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A NOTE ON RESIDUAL COORDINATES
OF POLYNOMIAL RINGS

M’HAMMED EL KAHOUI AND MUSTAPHA OUALI

ABSTRACT. A special case of the Dolgachev-Weisfeiler
conjecture asserts that residual coordinates of the polynomial
algebra A = C[x][n], n ≥ 3, are coordinates. It is well known
that such polynomials are stable coordinates; however, all
the examples constructed thus far are actually 1-stable coor-
dinates. In this paper, we show that all residual coordinates
of A are 1-stable coordinates.

1. Introduction. Throughout, all rings considered are commuta-
tive with unity. Given a ring R and an R-algebra A, we will write
A = R[n] to mean that A is isomorphic to the polynomial R-algebra
in n variables (by convention R[0] = R). A polynomial p in A = R[n]

is said to be a coordinate if A = R[p][n−1]. It is said to be a stable
coordinate if A[m] = R[p][n+m−1] for some m ≥ 1. When m needs to
be specified, we say that p is an m-stable coordinate. A polynomial p
in A is said to be a residual coordinate if

K(p)
⊗
R

A =

(
K(p)

⊗
R

R[p]

)[n−1]

for every p ∈ Spec R, where K(p) stands for the residue field of p.

The relationship between coordinates, residual coordinates and sta-
ble coordinates is well understood for n = 2. In particular, if R is
a Noetherian ring containing Q, it follows from the results of Bhat-
wadekar and Dutta [3] that the three notions are equivalent. The
Noetherianity assumption can be dropped, as shown by van Rossum
and van den Essen [15]. Recently, Das and Dutta [6] proved that,
for any Noetherian domain R and any n ≥ 3, residual coordinates of
A = R[n] are stable coordinates.
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The classical example of Hochster [8] shows that residual coordinates
of A = R[n], n ≥ 3, need not be coordinates, in general. However,
the question remains open when R is a polynomial ring over C. The
Vénéreau polynomial [9, 16] is the most well-known example of a
residual coordinate over C[x] with an indefinite status; however, in
fact, a very similar example was constructed earlier by Bhatwadekar
and Dutta [4, Example 4.13].

As shown by Freudenburg [7], the Vénéreau polynomial is a 1-
stable coordinate. Larger families of Vénéreau-type polynomials were
constructed by Daigle and Freudenburg [5] and then in [10] by Lewis,
who proved in [11] that all of the Vénéreau-type polynomials are 1-
stable coordinates. In this paper we obtain the following generalization
of the result of Lewis [11].

Theorem 1.1. Let K be an algebraically closed field of characteristic
zero. Then, every residual coordinate of A = K[x][n], where n ≥ 3, is
a 1-stable coordinate.

As already mentioned, given a Noetherian domain R, residual coor-
dinates of A = R[n] are stable coordinates. When R has Krull dimen-
sion d and contains Q, we obtain the following result.

Theorem 1.2. Let R be a Noetherian d-dimensional ring contain-
ing Q. Then, every residual coordinate of A = R[n] is a (2d−1)n-stable
coordinate.

Given a residual coordinate p of A = R[n], the above result shows
that the number m of variables which must be added so that p becomes
a coordinate in B = A[m] does not depend upon p, but only upon n
and the Krull dimension of R. However, we do not know whether the
bound we give is sharp.

2. Preliminaries. In this section, we fix notation and recall the
main results that will be used.

2.1. Residual coordinates. Let R be a ring, and let p be a coor-
dinate of A = R[n]. It is a basic fact that p remains a coordinate
over any localization and over any quotient of R. The same holds for
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residual coordinates and m-stable coordinates. Given a multiplicative
set S ⊂ R consisting of non zerodivisors, if p is a coordinate over the
localization RS , then there exists a c ∈ S such that p is a coordinate
over Rc. In the remainder of this paper, we will make use of these basic
facts without further reference.

The following result was proven by Maubach [12, Theorem 4.5].

Theorem 2.1. Let K be an algebraically closed field of characteristic
zero, and let q be a polynomial of

K[x][u,w] = K[x][u1, . . . , un, w]

of the form
q = c(x)w + p(x, u),

where c(x) ∈ K[x] is non-constant. Assume that, for every root α
of c(x), the polynomial p(α, u) is a coordinate of K[u]. Then, q is a
coordinate over K[x].

To our knowledge, it is not known whether Theorem 2.1 holds
without the assumption that K be algebraically closed.

The following result is due to Berson, Bikker and van den Essen [1,
Proposition 5.3].

Theorem 2.2. Let R be a ring, and let c be a non zerodivisor of R.
Let q(u,w) be a coordinate of

R[u,w] = R[u1, . . . , un, w].

If q(u, 0) is a coordinate over R/cR, then q(u, cw) is an (n− 1)-stable
coordinate of R[u,w].

Consider a polynomial of R[u,w] of the form q = cw + p(u), where
c is a non zerodivisor of R and p ∈ R[u]. A direct application of
Theorem 2.2 shows that, if p is a coordinate over R/cR, then q is an
(n− 1)-stable coordinate of R[u,w]. More generally, if p is an m-stable
coordinate over R/cR, then q is a (2m+ n− 1)-stable coordinate.

2.2. Automorphisms of polynomial rings. Given a ring R and
n ≥ 1, we denote by GAn(R) the group of R-automorphisms of
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the polynomial R-algebra in n variables. The subgroup of GAn(R)
consisting of automorphisms of Jacobian determinant 1 is denoted by
SAn(R). Given a coordinate system u of A = R[n], an R-automorphism
σ of A is said to be elementary in the coordinate system u if there
exists an i such that σ(uj) = uj for j ̸= i and σ(ui) = ui + p(u),
where p does not depend on ui. We let EAn(R, u) be the subgroup of
GAn(R) generated by the elementary automorphisms in the coordinate
system u.

The following fundamental properties of automorphisms of polyno-
mial algebras will be necessary for our purposes, see [1, Remark 2.2],
[2, Proposition 2.7] and [13, Lemma 1.1.9]. Recall that Nil(R) denotes
the nilradical of the ring R.

Proposition 2.3. Let R be a ring, and let σ be an R-endomorphism
of A = R[n]. Then, the following properties hold :

(i) given an ideal a contained in Nil(R), σ is an automorphism if and
only if it is so over R/a. As a consequence, a polynomial p in A
is a coordinate if and only if it is a coordinate over R/a;

(ii) if R is Noetherian, then σ is an automorphism if and only if it is
so over every R/p, where p ranges over the minimal prime ideals
of R.

Given two rings R and R1, every ring homomorphism ϕ : R → R1

naturally induces a group homomorphism

ϕ⋆ : GAn(R) −→ GAn(R1)

that maps SAn(R) to SAn(R1) and EAn(R, u) to EAn(R1, u). When
ϕ is surjective, the homomorphism ϕ⋆ always maps EAn(R, u) onto
EAn(R1, u). The next result, due to van den Essen, Maubach and
Vénéreau [14], shows that in some special situations the same holds
for SAn(R).

Theorem 2.4. Let R be a ring containing Q and m ∈ N⋆, and let
Rm = R[x]/xmR[x]. Then, the group homomorphism

SAn(R[x]) −→ SAn(Rm),

induced by the canonical homomorphism R[x] −→ Rm, is surjective.
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Given a ring R containing Q, every coordinate q of A = R[n] is a
component of an automorphism in SAn(R), see [1, Theorem 4.3] and
[13, Section 2.3]. By combining this fact with Proposition 2.3 and
Theorem 2.4, we directly obtain the next result.

Corollary 2.5. Let R be a ring containing Q, and let q be a polynomial
in A = R[x][n]. If q is a coordinate over R[x]/xR[x], then, for every
m ∈ N⋆, there exists a coordinate system v = v1, . . . , vn of A and
a(v) ∈ R[x][v] such that

q = v1 + xma(v).

2.3. Locally nilpotent derivations. Let R be a ring containing Q,
and let A be an R-algebra. An R-derivation ξ of A is said to be
locally nilpotent if, for every a ∈ A, there exists an m ∈ N⋆ such
that ξm(a) = 0.

Let ξ be a locally nilpotent R-derivation of A and w an indeterminate
over A. We extend ξ to A[w] by setting ξ(w) = 0 and consider the map

exp(wξ) : A[w] −→ A[w],

defined for every a ∈ A[w] by

exp(wξ).a =
∑ ξm(a)

m!
wm.

A fundamental fact regarding locally nilpotent derivation theory is that
exp(wξ) is an R[w]-automorphism of A[w], and its inverse is exp(−wξ),
see e.g., [13, Proposition 1.2.14].

3. The main results. The following lemma will be very useful in
the sequel.

Lemma 3.1. Let R be a ring containing Q, and let c be a non
zerodivisor of R. Let p be a polynomial in A = R[n], and assume that
it is a coordinate over the localization Rc. Then, there exists a locally
nilpotent R-derivation ξ of R[n] such that ξ(p) = cm, for some m ∈ N.

Proof. Let u = u1, . . . , un be a coordinate system of A. Since p is a
coordinate in Rc[u], there exists a locally nilpotent Rc-derivation δ of
Rc[u] such that δ(p) = 1. On the other hand, the assumption that c is a
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non zerodivisor of R implies that R[u] is a subring of Rc[u]. Moreover,
there exists an m ∈ N such that cmδ(ui) ∈ R[u] for every i = 1, . . . , n.
Thus, ξ = cmδ is a locally nilpotent R-derivation of R[u], and we have
ξ(p) = cm. �

We can now give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let u be a coordinate system of A = K[x][n],
and let p be a residual coordinate of K[x][u]. Then, there exists a
c ∈ K[x] \ {0} such that p is a coordinate over the localization K[x]c.
By Lemma 3.1, there exists a locally nilpotent K[x]-derivation ξ of
K[x][u] such that ξ(p) = cm for some m ∈ N.

Let w be an indeterminate over K[x][u], and note that the K[x]-
automorphism exp(wξ) of K[x][u,w] maps p to cmw + p. Thus, p is a
1-stable coordinate if cmw + p is a coordinate of K[x][u,w].

Clearly, if c is constant, then cmw + p is a coordinate, and we are
done. Thus, assume in the rest of the proof that c is non-constant. Since
p is a residual coordinate of K[x][u] for every α ∈ K, the polynomial
p(α, u) is a coordinate of K[u]. This holds, in particular, for every
root α of c(x), and hence, by Theorem 2.1, cmw + p is a coordinate of
K[x][u,w]. �

Let R be a ring and c ∈ R a non zerodivisor. Following the ter-
minology in [11], a polynomial p in R[n] is said to be a c-strongly
residual coordinate if it is a coordinate over the localization Rc and
also a coordinate over the quotient R/cR. The polynomial p is said to
be a strongly residual coordinate if it is a c-strongly residual coordinate
for some non zerodivisor c of R.

Two results are given below on strongly residual coordinates of the
polynomial algebra A = R[n]. The first one concerns the family of
polynomials studied in [10, 11].

Theorem 3.2. Let R be a ring containing Q, and let x be an indetermi-
nate over R. Then, every x-strongly residual coordinate of A = R[x][n]

is a 1-stable coordinate.

Proof. Let u be a coordinate system of A, and let p be an x-
strongly residual coordinate of R[x][u]. Then, p is a coordinate of



RESIDUAL COORDINATES OF POLYNOMIAL RINGS 323

R[x]x[u] and, by Lemma 3.1, there exists a locally nilpotent R[x]-
derivation ξ of R[x][u] such that ξ(p) = xm for some m ∈ N. Let w
be an indeterminate over R[x][u], and consider the R[x]-automorphism
exp(wξ) of R[x][u,w]. Clearly, we have exp(wξ)(p) = p + xmw, and
thus, p is a 1-stable coordinate if p+xmw is a coordinate of R[x][u,w].

Note that, if m = 0, then p + xmw = p + w is a coordinate of
R[x][u,w]. Thus, we assume in the rest of the proof that m ≥ 1. Since
p is a coordinate over R[x]/xR[x], there exists, by Corollary 2.5, a
coordinate system v = v1, . . . , vn of R[x][u] and a(v) ∈ R[x][v] such
that

p = v1 + xma(v).

As a consequence, we have

p+ xmw = v1 + xm(w + a(v)).

Now, consider the elementary R[x]-automorphisms ϕ1 and ϕ2 of
R[x][v, w], defined by ϕ1(v1) = v1+xmw and ϕ2(w) = w+a(v). Then,
ϕ2ϕ1(v1) = p+xmw, and thus, p+xmw is a coordinate of R[x][v, w]. �

As a consequence of Theorem 2.2 and Lemma 3.1, we obtain the
next result.

Theorem 3.3. Let R be a ring containing Q. Then, every strongly
residual coordinate of A = R[n] is an n-stable coordinate.

Proof. Let p be a strongly residual coordinate of A = R[u], and
let c be a non zerodivisor of R such that p is a coordinate over the
localization Rc and p is a coordinate over R/cR. From Lemma 3.1,
there exists a locally nilpotent R-derivation ξ of R[u] such that ξ(p) =
cm for some m ∈ N.

Given an indeterminate w over R[u], the R-automorphism exp(wξ)
of R[u,w] maps p to p + cmw, and hence, p is an n-stable coordinate
if p + cmw is an (n − 1)-stable coordinate. The assumption that p
is a coordinate over R/cR implies, by Proposition 2.3, that it is a
coordinate over R/cmR. From Theorem 2.2 it follows that p+ cmw is
an (n− 1)-stable coordinate. �

The remainder of this paper is devoted to the proof of Theorem 1.2.
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Lemma 3.4. Let R be a Noetherian zero-dimensional ring. Then,
every residual coordinate of A = R[n] is a coordinate.

Proof. Let u be a coordinate system of A, and let p be a residual
coordinate of R[u]. From Proposition 2.3, p is a coordinate if and only if
it is so over R/Nil(R). We can thus assume, without loss of generality,
that R is reduced.

Since R is Noetherian, it has finitely many minimal prime ideals,
say m1, . . . ,mr. The fact that R is zero-dimensional and reduced then
implies that every mi is maximal and m1 ∩ m2 ∩ · · · ∩ mr = (0). In
particular, the canonical homomorphism

π : R[u] −→
∏
i

(R/miR) [u]

is an isomorphism. On the other hand, since p is a residual coordinate
and mi is maximal, p is a coordinate over R/mi, and hence, there exist
pi,2, . . . , pi,n ∈ (R/miR)[u] that complete p into a coordinate system of
(R/miR)[u].

For every j = 2, . . . , n let pj be the unique polynomial in R[u] such
that

π(pj) = (p1,j , . . . , pr,j),

and let σ be the R-endomorphism of R[u] defined, for j = 1, . . . , n, by
σ(uj) = pj , where p1 = p. For every i = 1, . . . , r, we have

(p, p2, . . . , pn) = (p, pi,2, . . . , pi,n) mod mi,

and thus, σ, viewed over R/mi, is an R/mi-automorphism. By Propo-
sition 2.3, it follows that σ is an R-automorphism, and hence, p is a
coordinate of R[u]. �

Lemma 3.5. Let R be a reduced Noetherian ring, and let p be a residual
coordinate of A = R[n]. Then, there exists a non zerodivisor c of R such
that p is a coordinate over the localization Rc.

Proof. Let S ⊂ R be the multiplicative set of non zerodivisors. Since
R is Noetherian and reduced, the localization RS is zero-dimensional.
From Lemma 3.4, it follows that p is a coordinate over RS , and hence,
there exists a c ∈ S such that p is a coordinate over Rc. �
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We now have enough material to prove Theorem 1.2.

Proof of Theorem 1.2. For d = 0, the result follows from Lemma 3.4.
Hence, let d ≥ 1, and assume that the result holds in dimension at most
d− 1. Let R be a Noetherian d-dimensional ring containing Q, and let
p ∈ A = R[u] be a residual coordinate. By Proposition 2.3, p is a
(2d − 1)n-stable coordinate if and only if it is so over R/Nil(R). Thus,
we can assume, without loss of generality, that R is reduced.

From Lemma 3.5, there exists a non zerodivisor c of R such that p is
a coordinate over the localization Rc. It then follows from Lemma 3.1
that there exists a locally nilpotent R-derivation ξ of R[u] such that
ξ(p) = cm for some m ∈ N. Given an indeterminate w over R[u],
the R-automorphism exp(wξ) of R[u,w] maps p to cmw + p(u). In
particular, if cmw + p(u) is a ((2d − 1)n− 1)-stable coordinate, then p
is a (2d − 1)n-stable coordinate.

If c is a unit, then cmw + p(u) is a coordinate, and we are done.
Thus, we assume in the rest of the proof that c is not a unit. Since,
moreover, c is a non zerodivisor and R is Noetherian, it follows from
Krull’s principal ideal theorem that R/cR has dimension at most d−1.
On the other hand, p is a residual coordinate over R/cR. It then follows
from Proposition 2.3 and the induction hypothesis that p, viewed over
R/cmR, is an r stable coordinate, where r = (2d−1 − 1)n. As a
consequence of Theorem 2.2, the polynomial cmw+p(u) is a (2r+n−1)-
stable coordinate, and hence, p is a (2d − 1)n-stable coordinate. �
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