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DISCRETE VALUATION OVERRINGS OF
A GRADED NOETHERIAN DOMAIN

GYU WHAN CHANG AND DONG YEOL OH

ABSTRACT. Let R =
⊕

α∈Γ Rα be an integral domain
graded by an arbitrary torsionless grading monoid Γ, M
a homogeneous maximal ideal of R and S(H) = R \∪

P∈h- Spec(R) P . We show that R is a graded Noetherian

domain with h- dim(R) = 1 if and only if RS(H) is a one-
dimensional Noetherian domain. We then use this result to
prove a graded Noetherian domain analogue of the Krull-
Akizuki theorem. We prove that, if R is a gr-valuation ring,
then RM is a valuation domain, dim(RM ) = h- dim(R) and
RM is a discrete valuation ring if and only if R is discrete as
a gr-valuation ring. We also prove that, if {Pi} is a chain of
homogeneous prime ideals of a graded Noetherian domain R,
then there exists a discrete valuation overring of R which has
a chain of prime ideals lying over {Pi}.

1. Introduction. Let D be an integral domain with quotient field
K. An overring of D means a ring between D and K. As is standard,
dim(D) denotes the (Krull) dimension of D and ht(P ) = dim(DP ) for
all prime ideals P of D. We say that a valuation domain V is a discrete
valuation ring (DVR) if each primary ideal of V is a power of its radical.
It is known that V is discrete if and only if each branched prime ideal of
V is not idempotent [8, Theorem 17.3]. (A prime ideal P is branched if
there exists a P -primary ideal distinct from P .) Also, if dim(V ) < ∞,
then V is discrete if and only if QVQ is principal for each prime ideal
Q of V . It is well known that, if (0) = P0 ( P1 ( · · · ( Pn is a chain
of prime ideals in D, then there exists a valuation overring of D which
has a chain of prime ideals lying over (0) = P0 ( P1 ( · · · ( Pn [8,
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Corollary 19.7]. Moreover, in [5, Theorem], Cahen, Houston and Lucas
showed that, ifD is a Noetherian domain and (0) = P0 ( P1 ( · · · ( Pn

is a chain of prime ideals in D, then there is a rank n discrete valuation
overring of D whose prime ideals contract to {Pi}ni=0. Chang and Oh
generalized this result to an integral domain A with the property that
AP is a Noetherian domain for each prime ideal P of A with ht(P ) < ∞.
Specifically, they showed that, if {Pk} is a chain of prime ideals of A
such that ht(Pk) < ∞ for each k, then there exists a discrete valuation
overring of A which has a chain of prime ideals lying over {Pk} [6,
Corollary 4]. The purpose of this paper is to study a graded Noetherian
domain analogue of Cahen, Houston and Lucas’s result [5, Theorem].

This paper consists of four sections, including the introduction. In
Section 2, we review some basic notation and results on graded integral
domains for the reading of this paper. Let R =

⊕
α∈Γ Rα be an integral

domain graded by an arbitrary torsionless grading monoid Γ, and let
S(H) = R \

∪
P∈h- Spec(R) P .

In Section 3, we show that R is a graded Noetherian domain with
h- dim(R) = 1 if and only if RS(H) is a one-dimensional Noetherian
domain. In this case, Max(RS(H)) = {PRS(H) | P ∈ h- Spec(R) and
P ̸= (0)}. We use this result to introduce a graded Noetherian domain
analogue of the Krull-Akizuki theorem.

Let V be a homogeneous graded valuation overring of R. Finally,
in Section 4, we show that, if M is a homogeneous maximal ideal
of V , then VM is a valuation domain, dim(VM ) = h- dim(V ), and V
is discrete as a graded valuation ring if and only if VM is a DVR. We
prove that, if {Pλ} is a chain of homogeneous prime ideals of R, then
there exists a homogeneous graded valuation overring of R with a chain
of homogeneous prime ideals that contract to {Pλ}.

Let (0) = P0 ( P1 ( · · · ( Pn be a chain of homogeneous prime
ideals of a graded Noetherian domain R, and let V be a homogeneous
graded valuation overring of R with a chain {Qα}α∈Λ of (homogeneous)
prime ideals such that {Qα ∩ R}α∈Λ = {Pi}ni=0. We show in The-
orem 4.5 that, if {Pi} is saturated, then {Qα}α∈Λ = {(0) = Q0 (
Q1 ( · · · ( Qn} and VH\Qn

is discrete as a gr-valuation ring with
h- dim(VH\Qn

) = n, where H is the set of nonzero homogeneous ele-
ments of R. As a corollary, in Corollary 4.6, we have that there exists a
discrete valuation overring of R which has a chain of prime ideals lying
over {Pi}.
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2. Definitions related to graded integral domains. Let Γ be
a nontrivial torsionless grading monoid, that is, Γ is a commutative
cancellative monoid (written additively), Γ ̸= (0), and the quotient
group

G := {a− b | a, b ∈ Γ}

of Γ is a torsion-free abelian group. It is well known that a cancellative
monoid is torsionless if and only if it can be totally ordered [14, page
123]. By a (Γ)-graded integral domain

R =
⊕
α∈Γ

Rα,

we mean an integral domain graded by an arbitrary torsionless grading
monoid Γ, that is, each nonzero x ∈ Rα has degree α, i.e., deg(x) = α,
and thus each nonzero f ∈ R can be written uniquely as f = xα1 +
· · · + xαn , where αi ∈ Γ, xαi is a nonzero homogeneous element with
deg(xαi) = αi, and α1 < · · · < αn. The most well-known example of a
graded integral domain is the semigroup ring D[Γ] =

⊕
α∈Γ DXα over

an integral domain D with deg(aXα) = α for 0 ̸= a ∈ D and α ∈ Γ.
Clearly, if Γ is the monoid of nonnegative integers, then D[Γ] = D[X]
is the polynomial ring over D.

Let R =
⊕

α∈Γ Rα be a Γ-graded integral domain, and let H be
the set of nonzero homogeneous elements of R; thus, H is a saturated
multiplicative subset of R. Let

(RH)α =

{
a

b
| a ∈ Rβ , 0 ̸= b ∈ Rγ and α = β − γ

}
for each α ∈ G. Then,

RH =
⊕
α∈G

(RH)α,

and hence, RH , called the homogeneous quotient field of R, is a G-
graded integral domain. Clearly, (RH)0 is a field, and each nonzero
homogeneous element of RH is a unit.

Note that, if we let Supp(Γ) = {α ∈ Γ | Rα ̸= (0)}, then
R =

⊕
α∈Supp(Γ) Rα, and Supp(Γ) is a submonoid of Γ since R is

an integral domain. Hence, throughout this paper, we assume that
Rα ̸= (0) for all α ∈ Γ. An ideal I of R is said to be homogeneous if I is
generated by homogeneous elements in I; thus, I is homogeneous if and
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only if I =
⊕

α∈Γ(I ∩ Rα). A homogeneous prime ideal (respectively,
homogeneous maximal ideal) means a homogeneous ideal that is a
prime ideal (respectively, maximal among proper integral homogeneous
ideals). Clearly, homogeneous prime ideals are prime, but homogeneous
maximal ideals need not be maximal ideals. Let h- Spec(R) be the set
of homogeneous prime ideals of R. The h-height of a homogeneous
prime ideal P , denoted by h-ht(P ), is defined to be the supremum of
the lengths of chains of homogeneous prime ideals descending from P ,
and the h-dimension of R is defined by

h- dim(R) = sup{h-ht(P ) | P ∈ h-Spec(R)}.

Clearly, h-ht(P ) ≤ ht(P ) and h- dim(R) ≤ dim(R).

An overring T of R =
⊕

α∈Γ Rα is called a homogeneous overring
if R ⊆ T ⊆ RH and T =

⊕
α∈G(T ∩ (RH)α). Thus, T is a G-

graded integral domain. We call R a graded valuation ring (in short,
gr-valuation ring) if, for every homogeneous element x of RH , either
x ∈ R or x−1 ∈ R. A homogeneous gr-valuation overring of R means
a homogeneous overring of R which is a gr-valuation ring. Clearly, R
is a gr-valuation ring if and only if the homogeneous ideals of R are
linearly ordered by set inclusion. In particular, a gr-valuation ring R is
said to be discrete if each homogenous primary ideal of R is a power of
its radical. By a minor change in the proof of the standard non-graded
expression in [8, Theorem 17.3], we can show that a gr-valuation ring
R is discrete if and only if each branched homogeneous prime ideal of R
is not idempotent. It is easy to see that a gr-valuation ring R is discrete
if and only if PRH\P is principal for all branched homogeneous prime
ideals P of R by using the fact that PRH\P is the homogenous maximal
ideal. We say that R is a graded Noetherian domain if R satisfies the
ascending chain condition (a.c.c.) on homogeneous ideals; equivalently,
each homogeneous prime ideal of R is finitely generated [17, Lemma
2.3]. Obviously, a Noetherian domain is a graded Noetherian domain,
while graded Noetherian domains need not be Noetherian. (It is known
that the monoid ring A[Γ] over a commutative ring A with identity is
a Noetherian ring, respectively, graded Noetherian ring, if and only if
A is a Noetherian ring and Γ, respectively, each ideal of Γ, is finitely
generated [7, Theorem 7.7], respectively, [17, Theorem 2.4]. Hence,
if Q is the additive group of rational numbers and D is a Noetherian
domain, the group ring R = D[Q] is a graded Noetherian domain but
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not a Noetherian domain.) Note that if Q is a homogeneous prime ideal
of a graded Noetherian domain, then h-ht(Q) < ∞ [15, Theorem 3.6].

For each nonzero fractional ideal I of an integral domain D with
quotient field K, let

• I−1 = {x ∈ K | xI ⊆ D},

• Iv = (I−1)−1,

and

• It =
∪
{Jv | J is a nonzero finitely generated subideal of I}.

If I = Iv (respectively, I = It), then I is called a v-ideal (respectively,
t-ideal) of D. We say that a nonzero ideal of D is a maximal t-ideal if
it is maximal among proper integral t-ideals, and let t-Max(D) denote
the set of maximal t-ideals of D. Clearly, if x ∈ D is a nonzero nonunit,
then xD is a t-ideal, and it is well known that each prime ideal of R
minimal over xR is a t-ideal and xD is contained in a maximal t-ideal
of D. Thus, if D is not a field, then t-Max(D) ̸= ∅. The v- and t-
operations are examples of a star operation; for background on star
operations, the reader is referred to [8, Sections 32, 34]. It is easy to
see that, if I is a nonzero homogeneous ideal of R =

⊕
α∈Γ Rα, then

both Iv and It are also homogeneous. We say that R is a graded Krull
domain if it is completely integrally closed and satisfies the a.c.c. on
homogeneous v-ideals. For f ∈ RH , let CR(f) (simply, C(f)) denote
the fractional ideal of R generated by the homogeneous components of
f . It is clear that C(f) is a finitely generated homogeneous fractional
ideal of R. Let

N(H) = {f ∈ R | C(f)v = R}.

It is known that, if R is a nontrivial graded integral domain, then
R is a graded Krull domain if and only if RN(H) is a principal ideal
domain (PID) [3, Theorem 2.3]. Also, the integral closure of a graded
Noetherian domain is a graded Krull domain [16, Theorem 2.10].

3. Graded Notherian domains. Let Γ be a torsionless grading
monoid, G the quotient group of Γ,

R =
⊕
α∈Γ

Rα
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a (Γ-)graded integral domain and H the set of nonzero homogeneous
elements of R; thus, RH is a G-graded integral domain whose nonzero
homogeneous elements are units.

We first recall a very useful result on homogeneous prime ideals. Let
Q be a nonzero prime ideal of R, and let Q∗ be the ideal of R generated
by the homogeneous elements in Q. Then Q∗ ⊆ Q, and either Q∗ = (0)
or Q∗ is a nonzero homogeneous prime ideal [14, page 124]. This also
implies that a prime ideal minimal over a nonzero homogeneous ideal
is homogeneous.

Lemma 3.1. Let R =
⊕

α∈Γ Rα be a graded Noetherian domain, let P
be a homogeneous prime ideal of R and let R′ be the integral closure of
R. If h-ht(P ) = 1, then RP is a one-dimensional Noetherian domain
and R′

R\P is a semilocal PID.

Proof. Recall that R′ is a homogeneous overring of R [16, Lemmas
2.2, 2.3]. Let Q be a prime ideal of R′ such that Q ∩ R = P .
Then, PR′ ⊆ Q, and thus, if Q∗ is the prime ideal of R′ generated
by the homogeneous elements in Q, then PR′ ⊆ Q∗ ⊆ Q. Clearly,
Q∗ ∩ R = Q ∩ R, and hence, Q∗ = Q [8, Corollary 11.2] since
R′ is integral over R. Hence, Q is homogeneous. Also, if Q0 is a
nonzero homogeneous prime ideal of R′ with Q0 ⊆ Q, then Q0 ∩ R is
homogeneous and Q0 ∩ R ⊆ Q ∩ R = P . Therefore, since h-ht(P ) = 1
and R′ is integral over R, we have Q0 ∩R = P ; thus, Q0 = Q. Hence,
h-ht(Q) = 1, and since R′ is a graded Krull domain, ht(Q) = 1 and R′

Q

is a DVR [1, Proposition 5.5]. This implies that ht(P ) = 1. Note that
P is finitely generated, and thus, RP is a one-dimensional Noetherian
domain. Note also that R′

R\P is the integral closure of RP , and hence,

R′
R\P is a Dedekind domain with a finite number of maximal ideals

[12, page 85, Corollary]. Thus, R′
R\P is a semilocal PID [8, Corollary

37.4]. �
Let x be a nonzero nonunit homogeneous element of a graded

Noetherian domain R. It is known that, if P is a prime ideal of R
minimal over xR, then h-ht(P ) = 1 [15, Theorem 3.5]. Hence, by
Lemma 3.1, we have the following.

Corollary 3.2. Let R =
⊕

α∈Γ Rα be a graded Noetherian domain and
x a nonzero nonunit homogeneous element of R. If P is a prime ideal
of R minimal over xR, then ht(P ) = 1.
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Proposition 3.3. Let R =
⊕

α∈Γ Rα be a graded integral domain and
S(H) = R \

∪
P∈h-Spec(R)

P . Then, R is a graded Noetherian domain

with h-dim(R) = 1 if and only if RS(H) is a one-dimensional Noetherian
domain. In this case,

Max(RS(H)) = {PRS(H) | P ∈ h-Spec(R) and P ̸= (0)}.

Proof. Let Ω = h-Spec(R) \ {(0)}.
(⇒). Since h-dim(R) = 1 and each maximal t-ideal of R intersecting

H is homogeneous [2, Lemma 1.2], each prime ideal in Ω is a maximal
t-ideal of R. Let 0 ̸= f ∈ R. If C(f) = R, then f /∈ P for all P ∈ Ω.
If C(f) ̸= R, then each prime ideal of R minimal over C(f) must be in
Ω, and, since each P ∈ Ω is finitely generated, C(f) (so f) is contained
only in a finite number of prime ideals P ∈ Ω [9, Theorem 1.6]. Thus,
the intersection

∩
P∈Ω RP is locally finite, and hence,

Max(RS(H)) = {PRS(H) | P ∈ Ω}

[3, Lemma 2.2, Proposition 1.4]. In addition, ht(PRS(H)) = 1 by
Lemma 3.1 and PRS(H) is finitely generated for all P ∈ Ω. Thus,
RS(H) is a one-dimensional Noetherian domain.

(⇐). Clearly, if P ∈ Ω, then P ∩ S(H) = ∅, and hence, PRS(H)

is a proper prime ideal of RS(H). Hence, by assumption, ht(P ) =
ht(PRS(H)) = 1, and thus, h-dim(R) = 1. Next, note that PRS(H)

is finitely generated and P is homogeneous. Hence, there is a finitely
generated homogeneous subideal I of P such that IRS(H) = PRS(H).
If f ∈ P , then f ∈ IRS(H) ∩ R, whence f = h/g for some h ∈ I and
g ∈ S(H). Thus, there is an integer n ≥ 1 such that

C(g)n+1C(f) = C(g)nC(fg) = C(g)nC(h)

[3, Lemma 1.1]. Note that g ∈ S(H) ⇔ g /∈ P for all P ∈ Ω,
⇔ C(g) * P for all P ∈ Ω, ⇔ C(g) = R. Hence, C(f) = C(h) ⊆ I,
and therefore, P = I. Thus, R is a graded Noetherian domain. �

Following [15], we say that a graded R-module M is h-irreducible
if M has no nontrivial homogeneous submodules, and, for a graded
R-module M , a chain

M = M0 ) M1 ) · · · ) Mr = (0)
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of homogeneous R-submodules of M is an h-composition series of M
if every Mi/Mi+1 is h-irreducible; in this case, r is called the h-length
of M , which is independent of the choice of h-composition series [15,
Theorem 3.1]. The notion of h-length is a graded module analogue of
the length of a module (see [12, page 12] for the definition of the length
of a module).

In [15, Theorem 4.2], Park and Park generalized the Krull-Akizuki
theorem [12, Theorem 11.7] to a graded integral domain as follows:

Let R ⊆ T be graded integral domains with homo-
geneous quotient fields K ⊆ L, respectively. Assume
that R is graded Noetherian with h-dim(R) = 1 and
L is finite over K. Then T is graded Noetherian with
h-dim(T ) ≤ 1, and if J is a nonzero homogeneous ideal
of T , then T/J is a graded R-module of finite h-length.

We next give another type of a graded integral domain analogue of
the Krull-Akizuki theorem, where we denote by qf(D) the quotient
field of D. This result is stronger than the Park and Park’s result
because qf(T ) is finite over qf(R) when L is finite over K.

Corollary 3.4. Let R ⊆ T be graded integral domains such that every
homogeneous element of R is homogeneous in T . Assume that R is
graded Noetherian with h- dim(R) = 1 and qf(T ) is finite over qf(R).

(1) T is a graded Noetherian domain with h- dim(T ) ≤ 1.

(2) If J is a nonzero homogeneous ideal of T , then T/J is a graded
R-module of finite h-length.

(3) If Q is a nonzero homogeneous maximal ideal of T , then T/Q
is a finitely generated R/(Q ∩ R)-module and qf(T/Q) is finite over
qf(R/(Q ∩R)).

Proof. Let

S(H) = R \
∪

P∈h-Spec(R)

P
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and

S(T ) = T \
∪

Q∈h-Spec(T )

Q.

Note that f ∈ S(H) if and only if C(f) = R (see the proof of Proposi-
tion 3.3), and thus, S(H) ⊆ S(T ) since every homogeneous element of
R is homogeneous in T . Thus, RS(H) ⊆ TS(H) ⊆ TS(T ) and RS(H) is a
one-dimensional Noetherian domain by Proposition 3.3.

(1) By the Krull-Akizuki theorem, TS(T ) is a Noetherian domain with
dim(TS(T )) ≤ 1, and thus, by Proposition 3.3, T is a graded Noetherian
domain with h- dim(T ) ≤ 1.

(2) Again, by the Krull-Akizuki theorem, TS(H)/JTS(H) is an RS(H)-
module of finite length. Clearly, each homogeneous R-submodule of
T/J is of the form M/J , where M is a homogeneous R-submodule of T
containing J . Let T/J ⊇ M/J ) N/J be homogeneous R-submodules
of T/J . Then,

(T/J)S(H)+J/J ⊇ (M/J)S(H)+J/J ⊇ (N/J)S(H)+J/J

are RS(H)-submodules of (T/J)S(H)+J/J . If

(M/J)S(H)+J/J = (N/J)S(H)+J/J ,

then m+ J ∈ (N/J)S(H)+J/J for all m ∈ M , and hence,

m+ J =
n+ J

f + J

for some n ∈ N and f ∈ S(H). Thus, there is a g ∈ S(H) such that

(g + J)(f + J)(m+ J) = (g + J)(n+ J);

hence, gfm ∈ N . Thus, m ∈ C(m) = C(m)C(fg) = C(mfg) ⊆ N ,
and therefore, M ⊆ N , a contradiction. Hence,

(M/J)S(H)+J/J ̸= (N/J)S(H)+J/J .

Note that TS(H)/JTS(H)
∼= (T/J)S(H)+J/J as rings, and thus, asRS(H)-

modules. Hence, T/J is a graded R-module of finite h-length by the
fact that TS(H)/JTS(H) is an RS(H)-module of finite length.

(3) This is an immediate consequence of (2). �
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Corollary 3.5. Let R =
⊕

α∈Γ Rα be a graded Noetherian domain
with h-dim(R) = 1. If V is a homogeneous gr-valuation overring of R,
then V is discrete as a gr-valuation domain and h-dim(V ) = 1.

Proof. Since V is a homogeneous overring of R, V is also a G-graded
integral domain. From Corollary 3.4, V is a graded Noetherian domain
with h-dimV ≤ 1. Thus, if M is the homogeneous maximal ideal
of V , then M is finitely generated, and, since each generator of M
is homogeneous, M must be principal. Thus, V is discrete as a gr-
valuation ring. �

We conclude this section with some comments which are related to
Lemma 3.1 and Proposition 3.3.

Remark 3.6.

(1) Let P be a homogeneous prime ideal of R =
⊕

α∈Γ Rα, and
assume that h-ht(P ) = 1. While ht(P ) = 1 when R is graded
Noetherian by Lemma 3.1, in general, this is not true. For example,
let (D,M) be a one dimensional quasi-local domain which is not
a valuation domain, X an indeterminate over D and R = D[X].
Clearly, h-ht(M [X]) = 1 but ht(M [X]) > 1 since ht(M [X]) = 1
implies that D is a valuation domain [8, Theorem 19.15]. Thus,
ht(M [X]) > h-ht(M [X]).

(2) It is interesting to note that there is a graded integral domain R
which has a homogeneous prime ideal P with 2 = h-ht(P ) < ht(P ) =
3 [10, page 1579]. However, we do not know whether there is a
graded Noetherian domain with a homogeneous prime ideal P with
2 = h-ht(P ) < ht(P ).

(3) Let R = D[X,X−1] be the Laurent polynomial ring over an
integral domain D. Then, R is a Z-graded integral domain with
deg(aXn) = n for 0 ̸= a ∈ D and an integer n. For f =

∑
aiX

i ∈ R,
let Af = ({ai}) be the ideal of D generated by the coefficients of f .
Let

S(H) = R \
∪

P∈h- Spec(R)

P.

Then, S(H) = {f ∈ R | C(f) = R} by the proof of Proposition 3.3,
and, since X,X−1 ∈ R, each homogeneous ideal of R is generated
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by a set of elements in D and S(H) = {f ∈ R | Af = D}. Hence,
RS(H) = D(X), the Nagata ring of D [4, Example 1]. In addition, R
is graded Noetherian if and only if D is Noetherian, if and only if R is
Noetherian, if and only if RS(H) is Noetherian.

4. Valuation overrings of a graded Noetherian domain. As in
Section 3, G denotes the quotient group of a torsionless grading monoid
Γ, R =

⊕
α∈Γ Rα is a (Γ-)graded integral domain and H is the set of

nonzero homogeneous elements of R.

Lemma 4.1. Let V be a homogeneous gr-valuation overring of R =⊕
α∈Γ Rα. Then, V is discrete as a gr-valuation ring if and only if

PVP is principal for all branched homogeneous prime ideals P of V .

Proof.

(⇒). This follows since VP = (VH\P )PH\P .

(⇐). Let P be a branched homogeneous prime ideal of V , and
assume that PVP = fVP for some f ∈ P . Then, since the homogeneous
ideals of V is linearly ordered by set inclusion, PVP = αVP for some
homogeneous component α of f . If a ∈ P is homogeneous, then
a = αg/h for some h ∈ V \ P and g ∈ V . Then, ah = αg, and
since h /∈ P , there exists a homogeneous component m of h such that
m ∈ H \ P . Hence, am = αx, where x is a homogeneous component
of g. Thus, a ∈ αVH\P , and since P is homogeneous, P ⊆ αVH\P .
Therefore, PVH\P = αVH\P . �

Lemma 4.2. Let V be a homogeneous gr-valuation overring of R =⊕
α∈Γ Rα. If f, g ∈ R− {0}, then (C(f)C(g))V = C(fg)V .

Proof. From [13] or [3, Lemma 1.1], C(f)n+1C(g) = C(f)nC(fg)
for some integer n ≥ 1. Note that C(f) is a finitely generated
homogenous ideal of R and V is a gr-valuation overring of R. Hence,
C(f)V is a nonzero principal ideal of V , and thus, (C(f)C(g))V =
C(fg)V . �

Let D be an integral domain with quotient field K, V a valuation
overring of D, M the maximal ideal of V and R = D[X,X−1] the Lau-
rent polynomial ring over D. Then, R is a Z-graded integral domain
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(see Remark 3.6 (3)), V [X,X−1] is a homogeneous gr-valuation over-
ring of R with homogeneous maximal ideal M [X,X−1] and V [X]M [X]

= V (X) is the trivial extension of V to K(X) [8, Section 18]. Note
that C(h)V [X,X−1] = AhV [X,X−1] for all h ∈ R; thus, it is easy to
see that, if we let

W =

{
f

g

∣∣ f, g ∈ R, g ̸= 0, and C(f)V [X,X−1] ⊆ C(g)V [X,X−1]

}
,

then W = V [X,X−1]M [X,X−1], and, since V [X,X−1]M [X,X−1] =
V [X]M [X], we have W = V (X). Hence, W is a valuation domain,

dim(W ) = dim(V ) = h- dim(V [X,X−1]), and W is a DVR if and only
if V is a DVR, if and only if V [X,X−1] is discrete as a gr-valuation
ring.

Theorem 4.3. Let V be a homogeneous gr-valuation overring of R =⊕
α∈Γ Rα, M the homogeneous maximal ideal of V and V̂ = {f/g |

f, g ∈ R, g ̸= 0, and C(f)V ⊆ C(g)V }.

(1) V̂ is a (well-defined) valuation overring of R and V̂ ∩RH = V .

(2) V̂ = VM and dim(V̂ ) = h-dim(V ).

(3) V̂ is a DVR if and only if V is discrete as a gr-valuation ring.

Proof.

(1) Let 0 ̸= f, g, h, k ∈ R be such that C(f)V ⊆ C(g)V and
f/g = h/k. Then, fk = gh. Since C(f)V ⊆ C(g)V , we have

C(g)C(h)V = C(gh)V = C(fk)V = C(f)C(k)V ⊆ C(g)C(k)V

by Lemma 4.2. Hence, C(h)V ⊆ C(k)V . Thus, V̂ is well defined. Let

f/g, h/k ∈ V̂ . Then, f/g + h/k = (fk + gh)/gk and

C(fk + gh)V ⊆ C(fk)V + C(gh)V ⊆ C(gk)V.

Thus, f/g + h/k ∈ V̂ . Also, f/g · h/k = fh/gk and

C(fh)V = C(f)C(h)V ⊆ C(g)C(k)V = C(gk)V.

Thus, f/g · h/k ∈ V̂ . Let u be a nonzero element of the quotient
field of R. Then, u = f/g for some f, g ∈ R. Recall that the
homogeneous ideals of V are linearly ordered by set inclusion; therefore,
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either C(f)V ⊆ C(g)V or C(g)V ⊆ C(f)V . Hence, u or u−1 is in V̂ .

Thus, V̂ is a valuation domain.

Finally, we claim that V̂ ∩ RH = V . Let f ∈ V . Since V ⊆
RH , we can write f = f1/α, where f1 ∈ R and α ∈ H. Hence,

C(f1)V = C(αf)V = C(α)C(f)V ⊆ C(α)V . Thus, f1/α = f ∈ V̂ .

Hence, V ⊆ V̂ ∩ RH . For the reverse containment, let g/β ∈ V̂ ∩ RH ,
where g ∈ R and β ∈ H. Then, C(g)V ⊆ C(β)V = βV , and thus,
C(g/β)V ⊆ V . Thus, g/β ∈ V .

(2) Let 0 ̸= f , g ∈ R be such that f/g ∈ V̂ . Then, C(f)V ⊆ C(g)V ,
and thus, if a and b are homogeneous components of f , g, respectively,
such that C(f)V = aV and C(g)V = bV , then

fVM = aVM ⊆ bVM = gVM .

Hence, f/g ∈ VM , and thus, V ⊆ V̂ ⊆ VM . Note that V̂V \M = V̂

since C(f)V = V for all f ∈ V \M ; thus, VM ⊆ V̂ ⊆ VM . Therefore,

V̂ = VM .

Next, note that dim(V̂ ) = dim(VM ) ≥ h- dim(V ); thus, to prove

the equality of dim(V̂ ) = h- dim(V ), it suffices to show that, if Q is a
nonzero prime ideal of V with Q ⊆ M , then Q is homogeneous. Let

f = xα1 + · · ·+ xαn ∈ Q,

where each xαi is a homogeneous component of f . Since V is a gr-
valuation ring, there is an xαk

such that xαi ∈ xαk
V for all xαi . Hence,

f/xαk
∈ V \M , and thus, xαk

·f/xαk
= f ∈ Q implies xαk

∈ Q. Thus,
xαi ∈ xαk

V ⊆ Q, whence Q is homogeneous.

(3) This follows directly from (2) and Lemma 4.1. �

Lemma 4.4. Let {Pλ} be a chain of homogeneous prime ideals of
R =

⊕
α∈Γ Rα. Then, there is a homogeneous gr-valuation overring of

R with a set of homogeneous prime ideals that contract to {Pλ}.

Proof. From [11, Theorem], there is a valuation overring W with a
chain {Nλ} of prime ideals such that Nλ ∩R = Pλ. Let

V =
∑
α∈G

(W ∩ (RH)α)
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and

Qλ =
∑
α∈G

(Nλ ∩ (RH)α).

Then, it is routine to check that V is a homogeneous gr-valuation
overring of R and {Qλ} is a chain of homogeneous prime ideals of
V such that Qλ ∩R = Pλ. �

Next, we give the main result of this section, which is a graded
Noetherian domain analogue of [6, Theorem 1], and its proof heavily
depends on that of [6, Theorem 1].

Theorem 4.5. Let R =
⊕

α∈Γ Rα be a graded Noetherian domain,
and let

(0) = P0 ( P1 ( · · · ( Pn

be a saturated chain of homogeneous prime ideals of R. If V is a
homogeneous gr-valuation overring of R with a chain {Qα}α∈Λ of
homogeneous prime ideals such that

{Qα ∩R} = {Pi}ni=0

as in Lemma 4.4, then

(1) {Qα}α∈Λ = {(0) = Q0 ( Q1 ( · · · ( Qn};
(2) VH\Qn

is discrete as a gr-valuation ring and h- dim(VH\Qn
) =

n;
(3) the homogeneous quotient field of V/Qi is finite over the homo-

geneous quotient field of R/Pi for i = 1, . . . , n.

Proof. We prove it by induction on n. First, assume n = 1. Set

Q =
∪
α∈Λ

Qα.

Clearly, Q ∩R = P1 and VH\Q is a homogeneous gr-valuation overring
of RH\P1

with a chain {QαVH\Q}α∈Λ of homogeneous prime ideals such
that

{QαVH\Q ∩RH\P1
}α∈Λ = {(0) ( P1RH\P1

}.

Since the given chain is saturated, RH\P1
is a graded Noetherian

domain of h-dimension one. Thus, by Corollary 3.5, VH\Q is discrete
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as a gr-valuation ring and h- dim(VH\Q) = 1; thus,

{QαVH\Q}α∈Λ = {(0) ( QVH\Q}.

Moreover, VH\Q/QVH\Q and RH\P1
/P1RH\P1

are isomorphic to the
homogeneous quotient fields of V/Q and R/P1, respectively. Hence,
we may assume that R is a graded Noetherian domain such that
h- dim(R) = 1, P1 is the unique nonzero homogeneous prime ideal of
R and V is discrete as a gr-valuation ring with h- dim(V ) = 1 and
homogeneous maximal ideal Q. In addition, by Corollary 3.4 (3),
V/Q is finite over R/P1. Note that R/P1 (respectively, V/Q) is
the homogeneous quotient field of R/P1 (respectively, V/Q) since P1

(respectively, Q) is a homogeneous maximal ideal of R (respectively,
V ).

We next assume that the result is true for all saturated chains of
homogeneous prime ideals of length n− 1. Let

(0) = P0 ( P1 ( · · · ( Pn

be a saturated chain of homogeneous prime ideals in R, and let V
be a homogeneous gr-valuation overring of R with a chain {Qα}α∈Λ of
homogeneous prime ideals such that {Qα∩R}α∈Λ = {Pi}ni=0. From the
same argument as in the case n = 1, we may assume that R is a graded
Noetherian domain with a unique homogeneous maximal ideal Pn and∪

α∈Λ Qα is the homogeneous maximal ideal of V . By the induction
hypothesis,

{Qα}α∈Λ = {0 = Q0 ( Q1 ( · · · ( Qn−1}
∪ {Qα | Qn−1 ( Qα and Qα ∩R = Pn}

and the homogeneous quotient field of V/Qi is finite over that of R/Pi

for i = 1, 2, . . . , n − 1. Note that R/Pn−1 is a graded Noetherian
domain, h- dim(R/Pn−1) = 1, and the homogeneous quotient field of
V/Qn−1 is finite over the homogeneous quotient field of R/Pn−1; thus,
by Corollary 3.4 (1), V/Qn−1 is a graded Noetherian domain of h-
dimension one. Thus, V/Qn−1 is discrete as a gr-valuation ring of
h-dimension one. Therefore, V is discrete as a gr-valuation ring and
h- dimV = n. Moreover, since h- dim(V/Qn−1) = 1, we have

|{Qα | Qn−1 ( Qα and Qα ∩R = Pn}| = 1;
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thus, let such a Qα = Qn. By Corollary 3.4 (3),

V/Qn
∼= (V/Qn−1)/(Qn/Qn−1)

is finite over R/Pn
∼= (R/Pn−1)/(Pn/Pn−1). �

Corollary 4.6. Let R =
⊕

α∈Γ Rα be a graded Noetherian domain,
and let {Pi} be a chain of homogeneous prime ideals of R. Then, there
exists a discrete valuation overring of R whose prime ideals contract to
{Pi}.

Proof. Since R is a graded Noetherian domain, there exists a satu-
rated chain {Pβ} of homogeneous prime ideals of R containing {Pi}.
Hence, by Theorems 4.3 and 4.5, there exists a discrete valuation over-
ring of R whose prime ideals contract to {Pβ}, and thus to {Pi}. �

Let R =
⊕

α∈Γ Rα be a graded Noetherian domain,

(0) = P0 ( P1 ( · · · ( Pn

a chain of homogeneous prime ideals of R, and V a discrete valuation
overring of R whose prime ideals contract to {Pi} (Corollary 4.6). It is
known that, if R is Noetherian, then we can choose V as a rank n DVR
[5, Theorem] even though the given chain is not saturated, while we
do not know if the dimension of V can be n when R is not Noetherian.
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