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ISOSPECTRALITY OF FLAT LORENTZ
3-MANIFOLDS

TODD A. DRUMM & WILLIAM M. GOLDMAN

Abstract
For isometric actions on flat Lorentz (2+1)-space whose linear part is a
purely hyperbolic subgroup of O(2, 1), Margulis defined a marked signed
Lorentzian length spectrum invariant closely related to properness and free-
ness of the action. In this paper we show that, for fixed linear part, this
invariant completely determines the conjugacy class of the action. We also
extend this result to groups containing parabolics.

Complete flat Lorentz 3-manifolds with nonamenable fundamental
group bear a striking resemblance to hyperbolic Riemann surfaces. For
example, every nonparabolic closed curve is freely homotopic to a unique
closed geodesic, which is necessarily spacelike. In his seminal papers
[17, 18] on the subject, Margulis introduced a function α : π1(M) −→
R which associates the signed Lorentzian length of this geodesic to a
conjugacy class in π1(M). In this paper we show that the conjugacy
class of the linear holonomy representation π1(M) −→ SO(2, 1) and
Margulis’s invariant completely determine M up to isometry. Recently
Inkang Kim [15] has extended this result to higher dimensional affine
actions.

1. Preliminaries

In this paper we consider actions of groups of isometries of Minkowski
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(2 + 1)-space E. Minkowski space is a complete simply-connected flat
Lorentzian manifold, which identifies with an affine space whose un-
derlying vector space is a 3-dimensional real vector space R

2,1 with a
nondegenerate symmetric bilinear form of index 1. Explicitly we take
R

2,1 to be R
3 with inner product:

B(x, y) := x1y1 + x2y2 − x3y3

so that E identifies with R
3 with Lorentzian metric tensor

(dx1)2 + (dx2)2 − (dx3)2.

The automorphism group of R
2,1 is the orthogonal group O(2, 1)

consisting of linear isometries of E. In general, an isometry of E is an
affine transformation

h : E −→ E

x �−→ g(x) + u

with linear part g = L(h) ∈ O(2, 1) a linear isometry, and translational
part u ∈ R

2,1. The intersection SO(2, 1) = O(2, 1)∩SL(3, R) consists of
orientation-preserving linear isometries. The nullcone

N := {x ∈ R
2,1 | B(x, x) = 0}

is invariant under O(2, 1). The complement N − {0} consists of two
components (the future and the past)

N+ := {x ∈ N | x3 > 0}, N− := {x ∈ N | x3 < 0}.
The subgroup SO(2, 1)0 of SO(2, 1) stabilizing either N+ or N− is the
identity component of the Lie group O(2, 1). The group Isom(E) of
affine isometries of E equals the semidirect product O(2, 1) � R

2,1 and
the quotient projection

L : Isom(E) −→ O(2, 1)

assigns to an affine isometry h ∈ Isom(E) its linear part g = L(h) ∈
O(2, 1), so now h can be written:

h(x) = g(x) + u.

An element of O(2, 1) is hyperbolic if and only if it has three distinct
real eigenvalues. Since an isometry’s eigenvalues occur in reciprocal



isospectrality of flat Lorentz 3-manifolds 459

pairs, a hyperbolic element of SO(2, 1) must have 1 as an eigenvalue. If
g ∈ SO(2, 1)0 is hyperbolic, then the other two eigenvalues are necessar-
ily positive. Margulis associated to a hyperbolic element g ∈ SO(2, 1)0

a canonical basis as follows. Let the eigenvalues of g be λ−1 < 1 < λ.
Then there exist unique eigenvectors x−(g), x0(g), x+(g) such that

• gx±(g) = λ±1x±(g) and gx0(g) = x0(g);

• x±(g) ∈ N+ and ‖x±(g)‖ = 1;

• {x−(g), x+(g), x0(g)} is a right-handed basis for R
2,1.

Since x0(g) is fixed under the orthogonal linear transformation g,

B(gu − u, x0(g)) = 0(1)

for all u ∈ R
2,1. An affine isometry h of E is hyperbolic if its linear part

g = L(h) is hyperbolic.

2. The Margulis invariant of hyperbolic affine isometries

Suppose that h ∈ Isom0(E) is a hyperbolic affine isometry. Following
Margulis [17, 18], define

α(h; x) = B(hx − x, x0(g))(2)

for any x ∈ E. For any y ∈ E, let u = y − x. Then (1) implies

α(h; x) − α(h; y) = B
(
(g − I)u, x0(g)

)
= 0

so that α(h; x) = α(h) is independent of x. The foliation of E by lines
parallel to x0(g) is invariant under h and therefore there is an induced
affine transformation h′ on the leaf space E

′ = E/(R · x0(g)). Since
the action induced by g on E

′ has no fixed vectors, h′ has a unique
fixed point in E

′. Therefore h leaves invariant a unique line Ch parallel
to x0(g). The restriction of h to Ch is translation τ by α(h)x0(g). In
particular α(h) = 0 if and only if h fixes a point x ∈ E. In this case the
set of fixed points is exactly the line Ch. In general the planes parallel to
the orthogonal complement x0(g)⊥ (which is spanned by x±(g)) define
a foliation whose leaf space identifies to Ch under the quotient map
Π : E −→ Ch. The diagram
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E
h−−−→ E

Π

�
�Π

Ch −−−→
τ

Ch

commutes. Suppose that 〈h〉 acts freely on E. In this case, the projection
E −→ Ch is equivariant and Ch projects to the unique closed geodesic
in E/〈h〉. Because x0(g) has unit (Lorentzian) length, |α(h)| is the
Lorentzian length of the unique closed geodesic in E/〈h〉. Let Γ0 be a
subgroup of SO(2, 1)0. An affine deformation of Γ0 is a representation

φ : Γ0 −→ Isom(E) ∼= SO(2, 1)0 � R
2,1

such that L ◦ φ is the identity map of Γ0. For γ ∈ Γ0, write

φ(γ)(x) = L(γ)x + u(γ)

where L(γ) ∈ Γ0 and u(γ) ∈ R
2,1. (When there is no danger of con-

fusion, the symbol φ will be omitted.) Then u is a cocycle of Γ0 with
coefficients in the Γ0-module R

2,1 corresponding to the linear action of
L : Γ0 −→ SO(2, 1)0. In this way affine deformations of Γ0 correspond
to cocycles in Z1(Γ0, R

2,1) and translational conjugacy classes of affine
deformations correspond to cohomology classes in H1(Γ0, R

2,1).

Lemma 1. α is a class function on π.

Proof. Let γ, η ∈ π. Then x0(ηγη−1) = L(η)x0(γ) and

u(ηγη−1) = L(η)u(γ) +
(
I − L(ηγη−1)

)
u(η).

Therefore

α(ηγη−1) = B
(
u(ηγη−1), x0(ηγη−1)

)

= B(L(η)u(γ), L(η)x0(γ))

+ B

((
I − L(ηγη−1)

)
u(η), L(η)x0(γ)

)

= B(u(γ), x0(γ)) = α(γ)

by (1). q.e.d.

3. Main theorem

The purpose of this note is to prove:
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Theorem 1. Suppose that Γ0 is a discrete purely hyperbolic free
subgroup of SO(2, 1)0 and that u, v ∈ Z1(Γ0, R

2,1) define affine defor-
mations with α(u) = α(v). Then [u] = [v].

Thus the classification of affine deformations reduces from R
2,1-

valued cohomology classes [u] of Γ to ordinary R-valued class func-
tions α(u) on Γ. The invariant α(u) depends linearly on u. That is,
α(u) = α(v) if and only if α(u − v) = α(u) − α(v) = 0. Also [u] = [v] if
and only if [u − v] = [0] is the null affine deformation.

Therefore to prove Theorem 1, it suffices to show that if α(u) = 0
then [u] = [0]. Equivalently, we need to show that the cohomology class
[u] ∈ H1(Γ, R2,1) corresponding to an affine deformation Γu with αu = 0
must vanish. In Lemma 2 below, we show that if α is zero on just two
generic elements then the deformation is null.

In the case where αu = 0 for Γu, we say that Γu is radiant, that is,
there exists a point x ∈ E fixed by Γ. (The terminology [10] arises since
an affine transformation is radiant if and only if it preserves a radiant
vector field

n∑
i=1

(xi − pi)
∂

∂xi

“radiating” from p ∈ E.) We shall in fact show a much stronger state-
ment:

Lemma 2. Let h1, h2 ∈ Isom0(E) be hyperbolic whose linear parts
g1, g2 generate a nonsolvable subgroup Γ0 of SO(2, 1)0. Suppose that
h1, h2 and their product h2h1 are radiant. Then Γ = 〈h1, h2〉 is radiant.

An alternative statement is that if α(h1) = α(h2)α(h2h1) = 0, then
α(w(h1, h2)) = 0 for any word w ∈ F2.

Proof. Since h1, h2 are radiant, their invariant lines consist of their
respective fixed points. For hyperbolic h ∈ Isom0(E), let E±(h) denote
the affine subspace containing Ch and parallel to the linear subspace
spanned by x±(h) and xo(h). The transformations h1 and h2 are as-
sumed to be hyperbolic and generate a nonsolvable subgroup. Thus,
h1 and h2 are transversal hyperbolic transformations, that is, the four
vectors {x±(h1), x±(h2)} are all distinct. Since the line Ch1 is transverse
to the plane E+(h2), the affine subspaces Ch1 and E+(h2) intersect at
a point q. Furthermore, since h1 and h2 share no fixed points, q /∈ Ch2 .
Since q ∈ E+(h2) − Ch2 , there exists c 
= 0 such that

h2(q) − q = cx+(g2).
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Since g2g1 and g2 share no eigenspaces, B(x+(g2), x0(g2g1)) 
= 0.
Therefore:

α(h2h1) = B(h2h1(q) − q, x0(g2g1))

= B(h2(q) − q, x0(g2g1))

= cB(x+(g2), x0(g2g1)) 
= 0

as desired. q.e.d.

The converse is not true: If g1, g2 are hyperbolic linear isometries
which share a null eigenvector, then it is easy to construct a non-radiant
affine deformation such that α(h1) = α(h2) = α(h1h2) = 0. For exam-
ple, choose p1, p2 
= 0 and

gi =




1 0 0
0 cosh(pi) sinh(pi)
0 sinh(pi) cosh(pi)




for i = 1, 2, and translational parts

u1 =




0
0
0


 , u2 =




0
1
1


 .

It can be shown that α(γ) = 0 for any γ ∈ 〈h1, h2〉. However, the line
l = {(t, 0, 0)|t ∈ R} is the fixed point set for g1 and g2, but Ch1 = l and
Ch2 = (ep2 − 1)−1(u2) + l. Since Ch1 ∩ Ch2 = ∅, the group 〈h1, h2〉 is
nonradiant.

4. Parabolic elements

A nontrivial element g ∈ SO(2, 1)0 is parabolic if and only if it has
a single eigenvalue. This eigenvalue must be +1, and any eigenvector is
null. As for hyperbolic elements, we choose an eigenvector x0(g) such
that:

• The Euclidean length ‖x0(g)‖ = 1;

• (v, g(v), x0(g)) is a right-handed basis, for any nonzero vector v ∈
N which is not fixed by g.
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Normalizing the Euclidean length of x0(g) is completely arbitrary. For
any nonzero vector v ∈ N not fixed by g, the vectors v, g(v), x0(g) are
linearly independent and their orientation is independent of the choice
of v. Thus the direction of x0(g) is well defined by the above conditions.
An example of a parabolic element in O(2, 1) is given by the following
matrix:

g =




1 s s
−s 1 − s2/2 −s2/2
s s2/2 1 + s2/2




for s 
= 0, and the matrix has fixed eigenvector

u =
1√
2




0
−1
1


 .

Taking

v =




0
1
1


 ,

the orientation of the basis by g, the vectors v, g(v), x0(g) are linearly
independent and since

det(v, g(v), u) = −4s

x0(g) = ∓u depending on the sign of s 
= 0.
Following [4], we extend the definition of α to parabolic elements.

Let F (g) ⊂ R
2,1 be the linear subspace of fixed vectors of g and Λ(g)

be the set of linear real valued functions on F (g) . The orientation on
F (g) is given by the above conditions. For any h ∈ Isom0(E) such that
L(h) is hyperbolic or parabolic, we define α′(h) ∈ Λ(h) such that

α′(h)(v) = B(hx − x, v)(3)

We say that the sign of α′ for an element h is positive if α′(h)(v) > 0
for a positively oriented vector v ∈ F (g).

The properties of α′ are investigated more fully in [4]. For our
purposes, we note that:

• α′(h) = 0 if and only if h has a fixed point.
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• α′(h)(x0(g)) = α(h) for a hyperbolic h.

• Margulis’s Opposite Sign Lemma [17], [18] holds for nonelliptic
elements: If the linear parts of nonelliptic elements h1, h2 do not
commute and the signs of α′(h1) and α′(h1) are opposite then
〈h1, h2〉 does not act properly on E.

Thus α is a normalized version of α′.

Corollary 1. Suppose that Γ0 is a discrete free subgroup of SO(2, 1)0

and that u, v ∈ Z1(Γ0, R
2,1) define affine deformations with α′(u) =

α′(v). Then [u] = [v].

Note that any discrete free subgroup of SO(2, 1)0 contains only
parabolic and hyperbolic nonidentity elements.

The proof of Lemma 2 can be adapted for non-hyperbolic elements
(and this corollary) easily. In particular, given that α′(h) = 0 for a
parabolic transformation h, there still is a unique pointwise fixed line
which we can call Ch. The planes E±(h) in the proof should be replaced
with a single plane tangent to the null cone containing Ch.
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