distH(D̃k, Ŝ) = 0,(5.6)

where distH refers to the Hausdorff distance in (Ŝ, d̂p).
Consider the maps hk : (D̃k, d̂p|D̃k

) →Z defined by hk(x)=gk(fk(x))

for x ∈ D̃k. Note that it follows from Lemma 2.2, inequality (5.4) and
the fact that the action G � Z is uniformly quasi-Möbius that the
maps hk are η-quasi-Möbius with η independent of k. Moreover, each
map hk maps the triple (q1, q2, q3) to the uniformly separated triple
(y1

k, y
2
k, y

3
k). Finally, D′

k = hk(D̃k) and so by (5.5) and (5.6) we can
apply Lemma 2.1. It follows that the sequence (hk) subconverges to a
quasi-Möbius homeomorphism h : (Ŝ, d̂p) → Z.
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The second part of the lemma follows by observing that h|S : S →
Z \ {f(∞)} is quasi-Möbius, since this map is the composition of the
map idS : S → (S, d̂p|S) which is quasi-Möbius by Lemma 2.2 and the
map h|S : (S, d̂p|S) → Z \ {h(∞)} which is quasi-Möbius by the first
part of the proof. q.e.d.

Lemma 5.7. Suppose Z is a compact metric space that is uni-
formly perfect and doubling, and G � Z is a uniformly quasi-Möbius
action for which the induced action G � Tri(Z) is cocompact.

If dimtop(Z) = n ∈ N, then dimtop(U) = n whenever U is a
nonempty open subset of Z or of any weak tangent of Z.

Proof. If U ⊆ Z is a nonempty open set, we can find a nonempty
open set V with V ⊆ U . By the remark following Lemma 5.1 there
is a sequence (gk) in G such that diam(Z \ gk(V )) → 0 for k → ∞.
Hence the complement of

⋃
k∈N

gk(V ) in Z can contain at most one
point. Topological dimension is invariant under homeomorphisms, and
does not increase under a countable union of closed sets (cf. [10, Thm.
II. 1]). So we get dimtop(Z) ≤ dimtop(V ) ≤ dimtop(U) ≤ dimtop(Z).

If U is a nonempty open subset of any weak tangent S of Z, then U
is also an open subset of the one-point compactification of S. Hence by
Lemma 5.3, the set U is homeomorphic to a nonempty open subset of
Z. Therefore dimtop(U) = dimtop(Z) by the first part of the proof.

q.e.d.

Lemma 5.8. Suppose X and Y are compact metric spaces that
are uniformly perfect and doubling, and suppose G � X and H � Y
are uniformly quasi-Möbius actions for which the induced actions G �

Tri(X) and H � Tri(Y ) are cocompact.
If there exist S ∈ WT(X) and T ∈ WT(Y ) and a quasi-symmetric

homeomorphism f : S → T , then there exists a quasi-Möbius homeo-
morphism g : X → Y .

So if X and Y have weak tangents that are quasi-symmetrically
equivalent, then X and Y are equivalent up to a quasi-Möbius homeo-
morphism.

Proof. Let p and q be the base points in S and T , respectively,
and consider the one-point compactifications (Ŝ, d̂p) and (T̂ , d̂q). If we
define f̂(x) = f(x) for x ∈ X, and f̂(∞) = ∞, then (2.3) implies that
f̂ : (Ŝ, d̂p) → (T̂ , d̂q) is a quasi-Möbius homeomorphism. Since (Ŝ, d̂p)
is equivalent to X and (T̂ , d̂q) is equivalent to Y up to quasi-Möbius
homeomorphisms by Lemma 5.3, the claim follows. q.e.d.
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6. Proof of Theorem 1.1

Let Z and G � Z be as in the statement of Theorem 1.1.
We are given that dimtop(Z) = n. This implies [10, Thm. III. 1] that

there is a continuous map f0 : Z → S
n with a stable value y ∈ S

n; in
fact any continuous map f1 : Z → S

n for which dist(f0, f1) is sufficiently
small will also have y as a stable value.

Every continuous function g0 : Z → R can be approximated by a
Lipschitz function g1 : Z → R such that dist(g0, g1) is arbitrarily small.
This standard fact can be established by using Lipschitz partitions of
unity in Z subordinate to a cover of Z by small balls with controlled
overlap. We apply this to the n + 1 coordinate functions of the map
f0 : Z → S

n ⊆ R
n+1 to obtain Lipschitz maps on Z which are arbitrarily

close to f0 and map Z into small neighborhoods of S
n in R

n+1. Com-
posing these maps with the radial projection from the origin in R

n+1

to S
n, we can find Lipschitz maps from Z into S

n arbitrarily close to
f0. In particular, there exists a Lipschitz map f : Z → S

n such that
y is a stable value of f . Then Im(f) is a neighborhood of y, and so
Hn(Im(f)) > 0.

We now apply Proposition 4.1 to obtain a weak tangent S of Z, a
weak tangent T of S

n and a regular map φ : S → T . Note that every
weak tangent of S

n is isometric to R
n, and so T = R

n.
As we have seen, the fact that φ is regular implies that φ has bounded

multiplicity. By Lemma 5.7, every nonempty open subset of S has topo-
logical dimension n. Therefore, by Theorem 3.4 (applied to the closure
of some bounded nonempty open set in S as the space X) there is a
nonempty open subset U ⊆ S such that ψ := φ|U is a homeomorphism
onto an open subset of R

n. Shrinking the open set U if necessary, we
may assume that ψ is a homeomorphism onto an open ball B in R

n. Now
Lemma 4.2 shows that ψ is bi-Lipschitz. Choosing x ∈ U and setting
y := ψ(x) we are in the situation of Lemma 4.3. We conclude that S has
a weak tangent bi-Lipschitz equivalent to a weak tangent of R

n. Since
the weak tangents of S are also weak tangents of Z, and all weak tan-
gents of R

n are isometric to R
n, we see that Z and S

n have bi-Lipschitz
equivalent weak tangents. Since the group of Möbius transformations
induces a uniformly quasi-Möbius action on S

n and a cocompact action
on Tri(Sn), Lemma 5.8 implies that there exists a quasi-Möbius home-
omorphism h : Z → S

n. As a quasi-Möbius homeomorphism between
bounded spaces, the map h will also be quasi-symmetric. Conjugating
the uniformly quasi-Möbius action G � Z by h, we get a uniformly
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quasi-Möbius action G � S
n such that the induced action G � Tri(Sn)

is cocompact. By a result of Tukia [13, Cor. G(a)], this action is con-
jugate by a quasiconformal homeomorphism to an action by Möbius
transformations. Since quasiconformal homeomorphisms of S

n onto it-
self are quasi-symmetric, Theorem 1.1 follows. q.e.d.

The method of proving Theorem 1.1 also leads to the following re-
sult.

Theorem 6.1. Let n ∈ N, and let Z be a compact, Ahlfors n-
regular metric space of topological dimension n. Suppose every triple
of distinct points in Z can be mapped to a uniformly separated triple
by a uniform quasi-Möbius homeomorphism of Z. Then Z is quasi-
symmetrically equivalent to the standard sphere S

n.

Proof. In the same way as in the proof of Theorem 1.1, we see that
Z has a weak tangent bi-Lipschitz equivalent to R

n. As we remarked
in the beginning of Section 5, the results in this section remain true
if the assumption on the group action is replaced by the assumption
that every triple of distinct points in the space under consideration can
be mapped to a uniformly separated triple by a uniform quasi-Möbius
homeomorphism. So by the analog of Lemma 5.8, we again obtain a
quasi-Möbius, and hence quasi-symmetric, homeomorphism h : Z → S

n.
q.e.d.

This theorem justifies the remark in the introduction about the
question of Heinonen and Semmes—recall that quasi-Möbius homeo-
morphisms of compact metric spaces are quasi-symmetric. We see that
the three point homogeneity condition can be relaxed to a “cocompact
on triples” condition, at the cost of requiring the homeomorphisms to
be uniformly quasi-Möbius.

7. CAT(−1)-spaces and isometric group actions

We refer the reader to [7] for general background on Gromov hyper-
bolic spaces.

A metric space X is called geodesic, if any two points x, y ∈ X can
be joined by a geodesic segment in X, i.e., a curve whose length is equal
to the distance of x and y. In the following we will always assume that
X is proper and geodesic.

Let X be a Gromov hyperbolic space, and ∂∞X be its boundary at
infinity. There is a natural topology on X ∪ ∂∞X making this union
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compact. If p ∈ X, a, b ∈ ∂∞X, we let [a, b]p denote the Gromov
product of a, b ∈ ∂∞X with respect to the base point p. When c > 0 is
sufficiently small, the function

d(a, b) := exp(−c[a, b]p)(7.1)

is equivalent up to a multiplicative factor to a metric on ∂∞X; any
two “visual” metrics of this type are quasi-symmetrically equivalent by
the identity map. Fix one such metric on ∂∞X. If we denote the
group of isometries of X by Isom(X), then we get an induced action
Isom(X) � ∂∞X which is a uniformly quasi-Möbius action, [11, Prop.
4.5]. In fact, every quasi-isometry f : X → X induces an η-quasi-Möbius
homeomorphism ∂∞X → ∂∞X where η depends only the parameters
of the quasi-isometry and the hyperbolicity constant of X.

Now suppose that X is a CAT(−1)-space (see [1] for more details on
the topics discussed in the following). Then for every p ∈ X we get a
canonical metric on ∂∞X as follows. For every point a ∈ ∂∞X, there is
a unique geodesic ray pa starting at p whose asymptotic class represents
a. Let a, b ∈ ∂∞X, and consider points x ∈ pa, y ∈ pb. Let ∆p̃x̃ỹ be
a comparison triangle (in the hyperbolic plane) for the triangle ∆pxy,
and let ∠̃p(x, y) denote the angle at p̃. When x and y tend to infinity
along the rays pa and pb, respectively, the comparison angle ∠̃p(x, y)
has a limit, which we define to be the distance between a and b. This
metric agrees up to a bounded factor with the expression in (7.1) when
c = 1.

Suppose G � X is an isometric action of a group on a CAT(−1)-
space X. If x ∈ X, then we denote its orbit under G by

Gx := {g(x) : g ∈ G}.

The limit set Λ(G) ⊆ ∂∞X of G is by definition the set of all accumula-
tion points of an orbit Gx on ∂∞X. This set is independent of x ∈ X.
The group action G � X is called properly discontinuous if

{g ∈ G : g(K) ∩K �= ∅}

is finite for every compact subset K of X.
A subset Y ⊆ X is quasi-convex if there is a constant C such that

any geodesic segment with endpoints in Y lies in the C-neighborhood
of Y . The action G � X is quasi-convex cocompact if there is a G-
invariant quasi-convex subset Y ⊆ X on which G acts with compact
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quotient Y/G. The group G is quasi-convex cocompact if and only if all
orbits Gx are quasi-convex.

We will need the following result due to Bourdon [2, 0.3 Théorème
(Hn case)].

Theorem 7.2. Let n ≥ 2, G be a group, and X a CAT(−1)-
space. Suppose we have isometric group actions G � X and G � H

n+1

which are properly discontinuous. Suppose that G � X is quasi-convex
cocompact and G � H

n+1 is cocompact. If the Hausdorff dimension of
Λ(G) ⊆ ∂∞X is equal to n, then there exists a G-equivariant isometry
of H

n+1 onto a convex, G-invariant set Y ⊆ X.

Actually, Bourdon proved this under the additional assumption that
the group action G � H

n+1 is faithful. In this case G is isomorphic to
a uniform lattice in Isom(Hn+1). The proof of the above more general
version is the same as the proof of his original result.

Proof of Theorem 1.2. Consider the induced actions G � Λ(G) and
G � Tri(Λ(G)). Since G � X is isometric, G � Λ(G) is uniformly
quasi-Möbius. Since the action G � X is properly discontinuous, the
same is true for G � Tri(Λ(G)). Moreover, since G � X is quasi-convex
cocompact, G � Tri(Λ(G)) is cocompact.

Since the Hausdorff dimension of Λ(G) is n, this space will actually
be Ahlfors n-regular (cf. [5, Section 7]). Now n is also the topological
dimension of Λ(G) by assumption. By Theorem 1.1, the action G �

Λ(G) is quasi-symmetrically conjugate to an action G � S
n by Möbius

transformations. The action G � Tri(Sn) is properly discontinuous
and cocompact. This implies that there is a properly discontinuous,
cocompact, and isometric action G � H

n+1 which induces the action
G � S

n = ∂∞H
n+1. Since n ≥ 2 we can apply Bourdon’s theorem, and

conclude that there exists a G-equivariant isometric embedding of H
n+1

onto a convex, G-invariant set Y ⊆ X on which G acts cocompactly.
The result follows. q.e.d.

As the proof shows, n ≥ 2 is only used in the last step. In partic-
ular, even in the case n = 1 we can still conclude that Λ(G) is quasi-
symmetrically equivalent to S

1, and that there is an action G � H
2

which is isometric, properly discontinuous and cocompact.
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