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ABSTRACT. We prove the existence of tilting objects on
some global quotient stacks. As a consequence, we provide
further evidence for a conjecture on the Rouquier dimension
of derived categories formulated by Orlov.

1. Introduction. Geometric tilting theory began with the con-
struction of tilting bundles on the projective space by Beilinson [6].
Later, Kapranov [34, 35, 36] constructed tilting bundles for certain
homogeneous spaces. Further examples can be obtained from certain
blow ups and taking projective bundles [19, 20, 46]. A smooth projec-
tive k-scheme admitting a tilting object satisfies very strict conditions,
namely, its Grothendieck group is a free abelian group of finite rank
and the Hodge diamond is concentrated on the diagonal, at least in
characteristic zero [17].

However, an open problem remains for giving a complete classifica-
tion of smooth projective k-schemes admitting a tilting object. In the
case of curves, it may be proven that a smooth projective algebraic
curve has a tilting object if and only if the curve is a one dimensional
Brauer-Severi variety. Recall that a Brauer-Severi variety is a k-scheme
which becomes isomorphic to the projective space after a base change
to the algebraic closure k. In this sense, one dimensional Brauer-Severi
varieties are very close to the projective line. However, for smooth pro-
jective algebraic surfaces, there is currently no classification of surfaces
admitting such a tilting object. It is conjectured that a smooth pro-
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jective algebraic surface has a tilting bundle if and only if it is rational
(see [16, 26, 27, 28, 29, 39, 49] for results in this direction).

In the present work, we focus on certain global quotient stacks
and prove the existence of tilting objects for their derived category.
Several examples of stacks admitting a tilting object are known (see
[32, 33, 37, 41, 44, 45]). However, as in the case of schemes,
existence criteria for stacks admitting a tilting object are all that may
be obtained. The first main result of the present paper is the following:

Theorem 1.1 (Theorem 4.2). Let X be a smooth projective k-scheme
and G a finite group acting on X with char(k) - ord(G). Suppose
that there is a T •∈ DG(Qcoh(X)) which, considered as an object in
D(Qcoh(X)), is a tilting object on X. Denote by k[G] the regular
representation of G. Then , T • ⊗ k[G] is a tilting object on [X/G].

This theorem enables us to find examples of quotient stacks [X/G]
admitting a tilting object. Note that Elagin [23] proved the existence
of full strongly exceptional collections on [X/G]. Since there are k-
schemes that have tilting objects, but not a full strongly exceptional
collection (see Proposition 4.8), Theorem 4.2 indeed gives us some new
examples (see Example 4.7). Moreover, exploiting the derived McKay
correspondence, Theorem 4.2 also provides us with some crepant reso-
lutions admitting a tilting object (see Corollaries 4.12, 4.13 and 4.14).

Next, we prove a result generalizing and harmonizing results of
Bridgeland and Stern [15, Theorem 3.6] (also see [14, Proposition
4.1]) and Brav [12, Theorem 4.2.1]. For a finite group G acting on X,
let E be an equivariant locally free sheaf and A(E) the affine bundle.
Suppose that char(k) - ord(G), and denote by

π : A(E) −→ X

the projection.

Theorem 1.2 (Theorem 5.1). Let X be a smooth projective k-scheme,
G a finite group acting on X and E an equivariant locally free sheaf of
finite rank. Suppose that T is a tilting bundle on [X/G]. If

Hi(X, T ∨ ⊗ T ⊗ Sl(E)) = 0
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for all i ̸= 0 and all l > 0, then [A(E)/G] admits a tilting bundle, as
well.

If X is a Fano variety, E = ωX and G = 1, we obtain the result
in [15], and, if X = Spec(C), we obtain the result in [12]. It is also
natural to consider projective bundles of equivariant locally free sheaves
E on X. We prove the following generalization of a result of Costa, Di
Rocco and Miró-Roig [19]:

Theorem 1.3 (Theorem 5.4). Let X, G and E be as in Theorem 5.1.
If [X/G] has a tilting bundle, then so does [P(E)/G].

In the general case where G is an arbitrary algebraic group, it can-
not be expected to have a result such as Theorem 4.2; however, never-
theless, under some mild conditions, there are always semiorthogonal
decompositions [23]. As an application of the above results, we provide
some further evidence for a conjecture firstly formulated by Orlov [47]
for schemes and extended by Ballard and Favero [4] to certain Deligne-
Mumford stacks X . It is the following dimension conjecture regarding
the Rouquier dimension [52] of the triangulated category Db(X ).

Conjecture 1.4 ([4]). Let X be a smooth and tame Deligne-Mumford
stack of finite type over k with quasiprojective coarse moduli space.
Then, dim(Db(X )) = dim(X ).

Assuming char(k) - ord(G), we prove:

Theorem 1.5 (Theorem 6.10). The dimension conjecture holds for :

(i) quotient stacks [P(E)/G] as in Theorem 5.4, provided [X/G]
has a tilting bundle and k is perfect ;

(ii) quotient stacks [X/G] over a perfect field k, where X is a
Brauer-Severi variety corresponding to a central simple algebra
A and G ⊂ Aut(X) = A∗/k× a finite subgroup such that the
action lifts to an action of A∗;

(iii) quotient stacks [Grass(d, n)/G] over an algebraically closed field
k of characteristic zero, provided G ⊂ PGLn(k) is a finite
subgroup acting linearly on Grass(d, n);
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(iv) G-Hilbert schemes HilbG(Pn) over an algebraically closed field
k of characteristic zero, provided n ≤ 3 and G ⊂ PGLn+1(k) is
a finite subgroup acting linearly on Pn and ωPn is locally trivial
in CohG(Pn).

Conventions. Throughout this work, k is an arbitrary field unless
stated otherwise. Moreover, for a finite group G acting on a k-scheme
X, we always assume char(k) - ord(G).

2. Generalities on equivariant derived categories. Let X be
a quasiprojective k-scheme and G a finite group acting on X. A sheaf
F on X is called invariant if there are isomorphisms g∗F ≃ F for all
g ∈ G. The full additive subcategory of invariant coherent sheaves,
however, is not abelian, and thus, not suitable for forming derived
categories. One must pass to G-linearizations.

A G-linearization, also called an equivariant structure, on F is given
by isomorphisms

λg : F
∼→ g∗F

for all g ∈ G, subject to λ1 = idF and λgh = h∗λg ◦ λh. In the
present work, we also call such sheaves equivariant sheaves. Equivariant
sheaves are, therefore, pairs (F , λ), consisting of a sheaf F on X and
a choice of an equivariant structure λ. Clearly, an equivariant sheaf is
invariant; however, the other implication is wrong in general. There
is an obstruction for an invariant sheaf against having an equivariant
structure in terms of the second group cohomology H2(G, k∗) (see [50,
Lemma 1]).

Remark 2.1. For a definition of linearization in the case where an
arbitrary algebraic group acts on an arbitrary scheme we refer to
[7, 23, 24].

If (F , λ) and (G, µ) are two equivariant sheaves on X, the vector
space Hom(F ,G) becomes a G-representation via

g · f := (µg)
−1 ◦ g∗f ◦ λg
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for f : F → G. The equivariant quasi-coherent, respectively, coherent
sheaves together with G-invariant morphisms

HomG(F ,G) := Hom(F ,G)G

form abelian categories with enough injectives (see [12, 50, 51])
which we denote by QcohG(X), respectively, CohG(X). We set
DG(Qcoh(X)) := D(QcohG(X)) and Db

G(X) := Db(CohG(X)).

Let X and Y be quasiprojective k-schemes on which the finite
group G acts. A G-morphism between X and Y is given by a morphism

ϕ : X −→ Y

such that ϕ ◦ g = g ◦ ϕ for all g ∈ G. Then, we have the pullback

ϕ∗ : CohG(Y ) −→ CohG(X)

and the pushforward

ϕ∗ : CohG(X) −→ CohG(Y ).

The functors ϕ∗ and ϕ∗ are adjoint and analogously for Lϕ∗ and Rϕ∗.
For (F , λ), (G, µ) ∈ CohG(X) there is a canonical equivariant structure
on F ⊗ G coming from the maps λg ⊗ µg (see [7]).

By definition, objects of Db
G(X) are bounded complexes of equivari-

ant coherent sheaves. It is clear that each such complex defines an
equivariant structure on the corresponding object of Db(X). Now, let
C be the category of equivariant objects of Db(X), i.e., complexes F•

with isomorphisms
λg : F• ∼−→ g∗F•

satisfying λgh = h∗λg◦λh. This category is, in fact, triangulated, and it
is a natural fact that Db

G(X) and C are equivalent (see [18, Proposition
4.5] or [24]).

There is also another description of the derived categories neces-
sary for the present work. Consider the global quotient stack [X/G],
produced by an action of a finite group G on X (see [53, Example
7.17]). The quasi-coherent sheaves on [X/G] are equivalent to equivari-
ant quasi-coherent sheaves on X (see [53, Example 7.21]). Henceforth,
the abelian categories Qcoh([X/G]) and QcohG(X) are equivalent, and
therefore, give rise to equivalent derived categories DG(Qcoh(X)) ≃
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D(Qcoh([X/G])). For any two objects F•,G• ∈ DG(Qcoh(X)), we
write HomG(F•,G•) := HomDG(Qcoh(X))(F•,G•).

Analogously, we obtain Db
G(X) ≃ Db(Coh([X/G])). Note that,

for X = pt, Coh([pt/G]) ≃ CohG(pt) ≃ Repk(G) is the category of
finite-dimensional representations. Moreover, for a finite group G with
char(k) - ord(G), the functor

(−)G : Coh([pt/G]) −→ Coh(pt),

V 7→ V G, is exact (see [1, Proposition 2.5]). For arbitrary F•,G• ∈
Db

G(X), the finite groupG also acts on the vector space Hom(F•,G•) :=
HomDb(X)(F•,G•). The exactness of (−)G yields

HomG(F•,G•) ≃ Hom(F•,G•)G.

The exactness of (−)G also implies the following fact (see [5, Lemma
2.2.8]).

Lemma 2.2. Let X be a smooth quasiprojective k-scheme and G a
finite group acting on X. For arbitrary F•,G• ∈ Db

G(X), the following
holds for all i ∈ Z:

HomG(F•,G•[i]) ≃ Hom(F•,G•[i])G.

3. Geometric tilting theory. In this section, we recall some facts
of geometric tilting theory. We first recall the notions of generating
and thick subcategories (see [11, 52]).

Let D be a triangulated category and C a triangulated subcategory.
The subcategory C is called thick if it is closed under isomorphisms
and direct summands. For a subset A of objects of D, we denote by
⟨A⟩ the smallest full thick subcategory of D containing the elements of
A. Furthermore, we define A⊥ to be the subcategory of D consisting
of all objects M such that HomD(E[i],M) = 0 for all i ∈ Z and all
elements E of A. We say that A generates D if A⊥ = 0. Now,
assume that D admits arbitrary direct sums. An object B is called
compact if HomD(B,−) commutes with direct sums. Denoting by
Dc the subcategory of compact objects, we say that D is compactly
generated if the objects of Dc generate D. We have the following
important theorem (see [11, Theorem 2.1.2]).



TILTING OBJECTS ON GLOBAL QUOTIENT STACKS 113

Theorem 3.1. Let D be a compactly generated triangulated category.
Then, a set of objects A ⊂ Dc generates D if and only if ⟨A⟩ = Dc.

Now, we give the definition of tilting objects (see [17] for a definition
of tilting objects in arbitrary triangulated categories).

Definition 3.2. Let k be a field, X a quasiprojective k-scheme and G
a finite group acting on X. An object T • ∈ DG(Qcoh(X)) is called a
tilting object on [X/G] if the following hold:

(i) Ext vanishing: HomG(T •, T •[i]) = 0 for i ̸= 0.
(ii) Generation: IfN • ∈ DG(Qcoh(X)) satisfies RHomG(T •,N •) =

0, then N • = 0.
(iii) Compactness: HomG(T •,−) commutes with direct sums.

Below, we state the well-known equivariant tilting correspondence
[12, Theorem 3.1.1]. It is a direct application of a more general
result on triangulated categories [38, Theorem 8.5]. We denote by
Mod(A) the category of right A-modules and by Db(A) the bounded
derived category of finitely generated right A-modules. Furthermore,
perf(A) ⊂ D(Mod(A)) denotes the full triangulated subcategory of
perfect complexes, those quasi-isomorphic to bounded complexes of
finitely generated projective right A-modules.

Theorem 3.3. Let X be a quasiprojective k-scheme and G a finite
group acting on X. Suppose we are given a tilting object T • on [X/G],
and let A = EndG(T •). Then, the following hold :

(i) The functor RHomG(T •,−) : DG(Qcoh(X)) → D(Mod(A)) is
an equivalence.

(ii) If X is smooth and T • ∈ Db
G(X), this equivalence restricts to

an equivalence Db
G(X)

∼→ perf(A).
(iii) If the global dimension of A is finite, then perf(A) ≃ Db(A).

Remark 3.4. If X is a smooth projective k-scheme and G = 1, the
derived category D(Qcoh(X)) is compactly generated and the compact
objects are exactly Db(X) [11]. In this case, a compact object T •

generates D(Qcoh(X)) if and only if ⟨T •⟩ = Db(X). Since the natural
functor Db(X) → D(Qcoh(X)) is fully faithful [31], a compact object
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T • ∈ D(Qcoh(X)) is a tilting object if and only if ⟨T •⟩ = Db(X) and
HomDb(X)(T •, T •[i]) = 0 for i ̸= 0. If the tilting object T • is a coherent
sheaf and gldim(End(T •)) <∞, the above definition coincides with the
definition of a tilting sheaf given in [3]. In this case, the tilting object
is called a tilting sheaf on X. If it is a locally free sheaf, we simply
say that T is a tilting bundle. Theorem 3.3, then, gives the classical
tilting correspondence as first proved by Bondal [9] and later extended
by Baer [3].

The next observation shows that, in Theorem 3.3, the smoothness
of X already implies the finiteness of the global dimension of A.

Proposition 3.5. Let X, G and T • be as in Theorem 3.3. If X is
smooth and projective, then A = EndG(T •) has finite global dimen-
sion, and therefore, the equivalence (i) of Theorem 3.3 restricts to an

equivalence Db
G(X)

∼→ Db(A).

Proof. Imitating the proof of [30, Theorem 7.6], we argue as follows:
for two finitely generated right A-modules M and N , the equivalence

ψ := RHomG(T •,−) : Db
G(X) −→ perf(A),

see Theorem 3.3 (ii), yields

ExtiA(M,N) ≃ HomG(ψ
−1(M), ψ−1(N)[i])

≃ Hom(ψ−1(M), ψ−1(N)[i])G = 0

for i ≫ 0, since X is smooth. Indeed, this follows from the
local-to-global spectral sequence, Grothendieck vanishing theorem and
Lemma 2.2. Since X is projective, A = EndG(T •) is a finite-
dimensional k-algebra, and hence, a Noetherian ring. However, for
Noetherian rings, the vanishing of ExtiA(M,N), i ≫ 0, for any two
finitely generated A-modules M and N suffices to lead to the conclu-
sion that the global dimension of A must be finite. �

In the literature, instead of the tilting object T •, the set E•
1 , . . . , E•

n

of indecomposable pairwise non-isomorphic direct summands is often
studied. There is a special case where all of the summands form a so-
called full strongly exceptional collection. Closely related to the notion
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of a full strongly exceptional collection is that of a semiorthogonal
decomposition. We recall the definitions as follows [48].

Definition 3.6. Let X and G be as in Definition 3.2. An object E• ∈
Db

G(X) is called exceptional if HomG(E•, E•[l]) = 0 when l ̸= 0, and
HomG(E•, E•) = k. An exceptional collection in Db

G(X) is a sequence
of exceptional objects E•

1 , . . . , E•
n satisfying HomG(E•

i , E•
j [l]) = 0 for all

l ∈ Z if i > j.

The exceptional collection is called strongly exceptional if, in addi-
tion, HomG(E•

i , E•
j [l]) = 0 for all i and j when l ̸= 0. Finally, we say

the exceptional collection is full if the smallest full thick subcategory
containing all E•

i equals Db
G(X).

A generalization is the notion of a semiorthogonal decomposition
of Db

G(X). Recall that a full triangulated subcategory D of Db
G(X)

is called admissible if the inclusion D ↩→ Db
G(X) has a left and right

adjoint functor.

Definition 3.7. Let X and G be as in Definition 3.2. A se-
quence D1, . . . ,Dn of full triangulated subcategories of Db

G(X) is called
semiorthogonal if all Di ⊂ Db

G(X) are admissible and

Dj ⊂ D⊥
i = {F• ∈ Db

G(X) | HomG(G•,F•) = 0 for all G• ∈ Di}

for i > j.

Such a sequence defines a semiorthogonal decomposition of Db
G(X)

if the smallest full thick subcategory containing all Di equals D
b
G(X).

For a semiorthogonal decomposition of Db
G(X), we write Db

G(X) =
⟨D1, . . . ,Dr⟩.

Example 3.8. It is an easy exercise to show that a full exceptional
collection E•

1 , . . . , E•
n in Db

G(X) gives rise to a semiorthogonal decom-
position Db

G(X) = ⟨D1, . . . ,Dn⟩, where Di = ⟨E•
i ⟩ (see [31, Example

1.60]).

The direct sum of exceptional objects in a full strongly exceptional
collection is a tilting object, but the pairwise non-isomorphic indecom-
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posable direct summands of a tilting object, in general, cannot be ar-
ranged into a full strongly exceptional collection. However, if the pair-
wise non-isomorphic indecomposable direct summands are invertible
sheaves, they give rise to a full strongly exceptional collection. Excep-
tional collections and semiorthogonal decompositions were intensively
studied, and we know many examples of schemes admitting full excep-
tional collections or semiorthogonal decompositions. For an overview,
we refer to [10, 40].

4. Tilting objects on [X/G]. Let G be a finite group acting on
a smooth projective k-scheme X. We have the G-morphism f : X →
Spec(k), with G acting trivially on Spec(k). For a representation W of
G, the sheaf f∗W = OX ⊗W has a natural equivariant structure. In
short, we write W for f∗W = OX ⊗W as an object of CohG(X). With
this notation, we prove the next theorem.

Theorem 4.1. Let X be a smooth projective k-scheme and G a finite
group acting on X. Suppose that there is a T • ∈ DG(Qcoh(X)) which,
considered as an object in D(Qcoh(X)), is a tilting object on X. Denote
by Wj the irreducible representations of G. Then,

⊕
j T • ⊗Wj is a

tilting object on [X/G].

Proof. Since T • is a tilting object on X, it is compact by definition,
and hence, T • ∈ Db(X) [11]. Let µj be the equivariant structure on
Wj . Then, T • ⊗Wj is equipped with a natural equivariant structure,

say λ. Taking the direct sum gives a natural equivariant structure λ̃
on

TG :=
⊕
j

T • ⊗Wj ,

and hence, TG ∈ Db
G(X). Thus, TG is a compact object ofDG(Qcoh(X)).

Recall that Db
G(X) ≃ Db([X/G]). For every i ∈ Z, there are canonical

isomorphisms on X:

(4.1) Hom(T • ⊗Wl, T • ⊗Wm[i]) ≃ Hom(T •, T •[i])⊗Hom(Wl,Wm).

Since G is finite, Lemma 2.2 applies, and we therefore obtain:

HomG(T • ⊗Wl, T • ⊗Wm[i]) ≃ (Hom(T •, T •[i])⊗Hom(Wl,Wm))G.
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Since T • is a tilting object forX, we have Hom(T •, T •[i]) = 0 for i ̸= 0,
and therefore, HomG(T •⊗Wl, T •⊗Wm[i]) = 0 for i ̸= 0. This implies
that HomG(TG, TG[i]) = 0 for i ̸= 0, and hence, the Ext vanishing holds
true.

In order to see that TG generates DG(Qcoh(X)), we take an object
F• ∈ DG(Qcoh(X)) and assume

RHomG(TG,F•) = 0,

or equivalently,
HomG(TG,F•[i]) = 0

for all i ∈ Z.

Since TG =
⊕

j T • ⊗Wj , we have

HomG(T • ⊗Wj ,F•[i]) = 0

for all i ∈ Z and all irreducible representations Wj . From

HomG(T • ⊗Wj ,F•[i]) ≃ HomG(Wj ,RHom(T •,F•[i])) = 0,

we conclude that RHom(T •,F•[i]) contains no copy of any irreducible
representationWm, and thus, must be zero. Since T • is a tilting object
on X, and therefore, generates D(Qcoh(X)), we find F• = 0. This
shows that TG generates DG(Qcoh(X)). �

If char(k) - ord(G), the regular representation k[G] is the direct
sum of multiple copies of the irreducible representations of G, more
precisely, as a G-representation

k[G] =
⊕
i

W
⊕dim(Wi)
i ,

where Wi are the irreducible representations. This follows from the
Artin-Wedderburn theorem since k[G] is semi-simple.

Theorem 4.2. Let X be a smooth projective k-scheme and G a finite
group acting on X. Suppose that there is a T • ∈ DG(Qcoh(X)) which,
considered as an object in D(Qcoh(X)), is a tilting object on X. Then,
T • ⊗ k[G] is a tilting object on [X/G].
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Proof. Repeating the proof of Theorem 4.1, it may be verified that

T • ⊗ k[G] =
⊕
i

T • ⊗W
⊕dim(Wi)
i ∈ Db

G(X)

generates DG(Qcoh(X)) and has no higher self extensions. �

Note that different equivariant structures on the tilting object T • ∈
Db(X) give rise to different tilting objects on [X/G].

Example 4.3. We know that T =
⊕n

i=0 OPn(i) is a tilting bundle
on Pn [5]. Consider a finite subgroup G ⊂ Autk(Pn) ≃ PGLn+1(k)
and the stack [Pn/G]. Assume that G acts linearly on Pn, i.e, the
action lifts to an action of GLn+1(k). Then, any invertible sheaf on
Pn admits an equivariant structure. Thus, by choosing such on each
OPn(i), T ∈ Db

G(Pn). Now, Theorem 4.1 gives a tilting bundle on
[Pn/G] (also see [12, Theorem 3.2.1]).

Example 4.4. Let Grassk(d, n) be the Grassmannian over an alge-
braically closed field k of characteristic zero. For 2d ̸= n, we have
Autk(Grassk(d, n)) = PGLn(k). Let G ⊂ PGLn(k) be a finite group
acting linearly on Grassk(d, n), i.e., the action lifts to an action of
GLn(k). Then, the tautological sheaf S of Grassk(d, n) and, due to
functoriality, the Schur modules Σλ(S), admit a natural equivariant
structure. Thus, ⊕

λ

Σλ(S) ∈ Db
G(Grassk(d, n)).

Since
⊕

λ Σ
λ(S) is a tilting bundle on Grassk(d, n) (see [34]), Theo-

rem 4.1 yields a tilting bundle on [Grassk(d, n)/G].

Let X be a smooth projective k-scheme and G a finite group acting
on X. For a field extension k ⊂ E, we set XE := X ⊗k E and
GE := G⊗kE. Since G acts on X, the group GE acts on XE . Suppose
that there is an object T • ∈ Db

G(X) such that T • ⊗k E is a tilting
object on XE . Below, we prove that, in fact, T • is a tilting object on
[X/G]. We first need the following lemma, essentially proven in [8].
For the convenience of the reader, a proof is given.
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Lemma 4.5. Let X be a smooth projective k-scheme and k ⊂ E a field
extension. For a given object T • ∈ Db(X), suppose that T • ⊗k E is a
tilting object on X ⊗k E. Then, T • is a tilting object on X.

Proof. Let v : X ⊗k E → X be the projection. By assump-
tion, v∗T • = T • ⊗k E is a tilting object on X ⊗k E. We calculate
Hom(T •, T •[i]). For this, we consider the following base change dia-
gram

X ⊗k E
v //

q

��

X

p

��
Spec(E)

u
// Spec(k)

Let E• be a bounded complex of locally free sheaves and F• ∈
D(Qcoh(X)) arbitrary. Then, flat base change (see [31, page 85
(3.18)]) yields the following isomorphisms:

u∗(RHom(E•,F•)) ≃ u∗Rp∗RHom(E•,F•)

≃ Rq∗v∗RHom(E•,F•)

≃ Rq∗v∗(E•∨ ⊗F•)

≃ Rq∗RHom(v∗E•, v∗F•)

≃ RHom(v∗E•, v∗F•).

This implies

Hom(v∗T •, v∗T •[i]) ≃ Hom(T •, T •[i])⊗k E = 0, for i ̸= 0,

since v∗T • is a tilting object on X ⊗k E. Hence, Hom(T •, T •[i]) = 0
for i ̸= 0, and therefore, Ext vanishing holds.

For the generation property of T •, we take an object F• ∈
D(Qcoh(X)) and assume that RHom(T •,F•) = 0. The above iso-
morphisms obtained from the flat base change yield

0 = u∗(RHom(T •,F•)) ≃ RHom(v∗T •, v∗F•).

Since v∗T • is a tilting object on X ⊗k E, we have v∗F• = 0. As
v is a faithfully flat morphism, F• = 0, and hence, T • generates
D(Qcoh(X)). Finally, since X is smooth, the global dimension of
End(T •) is finite. This completes the proof. �
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Proposition 4.6. Let X be a smooth projective k-scheme, T • ∈
Db

G(X) and k ⊂ E a field extension. Considering T • as an object
in Db(X), suppose that T • ⊗k E is a tilting object on XE. Then,
T • ⊗ k[G] is a tilting object on [X/G].

Proof. Since T • ⊗k E is a tilting object on XE , Lemma 4.5 implies
that T • is a tilting object on X. As T • ∈ Db

G(X), Theorem 4.2 yields
the assertion. �

Example 4.7. Let X be an n − 1-dimensional Brauer-Severi variety
(see [43] and references therein for details). Such a Brauer-Severi
variety is associated to a central simple k-algebra A of dimension n2

in the following manner: consider the set of all left ideals I of A of
rank n. This set can be given the structure of a smooth projective k-
scheme by embedding it as a closed subscheme of Grass(n, n2), defined
by the relations stating that each I is a left ideal. Indeed, there is
a natural one-to-one correspondence between central simple algebras
of dimension n2 and Brauer-Severi varieties of dimension n − 1 via
Galois cohomology (see [2]). Since X is a closed subscheme of the
Grassmannian, it is endowed with a tautological sheaf V of rank n.
This sheaf has a natural A action. Note that A ⊗k k ≃ Mn(k). As
Aut(X) = Aut(A) = A∗/k× by the Skolem-Noether theorem, we see
that, if the action of a finite subgroup G ⊂ Aut(X) lifts to an action of
A∗, the tautological sheaf V has a natural equivariant structure. Thus,

n⊕
i=0

V⊗i ∈ Db
G(X).

Since V⊗i ⊗k k ≃ OPn(−i)⊕(n+1)i [8], the sheaf (
⊕n

i=0 V⊗i) ⊗k k is a
tilting bundle on Pn. Proposition 4.6 gives a tilting bundle on [X/G].

The next proposition shows that Example 4.7 cannot be obtained
from the results given in [23], where tilting bundles on [X/G] are
constructed from full strongly exceptional collections. In particular,
it gives an example of a k-scheme admitting a tilting object, but not a
full strongly exceptional collection.

Proposition 4.8. Let X ̸= P1 be a one dimensional Brauer-Severi
variety. Then, Db(X) does not admit a full strongly exceptional collec-
tion.
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Proof. We first prove that Db(X) does not admit a full strongly
exceptional collection consisting of coherent sheaves. Denote by V the
tautological sheaf on X. Since T = OX ⊕ V is a tilting bundle on X
(see [8]), the Grothendieck group K0(X) is a free abelian group of rank
two. Thus, assume that E1 and E2 are coherent sheaves on X forming
a full strongly exceptional collection. In particular, End(Ei) = k, and
therefore, End(Ei⊗k k) = k. We see that E1⊗k k and E2⊗k k are simple
coherent sheaves on X ⊗k k ≃ P1. A simple sheaf F on P1 here means
End(F) = k. Now simple coherent sheaves on the projective line are
known to be invertible sheaves or skyscraper sheaves supported on a
closed point. Thus, Ei ⊗k k must be isomorphic to either OP1(n) or
k(x). Note that every invertible sheaf on P1 coming from an invertible
sheaf on the Brauer-Severi variety X is of the form OP1(2n) (see [43,
Section 6]). There are two cases that must considered:

(i) Assume that both E1 ⊗k k and E2 ⊗k k are invertible sheaves. In
this case E1 ⊗k k = OP1(2n) and E2 ⊗k k = OP1(2m). Without loss of
generality, assume that E1 ⊗k k = OP1 and E2 ⊗k k = OP1(2n), with
n > 0. However, we have

Ext1(OP1(2n),OP1) ≃ H1(X,OP1(−2n)) ̸= 0.

(ii) Now, assume that at least one of the sheaves Ei ⊗k k is a
skyscraper sheaf. Without loss of generality, assume that E1 ⊗k k =
k(x). Then,

Ext1(k(x), k(x)) ≃ Tx,

where Tx is the tangent space of P1 in x (see [31, Example 11.9]) that
clearly is non-zero.

We see that Db(X) does not admit a full strongly exceptional
collection consisting of coherent sheaves. To conclude that Db(X)
does not admit a full strongly exceptional collection consisting of
arbitrary objects, we note that Coh(X) is hereditary. According to [38,
subsection 2.5], every object G ∈ Db(X) is of the form

⊕
i∈ZH

i(G)[i].
Since exceptional objects are indecomposable, the exceptional objects
in Db(X) are merely shifts of exceptional coherent sheaves. With the
arguments as above, this finally implies that Db(X) does not admit a
full strongly exceptional collection. �
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Conjecture 4.9. Let X ̸= Pn be an n-dimensional Brauer-Severi vari-
ety. Then, Db(X) does not admit a full strongly exceptional collection.

Theorem 4.1 states that the stack [X/G] has a tilting object if X
has one. Below, we will see that the other implication is wrong, in
general (see Example 4.11). For this, we briefly sketch the derived
McKay correspondence and refer to the work of Bridgeland, King and
Reid [13] for details.

Let k be an algebraically closed field of characteristic zero and X
a quasiprojective k-scheme. Furthermore, let G be a finite subgroup
of Aut(X). Note that the quotient scheme X//G is usually singular.
The main idea of McKay correspondence is to find a certain “nice”
resolution of X//G and to relate the geometry of the resolution to that

of X//G. Recall that a resolution of singularities f : X̃ → X of a
given non-singular X is called crepant if f∗ωX = ωX̃ . Whether such
resolutions exist is a difficult question and closely related to the minimal
model program.

Now, denote by HilbG(X) the G-Hilbert scheme of X (see [7] for
details on G-Hilbert schemes), and let Y ⊂ HilbG(X) be the irreducible
component containing the free orbits. Suppose that G acts on X such
that ωX is locally trivial in CohG(X), and write Z ⊂ X × Y for the
universal closed subscheme. Then, there is a commutative diagram of
schemes:

Z
q //

p

��

X

π

��
Y

τ
// X//G

such that q and τ are birational and p and π are finite. Moreover,
p is flat. We then have the derived McKay-correspondence (see [13,
Theorem 1.1]):

Theorem 4.10. Let X, G and Y be as in the diagram, and suppose
that ωX is locally trivial in CohG(X). Suppose furthermore, that
dim(Y ×X//G Y ) < dim(X) + 1. Then:
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Rq∗ ◦ p∗ : Db(Y )
∼−→ Db

G(X)

is an equivalence and τ : Y → X//G a crepant resolution.

The condition that ωX be locally trivial in CohG(X) is, for instance,
fulfilled if Gx ⊂ SL(Tx) for all closed points x ∈ X, where Gx is the
stabilizer subgroup and Tx the tangent space.

If dim(X) ≤ 3, the G-Hilbert scheme HilbG(X) is irreducible, and

hence, there is an equivalence Rq∗ ◦ p∗ : Db(HilbG(X))
∼→ Db

G(X). In
this case, HilbG(X) → X//G is a crepant resolution (see [13, Theorem
1.2]). Note that Blume [7] proved the classical McKay correspondence
for non algebraically closed fields of characteristic zero via Galois
descent.

Example 4.11. Let C be an elliptic curve over an algebraically closed
field of characteristic zero with G = {id,−id} = Aut(C), i.e., j ̸= 0
and j ̸= 1728. Note that C cannot have a tilting object since the
Grothendieck group is not a free abelian group of finite rank. Now,
C//G ≃ P1, and hence, it is its own crepant resolution. As P1 admits a
tilting bundle, the derived McKay correspondence gives a tilting object
on [C/G].

Following the idea of exploiting the derived McKay correspondence
to obtain further examples of schemes having tilting objects, we state
the following useful consequence of Theorem 4.2.

Corollary 4.12. Let X, G and Y be as in Theorem 4.10, with ωX being
locally trivial in CohG(X). Suppose that dim(Y ×X//GY ) < dim(X)+1
and that T • ∈ DG(Qcoh(X)), considered as an object in D(Qcoh(X)),
is a tilting object on X. Then, Y admits a tilting object.

Proof. Since T • ∈ DG(Qcoh(X)), considered as an object in
D(Qcoh(X)), is a tilting object on X, we know from Theorem 4.2 that
T •⊗k[G] is a tilting object on [X/G]. As dim(Y ×X//GY ) < dim(X)+1,
we have the derived McKay correspondence

Rq∗ ◦ p∗ : Db(Y )
∼−→ Db

G(X).
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If we denote by F the inverse of Rq∗ ◦p∗, then F (T •⊗k[G]) is a tilting
object on Y . �

Note that there is no reason for the inverse of the functor Rq∗ ◦ p∗
to send a coherent sheaf to a coherent sheaf. Thus, in general, the
McKay correspondence gives a tilting object on Y even if [X/G] admits
a coherent tilting sheaf.

Corollary 4.13. For n ≤ 3, let G ⊂ Aut(Pn) be a finite subgroup
acting linearly on Pn. Suppose that ωPn is trivially local in CohG(Pn).
Then, HilbG(Pn) admits a tilting object.

Proof. The sheaf
⊕n

i=0 OPn(i) is a tilting bundle on Pn equipped
with an equivariant structure (see Example 4.3). Corollary 4.12 and the
discussion following Theorem 4.10 give a tilting object on HilbG(Pn).

�

Corollary 4.14. Let X = Grass(d, n) be the Grassmannian of Exam-
ple 4.4. Let G be a finite subgroup of PGLn(k) acting linearly on X,
and suppose that ωX is locally trivial in CohG(X). Let Y ⊂ HilbG(X)
be the irreducible component containing the free orbits, and suppose that
dim(Y ×X//G Y ) < dim(X) + 1. Then, Y admits a tilting object.

Proof. Follows from Example 4.4 and Corollary 4.12. �

5. Tilting bundles on [A(E)/G] and [P(E)/G]. We start with a
generalization of results given in [12, 15]. In loc. cit., among others,
the existence of tilting objects on certain total spaces was proven.
Below, we study total spaces with finite group actions.

Let G be a finite group acting on a smooth projective k-scheme X.
Furthermore, let E be an equivariant locally free sheaf of finite rank.
Consider the total space A(E) = Spec(S•(E)), where S•(E) = Sym(E)
is the symmetric algebra of E . Since E admits an equivariant structure,
the group G acts on A(E) in the natural way. Note that the total space
comes equipped with a G-morphism

π : A(E) −→ X,
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which is affine. Assuming the existence of a tilting bundle T on [X/G],
the question arises whether [A(E)/G] admits a tilting bundle, too.
There is a natural candidate for a tilting bundle on [A(E)/G].

Consider the tilting bundle T on [X/G]. Then, the pullback π∗T is a
locally free sheaf on A(E) with a natural equivariant structure. Below,
we prove that, under a certain condition, π∗T is a tilting bundle on
[A(E)/G]. We can also show the finiteness of the global dimension
of EndG(π

∗T ). Since A(E) is not projective over k, Proposition 3.5
cannot be applied. However, the proof of Proposition 3.5 also works if
the endomorphism algebra is required to be a Noetherian ring. Since
A(E) is a Noetherian scheme, G a finite group and π∗T a coherent
sheaf, it may easily be verified that EndG(π

∗T ) is indeed a Noetherian
ring. With this fact, we now prove the following result:

Theorem 5.1. Let X be a smooth projective k-scheme, G a finite
group acting on X and E an equivariant locally free sheaf of finite rank.
Suppose that T is a tilting bundle on [X/G]. If

Hi(X, T ∨ ⊗ T ⊗ Sl(E)) = 0

for all i ̸= 0 and all l > 0, then π∗T is a tilting bundle on [A(E)/G].

Proof. Note that π∗T is a coherent sheaf on [A(E)/G] and is,
therefore, a compact object of D(Qcoh([A(E)/G])) (see [11]). We now
show that HomG(π

∗T , π∗T [i]) = 0 for i ̸= 0. Adjunction of π∗ and π∗,
the projection formula and Lemma 2.2 give

HomG(π
∗T , π∗T [i]) ≃ HomG(T ,Rπ∗π∗T [i])

≃ HomG(T , S•(E)⊗ T [i])

≃ Hom(T , S•(E)⊗ T [i])G.

Now, for a fixed l > 0 we have

Hom(T , Sl(E)⊗T [i]) ≃ Exti(T , Sl(E)⊗T ) ≃ Hi(X, T ∨ ⊗T ⊗ Sl(E)).

By assumption, Hi(X, T ∨ ⊗ T ⊗ Sl(E)) = 0 for all i ̸= 0 and all
l > 0, and therefore, Hom(T , S•(E) ⊗ T [i])G = 0 for i ̸= 0. Thus,
HomG(π

∗T , π∗T [i]) = 0 for i ̸= 0, and the Ext vanishing holds.

It remains to prove that π∗T generates DG(Qcoh(A(E))). Thus, we
take an object F•∈DG(Qcoh(A(E))) and assume that RHomG(π

∗T ,F•)
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= 0. Adjunction of π∗ and π∗ implies that RHomG(T , π∗F•) = 0. Since
T is a tilting bundle on [X/G], we get π∗F• = 0. As π is affine, F• = 0,
hence, π∗TG generates DG(Qcoh(A(E))). Finally, since EndG(π

∗T ) is
Noetherian, the arguments in the proof of Proposition 3.5 show that
the global dimension of EndG(π

∗T ) is indeed finite (note that the Noe-
therian property for the arguments of the proof of Proposition 3.5 is
enough to conclude the finiteness of the global dimension). �

If X is a Fano variety with E = ωX and G = 1, it may be verified
that

Hi(X, T ∨ ⊗ T ⊗ Sl(E)) = 0

for all i ̸= 0 and all l > 0, and Theorem 5.1 gives [15, Theorem 3.6]
(see also [14, Proposition 4.1]). For X = Spec(C), Theorem 5.1 gives
[12, Theorem 4.2.1]. The arguments in the proof of Theorem 5.1 also
unify and simplify the arguments given in the proofs of [12, Theorems
4.2.1, 5.3.1]. From a representation-theoretic point of view, it would
also be of interest to find for which equivariant locally free sheaves E the
endomorphism algebra EndG(π

∗T ) is Koszul. The existence of tilting
bundles on certain total spaces also led Weyman and Zhao [54] to a
construction of non-commutative desingularizations.

Example 5.2. Let X be a smooth projective k-scheme and G a finite
group acting on X. We take an equivariant ample invertible sheaf L.
Such a L always exists by the following argument: let M be an ample
invertible sheaf on X. Then, s g∗M is ample for any g ∈ G. Now,
the tensor product

⊗
g∈G g

∗M is ample and has a natural equivariant
structure λ. Take

(L, λ) =
(⊗

g∈G

g∗M, λ

)
.

Let T be a tilting bundle on [X/G], and set E = L⊗N . From the
ampleness of L, there exists a natural number n≫ 0 such that, for all
N ≥ n, we have

Hi(X, T ∨ ⊗ T ⊗ Sl(E)) ≃ Hi(X, T ∨ ⊗ T ⊗ L⊗l·N ) = 0

for all i ̸= 0 and all l > 0. In this case, the stack [A(L⊗N )/G] admits
a tilting bundle.
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In view of Theorem 5.1, it is very natural to consider projective
bundles with group actions. A semiorthogonal decomposition for the
equivariant derived category projective bundles was constructed by
Elagin [22]. Below, we prove that, if [X/G] has a tilting bundle, then
so does [P(E)/G]. We start with some preliminary observations.

Let X be a smooth projective k-scheme and G a finite group acting
on X. Let E be an equivariant locally free sheaf of rank r on X. We
get a projective bundle P(E) on which G acts naturally. The structure
morphism π : P(E) → X is a G-morphism and one has a semiorthogonal
decomposition (see [22, Theorem 4.3])

Db
G(P(E)) = ⟨π∗Db

G(X), π∗Db
G(X)⊗OE(1), . . . , π

∗Db
G(X)⊗OE(r−1)⟩.

Here, π∗Db
G(X)⊗OE(i) denotes the subcategory ofDb

G(P(E)) consisting
of objects of the form π∗F•⊗OE(i), where F• ∈ Db

G(X). The following
lemma is easily proven.

Lemma 5.3. Let X be a smooth projective k-scheme and G a finite
group acting on X. Let E be an equivariant locally free sheaf of rank r
and P(E) the projective bundle. Let A• ∈ Db

G(X), and suppose that
⟨A•⟩ = Db

G(X). Then,⟨ r−1⊕
i=0

π∗A• ⊗OE(i)
⟩
= Db

G(P(E)).

Proof. First, we note thatDb
G(X) is derived equivalent to π∗Db

G(X)⊗
OE(j) via the functor F 7→ π∗F ⊗ OE(j) (see [22]). Since ⟨A•⟩ =
Db

G(X), and Db
G(X) is derived equivalent to π∗Db

G(X) ⊗ OE(j), we
obtain ⟨π∗A• ⊗OE(j)⟩ = π∗Db

G(X)⊗OE(j). Finally,⟨ r−1⊕
i=0

π∗A• ⊗OE(i)
⟩
= Db

G(P(E))

in view of the semiorthogonal decomposition of Db
G(P(E)) given in

[22]. �

With this lemma, we now prove the following:

Theorem 5.4. Let X, G and E be as in Lemma 5.3. If [X/G] has a
tilting bundle, then so does [P(E)/G].
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Proof. Let T be the tilting bundle on [X/G] and π : P(E) → X the

projection. We consider the compact object R =
⊕r−1

i=0 π
∗T ⊗ OE(i).

Equivariant adjunction of π∗ and π∗ and the projection formula yield
for 0 ≤ r1, r2 ≤ r − 1:

HomG(π
∗T ⊗ OE(r1), π

∗T ⊗ OE(r2)[m])

≃ HomG(T , T ⊗ Rπ∗OE(r2 − r1)[m]).

If r1 = r2, we have Rπ∗OE(r2 − r1) ≃ OX , and hence,

HomG(π
∗T ⊗ OE(r1), π

∗T ⊗ OE(r2)[m]) ≃ ExtmG (T , T ) = 0

for m > 0, since T is a tilting bundle on [X/G]. If 0 ≤ r2 < r1 ≤ r− 1,
we have r2 − r1 > −r, and hence, Rπ∗OE(r2 − r1) = 0 (see [25]). This
gives

HomG(π
∗T ⊗ OE(r1), π

∗T ⊗ OE(r2)[m]) ≃ ExtmG (T , 0) = 0

for all m ≥ 0. The case 0 ≤ r1 < r2 ≤ r − 1 remains. In this case, we
get for l = r2 − r1, Rπ∗OE(r2 − r1) ≃ Sl(E) (see [25]), and therefore,

HomG(π
∗T ⊗ OE(r1), π

∗T ⊗ OE(r2)[m])

≃ ExtmG (T , T ⊗ Sl(E))

≃ Hm(X, T ∨ ⊗ T ⊗ Sl(E))G.

In order to achieve the vanishing of the latter cohomology, we take an
equivariant ample invertible sheaf (L, λ) on X. Such a (L, λ) always
exists as X is projective (see Example 5.2). By the ampleness of L,
there is a natural number nl ≫ 0 for a fixed l > 0 such that

Hm(X, T ∨⊗T ⊗Sl(E ⊗L⊗nl)) ≃ Hm(X, T ∨⊗T ⊗Sl(E)⊗L⊗nl·l) = 0

for m > 0. Since 0 < l ≤ r − 1, we have only finitely many l > 0, and
we can choose n > max{nl | 0 < l ≤ r − 1} so that, for L⊗n, we have

Hm(X, T ∨ ⊗T ⊗Sl(E ⊗L⊗n)) ≃ Hm(X, T ∨ ⊗T ⊗Sl(E)⊗L⊗n·l) = 0

for m > 0 and all 0 < l ≤ r − 1. This implies the Ext vanishing of
R′ :=

⊕r−1
i=0 π

∗T ⊗ OE′(i) on P(E ′), where E ′ = E ⊗ L⊗n.

Since P(E ′) is projective and smooth, the compact objects of the
derived category DG(Qcoh(P(E ′))) are all of Db

G(P(E ′)) (see [12, page
39]). From Lemma 5.3 and Theorem 3.1, we conclude thatR′ generates
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DG(Qcoh(P(E ′))). Hence,

R′ =

r−1⊕
i=0

π∗T ⊗ OE′(i)

is a tilting bundle on [P(E ′)/G]. Since P(E ′) and P(E) are isomorphic
as G-schemes, we obtain a tilting bundle on [P(E)/G]. �

In order to apply the above theorem, we must find stacks [X/G]
admitting a tilting bundle. This can be done, for instance, with
Theorem 4.1. Therefore, combining Theorems 4.1 and 5.4, we obtain
further examples of quotient stacks with tilting bundles.

Remark 5.5. In the proof of Theorem 5.4, we used the ampleness of
L to achieve the vanishing of Hm(X, T ∨ ⊗T ⊗Sl(E ⊗L⊗n)). For that
reason, it is not easy to generalize the result for the case where [X/G]
admits an arbitrary tilting object.

Example 5.6. LetG ⊂ PGLn+1(k) be a finite subgroup acting linearly
on Pn. Example 4.3 shows that [Pn/G] has a tilting bundle. From
Theorem 5.4, we get a tilting bundle on [P(E)/G] for any equivariant
locally free sheaf E on Pn.

Example 5.7. Let G ⊂ PGLn(k) be a finite subgroup acting linearly
on X = Grassk(d, n). Example 4.4 shows that [X/G] admits a tilting
bundle. From Theorem 5.4, we obtain a tilting bundle on [P(E)/G] for
any equivariant locally free sheaf E on X.

Example 5.8. Let X be a Brauer-Severi variety over k and G ⊂
Aut(X) a finite subgroup acting on X as described in Example 4.7.
Then, there is a tilting bundle on [X/G]. From Theorem 5.4, we get
a tilting bundle on [P(E)/G] for any equivariant locally free sheaf E
on X.

6. Application: Orlov’s dimension conjecture. As an applica-
tion of the results of the previous sections, we provide some further
evidence for a conjecture on the Rouquier dimension of derived cate-
gories formulated by Orlov [47].
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Let D be a triangulated category. For two full triangulated sub-
categories M and N of D, we denote by M ⋆ N the full subcategory
consisting of objects R such that there exists a distinguished triangle
of the form

X1 −→ R −→ X2 −→ X1[1],

where X1 ∈ M and X2 ∈ N . Then, set M ⋄ N = ⟨M ⋆ N⟩. We
inductively define ⟨M⟩i = ⟨M⟩i−1 ⋄ ⟨M⟩ and set ⟨M⟩1 to be ⟨M⟩.

Definition 6.1. The dimension of a triangulated category D, denoted
by dim(D), is the smallest integer n ≥ 0 such that there exists an
object A for which ⟨A⟩n+1 = D. We define the dimension to be ∞ if
there is no such A.

There are a lower and an upper bound for the dimension of the
bounded derived category of coherent sheaves of a scheme X. Rouquier
[52], who originally introduced the notion of dimension of triangulated
categories, proved that, for reduced separated schemes X of finite
type over k, a lower bound is given by dim(Db(X)) ≥ dim(X) (see
[52, Proposition 7.17]), whereas, for smooth quasiprojective k-schemes
X, an upper bound is given by dim(Db(X)) ≤ 2dim(X) (see [52,
Proposition 7.9]). There is the following conjecture:

Conjecture 6.2 ([47]). If X is a smooth integral and separated scheme
of finite type over k, then dim(Db(X)) = dim(X).

In loc. cit., it is proven that the conjecture holds for smooth pro-
jective curves C of genus g ≥ 1. For curves of genus g = 0, this is an
easy observation and well known. Therefore, dim(Db(C)) = 1 for all
smooth projective curves C. Additionally, the conjecture is known to
be true in the following cases:

• affine schemes of finite type over k, certain flags and quadrics
[52].

• del Pezzo surfaces, certain Fano three-folds, Hirzebruch sur-
faces, toric surfaces with nef anti-canonical divisor and certain
toric Deligne-Mumford stacks over C [4].

Ballard and Favero [4] extended the above conjecture to certain
Deligne-Mumford stacks. Hereafter, the bounded derived category
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of the abelian category of coherent sheaves on a separated Deligne-
Mumford stack X of finite type over k is denoted by Db(X ). For details
on Deligne-Mumford stacks, the reader is referred to [21], as well as
[53, Appendix].

Conjecture 6.3 ([4]). Let X be a smooth and tame Deligne–Mumford
stack of finite type over k with quasiprojective coarse moduli space, then
dim(Db(X )) = dim(X ).

Among others, in loc. cit., the following theorem (see [4, Theorem
3.2]) is proven.

Theorem 6.4. Let X be a smooth, proper, tame and connected
Deligne-Mumford stack with projective coarse moduli space. Suppose
that ⟨T ⟩ = Db(X ) satisfying

HomDb(X )(T , T [i]) = 0

for i ̸= 0, and let i0 be the largest i for which HomDb(X )(T , T ⊗ ω∨
X [i])

is non-zero. If k is a perfect field, then dim(Db(X )) = dim(X ) + i0.

We now want to apply Theorem 6.4 and results of the previous
sections to produce more examples where the above conjecture holds.

Proposition 6.5. Let k be a perfect field and X and G be as in
Theorem 4.1. Suppose that X is connected and T is a coherent tilting
sheaf on [X/G]. If Hom(T , T ⊗ ω∨

X [i]) = 0 for i > 0 on X, then
dim([X/G]) = dim(Db([X/G])).

Proof. It is easy to verify that [X/G] is a smooth, proper, tame
and connected Deligne-Mumford stack with projective coarse moduli
space X//G (see [1, 53]). Theorem 6.4 shows that we must verify
HomG(T , T ⊗ ω∨

[X/G][i]) = 0 for i > 0. Here, ω[X/G] is the dualizing

object for the stack [X/G]. Note that the underlying sheaf of ω[X/G],
considered to be an object in CohG(X), is ωX (the dualizing sheaf of
X) with a certain equivariant structure λ. Note that T ∈ Db

G(X).
From Lemma 2.2, we obtain

HomG(T , T ⊗ ω∨
[X/G][i]) ≃ Hom(T , T ⊗ ω∨

X [i])G.
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By assumption, Hom(T , T ⊗ ω∨
X [i]) = 0 for i > 0, and hence,

HomG(T , T ⊗ω∨
[X/G][i]) = 0 for i > 0. Theorem 6.4 yields dim([X/G]) =

dim(Db([X/G])). �

Corollary 6.6. Let k be a perfect field, G a finite group acting on a
smooth projective k-scheme X and E an equivariant locally free sheaf
of rank r. If [X/G] admits a tilting bundle, then dim([P(E)/G]) =
dim(Db([P(E)/G])).

Proof. Denote by T the tilting bundle on [X/G] and by π : P(E) → X
the projection. The proof of Theorem 5.4 shows that there exists an
equivariant ample sheaf (L, λ) such that R =

⊕r−1
i=0 π

∗T ⊗ OE′(i) is a
tilting bundle on [P(E ′)/G], where E ′ = E ⊗ L. Since ω∨

E′ = OE′(r), we

must verify that Extl(R,R ⊗ OE′(r)) = 0 for l > 0. For 0 ≤ r1, r2 ≤
r − 1, we have

Extl(π∗T ⊗ OE′(r1), π
∗T ⊗ OE′(r2)⊗OE′(r))

≃ Extl(T , T ⊗ Rπ∗OE′(r + r2 − r1)).

Since m := r + r2 − r1 > −r, we obtain

Rπ∗OE′(m) = Sm(E ′) ≃ Sm(E)⊗ L⊗m

(see [25]). As there are only finitely many m, we can choose the
equivariant ample sheaf (L, λ) such that H l(X, T ∨ ⊗ T ⊗ Sm(E) ⊗
L⊗m) = 0 for l > 0. This gives Extl(R,R ⊗ OE′(r)) = 0 for l > 0.
Proposition 6.5 yields dim([P(E ′)/G]) = dim(Db([P(E ′)/G])). As P(E ′)
and P(E) are isomorphic as G-schemes, we obtain dim([P(E)/G]) =
dim(Db([P(E)/G])). �

Corollary 6.7. Let X be an n-dimensional Brauer-Severi variety
over a perfect field k corresponding to a central simple algebra A and
G ⊂ Aut(X) = A∗/k× a finite subgroup such that the action lifts to an
action of A∗. Then, dim(Db([X/G])) = dim([X/G]).

Proof. Denote by V the tautological sheaf on X, and let T =⊕n
i=0 V⊗i. Note that X ⊗k k̄ ≃ Pn. We know from Example 4.7 that

T ⊗ k[G] is a tilting bundle on [X/G]. According to Proposition 6.5,

we must verify Extl(T ⊗ k[G], T ⊗ k[G]⊗ω∨
X) = 0 for l > 0. Note that
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V⊗i ⊗k k ≃ OPn(−i)⊕(n+1)i and ωX = OX(−n− 1). One easily verifies

Extl(T , T ⊗ ω∨
X)⊗k k̄ = 0 for l > 0 on Pn. Thus Extl(T , T ⊗ ω∨

X) = 0

for l > 0 on X. As k[G] =
⊕

j W
⊕dim(Wj)
j , it is enough to consider

Extl(T ⊗Wr, T ⊗Ws ⊗ ω∨
X) ≃ Extl(T , T ⊗ ω∨

X)⊗Hom(Wr,Ws).

Now Extl(T , T ⊗ ω∨
X) = 0 for l > 0 implies Extl(T ⊗ k[G], T ⊗ k[G]⊗

ω∨
X) = 0 for l > 0. �

Corollary 6.8. Let k be an algebraically closed field of characteristic
zero and G a finite subgroup of PGLn(k) acting linearly on X =
Grass(d, n). Then, dim([X/G]) = dim(Db([X/G])).

Proof. Let T =
⊕

λ Σ
λ(S), where S is the tautological sheaf on

X and Σλ the Schur functor (see [34]). From Example 4.4 and
Theorem 4.2, we know that T ⊗ k[G] is a tilting bundle on [X/G].
Note that ωX = OX(−n). In order to apply Proposition 6.5, we must
verify Exti(T ⊗ k[G], T ⊗ k[G] ⊗ OX(n)) = 0 for i > 0. From the
isomorphism

Exti(T ⊗Wr, T ⊗Ws⊗OX(n)) ≃ Exti(T , T ⊗OX(n))⊗Hom(Wr,Ws),

it is enough to show

Exti(Σλ(S),Σµ(S)⊗OX(n))

≃ Hi(X,Σλ(S∨)⊗ Σµ(S)⊗OX(n)) = 0, for i > 0.

It follows from the Littlewood-Richardson rule that, for each irre-
ducible summand Σγ(S) ⊂ Hom(Σλ(S),Σµ(S)) ≃ Σλ(S∨) ⊗ Σµ(S),
γ = (λ1, . . . , λd) satisfies γ1 ≥ γ2 ≥ · · · ≥ γd ≥ −(n−d) (see [36, 3.3]).
Thus, we can restrict to showing:

Hi(X,Σγ(S)⊗OX(n)) = 0 for i > 0.

Since Σγ(S) ⊗ OX(n) ≃ Σγ+n(S) ≃ Σ−γ−n(S∨), where γ + n =
(γ1 + n, . . . , γd + n), we have γ1 + n ≥ γ2 + n ≥ · · · ≥ γd + n ≥ d.
The calculation of the cohomology of Σα(S∨) (see [34, Lemma 2.2] or
[36, Lemma 3.2]) gives Hi(X,Σγ+n(S)) = 0 for i > 0. Proposition 6.5
then implies dim([X/G]) = dim(Db([X/G])). �
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Proposition 6.9. Let k, X, G and Y ⊂ HilbG(X) be as in Corol-
lary 4.12 (ωX must be locally trivial in CohG(X)). Assume that
dim(Y ×X//G Y ) < dim(X)+1. If [X/G] has a coherent tilting sheaf T
satisfying Exti(T , T ⊗ ω∨

X) = 0 for i > 0, then dim(Y ) = dim(Db(Y )).

Proof. By assumption, k is of characteristic zero, and hence, perfect.
Proposition 6.5 gives dim([X/G]) = dim(Db

G(X)). Since dim(Y ) =
dim(X//G) = dim(X) = dim([X/G]) = dim(Db

G(X)), the McKay

equivalence Db(Y )
∼→ Db

G(X) yields dim(Y ) = dim(Db(Y )). �

Summarizing the above observations, we obtain the next theorem.

Theorem 6.10. The dimension conjecture holds for :

(i) quotient stacks [P(E)/G] as in Theorem 5.4, provided [X/G]
has a tilting bundle and k is perfect.

(ii) Quotient stacks [X/G] over a perfect field k, where X is a
Brauer-Severi variety corresponding to a central simple algebra
A and G ⊂ Aut(X) = A∗/k× a finite subgroup such that the
action lifts to an action of A∗.

(iii) Quotient stacks [Grass(d, n)/G] over an algebraically closed
field k of characteristic zero, provided G ⊂ PGLn(k) is a finite
subgroup acting linearly on Grass(d, n).

(iv) G-Hilbert schemes HilbG(Pn) over an algebraically closed field
k of characteristic zero, provided n ≤ 3 and G ⊂ PGLn+1(k) is
a finite subgroup acting linearly on Pn and ωPn is locally trivial
in CohG(Pn).
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