
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 11, Number 1, Spring 2019

PRIME GRAPHS, MATCHINGS AND THE
CASTELNUOVO-MUMFORD REGULARITY

TÜRKER BIYIKOĞLU AND YUSUF CIVAN

ABSTRACT. We demonstrate the effectiveness of prime
graphs for the calculation of the (Castelnuovo-Mumford)
regularity of graphs. Such a notion allows us to reformu-
late the regularity as a generalized induced matching prob-
lem and perform regularity calculations in specific graph
classes, including (C3, P5)-free graphs, P6-free bipartite
graphs and all Cohen-Macaulay graphs of girth at least
five. In particular, we verify that the five cycle graph
C5 is the unique connected graph satisfying the inequal-
ity im(G) < reg(G) = m(G). In addition, we prove that,
for each integer n ≥ 1, there exists a vertex decomposable
perfect prime graph Gn with reg(Gn) = n.

1. Introduction. The Castelnuovo-Mumford regularity (or, mere-
ly, the regularity) is something of a two-way study in the sense that it is
a fundamental invariant both in commutative algebra [5] and discrete
geometry [9]. The regularity is a type of universal bound for measuring
the complexity of an object (a module, a sheaf or a simplicial complex).
We recall that, when G = (V,E) is a (simple) graph, its edge ideal IG
is defined to be the ideal in the polynomial ring R = k[V ] with a finite
set V = {x1, . . . , xn} of indeterminates over a field k, generated by the
quadratic monomials xixj corresponding to edges of G. Most of the
recent work in the area has been devoted to the existence of applicable
bounds on the regularity reg(G) := reg(R/IG) of the edge ring of a
given graph [2, 3, 5, 13, 17]. One way of attacking such a problem
goes by translating the underlying algebraic or topological language
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Received by the editors on May 4, 2016, and in revised form on August 17,
2016.
DOI:10.1216/JCA-2019-11-1-1 Copyright c⃝2019 Rocky Mountain Mathematics Consortium

1
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to the language of graphs. Such an approach may enable us to bound
the regularity of a graph via other graph invariants. The most likely
candidates involve the matching parameters of graphs.

In [3], we introduced the notion of a prime graph that brings a
new strategy for the calculation of the regularity. We show here
that such a notion allows us to reformulate the regularity of any
graph as a generalized induced matching problem and perform the
regularity calculations in specific graph classes including (C3, P5)-free
graphs (Theorem 3.7), bipartite P6-free graphs (Theorem 3.9) and
well-covered block cactus graphs (Theorem 4.6) that, in turn, contain
all Cohen-Macaulay graphs of girth at least five.

We prove that a 3-path (an ear) addition to any end vertices of an
edge of a prime graph gives rise to a new prime graph under which the
regularity increases exactly by one. By way of application, we prove
that, for each integer n ≥ 1, there exists a vertex decomposable perfect
prime graphGn with reg(Gn) = n that, in a sense, reveals the difficulty
behind the calculation of the regularity of vertex decomposable graphs.
Moreover, the existence of such graphs allows us to construct a vertex
decomposable prime graph Hs for each s ≥ 1 satisfying reg(Hs) −
im(Hs) = s.

It is already known [10, 6] that the inequality im(G) ≤ reg(G) ≤
m(G) holds for any graph G. The existence of graphs realizing the
invariants in the above inequality by possible integers was the subject
of a recent paper by Hibi et al. [7]. Apart from the exceptional case
im(G) < reg(G) = m(G), they showed that there exist infinite families
of connected graphs for which any inequality derived from the above
inequality holds (see [7, Theorem 1.9]). In particular, they observed
that the only graph up to seven vertices satisfying the inequality
im(G) < reg(G) = m(G) is the five-cycle graph C5, and noted that
such graphs might be rare. Indeed, we confirm their observation by
showing that the graph C5 with these properties is unique.

2. Preliminaries. By a (simple) graph G, we will mean a finite
undirected graph without loops or multiple edges. If G is a graph,
V (G) and E(G) (or simply V and E) denote its vertex and edge sets.
If U ⊂ V , the graph induced on U is written G[U ], which is the graph
on the set U of vertices together with any edges whose end vertices
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are both in U , and in particular, we abbreviate G[V \ U ] to G − U ,
and write G − x whenever U = {x}. For a given subset U ⊆ V , the
(open) neighborhood of U is defined by NG(U) := ∪u∈UNG(u), where
NG(u) := {v ∈ V : uv ∈ E}, and similarly, NG[U ] := NG(U) ∪ U is
the closed neighborhood of U . In particular, the degree degG(x) of a
vertex x in G is the cardinality of NG(x). A subgraph H of a graph
G is said to be a dominating subgraph if NG[V (H)] = V (G). The
distance dG(x, y) between vertices x and y is the smallest number of
edges in a path joining x and y.

Throughout, Kn, Kl,k, Pn and Cm will denote the complete, com-
plete bipartite, path and cycle graphs for any n, l, k ≥ 1 and m ≥ 3,
respectively. For an integer n ≥ 2 and a graph G, we denote by nG
the disjoint union of n copies of G.

For any family of graphs H, we say that a graph G is H-free, if
G contains no induced subgraph isomorphic to any graph H ∈ H. A
graph G is called chordal if it is Cr-free for any r > 3, and a graph G is
said to be cochordal if its complement G is a chordal graph. Moreover,
G is said to be a weakly chordal graph if G and its complement G are
Ck-free for any k ≥ 5. The girth of a graph G is the length of a
shortest induced cycle in G, and if G is cycle-free, its girth is defined
to be ∞.

Recall that a subset M ⊆ E is called a matching of G if no
two edges in M share a common end, and a maximum matching
is a matching that contains the largest possible number of edges.
The matching number m(G) of G is the cardinality of a maximum
matching. Moreover, a matching M of G is an induced matching if it
occurs as an induced subgraph of G, and the cardinality of a maximum
induced matching is called the induced matching number of G and
denoted by im(G).

A graph G is said to be well-covered if all maximal independent
sets in G are of the same size, and G is a Cohen-Macaulay graph if so
is its edge ring R/IG.

Remark 2.1. In order to simplify the notation, we note that when
we mention the homology, homotopy or a suspension of a graph, we
mean that of its independence complex, so whenever it is appropriate,
we drop Ind(−) from our notation.
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3. Prime graphs. In this section, we first recall the notion of prime
graphs and prime factorization [3] and then perform the regularity
calculations in some hereditary graph classes.

A connected graph G is called a prime graph over a field k, if
regk(G − x) < regk(G) for any vertex x ∈ V (G). Furthermore, we
call a connected graph G a perfect prime graph if it is a prime graph
over any field.

The graph K2, the cycles C3k+2 and the complement of cycles Cm

for any k ≥ 1 and m ≥ 4 are examples of perfect prime graphs.

The null graph N = (∅, ∅) is the degenerate case, where its inde-
pendence complex satisfies Ind(N) = {∅}, in which we count it as the
(trivial) perfect prime. This is consistent with the usual conventions

that H̃−1({∅}; k) ∼= k and H̃p({∅};k) ∼= 0 for any p ̸= −1 in that case,

where H̃∗(−; k) denotes the (reduced) singular homology.

The following provides an inductive bound on the regularity of
graphs.

Lemma 3.1. [4, 13] Let G be a graph and let v ∈ V be given. Then

reg(G) ≤ max{reg(G− v), reg(G−NG[v]) + 1}.

Moreover, reg(G) always equals to one of reg(G − v) or reg(G −
NG[v]) + 1.

Note that, if G is a prime graph, then reg(G) = reg(G−NG[x])+ 1
holds for any vertex x ∈ V as a consequence of Lemma 3.1.

We prove in [3] that prime graphs cannot contain any pair of
vertices whose open or closed neighborhoods are comparable with
respect to the inclusion.

Proposition 3.2 ([3]). If NG(y) ⊆ NG(x) for vertices x and y, then
G cannot be a prime graph. Similarly, if NG[u] ⊆ NG[v] holds in G
such that degG(v) ≥ 2, then G cannot be a prime graph.

Let G be a graph, and let R = {R1, . . . , Rr} be a set of pairwise
vertex disjoint induced subgraphs of G such that |V (Ri)| ≥ 2 for each
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1 ≤ i ≤ r. Then, R is said to be an induced decomposition of G if the
induced subgraph of G on

∪r
i=1 V (Ri) contains no edge of G that is

not contained in any of E(Ri), and R is maximal with this property.
The set of induced decompositions of a graph G is denoted by ID(G).

Let R = {R1, . . . , Rr} be an induced decomposition of a graph G.
If each Ri is a prime graph, then we call R a prime decomposition
of G, and the set of prime decompositions of a graph G is denoted by
PD(G). Obviously, the set PD(G) is non-empty for any graph G.

Theorem 3.3 ([3]). For any graph G and any field k, we have

regk(G) = max

{ r∑
i=1

regk(Hi) : {H1, . . . , Hr} ∈ PDk(G)

}
.

Definition 3.4. A prime decomposition R of a graph G for which
the equality of Theorem 3.3 holds is called a prime factorization of G,
and the set of prime factorizations of G is denoted by PF(G).

We may restate Theorem 3.3, which shows that the regularity
calculation of graphs exactly corresponds to a generalized induced
matching problem.

Definition 3.5. LetG be a graph, T = {T1, . . . , Tk} a set of connected
graphs and a = (a1, . . . , ak) a sequence of non-negative integers. We
then call the integer

im(G; T ; a) := max{a1n1 + · · ·+ aknk : {n1T1, . . . , nkTk} ∈ ID(G)}

the induced matching number of G with respect to the pair (T , a). We
make the convention that im(G; T ; a) := 0 if no sequence exists of non-
negative integers (n1, . . . , nk) such that {n1T1, . . . , nkTk} ∈ ID(G).

Whenever it is convenient, we drop the sequence a from our notation
and simply write im(G; T ) instead of im(G; T ; a). In particular, we
remark that the integer im(G;K2) := im(G;K2;1), where 1 is the
sequence consisting of 1’s is exactly the induced matching number
of G, that is, im(G;K2) = im(G).
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Corollary 3.6. For any graph G, we have reg(G) ≥ im(G;R; aR) for
each prime decomposition R = {H1, . . . ,Hk} ∈ PD(G), where aR =
(reg(Hi) : i ∈ [k]). In particular, the equality reg(G) = im(G;R; aR)
holds if R ∈ PF(G).

Corollary 3.6 implies that, once we know the family of induced
prime subgraphs, say PG, of a given graph G (over a fixed field k),
the calculation of the regularity reg(G) turns into a generalized in-
duced PG-matching problem that can also be considered as a max-
imum weighted induced PG-matching problem in which the weight
of any subgraph H in PG equals its regularity reg(H). Therefore,
Corollary 3.6 is more useful when we know the set of induced prime
subgraphs of a given graph.

Theorem 3.7. If G is a (C3, P5)-free prime graph, then G is isomor-
phic to either K2 or C5. In particular, if G is a (C3, P5)-free graph,
we then have reg(G) = im(G;K2, C5) ≤ 2 im(G).

Proof. Suppose that G is a prime and (C3, P5)-free graph. If
G is C5-free, then it is a weakly chordal graph; hence, we have
reg(G) = im(G) [17]. However, since G is connected and (C3, P5)-
free, we must have im(G) = 1. Indeed, assume otherwise that
im(G) > 1, and let M be an induced matching of size im(G). If
xy, uv ∈ M are two edges, since G is connected, there exists a path
P := {x = x0, x1, . . . , xl−1, xl = u} of minimum length l ≥ 2 between
the vertices x and u in G.

Note that the case l ≥ 3 is not possible, since G is P5-free.
Therefore, we only need consider the case l = 2. Thus, if P = {x, z, u},
the edges yz and vz cannot be present in G, since G is triangle-free.
However, in such a case, the set {y, x, z, u, v} induces a P5 in G, a
contradiction. It then follows that im(G) = 1, which, in turn, implies
that G ∼= K2, since G is prime. Hence, we may assume that G contains
at least one induced five cycle C, say on the vertices x1, . . . , x5, such
that xixi+1 ∈ E(G) in a cyclic fashion.

Suppose first that any vertex of G not contained in V (C) has
exactly two neighbors in C, and let y be such a vertex. We may
assume, without loss of generality, that neighbors of y in C are x1
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and x3. Then, by Proposition 3.2, there exist vertices u ∈ NG(y) and
v ∈ NG(x2) such that ux2, yv /∈ E(G). Note that we must have
uv ∈ E(G), since otherwise, the set {u, x2, x1, y, v} induces a P5. To
prevent the existence of induced 5-paths in G, the vertices u and v
must have at least one neighbor in C. However, since G is triangle-
free, the only possible neighbors would be x4 and x5. If ux4 ∈ E(G),
then the set {u, x4, x5, x1, x2} induces a P5, while if ux5 ∈ E(G), then
the set {u, x5, x4, x3, x2} induces a P5 in G, any of which is impossible.

Assume now that any vertex in V (G) \ V (C) has exactly one
neighbor in C. If y is such vertex and its neighbor in C is x1, then
it follows from Proposition 3.2 that y has a neighbor z outside of
C. However, in such a case, either the set {z, y, x1, x5, x4} or the
set {z, y, x1, x2, x3} induces a P5 in G, since z can have at most one
neighbor in C by our assumption. Therefore, any such graph must be
isomorphic to a C5.

Finally, the inequality reg(G) ≤ 2 im(G) follows from Corollary 3.6
when G is a (C3, P5)-free graph, since any induced copy of a C5,
which has regularity two, can contribute one edge to an induced
matching. �

The following is a direct consequence of Theorem 3.7:

Corollary 3.8. If G is a (2K2, C3)-free graph, then reg(G) ≤ 2.

Observe that, for any P5-free bipartite graph B, we have reg(B) =
im(B) by Theorem 3.7. Note that, since bipartite P5-free graphs are
weakly chordal, the equality reg(B) = im(B) also follows from a result
of [17] for such graphs. However, we can extend it further:

Theorem 3.9. If G is a bipartite P6-free graph, then reg(G) = im(G).

Proof. Once again, it suffices to prove that the only induced prime
in such a graph is isomorphic to a K2. Thus, let H be a prime and P6-
free bipartite graph. Following the characterization of P6-free graphs
due to van’t Hof and Paulusma [15], such a graph must contain either a
dominating complete bipartite subgraph or else an induced dominating
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C6. We accordingly divide the proof into two cases, while noting that
the methods of the proof in both cases are almost identical.

Suppose that K := Km,n is a dominating complete bipartite sub-
graph of H, and assume for contradiction that H � K2. So, let
V (H) = U ∪ V and V (K) = U ′ ∪ V ′ such that U ′ ⊆ U and V ′ ⊆ V .
Observe that the equality m = n = 1 is not possible, since otherwise
H would contain two vertices x and y with NH(x) ⊆ NH(y) that con-
tradicts the fact that H is prime by Proposition 3.2. We may therefore
suppose that n ≥ 2. Furthermore, the graph H cannot contain any
dominated vertex, which is again due to Proposition 3.2.

Claim 1. H contains an induced C6.

Proof of Claim 1. Let x1, x2 ∈ U ′ be given. Since they can-
not dominate each other, there exist a12, a21 ∈ V \ V ′ such that
a12 ∈ NH(x1) \ NH(x2) and a21 ∈ NH(x2) \ NH(x1). Choose a
vertex y1 ∈ V ′, and, since a12 is not dominated, it has a neighbor,
say b12 ∈ U \ U ′, such that b12y1 /∈ E(H). However, since H
is P6-free, the edge b12a21 must be present in H; hence, the set
{x1, y1, x2, a21, b12, a12} induces the desired C6.

Claim 2. For any vertex x ∈ U ′, the graph T = H − NH [x] is
2K2-free.

Proof of Claim 2. Assume otherwise that M is an induced match-
ing in T having order at least two. Observe that, if b ∈ V \V ′ is an end
vertex of an edge in M , since it cannot be dominated by any vertex
y ∈ V ′, it has a neighbor c(b,y) ∈ U \ U ′ such that yc(b,y) /∈ E(H).

Case 2.1. Suppose that V (M) ∩ U ′ = ∅ so that M contains edges
a1b1 and a2b2 with a1, a2 ∈ U \ U ′ and b1, b2 ∈ V \ V ′. Since K is
dominating, the vertices a1 and a2 (respectively, b1 and b2) have at
least one neighbor in V ′ (respectively, in U ′).

Subcase 2.1 (i). Assume that a1, a2 ∈ NH(y1) and b1, b2 ∈ NH(x1)
for some y1 ∈ V ′ and x1 ∈ U ′ \ {x}. In such a case, we must have
c(b1,y1)b2 /∈ E(H), since otherwise, the set {x, y1, a1, b1, c(b1,y1), b2}
induces a P6. However, then the set {c(b1,y1), b1, a1, y1, a2, b2} induces
a P6 in H, a contradiction.

Subcase 2.1 (ii). Assume that a1, a2 ∈ NH(y1), while there exist
distinct vertices x1, x2 ∈ U ′ such that b1 ∈ NH(x1) \ NH(x2)
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and b2 ∈ NH(x2) \ NH(x1). If c(b1,y1)b2 /∈ E(H), then the set
{c(b1,y1), b1, a1, y1, x2, b2} induces a P6, and if c(b1,y1)b2 ∈ E(H), then
the set {x, y1, x2, b1, c(b1,y1), b2} induces a P6 in H, both of which is
impossible.

Subcase 2.1 (iii). Assume that b1, b2 ∈ NH(x1), while there exist
distinct vertices y1, y2 ∈ V ′ such that a1 ∈ NH(y1)\NH(y2) and a2 ∈
NH(y2)\NH(y1). If c(b1,y1)y2 /∈ E(H), the set {c(b1,y1), b1, a1, y1, x, y2}
induces a P6; hence, c(b1,y1)y2 ∈ E(H). On the other hand, if
c(b1,y1)b2 /∈ E(H), then the set {b2, a2, y2, c(b1,y1), b1, a1} induces a P6,
and if c(b1,y1)b2 ∈ E(H), then the set {x, y1, a1, b1, c(b1,y1), b2} induces
a P6 in H.

Subcase 2.1 (iv). Assume that there exist distinct vertices x1, x2 ∈
U ′ and y1, y2 ∈ V ′ such that b1 ∈ NH(x1) \ NH(x2), b2 ∈ NH(x2) \
NH(x1) and a1 ∈ NH(y1) \ NH(y2) and a2 ∈ NH(y2) \ NH(y1). If
c(b1,y1)b2 /∈ E(H), then the set {c(b1,y1), b1, a1, y1, x2, b2} induces a P6,
and if c(b1,y1)b2 ∈ E(H), then the set {x, y1, x1, b1, c(b1,y1), b2} induces
a P6 in H, both of which are impossible.

Case 2.2. Suppose that |V (M)∩U ′| = 1. We may, therefore, assume
that M contains edges of the form x1b1 and a2b2, where x1 ∈ U ′ \{x},
a2 ∈ U \ U ′ and b1, b2 ∈ V \ V ′. Choose a vertex y1 ∈ V ′. If
c(b1,y1)b2 ∈ E(H), then the set {x, y1, x1, b1, c(b1,y1), b2} induces a P6

in H so that we must have c(b1,y1)b2 /∈ E(H). However, it then follows
that the edges b1c(b1,y1) and a2b2 form an induced matching that shares
no vertex with U ′, which is not possible by Case 2.1.

Case 2.3. Suppose that |V (M) ∩ U ′| = 2, and let M contain the
edges x1b1 and x2b2 such that x1, x2 ∈ U ′ \ {x} and b1, b2 ∈ V \ V ′.
Once again, choose a vertex y1 ∈ V ′. If c(b1,y1)b2 /∈ E(H), then the
set {c(b1,y1), b1, x1, y1, x2, b2} induces a P6, while, if c(b1,y1)b2 ∈ E(H),
then the set {x, y1, x2, b2, c(b1,y1), b1} induces a P6 in H, both of which
are not possible.

This completes the proof of Claim 2. Since the graph T is 2K2-free
and bipartite, it follows that T is a cochordal graph so that reg(T ) = 1,
which in turn implies that reg(H) = 2, since H is prime.

Now, since H contains an induced C6 by Claim 1, then either H
contains a vertex x such that the graph H−x contains an induced C6,
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or else H ∼= C6. However, in either case, H cannot be a prime graph
since reg(H) = reg(C6) = 2, and C6 is itself not a prime graph.

Assume now that H has a dominating induced 6-cycle C, say on
the vertices x1, . . . , x6 such that xixi+1 ∈ E(H) in the cyclic fashion.
Since a 6-cycle itself is not a prime graph, the set V (H) \ V (C) is not
empty.

Claim 3. Any vertex x ∈ V (H) \ V (C) has at least two neighbors
in C, that is, |NC(x)| ≥ 2.

Proof of Claim 3. Since V (C) is dominating in H, any such vertex
has at least one neighbor in V (C), and, if it has a unique neighbor,
then H contains an induced P6 which is not possible.

Claim 4. For any vertex xi ∈ V (C), the graph H −NH [xi] is 2K2-
free.

Proof of Claim 4. Consider the vertex x5, and suppose that the
graph L = H −NH [x5] has an induced matching M of cardinality 2.

Subclaim 4.1. M ∩ {x1x2, x2x3} = ∅.

Proof of Subclaim 4.1. Assume, without loss of generality, that
M = {x1x2, xy} for some x, y ∈ V (H) \ V (C). Note that x, y /∈
NH [x5]. Now, if xx3 ∈ E(H), then the vertex x6 must be adjacent to
x by Claim 3, together with the fact that H is bipartite. However, we
then necessarily have |NC(y)∩ V (C)| ≤ 1, which contradicts Claim 3.
Furthermore, if neither of the vertices x nor y is not adjacent to x3,
then one of these vertices has no neighbors in V (C), which is not
possible, again by Claim 3.

Subclaim 4.2. V (M) ∩ {x1, x2, x3} = ∅.

Proof of Subclaim 4.2. Assume, without loss of generality, that
M = {xju, xy} for some u, x, y ∈ V (H) \ V (C) and j ∈ [3]. By
symmetry, it suffices to consider the cases only when j ∈ {1, 3} or
j = 2.

Case 4.2 (i). j = 1. In this case, we note that one of x or y is
adjacent to either x2 or x3. Thus, we let xx2 ∈ E(H). It follows
that x4, x6 ∈ NC(y). However, this forces |NC(x) ∩ V (C)| ≤ 1, a
contradiction.
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Case 4.2 (ii). j = 2. It is sufficient to consider the case where
x1, x3 ∈ NC(y) and x4, x6 ∈ NC(x). On the other hand, the
vertex u must be adjacent to at least one of the vertices x4 or x6.
If ux4 ∈ E(H), then the set {y, x1, x2, u, x4, x5} induces a P6 in H,
while, if ux6 ∈ E(H), then the set {x5, x6, u, x2, x3, y} induces a P6 in
H, both of which are impossible.

We may, therefore, assume that M = {xy, ab} for some x, y, a, b ∈
V (H) \ V (C). Again, by Claim 3, we note that at least one of the
end vertices of the edges xy and ab has exactly two neighbors in
{x1, x2, x3}. Hence, assume that x1, x3 ∈ NC(x) ∩ NC(a). It then
follows that each of the vertices y and b has at least two neighbors
in {x2, x4, x6}. If x6 ∈ NC(y) ∩ NC(b), while x4 /∈ NC(y) ∪ NC(b),
then the set {b, x6, y, x, x3, x4} induces a P6 in H. Thus, we must
have that at least one of yx4 or bx4 has an edge in H. However, if
yx4 ∈ E(H), then the set {a, x1, x, y, x4, x5}, and if bx4 ∈ E(H), then
the set {x5, x4, b, a, x1, x} induces a P6 inH, any of which is impossible.
By symmetry, the case x4 ∈ NC(y)∩NC(b), while x6 /∈ NC(y)∪NC(b)
can be similarly treated. This completes the proof of Claim 4.

Now, as in the first case, since the graph L is 2K2-free and bipartite,
it follows that L is a cochordal graph so that reg(L) = 1, which, in
turn, implies that reg(H) = 2 since H is prime. However, such a graph
cannot be prime, since it contains an induced C6. �

4. Regularity of Cohen-Macaulay graphs of girth at least
five. Our aim in this section is to prove the equality reg(G) =
im(G;K2, C5) when G is a well-covered block-cactus graph [14] that,
in turn, includes any Cohen-Macaulay graph with girth at least five
(see also [2, 8]). We recall that a vertex v is a cut vertex of a connected
graph G if G−v is disconnected. Furthermore, a block of a graph G is
a maximal connected subgraph of G without a cut-vertex, and a graph
G is called a block-cactus graph, if each of its blocks is a clique or a
cycle. For that purpose, we first introduce a graph class containing all
such graphs.

Definition 4.1. Let G be a graph, and let C be an induced cycle of
length 4 ≤ n ≤ 7 in G. Then, C is called a basic cycle of G if one of
the following holds:
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(i) n = 4 and contains two adjacent vertices of degree two in G;
(ii) n = 5 and contains no two adjacent vertices of degree three or

more in G;
(iii) n = 6 or 7 and, if x, y ∈ V (C) are two vertices such that

degG(x), degG(y) ≥ 3, then dG(x, y) ≥ 3.

We say that G is in the class BW , if its vertex set can be partitioned
into V (G) = B ∪ W such that B consists of vertices of basic cycles
of G and basic cycles form a partition of B, and W induces a weakly
chordal graph in G.

We next recall two operations on graphs from [3] under which the
regularity remains stable.

Definition 4.2. Let x, y ∈ V (G) be two non-adjacent vertices of a
graph G. Then, {x, y} is called a t-pair of G, if the following hold:

(i) there exist no vertices u, v ∈ V \{x, y} such that G[{x, y, u, v}]
∼= 2K2;

(ii) there exists a vertex w ∈ NG(x) ∩NG(y) satisfying NG[w] ⊆
NG[x] ∪NG[y].

When {x, y} is a t-pair with respect to the vertex w, then w is called
the t-neighbor of the pair {x, y}, and the graph t(G;xy) constructed
by

V (t(G;xy)) := (V \ {x, y}) ∪ {wxy}

and

E(t(G;xy)) := E(G− {x, y}) ∪ {uwxy : u ∈ NG(x) ∩NG(y)}

is called the t-contraction of G with respect to the pair {x, y}.

Definition 4.3. Let z be a non-isolated vertex of a graph G. For any
two subsets Az, Bz ⊆ V (G−NG[z]), we say that [Az, Bz] is a t-pairing
of z in G, if the following hold:

(i) ab ∈ E(G) for any a ∈ Az and b ∈ Bz;
(ii) there exists a vertex w ∈ NG(z) satisfying NG[w] ⊆ NG[z] ∪

Az ∪Bz.
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When [Az, Bz] is a t-pairing of z, then the graph t(G; z,Az, Bz) (or
t(G; z), for short) constructed by

V (t(G; z,Az, Bz)) := (V \ {z}) ∪ {xz, yz}

and

E(t(G; z,Az, Bz)) := E(G− z) ∪ {uxz, uyz : u ∈ NG(z)}
∪ {axz : a ∈ Az} ∪ {byz : b ∈ Bz}

is called the t-expansion of G with respect to the vertex z and the
pairing [Az, Bz].

y

w

x −→
wxy

w

Figure 1. A t-contraction.

Az Bz

w

−→
z

yz

xz

−→

Figure 2. A t-expansion.

Theorem 4.4. [3] If {x, y} is a t-pair of a graph G, then reg(G) =
reg(t(G;xy)). If z is a non-isolated vertex of G such that [Az, Bz] is
a t-pairing in G−NG[z], then reg(G) = reg(t(G; z)).
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The proof of the main result of this section relies upon the affect
of a particular edge contraction operation on graphs to the regularity
that we next describe. We first recall that, if e = xy is an edge of a
graph G, then the contraction of e on G is the graph G/e, defined by

V (G/e) = (V (G) \ {x, y}) ∪ {w}

and

E(G/e) = E(G− {x, y}) ∪ {wz : z ∈ NG(x) ∪NG(y)}.

In particular, when u and v are two non-adjacent vertices of G, we
define the fake-contraction (or f-contraction) f(G;uv) ofG with respect
to u and v to be the graph (G ∪ uv)/uv, where the graph G ∪ uv is
obtained from G by the addition of the edge uv to G.

Proposition 4.5. Let {a, b, c, d} be a set of vertices of a 4-path (not
necessarily induced) in G with edges ab, bc and cd such that degG(b) =
degG(c) = 2. If ad ∈ E(G), then reg(G) = reg(G− {a, b, c, d}) + 1. If
ad /∈ E(G), then reg(G) = reg(f(G− {b, c}; da)) + 1.

Proof. Suppose first that ad ∈ E(G). We then apply a t-expansion
on the vertex d with respect to the t-pairing [{b}, ∅]. Observe that,
in the resulting graph t(G; d), the pair {a, c} is a t-pair with b as a
t-neighbor. The t-contraction of {a, c} provides the graph t(t(G; d); ac)
in which {b, yd} is a t-pair. When we t-contract {b, yd}, the set
{xd, wac, wbyd

} in the graph obtained induces a 3-path such that the
vertex wbyd

is of degree one, that is, {xd, wbyd
} is a t-pair. Therefore,

the t-contraction of {xd, wbyd
} in t(t(t(G; d); ac); byd) results in a graph

isomorphic to G− {a, b, c, d} ∪K2 (compare to Figure 3). Now, since

reg(G− {a, b, c, d} ∪K2) = reg(G− {a, b, c, d}) + reg(K2)

= reg(G− {a, b, c, d}) + 1,

the claim follows from Theorem 4.4.

Assume next that ad /∈ E(G). We apply a t-expansion on the
vertex d with respect to the t-pairing [NG(a)\NG(d), {a}] having the
vertex c as a t-neighbor. If we denote by {xd, yd} the resulting t-pair
in t(G; d), then {a, c} is a t-pair in t(G; d) with t-neighbor b. Once we
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a

b

cd

G

a

b
c

xd

yd

t(G; d)

b

xd

yd
wac

t(t(G; d); ac)

xd

wac

wbyd

t(t(t(G; d); ac); byd)

wxdwbyd

wac

t(t(t(t(G; d); ac); byd);xdwbyd
)

Figure 3. The first phase of expansions and contractions in Proposi-
tion 4.5.

contract this t-pair in t(G; d) and denote the newly created vertex by
wac, then {b, yd} becomes a t-pair in t(t(G; d); ac) with a t-neighbor the
vertex wac. Finally, the t-contraction of {b, yd} in t(t(G; d); ac) yields
a graph isomorphic to f((G−{b, c}); da)∪K2, where the isolated edge
is induced by wac and wbyd

(see Figure 4). Now, since

reg(f((G− {b, c}); da) ∪K2) = reg(f((G− {b, c}); da)) + reg(K2)

= reg(f((G− {b, c}); da)) + 1,

the claim follows from Theorem 4.4. �

The following is the main result of this section:

Theorem 4.6. If G ∈ BW , then reg(G) = im(G;K2, C5) ≤ 2 im(G).
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a

b

cd

G

a

b

c

xd

yd

t(G; d)

b

xd

yd wac

t(t(G; d); ac)

xd = d
wbyd

wac

t(t(t(G; d); ac); byd) ∼= f((G− {b, c}); da) ∪K2

Figure 4. The second phase of expansions and contractions in Proposi-
tion 4.5.

Proof. We proceed by induction on the order of G. We first note
that, if B = ∅, then reg(G) = im(G) so that we may assume B ̸= ∅.
Let L be the set of vertices of a basic cycle, say, of length n ≥ 4.
If every vertex in L has degree two in G, we consider any 4-path
(not necessarily induced) on {a, b, c, d} ⊆ L. Otherwise, L contains
at least one vertex, say d, of degree at least three. In this case, we
consider a 4-path on {a, b, c, d} in L such that the adjacent vertices
b and c are of degree two in G. If ad ∈ E(G), that is, n = 4, then
reg(G) = reg(G − {a, b, c, d} ∪ K2) by Proposition 4.5. Therefore, if
we define B′ := B \ L and W ′ := W ∪ (L − {a, b, c, d}) ∪ V (K2),
then the graph G−{a, b, c, d} ∪K2 belongs to the class BW with the
partition V (G−{a, b, c, d}∪K2) = B′ ∪W ′ so that reg(G) = reg(G−
{a, b, c, d}) + 1 = im(G− {a, b, c, d};K2, C5) + 1 = im(G;K2, C5).
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We may, therefore, assume that ad /∈ E(G), that is, n ≥ 5. Note
that

reg(G) = reg(f(G− {b, c}; da) ∪K2)

by Proposition 4.5. We next examine two cases separately:

Case 1. n = 5 or 6. If we define B′ := B \ L and W ′ := W ∪ (L−
{a, b, c})∪V (K2), then the decomposition V (f((G−{b, c}); da)∪K2) =
B′∪W ′ satisfies the required conditions for which f((G−{b, c}); da)∪
K2 ∈ BW .

Case 2. n = 7. In this case, we note that L can contain at most
one other vertex of degree three or more in G. If there exists such
a vertex, we may assume, without loss of generality, that this vertex
is a. Therefore, if we set B′ := B−{a, b, c} and W ′ := W ∪V (K2), the
resulting decomposition V (f((G−{b, c}); da)∪K2) = B′∪W ′ satisfies
the required conditions for which f((G− {b, c}); da) ∪K2 ∈ BW .

In either case, we conclude that reg(G) = reg(f((G−{b, c}); da)∪K2)
so that the claim follows from induction. �

Remark 4.7. The inequality reg(G) ≤ 2 im(G) for any graph in the
class BW can also be seen from its structural characterization without
the aid of Theorem 4.6. Indeed, when G ∈ BW , by removing a vertex
of a basic cycle whose degree is three or more together with all of its
neighbors leaves a graph such that the gap between the regularity of
G and the resulting graph is at most two. Therefore, once we destroy
every basic cycle of G in such a way, the resulting graph is the disjoint
union of a weakly chordal graph and paths, and the induced matching
number of this final graph exactly equals to that of G.

The following are a direct consequence of Theorem 4.6.

Corollary 4.8. If G is a well-covered block-cactus graph, then reg(G) =
im(G;K2, C5).

Corollary 4.9. If G is a Cohen-Macaulay graph of girth at least five,
then reg(G) = im(G;K2, C5).
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5. Graphs with im(G) < reg(G) = m(G). In this section, we ver-
ify that the five cycle graph C5 is the only connected graph satisfying
the inequality im(G) < reg(G) = m(G), as promised.

Lemma 5.1. Let H be a graph with reg(H) = m(H). If {H1, . . . ,Hk}
is a prime factorization of H, then reg(Hi) = m(Hi) for each i ∈ [k].

Proof. If there exists a j ∈ [k] such that reg(Hj) < m(Hj), then

m(H) = reg(H) = reg(H1) + · · ·+ reg(Hk)

< m(H1) + · · ·+m(Hk) ≤ m(H),

a contradiction. �

Theorem 5.2. If G is a connected graph satisfying im(G) < reg(G) =
m(G), then G ∼= C5.

Proof. We first prove the claim for prime graphs. Therefore, let G
be a prime graph satisfying im(G) < reg(G) = m(G). We proceed
by induction on the order of G. If v ∈ V (G), we then have reg(G) =
1+reg(G−NG[v]). Observe that reg(G−NG[v]) = m(G−NG[v]) since,
otherwise, reg(G) = 1+ reg(G−NG[v]) < 1 +m(G−NG[v]) ≤ m(G),
which is not possible by the assumption.

Now, let H = {H1, . . . , Hk} be a prime factorization of H :=
G − NG[v]. It then follows from Lemma 5.1 that reg(Hi) = m(Hi)
for each i ∈ [k]. On the other hand, if im(Hi) < reg(Hi) for some
i ∈ [k], we have Hi

∼= C5 by the induction hypothesis. Furthermore,
if im(Hj) = reg(Hj) for some j ∈ [k], we then have Hj

∼= K2 since, in
such a case, the equality im(Hj) = m(Hj) implies that the graph Hj

must contain a (closed) dominated vertex by [2, Theorem 30], which is
only possible when Hj

∼= K2 by Proposition 3.2. Therefore, the prime
factorization H can be divided into two pieces H1 := {H1, . . . , Hl} and
H2 := {Hl+1, . . . , Hk}, where Hi

∼= K2 for any 1 ≤ i ≤ l and Hj
∼= C5

for any l < j ≤ k.

Case 1. l < k. If we define T := ∪k
j=l+1V (Hj), then the

set U := V (H) \ T is an independent set, due to the fact that
reg(H) = m(H). Moreover, by the same reason, no vertex u ∈ U can
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have a neighbor in T . However, this implies that each Hj
∼= C5 in H2

is a connected component of H. On the other hand, the vertex v has
at least two neighbors, say w and z in G, by Proposition 3.2 and, since
G is connected, at least one of these two vertices is adjacent to a vertex
in T . Now, if wp ∈ E(G) for some p ∈ T , then reg(G) < m(G) since
the addition of the edges wp and vz increases the matching number of
G by two, a contradiction.

Case 2. l = k. In this case, we necessarily have im(H) = reg(H) =
m(H). If we define L := ∪k

i=1V (Hi), the set W := V (H) \ L is
an independent set as in the previous case. Once again, by [2,
Theorem 30], the graph H contains two vertices, say p and q, such
that NH [p] ⊆ NH [q]. However, since G is prime, such a vertex p
cannot be dominated in G; hence, there exists an x ∈ NG(v) such that
xp ∈ E(G), while xq /∈ E(G). Since W is an independent set, one end
of the edge pq must be contained in L. We also note that the vertex v
has at least one neighbor y other than x, again by Proposition 3.2.

Subcase 2.1. If q ∈ L, while p /∈ L, then the set H ∪ {vy, xp} is
a matching in G of size one more than reg(G) = m(G), which is not
possible.

Subcase 2.2. Let p ∈ L and q /∈ L. Then, there exists a t ∈ L such
that the edge pt is in the prime factorization H. It then follows from
[11, Lemma 1] that tq ∈ E(H) and degH(p) = degH(t) = 2. Now, the
set H′ ∪ {xp, vy}, where H′ := (H \ {pq}) ∪ {tq}, is then a matching
in G of size one more than reg(G) = m(G), which is not possible.

Subcase 2.3. Assume that p, q ∈ L. Observe that the case where
the vertices p and q have a common neighbor in H is not possible by
subcase 2.2. However, it then follows from [11, Lemma 1] that we
must have degH(p) = 1. Now, if there exists an h ∈ W such that
qh ∈ E(H), then the set H′′ := (H\{pq})∪{xp, qh, vy} is a matching
in G of size one more than reg(G) = m(G), a contradiction. Thus,
we may further assume that degH(q) = 1. However, this forces that
the set W is empty, that is, H ∼= kK2. On the other hand, since G
is prime, the vertex q must have a neighbor, say y, in NG(v). If the
vertex v has a neighbor s other than x and y, then the set

H′′′ := (H \ {pq}) ∪ {xp, qy, vs}
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is a matching in G of size one more than reg(G) = m(G); hence,
NG(v) = {x, y}. Therefore, we must have either k = 1 so that G ∼= C5

or else the graph G − NG[y] is a star, that is, G − NG[y] ∼= K1,l for
some l ≥ 1. However, the latter case contradicts the fact that G is a
prime graph.

Finally, assume that G is not a prime graph, and let G =
{G1, . . . , Gr} be a prime factorization of G. It then follows from
Lemma 5.1 that reg(Gi) = m(Gi) for any i ∈ [r]. Now, if im(Gi) =
reg(Gi) for each i ∈ [r], then Gi

∼= K2 for by Proposition 3.2 and [2,
Theorem 30] so that r = im(G) = reg(G) = m(G), a contradiction.
Therefore, there exists a j ∈ [r] such that im(Gj) < reg(Gj). Since
Gj is prime, then Gj

∼= C5 by the above argument. However, since
G is not prime, the set V (G) \ ∪r

i=1V (Gi) cannot be empty. On the
other hand, since G is connected, we can use any vertex in this set
together with those in V (Gj) to create a matching in G of size larger
than m(G), a contradiction. �

6. Vertex decomposable perfect prime graphs. In this sec-
tion, we first prove that a special ear addition to a prime graph gives
rise to a new prime graph under which the regularity increases ex-
actly by one. In particular, such an operation enables us to prove that
there exists an infinite family of vertex decomposable prime graphs of
arbitrarily high regularity. Note that, since the regularity of vertex
decomposable graphs is independent of the characteristic of the coef-
ficient field, the graphs we construct are necessarily perfect primes.

We recall that a vertex x of G is called a shedding vertex if, for every
independent set S in G − NG[x], there is some vertex v ∈ NG(x) so
that S ∪ {v} is independent. A graph G is called vertex-decomposable
if either it is an edgeless graph or it has a shedding vertex x such that
G− x and G−NG[x] are both vertex-decomposable.

Definition 6.1. Let G = (V,E) be a graph and e = xy an edge of
G, and let P3 be a (disjoint) 3-path on {x′, v, y′}. We define a new
graph P (G; e), the 3-ear addition to G with respect to the edge e, by
the addition of P3 to G on the end vertices of e, that is,

V (P (G; e)) := V ∪ {x′, v, y′}
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and

E(P (G; e)) := E ∪ {xx′, x′v, vy′, y′y}.

Before we describe the affect of a 3-ear addition P (G; e) on the
regularity of G, we need the following technical results.

Lemma 6.2. If NG(x) = {y} in G, then either reg(G) = reg(G− x)
or else reg(G) = reg(G−NG[y]) + 1.

Proof. We apply Lemma 3.1 at the vertex y. If reg(G) = reg(G −
NG[y])+1, there is nothing to prove. Assume that reg(G) = reg(G−y).
Since x is an isolated vertex of G− y, we have reg(G) = reg(G− y) =
reg(G − {x, y}) ≤ reg(G − x), that is, reg(G) = reg(G − x) as
claimed. �

Lemma 6.3. Let x, y, z be three vertices of a graph G with xy, yz ∈ E.
If degG(x) = 1 and degG(y) = 2, then reg(G) = reg(G− z).

Proof. Suppose, to the contrary, that reg(G) > reg(G − z). This
implies that reg(G) = reg(G−NG[z]) + 1 by Lemma 3.1. If we define
T := G− (NG[z]∪{x}), we note that reg(G−NG[z]) = reg(T ) since x
is an isolated vertex of G−NG[z]. On the other hand, since {T, xy} is
an induced decomposition of G−z, we have reg(G−z) ≥ reg(T )+1 by
Theorem 3.3. It follows that reg(G−z) ≥ reg(G), a contradiction. �

Proposition 6.4. If G is a prime graph, then reg(P (G; e)) = reg(G)+
1 for any edge e of G.

Proof. Suppose that G = (V,E) is a prime graph and e = xy is
an edge of G. In order to ease the notation, we write Pe instead of
P (G; e).

Assume that reg(G) = m, and let S ⊆ V be a minimal subset

satisfying H̃m−1(G[S]) ̸= 0. If x /∈ S, we may define S∗ := S ∪ {x′, v}
so that Pe[S

∗] ≃ Σ(G[S]); hence, H̃m(Pe[S
∗]) ̸= 0, that is, reg(Pe) ≥

m + 1. The case for which y /∈ S can be similarly treated. We
may, therefore, assume that x, y ∈ S. In this case, we define S∗ :=
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S ∪ {x′, v, y′} and consider the associated Mayer-Vietoris sequence of
the pair (Pe[S

∗], v):

· · · −→ H̃m(Pe[S
∗]) −→ H̃m−1(Pe[S

∗]−NPe[S∗][v])

−→ H̃m−1(Pe[S
∗]− v) −→ H̃m−1(Pe[S

∗]) −→ · · · .

The graph Pe[S
∗] − NPe[S∗][v] is isomorphic to G[S]; hence, we have

H̃m−1(Pe[S
∗] − NPe[S∗][v]) ̸= 0. On the other hand, the graph

Pe[S
∗]− v is contractible by [1, Proposition 5.1] that, in turn, implies

that H̃m−1(Pe[S
∗]− v) = 0 so that H̃m(Pe[S

∗]) ̸= 0 by the exactness,
that is, reg(Pe) ≥ m+ 1.

Assume now that reg(Pe) = k. We analyze these three cases
separately.

Case 1. There exists a minimal subset R ⊆ V such that x, y ∈ R

and H̃k−1(Pe[R]) ̸= 0. Observe first that the intersection R∩{x′, v, y′}
cannot be empty. Suppose, otherwise, that R ∩ {x′, v, y′} = ∅,
and define R∗ := R ∪ {x′, v, y′}. It then follows that the graph
Pe[R

∗] − v is contractible, again by [1, Proposition 5.1], so Pe[R
∗] ≃

Σ(Pe[R
∗] − NPe[R∗][v]) (see [12] for details). However, the graph

Pe[R
∗]−NPe[R∗][v] is isomorphic to Pe[R], that is,

H̃k(Pe[R
∗]) ∼= H̃k−1(Pe[R]) ̸= 0,

which forces reg(Pe) > k, a contradiction. We therefore have R ∩
{x′, v, y′} ̸= ∅.

Now, if {x′, v, y′} ⊆ R, then Pe[R] ≃ Σ(Pe[R] − NPe[R][v]) as
above, while Pe[R] − NPe[R][v] ∼= G[R ∩ V ]; hence, we conclude
reg(G) ≥ k − 1. On the other hand, if |R ∩ {x′, v, y′}| = 1, then the
vertex in {x′, v, y′} that R contains must be either x′ or y′. Assume,
without loss of generality, that x′ ∈ R. It then follows from Lemma 6.2,
together with the minimality of R, that reg(Pe) = reg(Pe[R]) =
reg(Pe[R]−NPe[R][x

′]) + 1. However, this implies that reg(G) ≥ k− 1
since V (Pe[R]−NPe[R][x

′]) ⊆ V .

Suppose now that |R ∩ {x′, v, y′}| = 2. We note that v ∈ R, since
otherwise the graph Pe[R] is contractible by [1, Proposition 5.1],
which is impossible. It then follows that the set R contains either
{x′, v} or {v, y′}. Assume that x′, v ∈ R. However, this implies that
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Pe[L] ≃ Pe[L] − x, while Pe[L] − x ∼= (G − x)[R ∩ V ] ∪ K2, that is,
Pe[L] ≃ Σ(G[(R \ {x} ∩ V ]). We, therefore, have reg(G) ≥ k − 1, as
expected.

Case 2. There exists a minimal subset L ⊆ V such that |L∩{x, y}| =
1 and H̃k−1(Pe[L]) ̸= 0. Once again, we may assume, without loss of
generality, that x ∈ L while y /∈ L. As in Case 1, we must have
R ∩ {x′, v, y′} ̸= ∅ since, otherwise, we can define L∗ := L ∪ {v, y′} so
that Pe[L

∗] ∼= Pe[L] ∪K2; hence, we would have Pe[L
∗] ≃ Σ(Pe[L]), a

contradiction. If {x′, v, y′} ⊆ L, it follows from Lemma 6.3, together
with the minimality of L, that reg(Pe) = reg(Pe[L]) = reg(Pe[L]−x′).
However, we have Pe[L]− x′ ∼= G[L ∩ V ] ∪K2, where the component
K2 is induced by {v, y′}. But, then Pe[L] − x′ ≃ Σ(G[L ∩ V ]);
hence, we must have reg(G) ≥ k − 1. We, therefore, only need to
check for the case in which L ∩ {x′, v, y′} = {x′} by Lemma 6.3
together with the minimality of L. In such a case, we must have
reg(Pe) = reg(Pe[L]) = reg(Pe[L] − NPe[L][x

′]) + 1 by Lemma 6.2,
together with the minimality of L, that is, reg(G) ≥ k − 1, since
V (Pe[L]−NPe[L][x

′]) ⊆ V .

Case 3. There exists a minimal subsetK ⊆ V such thatK∩{x, y} =

∅ and H̃k−1(Pe[K]) ̸= 0. We note that the minimality of such a
set K forces |K ∩ {x′, v, y}| ≥ 2, and in any possible case, we have
Pe[K] ≃ Σ(G[K ∩ V ]) so that reg(G) ≥ k − 1. �

We next verify that the primeness is preserved under a 3-ear
addition on the end vertices of any edge of a prime graph.

Theorem 6.5. If G is a prime graph, then so is P (G; e) for any edge e
of G.

Proof. Suppose that G is prime, and let a ∈ V (Pe) be any vertex.
Once again, we divide the proof into several cases.

Case 1. a /∈ {x, y, x′, v, y′}. In this case, we have

reg(Pe−a) = reg(P ((G−a); e)) = reg(G−a)+1 = reg(G) < reg(Pe),

where the second and third equalities are due to Proposition 6.4 and
the primeness of G, respectively.



24 TÜRKER BIYIKOĞLU AND YUSUF CIVAN

Case 2. a = x or a = y. Assume that a = x. It then follows from
Lemma 6.3 that

reg(Pe − x) = reg((Pe − x)− y′) = reg(G− x) + 1 = reg(G) < reg(Pe)

since (Pe−x)−y′ ∼= (G−x)∪K2, where the component K2 is induced
by {x′, v}. The case a = y can be verified similarly.

Case 3. a = x′ or a = y′. Due to the symmetry, we only verify the
case a = x′. Once again, Lemma 6.3 implies that reg(Pe − x′) =
reg((Pe − x′) − y) = reg(G − y) + 1 = reg(G) < reg(Pe) since
(Pe − x′) − y ∼= (G − y) ∪ K2, where the component K2 is induced
by {v, y′}.

Case 4. a = v. In this case, we repeatedly apply Lemma 6.2.
Note that reg(Pe − v) equals either reg((Pe − v) − x′) or reg((Pe −
v) − N(Pe−v)[x]) + 1. For the latter case, we note that the graph
(Pe − v)−N(Pe−v)[x] is isomorphic to (G−NG[x]) ∪ {y′} in which y′

is an isolated vertex, that is,

reg(Pe − v) = reg((Pe − v)−N(Pe−v)[x]) + 1

= reg(G−NG[x]) + 1 = reg(G) < reg(Pe).

If reg(Pe − v) = reg((Pe − v)− x′), we then have either reg((Pe − v)−
x′) = reg(((Pe−v)−x′)−y′) or else reg((Pe−v)−x′) = reg((Pe−v)−
x′)−N(Pe−v)−x′)[y])+1. For the former, we conclude that reg(Pe−v) =
reg(((Pe − v) − x′) − y′) = reg(G) < reg(Pe) by Proposition 6.4. On
the other hand, since ((Pe − v) − x′) − N((Pe−v)−x′)[y] ∼= G − NG[y],
we must have

reg(Pe − v) = reg((Pe − v)− x′)

= reg((Pe − v)− x′)−N(Pe−v)−x′)[y]) + 1

= reg(G) < reg(Pe). �

Corollary 6.6. For each integer n ≥ 1, there exists a vertex decom-
posable prime graph Gn such that reg(Gn) = n.

Proof. We let G1 := K2, and define Gn := P (Gn−1; e) for some
edge e ∈ E(Gn−1) for any n > 1. Note that G2

∼= C5, and any
induced cycle in Gn for n ≥ 2 is of fixed length 5. Therefore, the set
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{Gn : n ≥ 1} provides a desired family of vertex decomposable prime
graphs by [16, Theorem 1], Proposition 6.4 and Theorem 6.5. �

Remark 6.7. The construction within the proof of Corollary 6.6
also works when n ≥ 2 if we choose G2 := Ck, the complement
of the k-cycle for some k ≥ 5, even if the verification of the vertex
decomposability of the resulting graphs requires some extra work.

The Corollary 6.6 allows us to construct a family of vertex decom-
posable prime graphs with an arbitrary gap between their regularities
and induced matching numbers.

Corollary 6.8. For each integer s ≥ 1, there exists a vertex decom-
posable prime graph Hs such that reg(Hs)− im(Hs) = s.

Proof. For a given graph G, we denote by Ear(G) the graph ob-
tained from G by applying a 3-ear addition to each edge of G.
We first claim that im(Ear(G)) = |E(G)| = m. We let ae, be
and ce be the vertices added to G corresponding to the 3-ear addi-
tion with respect to the edge e = xy ∈ E(G). Observe that any
maximum induced matching of Ear(G) can share at most one edge
with the five cycle induced by {x, ae, be, ce, y}. It then follows that
im(Ear(G)) ≤ |E(Ear(G))|/5 = 5m/5 = m. On the other hand, the
set {aebe : e ∈ E(G)} forms an induced matching of Ear(G) of required
size.

Now, suppose that Gs is the vertex decomposable prime graph with
reg(Gs) = s, the existence of which is guaranteed by Corollary 6.6.
Observe that reg(Ear(Gs)) = reg(Gs) + |E(Gs)| as a result of Propo-
sition 6.4 since Gs is a prime graph and any 3-ear addition to a prime
graph preserves primeness by Theorem 6.5. We, therefore, conclude
that reg(Ear(Gs))− im(Ear(Gs)) = s, as claimed. �

Remark 6.9. Even if we prove the existence of an infinite family
of vertex decomposable prime graphs of arbitrarily high regularity,
when we impose some restriction, such graphs become rare. For
instance, any (C4, C5)-free vertex decomposable prime graph must be
isomorphic to a K2 (compare to [2, Theorem 24]). On the other hand,



26 TÜRKER BIYIKOĞLU AND YUSUF CIVAN

it is not difficult to prove that any graph G of minimum degree at least
two with girth(G) ≥ 6 cannot contain a shedding vertex, that is, such
a graph cannot be vertex decomposable.
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5. H.T. Hà, Regularity of squarefree monomial ideals, in Connections between

algebra, combinatorics, and geometry, Springer Proc. Math. Stat. 76 (2014), 251–
276.
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