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SYSTEMS OF PARAMETERS AND THE
COHEN-MACAULAY PROPERTY

KATHARINE SHULTIS

ABSTRACT. Let R be a commutative, Noetherian, local
ring and M a finitely generated R-module. Consider the
module of homomorphisms HomR(R/a,M/bM) where b ⊆ a
are parameter ideals of M . When M = R and R is Cohen-
Macaulay, Rees showed that this module of homomorphisms
is isomorphic to R/a, and in particular, a free module over
R/a of rank one. In this work, we study the structure
of such modules of homomorphisms for a not necessarily
Cohen-Macaulay R-module M .

1. Introduction. Let R be a commutative, Noetherian, local ring.
This work concerns the module of homomorphisms HomR(R/a, R/b),
where a and b are parameter ideals of R with b ⊆ a.

An immediate consequence of a result by Rees [4] is that, when R is
Cohen-Macaulay, this module of homomorphisms is isomorphic to R/a.
In particular, as an R/a-module, it is free of rank one. The focus of this
work is to study the structure of this module of homomorphisms when
R is not Cohen-Macaulay. Our main results identify circumstances
under which it is decomposable and not free.

When R has dimension one and depth zero and a and b are
in sufficiently high powers of the maximal ideal, we prove that
HomR(R/a, R/b) is neither indecomposable nor free as an R/a-module.

We can extend the result regarding decomposability both to modules
and to higher dimensions. In particular, for M a nonzero, finitely gen-
erated R-module, we consider the module HomR(R/a,M/bM), where
b ⊆ a are parameter ideals of M . When M is not Cohen-Macaulay, we
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can show that the module of homomorphisms decomposes for any pa-
rameter ideal a and for b chosen to be generated by suitable powers of
any system of parameters generating a. This result generalizes recent
work of Bahmanpour and Naghipour [1] in the case where M = R.
Specifically, when R is not Cohen-Macaulay, they showed that there
exist some parameter ideals b ⊆ a of R for which HomR(R/a, R/b) is
acyclic.

2. Preliminaries. Throughout, R denotes a commutative Noether-
ian ring with unique maximal ideal m, and M denotes a finitely gener-
ated R-module. For any R-module L and any ideal I ⊆ R, the I-torsion
submodule of L is

ΓI(L) =
∞∪

n=1

(0 :L In).

A system of parameters of M is a set of d = dimM elements generating
an ideal a such that M/aM has finite length. An ideal a generated by a
system of parameters is called a parameter ideal. We begin by reviewing
the consequence of Rees’s result in the Cohen-Macaulay case.

Remark 2.1. If M is a Cohen-Macaulay R-module of dimension d and
b ⊆ a are parameter ideals of M , then

HomR(R/a,M/bM) ∼= M/aM.

In particular, when M = R, this is a free R/a-module of rank one, and
hence, indecomposable.

Indeed, the elements of a system of parameters of M form an M -
regular sequence. The above isomorphism is deduced from Rees’s
theorem [2, Lemma 1.2.4]:

HomR(R/a,M/bM)∼=ExtdR(R/a,M)∼=HomR(R/a,M/aM)∼=M/aM.

We now recall some well-known results.

Fact 2.2. Let a1, . . . , ad be elements of R and a1, . . . , ad their images
in R/ ann(M). Then a1, . . . , ad is a system of parameters of M if and
only if a1, . . . , ad is a system of parameters of the ring R/ ann(M).

The integer n appearing in the next result plays a key role in the
main results. We include a proof for completeness.
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Lemma 2.3. Let (R,m) be a local ring and M a finitely generated
R-module. There exists an integer n such that mnM ∩ Γm(M) = (0).

Proof. Since Γm(M) is Artinian, the descending chain of submodules

(mM ∩ Γm(M)) ⊇ (m2M ∩ Γm(M)) ⊇ · · ·

must stabilize, that is, there is some n ∈ N such that

mn+iM ∩ Γm(M) = mnM ∩ Γm(M)

for all integers i ≥ 0. Thus,

mnM ∩ Γm(M) =
∩
i≥n

(miM ∩ Γm(M)) ⊆
∩
i≥n

miM = (0).

The last equality is due to the Krull intersection theorem. �

Remark 2.4. In fact, given any finite-length submodule L ⊆ M , we
have mnM ∩ L = (0) where n is the integer of Lemma 2.3.

The next result is in the spirit of [3, Proposition 4.7.13]. We include
a proof in order to obtain specific bounds on the powers of a in this
special case.

Proposition 2.5. Let A be any commutative ring, L an A-module and
a, b ∈ A. Then, for arbitrary positive integers p ≤ q ≤ r, we have the
equality :

(barL : ap) = ar−q(baqL : ap) + (0 :L ap).

Proof. First, let x ∈ (barL : ap). Then, apx = bary for some y in L.
Now,

ap(x− bar−py) = 0,

so that x− bar−py ∈ (0 :L ap). Additionally,

bar−py = ar−q · baq−py ∈ ar−q(baqL : ap).

We now have

x = bar−py + (x− bar−py) ∈ ar−q(baqL : ap) + (0 :L ap).

The other inclusion is clear. �
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The next result will be applied in Section 4 in the situation where
I = (a1, . . . , ad) is a parameter ideal and J is of the form (an1 , a2, . . . , ad)
for a positive integer n.

Lemma 2.6. Let A be a Noetherian ring, J ⊆ I proper ideals of A with√
I =

√
J and N an A-module. If HomA(A/J,N) is decomposable, then

so is HomA(A/I,N).

Proof. Suppose that HomA(A/J,N) = X ⊕ Y , where X and Y are
nonzero A-modules. There are isomorphisms:

HomA(A/I,N) ∼= HomA((A/I)⊗A (A/J), N)

∼= HomA(A/I,HomA(A/J,N))

∼= HomA(A/I,X)⊕HomA(A/I, Y ).

By symmetry, it suffices to show that HomA(A/I,X) ̸= 0. It is clear
that JX = (0), since X ⊆ HomA(A/J,N). Choose p ∈ AssA X, and

note that J ⊆ p. Since
√
J =

√
I, we have I ⊆ p; thus, there are maps:

A/I � A/p ↪→ X.

The composition of these maps is nonzero, and thus, HomA(A/I,X) ̸=
(0) as desired. �

Remark 2.7.

(i) The hypothesis that J ⊆ I is necessary. For any pair of ideals
I, J , if we let N = R/I, then

HomR(R/I,N) = HomR(R/I,R/I) ∼= R/I

is indecomposable. However, it is possible that HomR(R/J,N) is
decomposable. For instance, let k be a field, and consider the ring
R = kJx, yK/(x2, xy) along with the ideals I = (y2), J = (y) of R.

Here,
√
I =

√
J = (x, y), but J ̸⊂ I. However,

HomR(R/J,R/I) = HomR(R/(y), R/(y2)) ∼=
(y)

(y2)
⊕ (x, y2)

(y2)
.

(ii) The hypothesis that
√
I =

√
J is also necessary. For example,

let k be a field, R = kJx, y, zK/(x2, xyz), N = R/(y2), I = (y, z) and
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J = (y). We have J ⊆ I; however,
√
J = (x, y) ( (x, y, z) =

√
I. Using

this notation, we obtain

HomR(R/J,N) ∼=
(y2) : y

(y2)
=

(y)

(y2)
⊕ (xz, y2)

(y2)

decomposes, but

HomR(R/I,N) ∼=
(y2) : (y, z)

(y2)
=

(xy, y2)

(y2)

is cyclic, and hence, indecomposable.

This final result will be used in Section 4 in an induction argument.

Lemma 2.8. Let R be a local ring and M an R-module of dimension
d ≥ 2. If M is not Cohen-Macaulay, then for any system of parameters
a1, . . . , ad of M , there exist positive integers i and s such that M/asiM
is not Cohen-Macaulay.

Proof. If some ai isM -regular, thenM/aiM is not Cohen-Macaulay;
thus, we may assume that each ai is a zero-divisor on M . Suppose, by
way of contradiction, that M/as1M is Cohen-Macaulay for each s ≥ 1.
Then, a2, . . . , ad is a regular sequence on M/as1M for all integers s ≥ 1.
In particular, a2 is M/as1M -regular for all integers s ≥ 1. We claim
that this implies a2 is M -regular, which is a contradiction. Indeed,
suppose that a2m = 0 for some m ∈ M . Then, a2m = 0 in M/as1M for
all integers s ≥ 1, so that m ∈ as1M for all integers s ≥ 1. By the Krull
intersection theorem, we have m = 0, implying that a2 is M -regular, a
contradiction. �

The next example shows that, even when all of the parameters are
zero divisors, M may have positive depth, and M/aM may be Cohen-
Macaulay.

Example 2.9. Let k be a field. Consider the ringR = kJx, y, zK/(x2, xyz)
of dimension two and depth one along with the system of parameters
y, z. Both y and z are zero-divisors in R, and both R/(y) and R/(z)
are Cohen-Macaulay rings of dimension one.
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3. Dimension one. We begin with results on modules of dimension
one and depth zero since we are able to obtain stronger bounds in
this case. We show that HomR(R/(a),M/bM) is decomposable if the
parameter b is chosen to be in a sufficiently high power of the ideal
generated by an arbitrary parameter a.

Theorem 3.1. Let (R,m) be a local Noetherian ring and M a nonzero
finitely generated R-module of dimension one and depth zero. Choose
an integer n such that mnM ∩ Γm(M) = (0). For any parameter a of
M , and any parameter b of M with b ∈ (an+1), the following R-module
is decomposable:

HomR(R/(a),M/bM).

Remark 3.2. The integer n in the statement exists by Lemma 2.3.
Note that n ≥ 1 since Γm(M) ̸= (0).

Proof of Theorem 3.1. Set S := R/ ann(M), and let ( ) denote the
image in S. In light of Fact 2.2, a and b are parameters of S. Moreover,
there is an R-module isomorphism

HomS(S/aS,M/bM) ∼= HomR(R/aR,M/bM).

By replacing R with S, we may assume that M is faithful as an R-
module.

Write b = can+1 with c ∈ R. Since M is faithful, we have
√

(a) = m,
and thus,

(0 :M a) ⊆ Γ(a)(M) = Γm(M).

Therefore, we know that

(3.1) (0 :M a) ∩ canM ⊆ Γm(M) ∩mnM = (0).

From Proposition 2.5, we have

(3.2) (can+1M : a) = an(caM : a) + (0 :M a).

We now claim that
an(caM : a) = canM.

Indeed, it is clear that elements of canM are also elements of an(caM :
a). For the reverse inclusion, let x ∈ an(caM : a) and write x = anm
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for some m ∈ (caM : a). Thus, we have am = cam′ for some m′ ∈ M .
Then,

x = anm = an−1 · am = canm′ ∈ canM.

Equation (3.2) now becomes

(3.3) (bM : a) = canM + (0 :M a).

Since (0 :M a) ∩ canM = (0), then the equality

(3.4) can+1M = canM ∩
[
(0 :M a) + can+1M

]
follows by modular law. Now, there are isomorphisms

HomR(R/aR,M/bM) ∼=
(bM : a)

bM

∼=
canM + (0 :M a)

can+1M
by (3.3)

∼=
canM

can+1M
⊕ (0 :M a) + can+1M

can+1M
by (3.4).

All that remains to prove is that both summands are nonzero.

If the summand on the left were zero, then canM = (0) by
Nakayama’s lemma, a contradiction since can+1 = b is a parameter
of M .

If the summand on the right were zero, then

(0 :M a) ⊆ can+1M.

By equation (3.1), we have

(0 :M a) = (0 :M a) ∩ can+1M = (0).

This is also a contradiction since depthR M = 0. Thus, HomR(R/aR,
M/bM) is decomposable, as desired. �

When R is a Cohen-Macaulay ring, we know from Remark 2.1 that
the R/a-module HomR(R/a, R/b) ∼= R/a is not only indecomposable,
but also free. When R is one-dimensional and not Cohen-Macaulay, we
can prove that, in addition to being decomposable, this module will be
non-free if the parameters are chosen to be in sufficiently high powers
of the maximal ideal.
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Theorem 3.3. Let (R,m) be a local ring of dimension one and depth
zero, and n an integer such that mn ∩Γm(R) = (0). For any parameter
a ∈ mn and any parameter b ∈ (a2), the R/(a)-module

HomR(R/(a), R/(b))

is decomposable and has a non-free summand.

Remark 3.4. Again, the integer n in the statement exists by Lemma 2.3
and must be positive since Γm(R) ̸= (0).

Proof of Theorem 3.3. We will first prove that the module decom-
poses. Both the proof of this fact and the decomposition obtained are
similar to those found in the proof of Theorem 3.1. Write I = Γm(R).
For any x ∈ mn, we know that (x) ∩ I = (0), and hence, xI = (0).
If x ∈ mn is also a parameter, then we know that Γ(x)(R) = I, and

(0 : x) = I as well. Indeed,
√
(x) = m, and since xI = 0, we have

I ⊆ (0 : x) ⊆ Γ(x)(R) = I.

Let a ∈ mn and b ∈ (a2) be parameters, and write b = ca2. Applying
Proposition 2.5 with p = q = 1 and r = 2, we obtain the equality

(3.5) ((ca2) : a) = a((ca) : a) + (0 : a).

We now note that a((ca) : a) = (ca). We may thus rewrite equa-
tion (3.5) as:

(3.6) ((b) : a) = (ca) + I.

Since (ca) ∩ I = (0), then the equality

(3.7) (ca2) = (ca) ∩
[
I + (ca2)

]
holds by modular law. Moreover, there are isomorphisms of R/(a)-
modules:

HomR(R/(a), R/(b)) ∼=
((b) : a)

(b)

∼=
(ca) + I

(ca2)
by (3.6)

∼=
(ca)

(ca2)
⊕ I + (ca2)

(ca2)
by (3.7).

Next, we show that both summands are nonzero.
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If the summand on the left were zero, then Nakayama’s lemma would
imply that ca = 0, a contradiction since ca2 = b is a parameter, and
hence, nonzero.

If the summand on the right were zero, then I ⊆ (ca2) so that

I = I ∩ (ca2) ⊆ I ∩ (a) = (0),

a contradiction as the depth of R is zero.

We now show that the summand on the left, that is, (ca)/(ca2), is
not a free R/(a)-module. Toward that end, recall that I ∩ (a) = (0);
however, I ̸= (0) so we can choose an element y ∈ I \ (a). Since
aI = (0), y is a nonzero element of R/(a) that annihilates (ca)/(ca2),
and hence, (ca)/(ca2) cannot be free as an R/(a)-module. �

4. Higher dimensions. In higher dimensions, we can also prove a
decomposition theorem. However, Example 5.4 shows that Theorem 3.1
is not strong enough to use the induction technique in Theorem 4.1 to
prove that there is an integerN such that HomR(R/a, R/(an1

1 , . . . , and

d ))
decomposes for all ni ≥ N .

Theorem 4.1. Let R be a local ring and M a finitely generated R-
module of dimension d. If M is not Cohen-Macaulay, then, for any
system of parameters a = a1, . . . , ad of M , there exist positive integers
n1, . . . , nd such that the following R-module is decomposable:

HomR(R/(a),M/(an1
1 , . . . , and

d )M).

Proof. As in the proof of Theorem 3.1, we may reduce to the case
where M is a faithful module. We proceed by induction on d, the case
d = 1 being covered by Theorem 3.1.

Assume, now, that d ≥ 2. From Lemma 2.8, we can find some
positive integer i ≤ d and a positive integer ni such that M/ani

i M is
not Cohen-Macaulay. We may harmlessly assume i = 1. Set

R := R/(an1
1 ), M := M/an1

1 M, a := (a2, . . . , ad).

Then, a is a parameter ideal of M . Since M has dimension d − 1, by
induction, there are natural numbers n2, . . . , nd such that the R-module

U := HomR̄(R/a,M/(a2
n2 , . . . , ad

nd)M)
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is decomposable. Since there is an isomorphism of R-modules

U ∼= HomR(R/(an1
1 , a2, . . . , ad),M/(an1

1 , an2
2 , . . . , and

d )M),

then applying Lemma 2.6 gives the desired decomposition. �

The result below is a version of Theorem 3.3 for rings of arbitrary
dimension.

Theorem 4.2. Let R be a local ring of dimension d. If R is not
Cohen-Macaulay, then, for any system of parameters a1, . . . , ad of R,
there exist positive integers n1, . . . , nd, N1, . . . , Nd with Ni ≥ ni for
i = 1, . . . , d such that the R/(an1

1 , . . . , and

d )-module

HomR(R/(an1
1 , . . . , and

d ), R/(aN1
1 , . . . , aNd

d ))

is decomposable and has a non-free summand.

Proof. We proceed by induction on d. If d = 1, then the result
follows from Theorem 3.3 by choosing n1 to be the n from Theorem 3.3
and N1 = 2n1.

Now suppose that d ≥ 2. From Lemma 2.8, we can find integers i
and ni such that R/(ani

i ) is not Cohen-Macaulay. We may harmlessly
assume i = 1. Set S := R/(an1

1 ), and let ( ) denote the image in S.
Then, a2, . . . , ad is a system of parameters of S and, by induction, there
exist integers n2, . . . , nd, N2, . . . , Nd such that the S/(a2

n2 , . . . , ad
nd)-

module

U := HomS(S/(a2
n2 , . . . , ad

nd), S/(a2
N2 , . . . , ad

Nd))

decomposes and has a non-free summand. Note that

S/(a2
n2 , . . . , ad

nd) ∼= R/(an1
1 , . . . , and

d ).

Setting N1 = n1, we then have

U ∼= HomR(R/(an1
1 , . . . , and

d ), R/(aN1
1 , . . . , aNd

d )),

and this gives the desired decomposition and non-free summand. �

5. Examples. In this section, we focus on examples. In particular,
we investigate the structure of the R/a-module HomR(R/a, R/b) for
concrete examples of R, a, and b.
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We take M = R in Theorem 4.1. If we take ni = 1 for each i, then

(5.1) HomR(R/(a1, . . . , ad), R/(an1
1 , . . . , and

d )) ∼= R/(a1, . . . , ad)

is a free R/(a1, . . . , ad)-module of rank one. Our first example shows
that equation (5.1) sometimes holds even when R is not Cohen-
Macaulay and at least one of the ni’s is greater than one.

Example 5.1. Let k be a field. Consider the parameter y of the ring
R = kJx, yK/(x2, xy2). Then, we have

HomR(R/(y), R/(y2)) ∼=
(y2) :R y

(y2)
=

(y)

(y2)
∼= R/(y).

The next example shows that the bound in Theorem 3.1 is close to
being optimal.

Example 5.2. Let k be a field, m ≥ 2 an integer and R =
kJx, yK/(x2, xym). Then, y is a parameter of R, and, setting

Ut := HomR(R/(y), R/(yt)),

we see that Ut is cyclic (and hence, indecomposable) for t ≤ m and
decomposable for t ≥ m + 1. Since mi ∩ Γm(R) = (0) precisely when
i ≥ m + 1, Theorem 3.1 gives that Ut is decomposable for t ≥ m + 2.
Thus, the bound obtained in Theorem 3.1 is, at worst, one away from
a tight bound.

The next example shows that the module HomR(R/a, R/b) can nei-
ther be cyclic nor decomposable and also that the bound in Theorem 3.1
may be quite far from optimal.

Example 5.3. Let k be a field, and consider the parameter y2 of
R = kJx, yK/(x2, xym) for m ≥ 3. Then,

Ut := HomR(R/(y2), R/(yt))

is 
cyclic, if t < m+ 1,

indecomposable, but not cyclic, if t = m+ 1, and

decomposable, if t > m+ 1.
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However, Theorem 3.1 only predicts that Ut decomposes for t ≥ 2m+4
since mn ∩ Γm(R) ̸= 0 for n < m+ 1.

In order to show the claim that Ut is indecomposable for t = m+1,
the key step is showing that EndR(Ut) is a non-commutative local ring.
This can be done by identifying which k-linear endomorphisms of Ut are
also R-linear, and then showing that those with non-invertible matrix
representations form a two-sided ideal.

Theorems 3.1 and 3.3, which give bounds on the powers necessary
for making HomR(R/a,M/bM) decomposable and non-free, apply only
in dimension one. However, examples seem to indicate that the R/a-
module

HomR(R/a, R/(an1
1 , . . . , and

d ))

is neither free nor indecomposable if the ni are large enough. One such
example is explained next.
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.
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Figure 1. The modules corresponding to lattice points in the light grey
regions are known to decompose due to Theorem 3.1. The modules cor-
responding to lattice points in the middle dark grey region are known to
decompose by direct computation. The modules corresponding to lattice
points where t1 = 1 or t2 = 1 are indecomposable since R/(y) and R/(z) are
both Cohen-Macaulay rings.
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Figure 1 shows a lattice point (t1, t2) which corresponds to the
module HomR(R/(y, z), R/(yt1 , zt2)) from Example 5.4.

Example 5.4. Let k be a field. Consider the ring R = kJx, y, zK/(x2,
xyz) of dimension two and depth one along with the system of param-
eters y, z. If n1 ≥ 2, then Sn1 := R/(yn1) is not Cohen-Macaulay.
Indeed, the one-dimensional ring Sn1 has depth zero since the non-zero
element xyn1−1 is in the socle. Letting m be the maximal ideal of Sn1 ,
we have that mi ∩Γm(Sn1) = 0 if and only if i ≥ n1 +2. By symmetry,
the same holds for the ring Tn2 := R/(zn2). Thus, Theorem 3.1 gives
that

Un1,n2 := HomR(R/(y, z), R/(yn1 , zn2)

decomposes for all n1, n2 ≥ 2 with |n1 − n2| > 2. However, direct
computation shows that Un1,n2 actually decomposes as

Un1,n2
∼=

(xyn1−1, yn1 , zn2)

(yn1 , zn2)
⊕ (xzn2−1, yn1 , zn2)

(yn1 , zn2)
⊕ (yn1−1zn2−1, yn1 , zn2)

(yn1 , zn2)

for all n1, n2 ≥ 2. Figure 1 shows a visual representation of this.
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