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A CANONICAL BUNDLE FORMULA

OSAMU FUJINO & SHIGEFUMI MORI

Abstract
A higher dimensional analogue of Kodaira’s canonical bundle formula is
obtained. As applications, we prove that the log-canonical ring of a klt
pair with κ ≤ 3 is finitely generated, and that there exists an effectively
computable natural number M such that |MKX | induces the Iitaka fibering
for every algebraic threefold X with Kodaira dimension κ = 1.

1. Introduction

If f : X → C is a minimal elliptic surface over C, then the relative
canonical divisor KX/C is expressed as

KX/C = f∗L+
∑
P

mP − 1
mP

f∗(P ),(1)

where L is a nef divisor on C and P runs over the set of points such that
f∗(P ) is a multiple fiber with multiplicity mP > 1. It is the key in the
estimates on the plurigenera Pn(X) that the coefficients (mP − 1)/mP

are ‘close’ to 1 [12]. Furthermore 12L is expressed as

12KX/C = f∗j∗OP(1) + 12
∑
P

mP − 1
mP

f∗(P ) +
∑

σQf
∗(Q),(2)

where σQ is an integer ∈ [0, 12) and j : C → P1 is the j-function [5,
(2.9)]. The computation of these coefficients is based on the explicit
classification of the singular fibers of f , which made the generalization
difficult.
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We note that L in the exact analogue of the formula (1) for the case
dimX/C = 2 need not be a divisor (Example 2.7) and that the formula
(2) is more natural to look at if L is allowed to be a Q-divisor.

The higher dimensional analogue of the formula (2) is treated in
Section 2 as a refinement of [15, §5 Part II] and the log version in
Section 4. We give the full formula only in 4.5 to avoid repetition. The
estimates of the coefficients are treated in 2.8, 3.1 and 4.5. (See 3.9 on
the comparison of the formula (2) and our estimates.) We note that the
“coefficients” in the formula (2) are of the form 1− 1/m except for the
finite number of exceptions 1/12, · · · , 11/12. In the generalized formula,
the coefficients are in a more general form (cf. 4.5.(v)), which still enjoys
the DCC (Descending Chain Condition) property of Shokurov.

The following are some of the applications.

1. (Corollary 5.3) If (X,∆) is a klt pair with κ(X,KX +∆) ≤ 3, then
its log-canonical ring is finitely generated.

2. (Corollary 6.2) There exists an effectively computable natural
number M such that |MKX | induces the Iitaka fibering for ev-
ery algebraic threefold X with Kodaira dimension κ(X) = 1.

To get the analogue for an (m + 1)-dimensional X (m ≥ 3) with
κ(X) = 1, it remains to show that an arbitrary m-fold F with κ(F ) = 0
and pg(F ) = 1 is birational to a smooth projective model with effectively
bounded m-th Betti number.

Notation. Let Z>0 (resp. Z≥0) be the set of positive (resp. non-
negative) integers. We work over C in this note. Let X be a normal
variety and B,B′ Q-divisors on X.

If B −B′ is effective, we write B � B′ or B′ ≺ B.
We write B ∼ B′ if B − B′ is a principal divisor on X (linear

equivalence of Q-divisors).
Let B+, B− be the effective Q-divisors on X without common ir-

reducible components such that B+ − B− = B. They are called the
positive and the negative parts of B.

Let f : X → C be a surjective morphism. Let Bh, Bv be the Q-
divisors on X with Bh + Bv = B such that an irreducible component
of Supp B is contained in Supp Bh iff it is mapped onto C. They are
called the horizontal and the vertical parts of B over C. B is said to
be horizontal (resp. vertical ) over C if B = Bh (resp. B = Bv). The
phrase “over C” might be suppressed if there is no danger of confusion.
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As for other notions, we mostly follow [14]. However we introduce a
slightly different terminology to distinguish the pairs with non-effective
boundaries (cf. [10]).

A pair (X,D) consists of a normal variety X and a Q-divisor D. If
KX + D is Q-Cartier, we can pull it back by an arbitrary resolution
f : Y → X and obtain the formula

KY = f∗(KX +D) +
∑

i

aiEi,

where Ei are prime divisors and ai ∈ Q. The pair (X,D) is said to be
sub klt (resp. sub lc) if ai > −1 (resp. ≥ −1) for every resolution f and
every i. Furthermore, (X,D) is said to be klt (resp. lc) if D is effective.
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2. Semistable part of KX/C

In this section, we refine the results of [15, §5, Part II] after putting
the basic results together.

2.1. Let f : X → C be a surjective morphism of a normal
projective variety X of dimension n = m+ l to a nonsingular projective
l-fold C such that

(i) X has only canonical singularities, and
(ii) the generic fiber F of f is a geometrically irreducible variety

with Kodaira dimension κ(F ) = 0. We fix the smallest b ∈ Z>0 such
that the b-th plurigenus Pb(F ) is non-zero.

Proposition 2.2. There exists one and only one Q-divisor D
modulo linear equivalence on C with a graded OC-algebra isomorphism

⊕i≥0O(	iD
) ∼= ⊕i≥0(f∗O(ibKX/C))∗∗,
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where M∗∗ denotes the double dual of M .
Furthermore, the above isomorphism induces the equality

bKX = f∗(bKC +D) +B,

where B is a Q-divisor on X such that f∗OX(	iB+
) = OC (∀i > 0)
and codim(f(Supp B−) ⊂ C) ≥ 2. We note that for an arbitrary open
set U of C, D|U and B|f−1(U) depend only on f |f−1(U).

Proof. By [15, (2.6.i)], there exists c > 0 such that

(f∗O(ibcKX/C))∗∗ = {(f∗O(bcKX/C))∗∗}⊗i (∀i > 0).

Choose an embedding φ : (f∗O(bKX/C))∗∗ ⊂ Q(C) into the function
field of C, and we can define a Weil divisor cD by

φ⊗c : (f∗O(bcKX/C))∗∗ ∼= O(cD) ⊂ Q(C).

D modulo linear equivalence does not depend on the choice of φ.
Since taking the double dual has no effect on codimension 1 points,

there is a natural inclusion

f∗OC(cD) ⊂ OX(bcKX/C) on X \ f−1(some codim 2 subset of C).

Extending it toX, we obtain a Q-divisor B such that B = bKX/C−f∗D.
It is easy to see that B satisfies the required conditions. q.e.d.

Definition 2.3. Under the notation of 2.2, we denote D by LX/C .
It is obvious that LX/C depends only on the birational equivalence class
of X over C.

If X has bad singularities, then we take a nonsingular model X ′ of
X and use LX′/C as our definition of LX/C .

Proposition 2.4 (Viehweg). Let π : C ′ → C be a finite surjec-
tive morphism from a nonsingular l-fold C ′ and let f ′ : X ′ → C ′ be a
nonsingular model of X ×C C

′ → C ′. Then there is a natural relation

L
X

′
/C′ ≺ π∗LX/C .

Furthermore if X ×C C ′ has a semistable resolution over a neighbor-
hood of a codimension 1 point P ′ of C ′, or if Xπ(P ′) has only canonical
singularities, then P ′ 
∈ Supp(π∗LX/C − LX

′
/C′).
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Proof. Except for the last assertion, this is due to [22, §3] (cf. [15,
(4.10)]). If Xπ(P ′) has only canonical singularities, then X ×C C ′ has
only canonical singularities in a neighborhood of f ′−1(P ′) by [20, Propo-
sition 7] or [9] because so does the generic fiber F of f . Thus 2.4 follows.

q.e.d.

Corollary 2.5. There exists one and only one Q-divisor
Lss

X/C (≺ LX/C) such that

(i) π∗Lss
X/C ≺ LX

′
/C′ for arbitrary π : C ′ → C as in 2.4, and

(ii) π∗Lss
X/C = L

X
′
/C′ at P ′ if π in 2.4 is such that X ×C C ′ → C ′

has a semistable resolution X ′ → C ′ over a neighborhood of P ′ or
Xπ(P ′) has only canonical singularities.

There exists an effective divisor Σ ⊂ C such that every birational mor-
phism π : C ′ → C from a nonsingular projective l-fold with π∗(Σ) an
snc divisor has the following property: Let X ′ be a projective resolution
of X ×C C ′ and f ′ : X ′ → C ′ the induced morphism. Then Lss

X′/C′ is
nef.

Proof. When C ′/C is Galois with group G, L
X

′
/C′ is G-invariant and

therefore descends to a Q-subdivisor of LX/C . The minimum Lss
X/C (≺

LX/C) of all the descents exists by 2.4, whence the uniqueness follows.
The last assertion is proved in [15, §5, part II] though it is not explic-

itly stated there. In [15, (5.13)], First our Σ is a divisor containing the
discriminant locus of f and h constructed in the proof of [15, (5.15.2)]
(which are f ′ and h′ in our 2.6). Then [15, (5.14.1)] shows that our
Lss

X/C/b is equal to Pf ′,bc for sufficiently divisible c ∈ Z>0. Finally [15,
(5.15.3)] shows that Pf ′,bc is nef. q.e.d.

Remark 2.6. Under the notation of 2.1, consider the following
construction. Since dim |bKF | = 0, there exists a Weil divisor W on X
such that

(i) W h is effective and f∗O(iW h) = OC for all i > 0, and

(ii) bKX − W is a principal divisor (ψ) for some non-zero rational
function ψ on X.

Let s : Z → X be the normalization of X in Q(X)(ψ1/b). Then the
above proof actually shows the following:
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Fix resolutions X ′ and Z ′ of X and Z. We write f ′ : X ′ →
C and h′ : Z ′ → C. Then as the divisor Σ ⊂ C in 2.5,
we can take an arbitrary effective divisor Σ ⊂ C such that
f ′ : X ′ → C and h′ : Z ′ → C are smooth over C \ Σ.

Example 2.7. Let F be a K3 surface with a free involution ι :
F → F so that E = F/{1, ι} is an Enriques surface. Let j : P1 → P1 be
the involution x �→ −x, so that 0 and ∞ are the only fixed points. Let
f : X = P1 × F/{1, j × ι} → C = P1/{1, j} be the map induced by the
first projection. Then f is smooth over C \ {0,∞}, and f∗(0) = 2E0

and f∗(∞) = 2E∞, where E0 � E∞ � E. Using KEt ∼ KX +Et|Et 
∼ 0
for t = 0 and ∞, one easily sees that KX/C ∼ f∗O(1) and that Lss

X/C =
1
2(0) − 1

2(∞). Thus Lss
X/C is only a Q-divisor fitting in the analogue of

the formula (1):

KX/C = f∗Lss
X/C +

∑
t=0,∞

1
2
f∗(t).

The main part (i) of the following is included in 4.5.(v) (see also 4.7).
We still leave it here for reference.

Proposition 2.8. Under the notation and the assumptions of 2.5,
let N ∈ Z>0 be such that Nf∗(Lss

X/C) is a Weil divisor. Then we have

LX/C = Lss
X/C +

∑
P

sPP,

where sP ∈ Q for every codimension 1 point P of C such that:

(i) For each P , there exist uP , vP ∈ Z>0 such that 0 < vP ≤ bN and
sP = (bNuP − vP )/(NuP ).

(ii) sP = 0 if f∗(P ) has only canonical singularities or if X → C has
a semistable resolution in a neighborhood of P .

In particular, sP depends only on f |f−1(U) where U is an open set of C
containing P .

The assertion (ii) is proved in 2.5.(ii).

3. Bounding the denominator

In applications, it is important to bound the denominator of Lss
X/C .
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Theorem 3.1. Let E → F be the cover associated to the b-th
root of the unique element of |bKF |. Let E be a nonsingular projective
model of E and let Bm be its m-th Betti number. Then there is a
natural number N = N(Bm) depending only on Bm such that NLss

X/C
is a divisor.

Remark 3.2. We have N(x) = lcm{y ∈ Z>0 | ϕ(y) ≤ x}, where
ϕ(y) is Euler’s function.

3.3. To prove 3.1, we can replace the base space C by a general
hyperplane-section H and X by f∗H. Repeating this procedure, we
may assume that C is a curve in the rest of this section.

We use the construction given in 2.6, i.e., let W , s : Z → X and
h = f ◦ s : X → C be as in 2.6. We note that the branch locus of s is
contained in the singular locus of X and SuppW .

Lemma 3.4 ([15, (5.15.8)]). bLss
Z/C = Lss

X/C .

Proof. Because of the definition 2.3, we may replace C with its base
change and change the model X birationally. Hence we may assume
that X is smooth and W h

red + f∗Σ is a reduced snc divisor, where Σ
is a reduced effective divisor of C such that f−1(Σ) contains W v and
f is smooth over C \ Σ. We may also assume that h : Z → C has a
semistable resolution h′ : Z ′ → C and that h is smooth over C \ Σ.
Hence KX +W h

red + f∗Σ is log-canonical and

KZ + (s−1W h)red + h∗Σ = s∗(KX +W h
red + f∗Σ)

is also log-canonical (cf. [13, (20.3)] for the explicit statement, which
goes back to [19, §1]). Hence for all n > 0 we have

h′∗O(n(KZ′ +(s′−1
W h)red +h′∗Σ)) = h∗O(n(KZ +(s−1W h)red +h∗Σ)),

where s′ : Z ′ → X is the induced morphism. By 2.6.(i), we see

h∗O(bn(KZ + (s−1W h)red + h∗Σ)) = h′∗O(bnKZ′)⊗O(bnΣ)
= O(bnLss

Z/C + bnKC + bnΣ).

By a similar computation, we get

f∗O(bn(KX +W h
red + f∗Σ)) = O(nLss

X/C + bnKC + bnΣ).

Whence the natural inclusion bLss
Z/C � Lss

X/C becomes an equality.
q.e.d.
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3.5. Let h : Z → C be a nonsingular projective model of Z → C
whose generic fiber is isomorphic to E. Let π : C ′ → C be a finite Galois
morphism with group G such that Z ×C C

′ has a semistable resolution
h
′ : Z ′ → C ′ whose generic fiber is isomorphic to E. We give names as

in the next diagram.
Z

σ←−−− Z
′

h

�
�h

′

C ←−−−
π

C ′

By 2.5, we have

h
′
∗O(K

Z
′
/C′) = O(π∗Lss

Z/C).

We note that π∗Lss
Z/C is a Weil divisor [15, (2.6.ii)].

3.6. Due to its birational invariance, h′∗O(K
Z

′
/C′) is G-linearized.

Let P ′ ∈ C ′ and let GP ′ be the stabilizer. Then GP ′ acts on
h
′
∗O(K

Z
′
/C′) ⊗ C(P ′) through a character χP ′ : GP ′ → C∗. Then

NLss
Z/C is a divisor iff χN

P ′ = 1 for all P ′ because O(NLss
Z/C) should

be (π∗O(Nπ∗Lss
Z/C))G.

We can now localize everything on neighborhoods of P = π(P ′)
and P ′. Let e be the ramification index of π at P ′. Let z be a local
coordinate for the germ (C,P ) and z′ = z1/e for (C ′, P ′). We have a
natural homomorphism GP ′ → µe = {x ∈ C | xe = 1}. Let H ′ be
the canonical extension of H ′◦ = OC′◦ ⊗ (Rmh

′
◦CZ

′
◦
)prim to C ′, where

C ′◦ = C ′ \ {P ′}, Z ′
◦ = Z

′ \ h′−1(P ′) and h
′
◦ : Z ′

◦ → C ′◦ is the restriction
of h′. By its construction, H ′ admits a µe-action. Let ζ = e2πi/e ∈ µe.

We quote the following to compare χP ′ and H ′.

Proposition 3.7 [7, Proposition 1]). There exists a µe-equivariant
injection

h
′
∗O(K

Z
′
/C′)⊗ C(P ′) ⊂ H ′ ⊗ C(P ′).

3.8. Thus if 
 is the order of χP ′ , then ϕ(
) ≤ Bm, where ϕ(
)
is Euler’s function. Let N(x) = lcm{
 | ϕ(
) ≤ x}. Then we see that
N(Bm)Lss

Z/C is a divisor. Hence 3.1 is proved.

Remark 3.9. When f : X → C is a minimal elliptic surface,
we mentioned the formula (2). By 2.5 and [5, (2.9)], we have b = 1,
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12Lss
X/C � j∗OP(1) and

sP =
{

(mP − 1)/mP if mP > 1
σP /12 if mP = 1.

Our estimates are the following. Since B1(F ) = 2 and N(2) = 12,
our 3.1 shows that 12Lss

X/C is a Weil divisor and the estimates 2.8.(i) is
compatible with the above.

4. Log-canonical bundle formula

In this section, we give the log analogue of the semistable part de-
fined in Section 2 and give a log-canonical bundle formula.

4.1. Let f : X → C be a surjective morphism of a normal
projective variety X of dimension n = m+ l to a nonsingular projective
l-fold C such that:

(i) (X,∆) is a sub klt pair (assumed klt from 4.4 and on).

(ii) The generic fiber F of f is a geometrically irreducible variety with
κ(F, (KX + ∆)|F ) = 0. We fix the smallest b ∈ Z>0 such that the
f∗OX(b(KX + ∆)) 
= 0.

The following is proved similarly to 2.2.

Proposition 4.2. There exists one and only one Q-divisor D mod-
ulo linear equivalence on C with a graded OC-algebra isomorphism

⊕i≥0OC(	iD
) ∼= ⊕i≥0(f∗OX(	ib(KX + ∆)
 − ibf∗KC))∗∗.

Furthermore, the above isomorphism induces the equality

b(KX + ∆) = f∗(bKC +D) +B∆,

where B∆ is a Q-divisor on X such that f∗OX(	iB∆
+ 
) = OC (∀i > 0)

and codim(f(Supp B∆− ) ⊂ C) ≥ 2. For an arbitrary open set U ⊂ C,
D|U and B∆|f−1(U) depend only on f |f−1(U) and ∆|f−1(U).

Definition 4.3. We denote D given in 4.2 by L(X,∆)/C or simply
by Llog

X/C if there is no danger of confusion.
We set s∆P := b(1 − t∆P ), where t∆P is the log-canonical threshold of

f∗P with respect to (X,∆−B∆/b) over the generic point ηP of P :

t∆P := max{t ∈ R | (X,∆−B∆/b+ tf∗P ) is sub lc over ηP }.
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Note that s∆P 
= 0 only for a finite number of codimension 1 points
P because there exists a nonempty Zariski open set U ⊂ C such that
s∆P = 0 for every prime divisor P with P ∩ U 
= ∅. We may simply
write sP rather than s∆P if there is no danger of confusion. We note
that s∆P depends only on f |f−1(U) and ∆|f−1(U) where U is an open set
containing P .

We will see in 4.7 that this coincides with sP introduced in 2.8.
We set Lss

(X,∆)/C := L(X,∆)/C−
∑

P s
∆
P P and call it the log-semistable

part of KX/C(∆). We may simply denote it by Llog,ss
X/C if there is no

danger of confusion.
We note that D, L(X,∆)/C , s∆P , t∆P and Lss

(X,∆)/C are birational in-
variants of (X,∆) over C in the following sense. Let (X ′,∆′) be a
projective sub klt pair and σ : X ′ → X a birational morphism such that
KX′ + ∆′ − σ∗(KX + ∆) is an effective σ-exceptional Q-divisor. Then
the above invariants for f ◦ σ and (X ′,∆′) are equal to those for f and
(X,∆).

Putting the above symbols together, we have the log-canonical bun-
dle formula for (X,∆) over C:

b(KX + ∆) = f∗(bKC + Llog,ss
X/C ) +

∑
P

s∆P f
∗P +B∆,(3)

where B∆ is a Q-divisor on X such that f∗OX(	iB∆
+ 
) = OC (∀i > 0)

and codim(f(SuppB∆− ) ⊂ C) ≥ 2.

We need to pass to a certain birational model f ′ : X ′ → C ′ to
understand the log-semistable part more clearly and to make the log-
canonical bundle formula more useful.

4.4. From now on we assume that (X,∆) is klt.
Let g : Y → X be a log resolution of (X,∆) with Θ a Q-divisor on

Y such that KY + Θ = g∗(KX + ∆). Let Σ ⊂ C be an effective divisor
satisfying the following conditions:

(1) h := f ◦ g is smooth and Supp Θh is relatively normal crossing
over C \ Σ.

(2) h(Supp Θv) ⊂ Σ.

(3) f is flat over C \ Σ.

Let π : C ′ → C be a birational morphism from a nonsingular pro-
jective variety such that:
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(i) Σ′ := π−1(Σ) is an snc divisor.

(ii) π induces an isomorphism C ′ \ Σ′ ∼= C \ Σ.

(iii) The irreducible component X1 of X ×C C ′ dominating C ′ is flat
over C ′.

Let X ′ be the normalization of X1, and f ′ : X ′ → C ′ the induced
morphism. Let g′ : Y ′ → X ′ be a log resolution such that Y ′\h′−1(Σ′) ∼=
Y ×X X1 \ α−1(Σ′), where h′ := f ′ ◦ g′ and α : Y ×X X1 → C ′ (see [21,
Resolution Lemma] or [1, Theorem 12.4]). Let Θ′ be the Q-divisor on Y ′

such that KY ′+Θ′ = (τ ◦g′)∗(KX +∆), where τ : X ′ → X is the induced
morphism. Furthermore, we can assume that Supp(h′−1(Σ′)∪Θ′) is an
snc divisor, and h′(Supp(Θ′)v) ⊂ Σ′.

Later we treat horizontal or vertical divisors on X,X ′ or Y ′ over C
without referring to C. Note that a Q-divisor on X ′ or Y ′ is horizontal
(resp. vertical) over C iff it is horizontal (resp. vertical) over C ′.

We note that the horizontal part (Θ′)h− of the negative part Θ′− of
Θ′ is g′-exceptional.

Y ←−−− Y ×X X1 ←−−− Y ′

g

�
�

�g′

X ←−−− X1 ←−−− X ′

f

�
�

�f ′

C ←−−−
π

C ′ C ′

The following formula is the main theorem of this section.

Theorem 4.5 (Log-canonical bundle formula). Under the above
notation and assumptions, let Ξ be a Q-divisor on Y ′ such that (Y ′,Ξ)
is sub klt and Ξ−Θ′ is effective and exceptional over X. (Note that Ξ
exists since (X,∆) is klt.) Then the log-canonical bundle formula

b(KY ′ + Ξ) = (h′)∗(bKC′ + Lss
(Y ′,Ξ)/C′) +

∑
P

sΞP (h′)∗(P ) +BΞ

for (Y ′,Ξ) over C ′ has the following properties:

(i) h′∗OY ′(	iBΞ
+
) = OC′ for all i > 0.

(ii) BΞ− is g′-exceptional and codim(h′(Supp BΞ−) ⊂ C ′) ≥ 2.
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(iii) The following holds for every i > 0:

H0(X, 	ib(KX + ∆)
) = H0(Y ′, 	ib(KY ′ + Ξ)
)
= H0(C ′, 	ibKC′ + iLlog,ss

Y ′/C′ +
∑

i sΞPP 
).

(iv) Llog,ss
Y ′/C′ is nef.

If furthermore (Y ′,Ξ) is klt, then:

(v) Let N be a positive integer such that Nh′∗(Llog,ss
Y ′/C′) and bNΞv are

Weil divisors. Then for each P , there exist uP , vP ∈ Z>0 such
that 0 < vP ≤ bN and sP = (bNuP − vP )/(NuP ).

Proof. First, (i) is obvious by the formula (3). Similarly, (ii) follows
because (g′)∗(BΞ−) = 0 by the equidimensionality of f ′.

By (ii) and the conditions on Ξ, the following holds for all i > 0:

H0(X, 	ib(KX + ∆)
) = H0(Y ′, 	ib(KY ′ + Ξ)
)
= H0(Y ′, 	ib(KY ′ + Ξ) + iBΞ

−
).
By the log-canonical bundle formula and then by (i), we have

H0(Y ′, 	ib(KY ′ + Ξ) + iBΞ
−
)

= H0(Y ′, 	i(h′)∗(bKC′ + Lss
(Y ′,Ξ)/C′ +

∑
sΞPP ) + iBΞ

+
)
= H0(C ′, 	ibKC′ + iLlog,ss

Y ′/C′ +
∑

i sΞPP 
).
Thus (iii) is settled. The property (iv) will be settled by 4.8, and (v) at
the end of this section. q.e.d.

Proposition 4.6. Under the notation and the assumptions of The-
orem 4.5, Lss

(Y ′,Ξ)/C′ does not depend on the choice of Ξ. In particular,
Lss

(Y ′,Θ′)/C′ = Lss
(Y ′,Θ′

+)/C′ = Lss
(Y ′,Ξ)/C′.

Proof. Let H ⊂ Y ′ be an effective horizontal Q-divisor which is
exceptional over X. If H is added to Ξ, then BΞ increases by bH and
sΞP stays the same. Hence Lss

(Y ′,Ξ)/C′ stays the same in this case.
Assume now that A := Ξ − Θ′ is exceptional over X and vertical,

and let

αP := max{t ∈ R | (BΘ′
)v + bAv − α(h′)∗P is effective over ηP },

where ηP is the generic point of P .
Then it is easy to see that BΞ = BΘ′

+ bA − ∑
αP (h′)∗P and∑

sΞPP =
∑

(sΘ
′

P + αP )P . Hence Lss
(Y ′,Ξ)/C′ = Lss

(Y ′,Θ′)/C′ . q.e.d.
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Proposition 4.7. Assume that f : X → C is as in 2.1. Then (X, 0)
is klt, and the definitions in 4.3 for f : (X, 0)→ C are compatible with
the corresponding ones for f : X → C in Section 2.

In other words, B0 = B (in 2.2), L(X,0)/C ∼ LX/C (in 2.3) and
s0P = sP (in 2.8) and hence Lss

(X,0)/C ∼ Lss
X/C (in 2.5).

Proof. First, B0 = B and L(X,0)/C ∼ LX/C are obvious because the
definitions for X and (X, 0) coincide. During the proof, we will denote
B by BX to avoid confusion.

Since Lss
X/C = LX/C −

∑
sPP and Lss

(X,0)/C = L(X,0)/C −
∑
s0PP , it

is enough to show s0P = sP . Let Σ ⊂ C be the reduced divisor given
in 4.4. Then s0P = sP = 0 for P 
⊂ Σ by 2.8 and 4.3. Thus it is sufficient
to prove s0P = sP for every P ⊂ Σ.

Replacing C by a general hyperplane-section H, Σ by Σ∩H and X
by f∗H, we can further assume that C is a curve. Note that we are free
to enlarge Σ.

Let tP := 1− sP /b for all P . Then we have the following equality.

f∗(KC +
1
b
Lss

X/C + Σ) = KX − 1
b
BX +

∑
P∈Σ

tP f
∗P.(4)

By the semistable reduction theorem, there is a finite surjective mor-
phism π : C ′ → C from a smooth curve C ′ such that the normaliza-
tion X ′ of X ×C C ′ has a semistable resolution over C ′ as in 2.5. Let
β : X ′ → X and f ′ : X ′ → C ′ be the induced morphisms as in the
following commutative diagram,

X
β←−−− X ′

f

�
�f ′

C ←−−−
π

C ′.

Enlarging Σ, we may assume that π is étale on C ′ \ Σ′, where Σ′ :=
π−1(Σ). In particular, sP ′ = 0 for P ′ ∈ Σ′ by 2.8.(ii), and the formula
(4) for f ′ reduces to

(f ′)∗(KC′ +
1
b
Lss

X′/C′ + Σ′) = KX′ − 1
b
BX′ +

∑
P ′∈Σ′

(f ′)∗P ′.(5)

Since π∗Lss
X/C = Lss

X′/C′ by 2.5 and f∗(KC + Σ) = KC′ + Σ′, π pulls
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back the formula (4) to (5) and we have the following equality.

β∗(KX − 1
b
BX +

∑
P∈Σ

tP f
∗P ) = KX′ − 1

b
BX′ +

∑
P ′∈Σ′

(f ′)∗P ′.(6)

Since t0P = 1 − s0P /b by 4.3, it is enough to prove tP = t0P , the
log-canonical threshold of f∗P with respect to (X,−BX/b). Since β is
finite and dominating, it is enough to prove that the right hand side
of the formula (6) is sub lc and not sub klt on a neighborhood UP ′ of
(f ′)−1(P ′) for every P ′ ∈ Σ′ (see [13, (20.3)]).

Indeed, the right hand side is sub lc by the semistable resolution of
f ′ and not sub klt on UP ′ by BX′ 
⊃ (f ′)−1(P ′). q.e.d.

Theorem 4.8. The log-semistable part Llog,ss
Y ′/C′ is nef.

Proof. By 4.6, we can assume that Ξ = Θ′
+. By the definition of

BΞ
+, h′∗OY ′(�BΞ

+/b�) = OC′ holds. Therefore, the condition (3) in 4.10
is satisfied. The condition (1) is also satisfied because h′(Supp Ξv) ⊂
Supp Σ′ = Supp π∗Σ by 4.4.(i). Applying 4.10 to (Y ′,Ξ − BΞ/b), we
see that Llog,ss

Y ′/C′ is nef. q.e.d.

4.9. We recall Kawamata’s positivity theorem [8, Theorem 2] for
the reader’s convenience (see also [2]).

Theorem 4.10. Let g : Y → T be a surjective morphism of smooth
projective varieties with connected fibers. Let P =

∑
j Pj and Q =∑

lQl be normal crossing divisors on Y and T , respectively, such that
g−1(Q) ⊂ P and g is smooth over T \Q. Let D =

∑
j djPj be a Q-divisor

on Y (dj’s may be negative) such that:

(1) g : Supp(Dh) → T is relatively normal crossing over T \ Q, and
g(Supp(Dv)) ⊂ Q.

(2) dj < 1 if Pj is horizontal.

(3) dimk(η) g∗OY (�−D�)⊗OT
k(η) = 1 for the generic point η of T .

(4) KY +D ∼Q g∗(KT + L) for some Q-divisor L on T .
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Let

g∗Ql =
∑

j

wljPj ,

dj =
dj + wlj − 1

wlj
if g(Pj) = Ql,

δl = max {dj | g(Pj) = Ql},
∆0 =

∑
l

δlQl, and

M = L−∆0.

Then M is nef.

Remark 4.11. (i) It can be checked easily that 1 − δl is the log-
canonical threshold of g∗Ql with respect to (Y,D) over the generic point
ηQl

.
(ii) In [8, Theorem 2], it is assumed that dj < 1 for all Pj . However,

the assumption that dj < 1 for vertical Pj was not used in the proof
(see the proof of [8, Theorem 2]).

We start with a lemma to prove 4.5.(v).

Lemma 4.12. Under the notation and the assumptions of 4.5.(v),
assume that C ′ is a curve. Then the following holds.

b(KY ′/C′ + Ξ + ((h′)−1Σ′)red) � (h′)∗(Llog,ss
Y ′/C′ + bΣ′).

Proof. Note that BΞ− = 0 since C is a curve. Then we have

KY ′/C′ + Ξ + ((h′)−1Σ′)red � KY ′/C′ + Ξ−BΞ
+/b+

∑
P∈Σ′

tΞP (h′)∗P

=
1
b
(h′)∗Lss

(Y ′,Ξ)/C′ + (h′)∗Σ′,

where the first relation follows from Ξ � 0 and the definitions of Σ′

and tΞP , and the second from the log-canonical bundle formula and the
relation sΞP /b+ tΞP = 1 for all P . q.e.d.

Proof of 4.5.(v). Replacing C ′ by a general hyperplane-section H
and Y ′ by (h′)∗(H), we can immediately reduce to the case where C ′ is
a curve. For simplicity, Ξ in BΞ, sΞP and tΞP will be suppressed during
the proof. We note that B is effective.
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By the hypothesis, the vertical part D of the Weil divisor

bN(KY ′/C′ + Ξv)− (h′)∗NLlog,ss
Y ′/C′ = N

∑
P

sP (h′)∗P +NB − bNΞh

is a Weil divisor. We note that

D = N
∑
P

sP (h′)∗P +NBv = bN(KY ′/C′ + Ξ)− (h′)∗NLlog,ss
Y ′/C′ −NBh.

By 4.12, we have

bN(KY ′/C′ + Ξ)− (h′)∗NLlog,ss
Y ′/C′ + bN ((h′)−1Σ′)red � (h′)∗bNΣ′.

Whence

D +NBh + bN ((h′)−1Σ′)red � (h′)∗bNΣ′.(7)

Let DP and Bv
P be the parts of D and Bv lying over P . Let

(h′)∗P =
∑

k akFk be the irreducible decomposition. ThenDP−NBv
P =

NsP (h′)∗P and Supp(DP − NsP (h′)∗P ) 
⊃ Fc for some c by the defi-
nition of Bv

P . In particular NsPac ∈ Z. Furthermore, comparing the
coefficients of Fc in the formula (7), we obtain NsPac + bN ≥ bNac,
that is, NacsP ≥ bN(aC − 1). Since (Y ′,Ξ) is klt, we have tP > 0 and
hence sP < b. Hence uP := ac works. q.e.d.

5. Log-canonical rings

In this section, we consider an application of the log-canonical bundle
formula 4.5 to the log-canonical ring of a pair (X,∆):

R(X,KX + ∆) = ⊕i≥0H
0(X, 	iKX + i∆
).

We recall a well-known proposition on graded rings.

Proposition 5.1. Let R = ⊕i≥0Ri be a graded integral domain with
degree i part Ri such that R0 = C. For m ∈ Z>0, let R(m) := ⊕i≥0Rim be
the graded ring whose degree i part is Rim. Then R is finitely generated
over R0 iff so is R(m) over R0.

Sketch of the proof. If R is finitely generated, we can let Z/(m) act
on R so that R(m) is the invariant part. Hence R(m) is finitely generated.
If R(m) is finitely generated, then R is contained in the integral closure
of R(m) in the quotient field of R. Hence R is a finite R(m)-module and
thus finitely generated. q.e.d.
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Theorem 5.2. Let (X,∆) be a proper klt pair with

κ(X,KX + ∆) = l ≥ 0.

Then there exist an l-dimensional klt pair (C ′,∆′) with κ(C ′,KC′

+ ∆′) = l, two e, e′ ∈ Z>0 and an isomorphism

R(X,KX + ∆)(e) ∼= R(C ′,KC′ + ∆′)(e
′)

of graded rings.

Proof. Let f : X ��� C be the Iitaka fibering with respect toKX+∆.
By replacing X and C, we assume that the following conditions hold:

1. X and C are projective smooth varieties and f : X → C is a
proper surjective morphism with connected fibers.

2. Supp ∆ is an snc divisor and 	∆
 = 0.

3. There exists an effective divisor Σ ⊂ C such that f is smooth and
Supp ∆h is relatively normal crossing over C \ Σ and such that
f(Supp(∆v)) ⊂ Σ.

Note that adding effective exceptional Q-divisors does not change the
log-canonical ring.

We use the same notation as 4.5. By the hypothesis, bKC′ +Llog,ss
Y ′/C′ +∑

P sPP is big on C ′. Thus let A an ample Q-divisor and G an effective
Q-divisor on C ′ such that

bKC′ + Llog,ss
Y ′/C′ +

∑
P

sPP ∼Q A+G.

Then by 4.5.(v), there exists a sufficiently small rational number ε > 0
such that the pair

(C ′,
∑
P

(sP /b)P + (ε/b)G)

is klt. Since Llog,ss
Y ′/C′ is nef, Llog,ss

Y ′/C′ + εA is ample and it is Q-linearly
equivalent to δH for some rational δ > 0 and a very ample divisor H.
We can furthermore assume that

(C ′,
∑
P

(sP /b)P + (ε/b)G+ (δ/b)H)
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is klt.
Now choose a ∈ Z>0 such that aε, aδ ∈ Z and aLlog,ss

Y ′/C′ +aεA ∼ aδH.
Then we have

(a+ aε)(bKC′ + Llog,ss
Y ′/C′ +

∑
sPP )

∼ abKC′ + aδH + a(
∑

sPP + εG)

= ab(KC′ +
∑ sP

b
P +

ε

b
G+

δ

b
H).

Thus we can take e = (a+ aε)b, e′ = ab and

∆′ =
∑
P

(sP /b)P + (ε/b)G+ (δ/b)H.

q.e.d.

The following corollary contains a generalization of Moriwaki’s result
[16, Theorem (3.1)].

Corollary 5.3. Let (X,∆) be a proper klt pair such that κ(X,KX

+ ∆) ≤ 3. Then the log-canonical ring of (X,∆) is finitely generated.

Proof. By 5.1 and 5.2, our problem is reduced to the case dimX =
κ(X,KX + ∆) ≤ 3. The case dimX = 2 is settled by [4, (1.5)] and the
case dimX = 3 by [11, Corollary]. q.e.d.

The following theorem is a generalization of [18, Corollary] and [17,
(3.7) Proposition].

Theorem 5.4. Let (X,∆) be a proper klt pair. Assume that the
log-canonical ring R(X,KX +∆) is finitely generated. Then there exists
an effective Q-divisor Ξ on S := Proj R(X,KX + ∆) such that (S,Ξ)
is klt. Especially, S has only rational singularities.

Proof. By 5.2, we can assume that dimX = κ(X,KX + ∆). By
changing the model birationally, we can further assume that X is non-
singular and ∆ is an snc divisor. Then it is settled by [17, (3.7) Propo-
sition]. q.e.d.

6. Pluricanonical systems

Theorem 6.1. For arbitrary b, k ∈ Z>0, there exists an effectively
computable natural number M = M(b, k) with the following property.
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Let X be a nonsingular projective variety of dimension m + 1 and
Kodaira dimension κ(X) = 1, C a nonsingular projective curve and
f : X → C a surjective morphism with connected fibers. Assume that
its generic fiber F has κ(F ) = 0, Pb(F ) = 1 and the m-th Betti number
Bm(F ) ≤ k. Then |M(b, k)KX | induces the rational map f : X ��� C.

Since one can change the smooth model birationally so that B2(F ) ≤
22 and |12KF | 
= ∅ for threefolds X, we need no extra conditions for
3-folds.

Corollary 6.2. There exists an effectively computable natural num-
ber M such that, for every algebraic 3-fold X with Kodaira dimension
κ(X) = 1, |MKX | induces the Iitaka fibering of X.

Proof of 6.1. By 2.3 and 2.8, we have the following for all n ≥ 0.

H0(X,nbKX) = H0(C, 	n(bKC + Lss
X/C +

∑
P

sPP )
).

We note that deg(bKC + Lss
X/C) +

∑
P sP > 0 by κ(X) = 1. Let g be

the genus of C and let N = N(k). We treat the problem in 3 cases.

Case 1 (g ≥ 2). Setting n = iN in the above, we obtain the divisor

iNbKC + iNLss
X/C + 	iNb(

∑
P

sPP )


on C. We note that NLss
X/C is nef Cartier divisor by 2.5 and 3.1 and

that 	iNb(∑P sPP )
 � 0 by 2.8. Hence the divisor is very ample if
iNb ≥ 3 because deg ≥ 3 degKC ≥ 2g + 1. So M(b, k) = 3Nb works.

Case 2 (g = 1). We have degLss
X/C +

∑
P sP > 0. It is enough

to find one i ∈ Z>0 such that the divisor 	iN(Lss
X/C +

∑
P sPP )
 has

deg ≥ 3, because such a divisor is very ample on C. Hence this case is
reduced to 6.3 with a = 0 and c = bN .

As pointed out by the referee, the Case 1 above is in [6, §3] and the
Case 2 can probably be deduced as well. Thus the following is the key
case.

Case 3 (g = 0). We have deg(bKC +Lss
X/C)+

∑
P sP > 0 and need

to one i ∈ Z>0 such that deg	iN(Lss
X/C +

∑
P sPP )
 − 2biN > 0. Thus

this case is again reduced to 6.3 with a = 2bN and c = bN .

q.e.d.

Thus it remains to prove the following.
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Proposition 6.3. Let a ∈ Z and c ∈ Z>0. Let S(a, c) be the set of

ξ = (r;m1, · · · ,mr; b1, · · · , br)
where r ∈ Z≥0, m1, · · · ,mr ∈ Z>0 and b1, · · · , br ∈ Z≥0 satisfy the
conditions bi < min{mi, c+ 1} for all i and

−a+
r∑

i=1

mi − bi
mi

> 0.

For n ∈ Z>0, let

f(n, ξ) = −an+
r∑

i=1

	nmi − bi
mi


.

Then there exists n = n(a, c) ∈ Z>0 such that f(νn, ξ) ≥ ν for all
ξ ∈ S(a, c) and ν ∈ Z>0.

Proof. We note that f(nm, ξ) ≥ mf(n, ξ) for n,m ∈ Z>0. Hence it
is enough to get f(n, ξ) ≥ 1. For each ξ ∈ S(a, c), let

I1(ξ) = {i ∈ [1, r] | mi ≤ 2c}, I2(ξ) = [1, r] \ I1(ξ),
and J(ξ) = (mi)i∈[1,r]. It is easy to see that if |I2(ξ)| ≥ 2a + 1 then
f(2, ξ) ≥ 1. Thus we may assume that |I2(ξ)| ≤ 2a. It is also easy to
see that if α(ξ) :=

∑
i∈I1(ξ)(mi − bi)/mi > a, then (2c)!α(ξ) ∈ Z and

f((2c)!, ξ) = (2c)! (α(ξ)− a) +
∑

i∈I2(ξ)

	(2c)! · mi − bi
mi


 > 0.

Thus we may also assume that α(ξ) ≤ a. Hence by mi ≤ 2c (i ∈ I1(ξ)),
we have |I1(ξ)| ≤ 2cα(ξ) ≤ 2ac.

Under the conditions r = |I1(ξ)|+ |I2(ξ)| ≤ 2ac+ 2a and bi ≤ c, the
set T = {(r, b1, · · · , br)} is finite. Hence for each η ∈ T , we work on the
subset S(a, c)η of S(a, c) with the fixed r and bi’s.

We note that f(n, ξ) ≤ f(n, ξ′) if ξ, ξ′ ∈ S(a, c)η satisfy J(ξ) ≤ J(ξ′)
(coordinatewise). Hence we are done by the following lemma. q.e.d.

Lemma 6.4. Let r ∈ Z>0 and S ⊂ Zr
>0. With respect to the total

order, S contains only a finite number of minimal elements.

Proof. We use the induction on r. If r = 1, this is obvious. Fix any
s = (s1, · · · , sr) ∈ S and let m := max{si}. For i ∈ [1, r] and n ∈ [1,m],
let Tn,i = {(t1, · · · , tr) ∈ S | ti = n}. Since each Tn,i has only a finite
number of minimal elements by the induction hypothesis, so does the
finite union ∪n,iTn,i. If t ∈ S \ ∪n,iTn,i, then t > s. q.e.d.
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