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VALUATIVE AND GEOMETRIC
CHARACTERIZATIONS OF COX SHEAVES

BENJAMIN BECHTOLD

ABSTRACT. We give an intrinsic characterization of Cox
sheaves on Krull schemes in terms of their valuative alge-
braic properties. We also provide a geometric characteriza-
tion of their graded relative spectra in terms of good quo-
tients of graded schemes, extending the existing theory on
relative spectra of Cox sheaves on normal varieties. More-
over, we obtain an irredundant characterization of Cox rings
which, in turn, produces a normality criterion for certain
graded rings.

Introduction. Cox sheaves on normal (pre-)varieties X currently
are an active field of research with the focus on questions of finite
generation and explicit calculation of their ring R(X) of global sections
(called the Cox ring) and quotient constructions describing X in terms
of a Cox ring and combinatorics [4, 8, 9, 11, 12, 18, 19, 20, 27].
Known properties of Cox rings include triviality of homogeneous units
and graded factoriality [2, 3, 7], i.e., factoriality of the multiplicative
monoid of non-zero homogeneous elements. In the case of a free class
group Cl(X) the latter is equivalent to genuine factoriality of the Cox
ring R(X) by a result from [1].

Our present purpose is to investigate and characterize Cox sheaves
in the more general setting of Krull schemes, i.e., integral schemes with
a finite cover by the spectra of Krull rings, compare [23]. A Cox sheaf
on X is a Cl(X)-graded OX -algebra R with homogeneous components
OX(D) for all [D] ∈ Cl(X), equipped with a natural multiplication.
This translates into the more formal requirement that there exists
a morphism of graded OX -algebras from the divisorial OX-algebra
associated to WDiv(X):

π : OX(WDiv(X)) := ⊕
D∈WDiv(X)

OX(D) · χD −→ R
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2 B. BECHTOLD

such that each restriction π : OX(D) → R[D] is an isomorphism, see
Section 3 for more motivation of this definition.

All Cox sheaves on X are linked via the maps from OX(WDiv(X)),
and thus, their monoids of homogeneous elements are isomorphic mod-
ulo units, although the Cox sheaves themselves need not be isomorphic.
Furthermore, one Cox sheaf has locally or globally finitely generated
sections if and only if all Cox sheaves on X do, see Proposition 3.6.

Our first main result is an intrinsic characterization of Cox sheaves
in terms of their valuative algebraic properties. For rings or sheaves
thereof graded by an abelian group G an upper index + marks the
non-zero homogeneous elements and degG denotes the degree map.
Recall that, on a Krull scheme X, each prime divisor Y with generic
point η defines a discrete valuation νY,X : K(X)∗ → Z with valuation
ring K(X)νY,X

= OX,η. The ring OX(U) is then the intersection
over all OX,η with η ∈ U . In terms of sheaves, each Y defines a

discrete valuation νY : K∗ → Z(Y ) from the constant sheaf K∗ onto the
skyscraper sheaf at the generic point of Y , and OX is the intersection

OX =
∩

Y prime

KνY ⊆ K

over the corresponding discrete valuation sheaves KνY . Thus, OX is
a Krull sheaf. The sum over all νY then defines a homomorphism of
presheaves of abelian groups

div :=
∑
Y

νY : K∗ −→WDiv :=
⊕
Y

Z(Y )

to the presheaf of Weil divisors WDiv, whose image and cokernel
presheaves are known as the presheaves of principal divisors PDiv,
respectively, class groups Cl. We will show that Cox sheaves admit
a similar description and may even be characterized in such terms.
Let G := Cl(X), and let R be a Cox sheaf. The role as an ambient
sheaf of R is taken by the constant G-graded sheaf S assigning the
stalk Rξ at the generic point. Every homogeneous component of S
is of type K, and hence, S is G-simple, i.e., every homogeneous
section is invertible. Each prime divisor Y on X now defines a
discrete G-valuation µY : S+ → Z(Y ) on the subsheaf S+ ⊆ S of
G-homogeneous non-zero elements and a corresponding discrete G-
valuation sheaf SµY ⊆ S, whose sections over U are generated by
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all G-homogeneous elements that are valuated non-negatively by µY,U .
Then, R is the intersection

R =
∩

Y prime

SµY ⊆ S

and is thereby a G-Krull sheaf. The sum over all µY defines a homo-
morphism of presheaves

divG :=
∑
Y

µY : S+ −→WDiv .

In this terminology, whose precise definitions are given in Section 2,
our result is the following.

Theorem 0.1. Let X be a Krull scheme with generic point ξ, fraction
field K, essential valuations νY for the prime divisors Y = {η} on X,
and let G be an abelian group and R a G-graded sheaf of OX-algebras.
Then, R is isomorphic to a Cox sheaf if and only if the following hold :

(i) R is a OX-subalgebra of a G-simple OX-algebra S with S0 = K
such that R is a G-Krull sheaf in S defined by discrete G-valuations
{µY }Y which restrict to {νY }Y on K∗;

(ii) degG(S(X)+) = G, divG :=
∑
Y µY is surjective, and divG,X

has kernel R(X)+,∗ = R(X)∗0.

If the above conditions are satisfied, then the isomorphism of grading
groups is

G −→ Cl(X), degG(f) 7−→ [divG,X(f)].

Furthermore, we have R0 = OX , and S is the constant sheaf assigning
Rξ. Each stalk Rη is a discrete G-valuation ring whose corresponding
G-valuation on Q+(Rη) = S(X) is µY,X . For any f ∈ S(U)+, we then
have µY,U (f) = µY,X(f) if η ∈ U and µY,U (f) = 0 otherwise.

If R is a Cox sheaf with the required Cl(X)-grading, then the
above map is the identity on Cl(X). This intrinsic characterization
of Cox sheaves underlines the fact that they form a natural class of
graded sheaves. Condition (i) consists of direct graded analoga of
the properties of the structure sheaf; they occur in various graded
OX -algebras, e.g., in divisorial OX-algebras OX(L) of subgroups L ≤
WDiv(X). Property (ii) ensures the correct Cl(X)-grading, the second
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part being equivalent to surjectivity and the third to injectivity of
the canonical map G → Cl(X). The reference for the equation
R(X)+,∗ = O(X)∗ is [2].

In Theorem 0.2 below, we give further details on Cox sheaves. We
briefly explain the graded properties and invariants which occur. A
G-integral ring R (i.e., a ring without G-homogeneous zero divisors)
is G-factorial if the monoid R+ of non-zero homogeneous elements is
factorial. The homogeneous fraction ring Q+(R) is the localization of
R by R+. A G-Krull ring is the graded analogon of a Krull ring. Its
essential G-valuations form the minimal family ofG-valuations defining
R in Q+(R). They correspond bijectively to the G-prime divisors, i.e,
the minimal non-zero G-prime ideals p of R. The G-valuation ring of
an essential G-valuation νp is the graded localization Rp. More detailed
information on G-Krull rings is found in Section 1. The essential G-
valuations of a G-Krull sheaf R are defined in terms of the G-Krull
rings R(U) for all affine U , see Section 2.

Theorem 0.2. Let R be a Cox sheaf on a Krull scheme X, and let S
be the constant sheaf assigning Rξ. Then, R is quasi-coherent and has
the following properties:

(i) For each open U , the ring R(U) is G-factorial, and degG(R(U)+)
generates G. If U is affine, then S(U) = Q+(R(U)), and degG(R(U)+)
equals G.

(ii) The defining family {µY }Y from Theorem 0.1 (i) are the essential
G-valuations of R. SµY

(U) equals Rη if the generic point η of Y belongs
to U and S(X) otherwise; in particular,

R(U) =
∩
η∈U
Rη ⊆ S(X).

The stalk at x ∈ X is the G-local G-Krull ring

Rx =
∩
x∈Y
S(X)µY,X =

∩
x∈Y
Rη ⊆ S(X).

The homogeneous elements of its G-maximal ideal ax, respectively, the
homogeneous units of Rx are

ax∩R+
x ={f ∈ S(X)+; there exists a U ∋x :f ∈ R(U)+, x ∈ |divG,U (f)|}
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R+,∗
x ={f ∈ S(X)+; there exists a U ∋ x : f ∈ R(U)+, divG,U (f)=0},

and degG(R+,∗
x ) ⊆ Cl(X) is the subgroup of classes [D] represented by

a divisor D which is principal near x.

(iii) For a prime divisor Y with generic point η, each generator of
the maximal ideal of OX,η = (Rη)0 also generates aη; in particular, Rη
has units in every degree.

G-factoriality of the ringsR(U) is due to surjectivity of divG,U which
is essentially the argument from [3]. The first proof of G-factoriality
of Cox rings is due to [7]. It is valid for Cox sheaves of finite type on
normal prevarieties. Cox sheaves on affine Krull schemes also allow the
following description.

Corollary 0.3. A G-graded sheaf R on an affine Krull scheme X is a

Cox sheaf if and only if it is the sheaf R = R̃ associated to a G-graded
O(X)-algebra R such that :

(i) R is G-factorial (in particular, R is a G-Krull ring) and R+,∗ =
R∗

0;
(ii) R0 = O(X), Q+(R) = (R0 \ 0)−1R and degG(Q

+(R)+) = G;
(iii) the essential G-valuations of R restrict bijectively on Q(R0) to the

essential valuations of R0.

The canonical choice for a geometric realization of a quasi-coherent
G-graded OX -algebra F is its graded relative spectrum SpecG,X(F)
which is glued from the G-spectra (i.e., sets of G-prime ideals) of
F(U) for all affine open U ⊆ X. This object belongs to the category
of graded schemes (which contains the category of schemes, i.e., 0-
graded schemes, as a full subcategory), wherein structure sheaves are
graded and morphisms between affine graded schemes are comorphisms
of maps of graded rings, see Section 4. From the perspective of [13]
the category of graded schemes is situated between the categories of
F1-schemes and classical schemes within their common parent category
of sesquiad schemes, see Remark 4.4. Graded algebraic properties of
F naturally correspond to geometric properties of SpecG,X(F). The
Cl(X)-graded relative spectrum of a Cox sheaf R on X, together with
the canonical morphism q : SpecCl(X),X(R) → X, is called its graded
characteristic space. Since a Cox sheaf is a G-Krull sheaf, its graded
characteristic space is a G-Krull scheme, which is the generalization
of Krull schemes in the category of graded schemes. For a G-Krull
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scheme X̂, the constant sheaf assigning OX̂,ξ̂ is G-simple and denoted

KX̂ or K if no confusion can arise. A G-prime divisor on X̂ is an ir-

reducible closed subset Ŷ of X̂; its generic point is denoted η̂. Each

G-prime divisor Ŷ defines a discrete G-valuation νŶ : K+ → Z(Ŷ ) to

the skyscraper sheaf at the generic point of Ŷ . The sum

divG :=
∑

Ŷ G-prime

νŶ : KX̂ −→WDivG :=
⊕

Ŷ G-prime

Z(Ŷ )

defines a morphism of presheaves to the presheaf of G-Weil divisors on

X̂. Its image and cokernel are the presheaves of G-principal divisors,
respectively, G-class groups.

Our second main result is the following geometric characterization
of graded characteristic spaces.

Theorem 0.4. Let q : X̂ → X be a morphism from a G-graded scheme
to a scheme. Then, X is a Krull scheme and q is a graded characteristic
space if and only if the following hold :

(i) X̂ is a G-graded G-Krull scheme;
(ii) q is a good quotient and induces a commutative diagram of pre-

sheaves
K∗
X

div //

∼=q∗

��

WDiv

(q∗KX̂)∗0
q∗div

G

// q∗ WDivG

Ŷ 7→q(Ŷ )∼=

OO

(iii) degG(K(X̂)+) = G, ClG(X̂) = 0, and O(X̂)+,∗ = O(X̂)∗0.

If X̂ = SpecG,X(R) with a Cox sheaf R, then, with divG :=
∑
Y µY ,

the following commutative diagram extends the diagram of (ii):

S+ divG // //

∼=q∗

��

WDiv

q∗K+

X̂

q∗div
G

// // q∗ WDivG

Ŷ 7→q(Ŷ )∼=

OO
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For each prime divisor Y with generic point η, the preimage q−1(η)

consists of the generic point η̂ of a single G-prime divisor Ŷ . If x̂ ∈ X̂
is the unique point contained in all closures of points mapped to x ∈ X,

then x̂ ∈ Ŷ if and only if x ∈ Y . In particular, OX̂,x̂ = Rx.

This result extends the geometric characterization of relative spectra
of Cox sheaves of finite type on normal prevarieties given in [2]; indeed,
with respect to normal prevarieties, Theorem 0.4 allows a translation
into terms of good quotients by quasi-torus actions, see Theorem 6.5.
In the following theorem, we also generalize their characterization of
Cox rings.

Theorem 0.5. If X is a Krull scheme with class group G and Cox
ring R, then the following hold :

(i) R is G-factorial ;

(ii) R+,∗ = R∗
0;

(iii) degG(R
+) generates G.

If X has a cover by affine complements of divisors (e.g., X is separated
or of affine intersection), then

(iv) each localization Rp at a G-prime divisor has units in every
degree.

Conversely, if G is finitely generated and R (is of finite type over K
and) satisfies (i)–(iv), then there exists a Krull scheme (a K-prevariety)
X of affine intersection with class group G and Cox ring R(X) = R.

Here, property (iv) implies property (iii). The additional assumption
is needed in order to translate the fact that the stalks Rη have units in
every degree into a property of the global ring R(X). In the case that
R is finitely generated over an algebraically closed base field K, prop-
erty (iv) translates into freeness of the action of H = Specmax(K[G]) on
a big open subset of Specmax(R), see Remark 6.4, which is the property
featured in the characterization of finitely generated Cox rings of nor-
mal prevarieties of affine intersection given by [2]. Our characterization
of Cox rings of Krull schemes with cover by affine divisor complements
and finitely generated class groups by conditions (i), (ii) and (iv) is
irredundant, see Remark 5.2. Together with normality of Cox rings of
normal prevarieties over K [2, Thm. I.5.1.1], we obtain:
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Corollary 0.6. Let G be a finitely generated abelian group, K an
algebraically closed field and R a G-graded affine K-algebra satisfying
the above properties (i)–(iv). Then, R is normal.

The paper is organized as follows. Section 1 lays the algebraic
foundations for the later parts, introducing G-Krull rings and providing
the key preparation for the calculation of the essential G-valuations
of a Cox sheaf R, and hence, the G-prime divisors of SpecG,X(R)
in Theorem 1.10. In Section 2, we introduce G-Krull sheaves and
discuss the example of divisorial OX -algebras OX(L) associated to
subgroups L ≤ WDiv(X). In Section 3, we give background on the
definition of Cox sheaves and prove Theorem 0.1. Section 4 offers
a first general introduction to graded schemes and good quotients
thereof as well as G-Krull schemes and their G-Weil divisors and
class groups. The example of graded spectra of monoid algebras
(Example 4.3) relates graded schemes to F1-schemes, i.e., schemes
over the field with one element as treated in [14]. We also indicate
how graded schemes fit into the more general framework of sesquiad
schemes from [13], see Remark 4.4. In Section 5, we prove Theorems
0.4 and 0.5 using Theorem 0.1. In Section 6, we point out some
aspects of the connection between graded schemes of finite type and
diagonalizable actions on prevarieties. In particular, we reformulate
Theorem 0.4 in this more familiar setting. This requires the concept
of invariant structure sheaves whose stalks naturally encode generic
isotropy groups of the action, see Remark 6.4. Furthermore, we provide
details on the connection between orbit closures, graded schemes and
combinatorics (Remark 6.3), and go on to show that the toric graded
scheme corresponding to a toric variety is canonically identified with
the defining polyhedral fan (Remark 6.6).

1. G-Krull rings. We start by recalling some generalities and nota-
tion from graded algebra. All rings are taken to be commutative with
unit. All abelian groups used to grade rings are written additively. A
G-graded ring is a ring with a decomposition

R =
⊕
w∈G

Rw

into abelian groups such that RwRw′ ⊆ Rw+w′ . Rw is called the w-
homogeneous component of R, and its non-zero elements are called w-
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homogeneous. The sets of G-homogeneous elements, with and without
zero, and the group of G-homogeneous units are denoted R+,0, R+ and
R+,∗, respectively.

A morphism of graded rings is a homomorphism ϕ : R→ R′ of rings
together with an accompanying group homomorphism ψ : G→ G′ such
that ϕ restricts to group homomorphisms Rw → R′

ψ(w). A morphism

of graded rings is called degree-preserving if the accompanying map
is the identity. For any fixed G, the category of graded rings has a
subcategory of G-graded rings with degree-preserving morphisms, and
this subcategory has direct and inverse limits.

A G-graded module M over a G-graded ring R is an R-module
with a decomposition M =

⊕
w∈GMw into abelian groups such that

RwMw′ ⊆ Mw+w′ , where the elements of
∪
w∈GMw are called homo-

geneous elements. A G-graded submodule of M is a submodule of the
form N =

⊕
w∈GN ∩Mw, i.e., a submodule generated by homoge-

neous elements.

Remark 1.1. If B → R is a morphism of graded rings, then R is also
called a graded algebra over B. The graded algebras over B form a
category with the obvious morphisms. This category has coproducts:
If ϕR : B → R and ϕS : B → S are morphisms accompanied by
ψL : G → L and ψM : G → M , then R ⊗B S is naturally graded by
L × M/im(ψL × −ψM ) and the canonical maps R → R ⊗B S and
S → R⊗B S are morphisms of graded algebras over B. This statement
is used to define fiber products of graded schemes.

Classical algebraic properties of rings and their elements and ideals
have graded analoga which are obtained by restricting the defining
axioms to homogeneous elements, respectively, graded ideals. In par-
ticular, there are natural concepts of graded divisibility theory, i.e.,
G-integrality, G-prime and G-irreducible elements, G-factoriality, as
well as G-prime and G-maximal ideals, G-locality, G-Noetherianity,
etc. Several authors have studied such properties: [21] treats G-
prime ideals and invariants of graded modules over G-Noetherian rings.
Graded divisibility theory was introduced and interpreted geometrically
by [3, 18] who showed that G-factoriality is a natural property of Cox
rings of normal prevarieties. Graded integral closures and their behav-
ior under coarsening have been studied in [26]. The localization of R
by a G-prime ideal p is denoted Rp := (R+ \ p)−1R. By localizing a
G-integral ring R by R+ we obtain Q+(R), the G-homogeneous frac-
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tion ring in which every homogeneous element is invertible, making it
G-simple. In general, a G-graded ring R is G-simple if and only if R0

is a field and degG(R
+) is a group, and in that case, rR0 = RdegG(r)

holds for every r ∈ R+. A G-integral ring R is G-normal if each homo-
geneous fraction that is integral over R (i.e., over R+,0) is an element
of R.

In the following, major part, of this section, we take a slightly more
detailed look at G-Krull rings, the graded equivalent of Krull rings.
Proofs of their basic properties are available in [6]; they may be ob-
tained from the proofs of the respective properties of Krull rings (found,
e.g., in [16, 22]) by restricting the arguments to homogeneous elements,
respectively, graded ideals. In Construction 1.9, we treat a canonical
class of G-Krull rings which form the algebraic analogon of divisorial
OX -algebras OX(L) of subgroups of Weil divisors. Theorem 1.10 gives
details on their G-divisors and essential G-valuations and thus provides
the key for the calculation of the essential G-valuations of Cox sheaves
in Section 3 and theG-Weil divisors of their graded characteristic spaces
in Section 5.

Definition 1.2. Let S be a G-simple ring.

(i) A discrete G-valuation on S is a group epimorphism ν : S+ → Z
with ν(a+b) ≥ min{ν(a), ν(b)} for all w ∈ G, a, b ∈ Sw\0 with a+b ̸= 0.
Its discrete G-valuation ring is the subring Rν ⊆ S generated by the
preimage of Z≥0 under ν.

(ii) A G-Krull ring is an intersection R of discrete G-valuation rings
Rνj ⊆ S, j ∈ J such that for each a ∈ R+ only finitely many νj(a) are
non-zero.

Let R be a G-integral ring. For G-graded R-submodules a, b of
Q+(R), product ab and quotient

[a : b] = {f ∈ Q+(R); fb ⊆ a}

are again G-graded. A G-fractional ideal is a G-graded proper R-
submodule a ≤R Q+(R) with [R : a] ̸= 0.

Construction 1.3. Let R be a G-integral ring. A G-fractional ideal
a is called a G-divisor of R if a = [R : [R : a]]. The set DivG(R) of
G-divisors of R equipped with the operation sending a and b to
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a+b := [R : [R : ab]]

and the partial order defined by a ≤ b :⇔ a ⊇ b is a partially ordered
semi group with neutral element R in which each two elements have
infimum and supremum. There is a canonical homomorphism

divG : Q+(R)+ −→ DivG(R), f 7−→ Rf

with kernel R+,∗ whose image P DivG(R) is called the group of G-princi-

pal divisors. The cokernel ClG(R) is called the G-class semi-group
of R.

The semi-group of G-divisors characterizes R as follows:

Theorem 1.4. Let R a G-integral ring.

(i) R is a G-Krull ring if and only if DivG(R) is a group and every

non-empty set of positive elements in DivG(R) has a minimal element.

(ii) R is G-factorial if and only if R is a G-Krull ring with ClG(R)
= 0.

Remark 1.5. Let {νj}j∈J be a defining family of the G-Krull ring R.
For a G-fractional ideal a and j ∈ J , we set

ν(aj) := max{−νj(f); f ∈ [R : a] ∩Q+(R)+} ∈ Z.

This notion is well defined and satisfies νj(a) = ν([R : [R : a]]). Fur-
thermore, there is a monomorphism of ordered groups

DivG(R) −→
⊕
j∈J

Z, a 7−→ {νj(a)}j∈J .

Proposition 1.6. Let R be a G-Krull ring. Then the following hold :

(i) the minimal positive G-divisors are those that are G-prime as
ideals in R, and these are the minimal non-zero G-prime ideals of
R; they are called the G-prime divisors of R and form a Z-basis of
DivG(R);

(ii) for each G-prime divisor p the map νp assigning to a ∈ Q+(R)

the coefficient with which p occurs in divG(a) is a G-valuation on
Q+(R). Its G-valuation ring is Rp, and we have p∩R+ = ν−1

p (Z>0)∩
R+. The coefficient of a G-divisor a at p is
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νp(a) = min{νp(a); a ∈ a ∩Q+(R)+}.

The family {νp}p is minimal among all families defining R in Q+(R),
it is called the family of essential G-valuations of R.

Remark 1.7. Assertion (i) is, in particular, an existence statement:
A G-Krull ring has G-prime divisors if and only if it is not G-simple.
A general G-integral ring need not have G-prime divisors (i.e., minimal
non-zero G-prime ideals), even if it is not G-simple.

Proposition 1.8. A G-Noetherian G-integral ring is a G-Krull ring
if and only if it is G-normal.

Next, we treat the algebraic construction that lies beneath divisorial
OX -algebras of subgroups L of Weil divisors.

Construction 1.9. Let A be a Krull ring with essential valuations
{νp}p, and let ϕ : G → Div(A) be a homomorphism of abelian groups.
The group algebra S := Q(A)[G] is G-simple and

µp : S
+ −→ Z

aχw 7−→ νp(a) + νp(ϕ(w)) = νp(div(a) + ϕ(w))

defines a G-valuation on S for every prime divisor p. The ring
R =

∩
p Sµp

is a G-Krull ring with homogeneous components

Rw = {a ∈ Q(A); a = 0 or div(a) + ϕ(w) ≥ 0} · χw

= {a ∈ Q(A); Aa ⊆ ϕ(−w)} · χw = ϕ(−w) · χw

for w ∈ G.

Theorem 1.10. In the above notation, the ring R has the following
properties:

(i) we have R0 = A and the universal property of localization induces
isomorphisms (R0 \ 0)−1R ∼= Q+(R) ∼= Q(A)[G];

(ii) {µp}p are the essential G-valuations of R, and there are mutually
inverse isomorphisms

DivG(R) −→ Div(A)

α : b 7−→
∑
p

µp(b)p
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[R : [R : Ra]]←− [ a : β
which restrict to mutually inverse bijections

{G-prime divisors of R} −→ {prime divisors of A}
q 7−→ q ∩A

⟨µ−1
p (Z>0) ∩R⟩ ←−[ p

and induce an isomorphism ClG(R) ∼= Cl(A)/im(ϕ);

(iii) the localization Rq by a G-prime divisor q of R has units in
every degree with (Rq)0 = Ap where p = q ∩A;

(iv) R has homogeneous components of every G-degree, i.e., degG(R
+)

= G.

Lemma 1.11. In the above situation, let a ⊂ Q(A) be a fractional
ideal and p a prime divisor of A. Then,

µp(Ra) = νp(a),

in particular, µp(Rp
′) = δp,p′ holds for any prime divisor p′ of A.

Proof. We calculate

µp(Ra) ≥ max{µp(a); a ∈ Q(A)∗, a ⊆ Aa}
= νp(a) = min{µp(a); a ∈ a}
≥ max{µp(r); r ∈ Q+(R)+, Ra ⊆ Rr} = µp(Ra). �

Proof of Theorem 1.10. Assertion (iv) follows from the fact that
G-divisors contain non-zero elements. For (i), we observe that the
canonical morphism (R0 \ 0)−1R → Q+(R) → Q(A)[G] is surjective.
Indeed, for every w ∈ G, there exists an element 0 ̸= aχw ∈ Rw by
(iv), and thus, aχw/aχ0 is mapped to χw.

For (ii), we first observe that, by Remark 1.5, α is a monomorphism
of partially ordered groups. Since the above lemma and Remark 1.5
give α(β(a)) = a, α is also surjective and β is its inverse map. In
particular, they induce bijections between the sets of minimal positive
elements of DivG(R) and Div(A). This means that the divisorial ideals
β(p) are the G-prime divisors of R. For any prime divisor p of A and
any G-prime divisor q′ = β(p′), we have µp(q

′) = δp,p′ , and therefore,
µp = νβ(p) is the essential G-valuation corresponding to q = β(p), and
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we have q = ⟨µ−1
p (Z>0) ∩ R⟩. Since νq restricts to νp, this implies

q ∩A = p.

For (iii), let q be a G-prime divisor of R, and let p = q ∩ A be
the corresponding prime divisor of A. First, we show (Rq)0 = Ap.
Let f/g ∈ (Rp)0. Then, there are a, b ∈ A with f/g = a/b, and
νp(a/b) = νq(f/g) ≥ 0, i.e., a/b ∈ Ap. Each generator t0 of the
maximal ideal of Ap satisfies νq(t0) = νp(t0) = 1 and is thus a generator
of the G-maximal ideal of Rq. This implies the assertion. �

Remark 1.12. From [15], we observe that, if G is free, then for a
G-prime divisor q of R and p = A∩q, each choice of a generator for the
maximal ideal of Ap gives an isomorphism Rq

∼= Ap[G]. In particular,
Rq is a Krull ring, and it may be concluded that R is a Krull ring.

The following well-behaved class of graded morphisms will be
used in Section 3 to describe the relation between the sections of
OX(WDiv(X)) and Cox sheaves. Their properties, some of which are
listed in Proposition 1.13 below, ensure that Cox sheaves inherit all
graded properties from OX(WDiv(X)).

A component-wise bijective epimorphism (CBE) is an epimorphism
of graded rings ϕ : R′ → R accompanied by an epimorphism ψ : G′ → G
such that each restriction R′

w → Rψ(w) is bijective. If ψ is fixed, then,
for each given R, one obtains R′ and ϕ constructively and uniquely
by setting R′

w′ := Rψ(w′) for w′ ∈ G′. The functor from G-graded
rings to G′-graded rings thus defined is right adjoint to the coarsening
functor associated to ψ, see [25]. If R′ and ψ are fixed, then each
homomorphism χ : ker(ψ)→ R′+,∗ with χ(w′) ∈ R′

w′ defines a CBE

ϕ : R′ −→ R′/⟨1− χ(w′);w′ ∈ ker(ψ)⟩.

Proposition 1.13. Let ϕ : R′ → R be a CBE. Then, the following
hold :

(i) R+ ∼= R′+/ϕ−1(1) and there is a bijection of sets of graded ideals

{a′ E R′} −→ {a E R}
a′ 7−→ ϕ(a′)

⟨ϕ−1(a) ∩R′+⟩ ←−[ a
respecting inclusions, products, quotients, sums and intersections.
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(ii) Likewise, there is a bijection between the graded R′-, respectively,
R-modules of Q+(R′) and Q+(R).

(iii) IfM ⊆ R+ is a submonoid andM ′ := ϕ−1(M), thenM ′−1R′ →
M−1R is again a CBE, in particular, for every f ′ ∈ R′+, the map
R′
f ′ → Rϕ(f ′) is a CBE.

(iv) R′ is G′-integral/-simple/-factorial, respectively, has units in
every G′-degree if and only if R is G-integral/-simple/-factorial, re-
spectively, has units in every G-degree.

(v) Let ϕS : S
′ → S be a CBE with R′ ⊆ S′ and R ⊆ S extending the

CBE ϕ : R′ → R. Suppose that S′ is G′-simple. Then, the following
hold :

(a) S′ = Q+(R′) if and only if S = Q+(R).

(b) Each G′-valuation ν on S′ with ker(ϕ) ⊆ ker(ν) induces a G-
valuation ν on S and vice versa.

(c) R′ is a G′-Krull ring defined by {νj}j∈J if and only if R is a Krull
ring defined by {νj}j∈J . Here, {νj}j∈J are the essential G′-valuations
if and only if {νj}j∈J are the essential G-valuations.

Thus, R′ and R share all of the graded properties defined in terms
of graded ideals and all properties of R+/R+,∗.

2. Divisorial OX-algebras. Let G be an abelian group. We begin
with the prerequisites on graded sheaves needed for the definition of
G-Krull sheaves–the sheaf-theoretic analogon of G-Krull rings. Recall
that a G-graded (pre-)sheaf of rings F on a topological space X is a
(pre-)sheaf of G-graded rings with degree-preserving restriction maps.
F is also called a graded (pre-)sheaf with grading group G = gr(F). As
a presheaf, F then equals

⊕
w∈G Fw, where Fw ⊆ F is the (pre-)sheaf of

abelian groups assigning F(U)w to U . The monoid of G-homogeneous
elements of F is the sheaf of monoids

F+,0 :=
∪
w∈G

Fw.

If all F(U) are G-integral and all restrictions are injective, then F+

denotes the sheaf of monoids given by F+,0(U) \ {0}. A morphism
ϕ : G → F of graded (pre-)sheaves comes with a group homomorphism
ψ : gr(G)→ gr(F) such that each of the morphisms of graded rings ϕU
is accompanied by ψ. F is also called a graded G-algebra.
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Definition 2.1. Let X be a topological space.

(i) A discrete value sheaf is a sheaf of abelian groups Z with values
in {0,Z} such that Z≥0(U) := Z(U)≥0 defines a subsheaf of Z.

(ii) Let G be an abelian group. Let S be a sheaf of G-simple rings
on X. A discrete G-valuation on S is a morphism ν : S+ → Z to a
discrete value sheaf such that each νU is surjective and either a discrete
G-valuation or zero. The associated G-valuation sheaf is the graded
subsheaf Sν ⊆ S of rings generated by ν−1(Z≥0).

(iii) A G-Krull sheaf in S is an intersection

R =
∩
j∈J

Sνj

of G-valuation sheaves such that, for every U and every f ∈ R+(U),
only finitely many νj,U (f) are non-zero.

Definition 2.2. LetX be a scheme (or a graded scheme, see Section 4),
and let R be a G-Krull sheaf on X given in a G-simple sheaf S by a
family of discrete G-valuations {νj}j∈J . Suppose that S is constant
and, for each affine open U ⊆ X, we have Q+(R(U)) = S(U). Then,
the family {νj}j∈J is called the family of essential G-valuations if, for
each affine U ⊆ X, the family {νj,U ; j ∈ J, νj,U ̸≡ 0} is the family of
essential G-valuations of the G-Krull ring R(U).

For G = 0, we usually omit the prefix G. A Krull scheme is an
integral scheme which has a finite cover by spectra of Krull rings, cf.,
[23]. A prime divisor is a closed irreducible subset Y ⊆ X. Its generic
point is denoted η ∈ X. Sums and intersections with the subscript Y
are taken over all prime divisors Y of X unless specified otherwise.

Example 2.3. Let X be a Krull scheme and G = 0. Each prime
divisor defines a valuation νY : K∗ → Z(Y ) to the skyscraper sheaf Z(Y )

at the generic point of η. The sections of its valuation sheaf KνY on U
are OX,η if η ∈ U and K otherwise. This turns the structure sheaf

OX =
∩
Y

KνY

into a Krull sheaf with essential valuations νY .

Remark 2.4. A quasi-compact scheme X is a Krull scheme if and only
if OX is a Krull sheaf.
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For the remainder of this section, X is a Krull scheme. Recall that
the presheaf of Weil divisors is WDiv :=

⊕
Y Z(Y ), and there is a

morphism

div :=
∑
Y

νY : K∗ −→WDiv .

Its image PDiv is the presheaf of principal divisors ofX, and its cokernel
is the presheaf Cl of divisor class groups. For each prime divisor Y there
is a natural projection prY : WDiv→ Z(Y ). The support |D| of a Weil
divisor D ∈ WDiv(U) is the intersection of U with the union over all
prime divisors occurring with non-zero coefficient in D.

Construction 2.5. For a subgroup L ≤WDiv(X), the constant sheaf
of L-graded group algebras

S := K[L] =
⊕
D∈L
K · χD

is a sheaf of L-simple rings. Each prime divisor η ∈ X defines an L-
valuation

µY : S+ −→ Z(Y )

S+(U) ∋ fχD 7−→ µY,U (fχ
D) := νY,U (f) + prY,U (D|U ).

Then, OX(L) :=
∩
Y SµY is an L-Krull sheaf on X, called the divisorial

OX-algebra associated to L. Its homogeneous parts have sections
OX(L)D(U) = OX(D)(U) · χD, where OX(D) is the OX-submodule
of K associated to D with sections

OX(D)(U) = {f ∈ K(U); f = 0 or divU (f) +D|U ≥ 0},

in particular, OX(L)0 = OX . The sum over all µY defines a morphism

divL :=
∑
Y

µY : S+ −→WDiv

S+(U) ∋ fχD 7−→ divL,U (fχ
D) = divU (f) +D|U

with kernel OX(L)+,∗. In particular, OX(L)(X)+,∗ is the set of all
elements fχD with divX(f) = −D.

Proposition 2.6. In the above notation, the divisorial algebra R :=
OX(L) has the following properties:
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(i) there is a canonical isomorphism S(X) ∼= Rξ, and, for affine U ,
we have S(U) ∼= Q+(R(U)) and degL(R(U)+) = L;

(ii) {µY }Y are the essential L-valuations of R;
(iii) the sections of SµY

on U equal Rη if η ∈ U and S otherwise;

(iv) the stalk at x ∈ X is the L-local L-Krull ring

Rx =
∩
x∈Y

S(X)µY,X
⊆ S(X)

whose L-maximal ideal ax has homogeneous elements

ax ∩ S(X)+

= {g ∈ R+
x ; there is a U ∋ x with g ∈ R(U), x ∈ |divL,U (g)|}.

Its homogeneous units are

R+,∗
x = {g ∈ S(X)+; there is a U ∋ x with divL,U (g) = 0}

=
∩
x∈Y

ker(µY,X),

and degL(R+,∗
x ) is the subgroup of Weil divisors in L that are principal

near x. The stalk at the generic point η of a prime divisor Y has units
in every degree, and aη has a generator in (Rη)0 = OX,η.

(v) The image of divL,U (respectively, divL,U |R(U)+) consists of (the

non-negative elements in) the union over all Cl(U)-classes of divisors
in L|U , in particular, if L|U maps onto Cl(U), then R(U) is L-factorial.

Remark 2.7 ([2, Remark I.3.1.6]). For an open set U ⊂ X, each
g ∈ OX(L)(U)+ defines an open subset Ug := U \ |divL,U (g)| and a
canonical isomorphism

OX(L)(U)g ∼= OX(L)(Ug).

In particular, OX(L) is quasi-coherent.

Remark 2.8. As a subsheaf of a constant sheaf, OX(L) has injective
restriction maps, and therefore, all the canonical maps OX(L)(U) →
OX(L)x for x ∈ U and OX(L)x → OX(L)x′ for x ∈ x′ are injective as
well.
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Proof of Proposition 2.6. For (i), note that the inclusions ıV : R(V )
⊆ S(X) induce an injection

ıξ : Rξ −→ S(X).

For affine open U ⊆ X, we consider the canonical monomorphism

αU : Q+(R(U)) −→ S(X), g/h 7−→ ıU (g)ıU (h)
−1.

For surjectivity of ıξ and αU , let fχ
D ∈ S(X)D, and set W := X \

|divX(f) +D|. Then, we have f|Wχ
D ∈ R(W )D and ıξ((f|Wχ

D)ξ) =

fχD. Furthermore, there exists an h ∈ OX(U) = R(U)0 with
Uh ⊆W ∩U , and, by Remark 2.7, there are m > 0 and gχD ∈ R(U)D
such that gχD(hχ0)−m = f|Uh

χD. Hence, αU (gχ
D/(hχ0)m) = fχD.

For the supplement and assertion (ii), we invoke Theorem 1.10 with
A := O(U), ϕ : L→ L|U and R = R(U).

For (iii), note that, if η /∈ U , then µY,U = 0, and therefore,
S(U)µY,U

= S(U). If η ∈ U , then (iv) gives Rη = S(X)µY,X
=

S(U)µY,U .

For (iv), first note that, in S(X), we have

R+
x = {fχD ∈ S(X)+; there is a U ∋ x with f ∈ OX(D)(U)}.

If f ∈ OX(D)(U) and x ∈ U , then, for every prime divisor Y containing
x in its closure, we have η ∈ U , and thus, µY,X(fχD) = µY,U (fχ

D) ≥ 0.
Conversely, if fχD ∈ S(X)+ satisfies µY,X(fχD) ≥ 0 for all prime
divisors Y with x ∈ Y , then, for the complementW of all prime divisors
Y ′ with µY ′,X(fχD) < 0, we have f ∈ OX(D)(W ) and x ∈ W . This
establishes that Rx is the L-Krull ring in S(X) defined by all µY,X with
x ∈ Y . Its homogeneous units are therefore obtained as the intersection
of the kernels of the defining L-valuations.

For the second representation, let g ∈ R+,∗
x ⊆ S(X)+ ,and let W

be the complement of all prime divisors Y ′ with µY ′,X(g) ̸= 0. None
of these Y ′ contain x in their closure; therefore, x ∈ W . The equation
divL,W (g) = 0 holds by definition of W . Conversely, if g ∈ S(X)+

satisfies divL,U (g) = 0 for some U containing x, then g is invertible
in R(U), and hence, in Rx. In particular, degL(R+,∗

x ) is contained in
the subgroup of Weil divisors in L that are principal near x. For the
converse inclusion, let D|U = divU (f). Then, f−1χD ∈ R(U)D is a

unit, and thus, (f−1χD)x is a unit. Let ax be the ideal generated by
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the set

{g ∈ R+
x ; there is a U ∋ x with g ∈ R(U), x ∈ |divL,U (g)|}

Due to Lemma 5.1, this set is closed under addition of elements of the
same degree and therefore coincides with ax ∩ R+

x . Its complement in
R+
x is R+,∗

x , and thus, ax is the only L-maximal ideal of Rx.
For the supplement on the stalks at generic points of prime divisors,

first note that (Rη)0 = OX,η since taking stalks commutes with direct
sums. Now, let U ⊆ X be affine with η ∈ U and D ∈ L. By the
Approximation theorem for Krull rings, there exists an f ∈ OX(D)(U)
with prY (divU (f)) = 0 and prY ′(divU (f)) = prY ′(D|U ) for all Y ′ ∈
|D|U | and prY ′′(divU (f)) ≥ 0 for all other prime divisors. Then,

(fχD)Y is a unit of degree D in RY .

In (v), the statements on the image of divL,U follow from the
definition of divL. If divL,U is surjective, then R(U)+/R(U)+,∗ ∼=
WDiv≥0(U) is a factorial monoid, and thus, also R(U)+ is a factorial
monoid, meaning that R(U) is L-factorial. �

Remark 2.9. By arguments from [15], each R(U) is a Krull ring.
Thus, if L|U maps onto Cl(U), then R(U) is a factorial ring by [1].
However, the sections of Cox sheaves will in general not be factorial.
Integrality and normality for the sections of Cox sheaves are proven
in the case of normal (pre-)varieties, see [2, Section I.5.1] or [7], but
neither proof seems to be applicable in the more general setting of Krull
schemes.

3. Characterization of Cox sheaves. Intuitively, a Cox sheaf
should be a Cl(X)-graded OX -algebra R whose [D]-homogeneous parts
are of type OX(D), i.e., there should exist isomorphisms of OX -
modules πD : OX(D)→R[D] for all Weil divisors D ∈WDiv(X). This
requirement fixes the OX -module structure of Cox sheaves. There is,
however, no canonical way to equip such an OX -module with an OX -
algebra structure. But, we can and do require that the multiplication in
R be natural in the sense that, up to the isomorphisms πD, it is given
by the multiplication in K, meaning that to multiply homogeneous
sections of degree [D] and [D′] in R is the same as to apply π−1

D ,

respectively, π−1
D′ , multiply the resulting sections ofOX(D) andOX(D′)

in K and then apply πD+D′ . This translates into the condition that
the morphism of OX -modules
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OX(WDiv(X)) =
⊕

D∈WDiv(X)

OX(D) · χD π−−−−→ R =
⊕

[D]∈Cl(X)

R[D],

defined by the sum of the πD is a morphism of graded OX -algebras.
Summing up, a Cox sheaf is defined as a Cl(X)-graded OX -algebra R
possessing a graded morphism fromOX(WDiv(X)) toR which restricts
to isomorphisms of the homogeneous parts. Such a type of morphism
between two graded sheaves has useful properties and thus justifies the
following definition.

Definition 3.1. A morphism π : F → G of graded presheaves of rings
with the accompanying map ψ : L → G of abelian groups is called a
component-wise bijective epimorphism (CBE) if ψ is an epimorphism
and the restriction π|Fw

is bijective for every w ∈ L. Equivalently,
every pair (πU , ψ) is a CBE of rings.

Remark 3.2. Let ψ : L → G be an epimorphism of abelian groups.
Let π : F → G be a morphism of graded presheaves accompanied by ψ.

(i) π is a CBE if and only if, for each open U ⊆ X and each
v ∈ ker(ψ), there exists precisely one preimage χU (v) of 1G(U) in F(U)v
and πU induces isomorphisms

F(U)+,0/im(χU ) ∼= G(U)+,0,

G(U) ∼= F(U)/⟨1F(U) − χU (v); v ∈ ker(ψ)⟩.

Note that the map χU : ker(ψ) → F(U)+,∗ is automatically a group
homomorphism and defines a homomorphism χ : ker(ψ) → F+,∗ of
presheaves, called the kernel character of π, where ker(ψ) is considered
as a constant presheaf.

(ii) If π is a CBE, then F is a sheaf if and only if G and ker(π) are
sheaves.

(iii) A morphism π : F → G of graded sheaves of rings is a CBE of
sheaves if and only if every πx : Fx → Gx is a CBE of graded rings.

Definition 3.3. Let X be a scheme. A CBE between graded OX -
algebras which is also a morphism of OX -algebras is a CBE of OX-
algebras.
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In this terminology, the precise definition of Cox sheaves is the
following.

Definition 3.4. Let X be a Krull scheme. A Cox sheaf on X
is a Cl(X)-graded OX -algebra R such that there exists a CBE
π : OX(WDiv(X)) → R of OX -algebras that is accompanied by the
canonical map WDiv(X)→ Cl(X).

Remark 3.5. For a Cl(X)-graded OX -algebra R on a Krull scheme
X, the following are equivalent:

(i) R is a Cox sheaf;

(ii) for every subgroup L ≤ WDiv(X) mapping onto Cl(X), there
exists a CBE π : OX(L)→R;

(iii) for some subgroup L ≤ WDiv(X) mapping onto Cl(X), there
exists a CBE π : OX(L)→R.

Proof. Assume that (iii) holds. Let

π : OX(L) −→ R

be a CBE. Let Dj , j ∈ J , be a basis of WDiv(X). Then, there exist
D′
j ∈ L, j ∈ J and fj ∈ OX(D′

j −Dj)(X) with div(fj)+D
′
j = Dj , and

the isomorphisms

OX(Dj)
·fj−−→ OX(D′

j)

fit together to a homomorphism Φ: OX(WDiv(X)) → OX(L) with
accompanying homomorphism ϕ : WDiv(X) → L,Dj 7→ D′

j . The
composition π ◦Φ: OX(L)→R is the epimorphism requested in asser-
tion (i). �

Existence of Cox sheaves follows from Remark 3.2 because, for any
L mapping onto Cl(X), a suitable map χX is defined by assigning
arbitrary fj ∈ OX(Dj)(X) with divX(fj) = −Dj to the elements of a
basis {Dj}j∈J of L ∩ PDiv(X), and thus, the presheaf R defined by

R(U) = OX(L)(U)/⟨1OX(L)(U) − χX(D)|U ;D ∈ L ∩ PDiv(X)⟩

is a Cox sheaf, compare [2]. As this discussion shows, our definition
is the axiomatic version of the constructive approach of Hausen and
Arzhantsev.
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Uniqueness is a matter of caution. In the case that Cl(X) is free, it
is well known that all Cox sheaves are isomorphic.

A further condition enforcing uniqueness in the case of prevarieties
over an algebraically closed field K is O(X)∗ = K∗, which holds, for
example, if X is projective, see [2, Section I.4.3]. In general, Cox
sheaves are only weakly unique in the following sense.

Proposition 3.6. Let X be a Krull scheme, let R and R′ be Cox
sheaves on X and let U ⊆ X be open. Then, the following hold :

(i) R+/R+,∗ ∼= OX(WDiv(X))+/OX(WDiv(X))+,∗ ∼= R′+/R′+,∗.

(ii) There are bijections respecting sums, intersections, inclusions,
products and ideal quotients between the sets of graded ideals of R(U)
and R′(U).

(iii) R(U) is finitely generated as a OX(U)-algebra if and only if
R′(U) is so. If X is a scheme over S = Spec(B), then R(U) is finitely
generated over B if and only if R′(U) is so.

Proof. Everything but the last assertion directly follows from Propo-
sition 1.13. Suppose that R(U) is finitely generated by homogeneous
sections g1, . . . , gm. Then, Cl(X) is finitely generated by Theorem 0.1.
Let L ≤ WDiv(X) be a finitely generated subgroup mapping onto
Cl(X), and let

π : OX(L) −→ R
and

π′ : OX(L) −→ R′

be CBEs. Let χ be the kernel character of π, and let D1, . . . , Dn

be a basis of L ∩ PDiv(X). Then, OX(L)(U) is generated by
χU (±D1), . . . , χU (±Dn) and any choice of homogeneous preimages un-
der πU f1, . . . , fm for g1, . . . , gm. Thus, R′(U) is generated by their
images under π′

U . �

The above shows that the question of uniqueness is of little practical
consequence since all Cox sheaves on a given X behave in the same
manner. We now proceed with the proof of Theorem 0.1. The general
ideal for showing that Cox sheaves have the asserted properties is to
show that they are inherited from OX(WDiv(X)) since CBEs preserve
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most graded properties (even in both directions). The second part of
the proof adapts the arguments of [2, Thm. I.6.4.3 and Prop. I.6.4.5].

Proof of Theorem 0.1. LetR be a Cox sheaf onX, and let π : OX(L)
→ R be a CBE of OX -algebras. Then, the map OX → R0 is an
isomorphism since it is the composition of the isomorphisms OX ∼=
OX(L)0 and OX(L)0 ∼= R0.

For x ∈ U , respectively, x ∈ {x′}, we have commutative diagrams
whose downward arrows are CBEs of rings:

(a)

OX(L)(U) //

πU

��

OX(L)x

πx

��
(b)

OX(L)x //

πx

��

OX(L)x′

πx′

��
R(U) // Rx Rx

// Rx′ ,

and the lower arrows inherit injectivity from the upper ones. Consider-
ing diagram (a) for the generic point ξ, we see that Rξ is G-simple with
degree zero part OX,ξ and degG(R+

ξ ) = G since OX(L)ξ is L-simple

with degree zero part OX,ξ and degL(OX(L)+ξ ) = L. Denote by SL the

constant sheaf assigning OX(L)ξ and by S the constant sheaf assigning
Rξ. Then, πξ defines a CBE of sheaves π′ : SL → S. R is a subsheaf
of S and hence G-integral.

For (i), note that π′ extends π and both have the same kernel
character χ. Since im(χX) is contained in OX(L)(X)+,∗, its elements
are trivially valuated by all µY,X . Consequently, im(χU ) is trivially
valuated by all µY,U . Thus, each µY induces a G-valuation µY : S+ →
ZY , which also restricts to νY on K∗. Since OX(L) is defined in SL by
the family {µY }Y , the equality R =

∩
Y SµY

now follows by applying
Proposition 1.13(v) to the sections over arbitrary open U , and assertion
(i) is proven.

The first part of assertion (ii) is due to the fact that µY and µY have
the same image. For the second part, consider an element πX(fχD)
of the kernel of divG,X =

∑
Y µY , i.e., a global homogeneous unit.

Then, divL,X(fχD) = 0, i.e., D = −divX(f) is a principal divisor;
hence, πX(fχD) has degree [D] = [0]. Concerning the supplement, we
calculate

[D] = degG(πξ(fχ
D)) = [degL(fχ

D)]

= [divL,X(fχD)] = [divG,X(πξ(fχ
D))].
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It remains to show that a G-graded sheaf R satisfying (i) and (ii)
is a Cox sheaf. Recall the notation divG :=

∑
Y µY : S+ → WDiv

and note that by (i) we have divG|K∗ = div. In order to show that
G is canonically isomorphic to Cl(X), we first note that by (i) the
degree map degG induces an isomorphism S(X)+/S(X)∗0

∼= G. The
homomorphism δ : S(X)+ → Cl(X), f 7→ [divG,X(f)] thus induces the
map

δ : degG(S(R)+) −→ Cl(X), degG(f) 7→ [divG,X(f)]

which has cokernel Cl(X)/im(divG,X) and kernel degG(R(X)+,∗).

Thus, condition (ii) precisely states that δ is an isomorphism from G
to Cl(X).

Next, we show that the isomorphism K = S0
λf−−→ SdegG(f)

given by multiplication with f ∈ S(X)+ restricts to an isomor-
phism λf : OX(divX,K(f)) → RdegG(f). Indeed, for a non-zero g ∈
OX(divG,X(f))(U), we calculate

divU,K(f|Ug) = divU (g) + (divX,K(f))|U ≥ 0,

i.e., f|Ug ∈ R(U)+. Conversely, each non-zero h ∈ R(U)degG(f) satisfies

divU ((f|U )
−1h) + divX,K(f)|U = divG,U (h) ≥ 0.

Now, let L ≤WDiv(X) be any subgroup mapping onto Cl(X), and
let {Dj}j∈J be a basis of L. Then, there exist fj ∈ S+, j ∈ J , with
divG,X(fj) = Dj . We set

fD :=
∏
j∈J

f
mj

j

for
D =

∑
j∈J

mjDj .

By our first claim, we know that δ(degG(fD)) = [D]. From our second
claim, every fD defines an isomorphism

λfD : OX(D)→R[D].

By construction, the isomorphisms respect the multiplication of homo-
geneous components in OX(L) and thus define a graded epimorphism
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OX(L)→R. Hence, R is a Cox sheaf. The supplements will be proven
separately after the proof of Theorem 0.2. �

Proof of Theorem 0.2. Quasi-coherence of R follows from the more
general observation that, for every non-zero g ∈ R(U)+, there is a
canonical isomorphism

R(U)g ∼= R(Ug),

where Ug := U \ |divU,K(g)|. This, in turn, follows directly from the
corresponding observation on OX(L) using that πU and πUg are CBEs
and Proposition 1.13 (iii).

For (i), note that G-factoriality of R(U) follows via Proposition
1.13 (iv) from L-factoriality of OX(U), which was proven in Proposition
2.6 (v). Now, consider any Weil divisor D = D+−D− on X, written as
a difference of effective divisors. Choose a subgroup L which contains
D+ and D− mapping onto Cl(X) and a componentwise isomorphic
epimorphism π : OX(L)→R. Then, for all open U we have

[D] = degG(πU (χ
D+

))− degG(πU (χ
D−

)) ∈ ⟨degG(R(U)+)⟩.

For the case that U is affine, observe that, in the diagram of CBEs:

OX(L)(U) //

��

Q+(OX(L)(U)) //

��

OX(L)ξ

��
R(U) // Q+(R(U)) // Rξ

the lower right arrow is a graded isomorphism since the upper right
arrow is one. Furthermore,

degG(R(U)+) = degL(OX(L)(U)+) = L = G.

The first part of assertion (ii) follows directly from Proposition
2.6 (ii) and Proposition 1.13 (v). The second statement is obvious
for η /∈ U and follows from (iii) otherwise.

For assertion (iii), consider the diagram (b) of inclusions and CBEs
from the beginning of the proof of Theorem 0.1 with x′ = ξ. Since
OX(L)x is the intersection over all K[L](X)µY,X with x ∈ Y , Propo-
sition 1.13 (v) implies that Rx is the intersection over all S(X)µY,X

with x ∈ Y . Moreover, R+,∗
x is the image of OX(L)+,∗x and thus has
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the requested description. Furthermore, the unique L-maximal ideal of
OX(L)x is mapped onto a unique G-maximal ideal ax by Proposition
1.13 (i). Its homogeneous elements, which were calculated in Proposi-
tion 2.6 (iv), are mapped onto the homogeneous elements of ax, which
establishes the desired description.

For (iv), let t ∈ OX,η = (OX(L)η)0 be a uniformizer. Then,

1 = νY,X(t) = µY,X(t) = µY,X(πξ(t)) = µY,X(t),

which means that t is a homogeneous uniformizer of Rη. �

Proof of Theorem 0.1, supplements. Suppose thatR is aOX -algebra
of G-Krull type defined in some K-simple OX -algebra S such that con-
ditions (i) and (ii) from Theorem 0.1 are satisfied.

First of all, we show that S is constant. For a non-zero f ∈ S(X)w,
we have S(U)w = S(U)0f|U = K(X)f|U , which shows that the map
S(X)w → S(U)w is bijective. We claim that the canonical monomor-
phism Rξ → Sξ is surjective. Let f ∈ S(U)+ be a representative of
fξ ∈ S+ξ , and let V ⊆ U be the complement of those prime divisors Y

with µY,U (f) < 0. Then, f|V ∈ R(V )+, and (f|V )ξ is mapped to fξ.
This defines an isomorphism from the constant sheaf KR assigning Rξ
to S.

Let Y be a prime divisor with generic point η. Since R is isomor-
phic to a Cox sheaf, Rη is a discrete G-valuation ring, and we have
Q+(Rη) = Rξ and (Rη)0 = OX,η. Let t ∈ OX,η be a generator of the
maximal ideal of OX,η, i.e., an element with νY,X(t) = 1. Let µ′

Y,X be

the discrete G-valuation on Rξ = S(X) with Rη = S(X)µ′
Y,X

. Since

Rη has units in every degree t also generates the G-maximal ideal of
Rη, and thus µ′

Y,X(t) = νY,X(t) = µY,X(t), which implies µ′
Y,X = µY,X .

For f ∈ S(X)+, we have µY,U (f|U ) = (µY,X(f))|U . By definition

of Z(Y ), this term is zero if η is not an element of U since, in this
case, Z(Y )(U) = 0. Otherwise, Z(Y )(U) = Z, and the restriction map
Z(Y )(X)→ Z(Y )(U) is the identity, i.e., µY,U (f|U ) = µY,X(f). �

Remark 3.7. One of the starting points for the present considerations
on the valuative structure of Cox sheaves was [2, Section I.5]. The
[D]-divisor of a non-zero f ∈ R(X)[D] defined there is divCl(X),X(f)
in our notation, and it is shown that the assignment f 7→ div[D](f) is
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homomorphic and encodes the divisibility relation in R(X), which in
our setting is due to the definition of divCl(X),X as the sum of all µY,X .

4. Graded schemes. Graded schemes are implicitly already well
known from the proj construction, see Example 4.12. Related exam-
ples of graded schemes in the context of toric good quotients have been
studied in [24]. More generally, the categories of G-graded, respec-
tively, Noetherian Z-graded schemes with degree-preserving morphisms
have been discussed in [10, 28]. The category of graded schemes intro-
duced below includes the aforementioned and has more morphisms, in
particular good quotients, which are affine morphisms from G-graded
to 0-graded schemes satisfying a natural condition on their structure
sheaves, see Definition 4.10. Good quotients behave very naturally in
that they respect intersections of closed sets and are surjective with
distinguished points in each fibre, see Proposition 4.11. We also in-
troduce the other concepts needed for Theorem 0.4, namely, G-Krull
schemes which are the most general objects with well-behaved notions
of Weil and principal divisors.

For a G-graded ring R and an ideal a of R, we denote by a+ the
G-graded ideal generated by a∩R+. If a is prime, then a+ is G-prime.

Definition 4.1. The G-spectrum of a G-graded ring R is the set
X := SpecG(R) of G-prime ideals of R, endowed with the topology
whose closed sets are of the form V (a) = {p ∈ X; a ⊆ p} with G-
graded ideals a E R. Its G-graded structure sheaf OX (with G-local
stalks) is defined on the basis Xf := X \ V (⟨f⟩) of principal open sets
for f ∈ R+,0 by OX(Xf ) := Rf and on arbitrary open U ⊆ X by

OX(U) := lim←−
Xf⊆U

OX(Xf ),

where the limit is taken in the category of G-graded rings. The pair
(SpecG(R),OSpecG(R)) is the affine G-graded scheme corresponding
to R.

A graded scheme is a pair (X,OX) consisting of a topological
space X and a graded sheaf of rings OX that has a cover by affine
gr(OX)-graded schemes (U,OX |U ). (X,OX) is also called a gr(OX)-
graded scheme. A morphism of the graded schemes (X,OX) and
(X ′,OX′) is a continuous map ϕ : X → X ′, together with a morphism
of graded sheaves ϕ∗ : OX′ → ϕ∗OX such that, for each x ∈ X,
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the induced graded homomorphism ϕ∗x : OX′,ϕ(x) → OX,x satisfies

(ϕ∗x)
−1(mx)

+ = mϕ(x), where mx and mϕ(x) are the respective unique
gr(OX)-/gr(OX′)-maximal ideals.

Schemes are the same as 0-graded schemes; they form a full subcat-
egory of the category of graded schemes. We will often only write X
for the graded scheme (X,OX). When talking about a morphism of
graded schemes, we will also write the continuous map ϕ : X → X ′ of
the underlying topological spaces in place of the pair (ϕ, ϕ∗).

Remark 4.2. For an affine G-graded scheme X = SpecG(R), the stalk
at p ∈ X is the graded localization Rp. Morphisms between affine
graded schemes are given by maps of graded rings: if ϕ : X → X ′ is a
morphism of affine graded schemes, then ϕ∗ : R′ = O(X ′)→ R = O(X)
is a graded morphism, and ϕ maps the point p ∈ X to the point
(ϕ∗)−1(p)+.

Example 4.3. Let M be an abelian monoid contained in an abelian
group G, and let k be a field. Let R := k[M ] be the canonically G-
graded monoid algebra of M over k. Recall that a face of an abelian
monoid is a submonoid τ ⊆M such that w + w′ ∈ τ implies w,w′ ∈ τ
for all w,w′ ∈M . Then, there is an order reversing bijection

faces(M)←→ SpecG(R) =: X

τ 7−→ pτ := ⟨χw;w ∈M \ τ⟩
degG(R

+ \ p) =: τp ←− [ p
where SpecG(R) is ordered by inclusion. Furthermore, OX(Xχw) =
k[M − Z≥0w] and OX,p = k[M − τp]. If ψ : G′ → G is a group
homomorphism mapping the submonoid M ′ into M , then it induces

a graded map ψ̃ : R′ := k[M ′]→ R and a map

faces(M)→ faces(M ′), τ 7→ ψ−1(τ) ∩M ′.

The corresponding map of graded schemes is

ϕ : X −→ X ′ := SpecG′(R′), pτ 7−→ p′ψ−1(τ)∩M ′ .

This consideration links graded schemes to combinatorics when applied
to finitely generated monoids. On the other hand, we observe that
τ ⊆ M is a face if and only if (M \ τ) ⊔ {∞} ⊆ M ⊔ {∞} is a prime
ideal in the sense of [14]. Moreover, a subgroup p of a G-graded ring
R generated by homogeneous elements is a G-prime ideal if and only if
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R+,0 \p is a face of the multiplicative monoid R+,0. Thus, there is also
a canonical homeomorphism between SpecG(R) and the space of prime
ideals ofM ⊔{∞}, which is a scheme over the field F1 with one element
in the sense of [14]. This line of thought is continued in Remark 6.6.

Remark 4.4. The category of graded rings is a subcategory of the
category of monoidal pairs or sesquiads from [13] via the assignment
sending a graded ring R =

⊕
w∈GRw to (R+,0, R). Graded ideals

of R correspond to ideals of (R+,0, R), and graded localizations of R
correspond to localizations of (R+,0, R). Therefore, the affine graded
scheme (SpecG(R),OSpecG(R)) is naturally identified with the set of

prime ideals of (R+,0, R), equipped with the structure sheaf induced by
(R+,0, R), and the category of graded schemes becomes a subcategory
of the category of sesquiad Zariski schemes, which is obtained by gluing
prime spectra of sesquiads. Within this category (non-trivially) graded
schemes take an intermediate position between schemes, whose affine
charts are given by monoid pairs of the form (R,R), and F1-schemes,
whose affine charts are given by pairs of the form (M,Z[M ]).

Remark 4.5. Each non-empty closed irreducible subset of a graded
scheme has a (unique) generic point. Indeed, if Y = V (a) ⊆ SpecG(R)
is non-empty and irreducible, then

√
a
+
=

∩
p∈V (a)

p

is the generic point of Y .

Open and closed graded subschemes and embeddings are defined by
extending the corresponding notions for schemes in the obvious manner.
Furthermore, G-reduced, respectively, G-integral G-graded schemes, are
defined by the absence of homogeneous nilpotent elements, respectively,
homogeneous zero divisors in all sections. For a G-integral G-graded
scheme X, the constant sheaf K assigning the stalk OX,ξ at the generic
point is a sheaf of G-simple rings.

Remark 4.6. A graded scheme X is gr(X)-integral if and only if it is
irreducible and gr(X)-reduced.

A quasi-compact G-graded scheme is G-Noetherian if the sections
OX(U) are G-Noetherian for all (or equivalently, some cover of X by)
affine U . A G-Krull scheme is a G-integral scheme with a finite cover
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by graded spectra of G-Krull rings. For a G-Krull schemeX, a G-prime
divisor is a closed irreducible subset Y of codimension one in X. Its
generic point is denoted by η.

Remark 4.7. If X is a G-Krull scheme, then the stalks at G-prime
divisors are G-valuation rings. Thus, each G-prime divisor Y defines a
G-valuation νY : K+ → Z(Y ), and these are the essential G-valuations
of the G-Krull sheaf OX =

∩
Y KνY . Therefore, a G-graded scheme

X is a G-Krull scheme if and only if it is quasi-compact and OX is a
G-Krull sheaf.

If X is a G-Krull scheme, then the direct sum over the skyscraper
sheaves Z(Y ) is the presheaf WDivG of G-Weil divisors, and the direct
sum over the G-valuations νY defines a morphism divG : K+ →WDivG.
Its image PDivG is the presheaf of G-principal divisors, and its cokernel
is the presheaf of G-divisor class groups ClG. The support |D| of a Weil
divisor D ∈ WDiv(U) is the intersection of U with the union over all
G-prime divisors Y occurring with non-zero coefficients in D.

Proposition 4.8. Let X be a G-Krull scheme. Then, the stalk of OX
at x is

OX,x =
∩
x∈Y

(OX,ξ)νY,X ⊆ OX,ξ,

where Y runs through all G-prime divisors Y containing x in their
closure.

Since the category of graded rings over a fixed graded ring has the
graded tensor product as a coproduct, the category of graded schemes
has fiber products. A graded scheme X is called separated, respectively,
of affine intersection if the diagonal morphism ∆X : X → X ×X is a
closed embedding, respectively, affine. The latter property is equivalent
to affineness of the intersection of any two affine opens subsets.

Proposition 4.9. In a G-Krull scheme X of affine intersection the
following hold :

(i) every open affine U ⊆ X is the complement of a G-divisor on X.

(ii) If X is affine, then V (f) = |divG(f)| for every f ∈ O(X)+.

Next, we introduce good quotients of graded schemes.

Definition 4.10. A morphism from a G-graded scheme to a scheme
is called G-invariant. A good quotient by G is an affine G-invariant
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morphism q : X → Y such that the pullback OY → (q∗OX)0 is an
isomorphism.

Proposition 4.11. If q : X → Y is a good quotient, then the following
hold :

(i) q is surjective and closed ;

(ii) if Ai ⊆ X, i ∈ I, are closed then q(
∩
iAi) =

∩
i q(Ai);

(iii) every preimage q−1(y) contains a unique element which is
contained in all closures of elements of q−1(y); and y is a closed point
if and only if this element is a closed point.

Proof. For closedness, we use the fact that ⟨a0⟩R∩R0 = a0 holds for
a0 E R0. For (ii), we use (

∑
i ai)∩R0 =

∑
i (ai ∩R0). Surjectivity and

(iii) follow from the fact that, for a prime ideal q of R0, there exists a
unique G-prime p that is maximal with p ∩ R0 = q, and q is maximal
if and only if p is G-maximal. Explicitly, the homogeneous elements of
p are those r ∈ R+,0 with ⟨r⟩ ∩R0 ⊆ q. �

For the Z-graded case, properties (i) and (iii) were observed in [10,
Lemma 1.1.2]. A good quotient that is bijective, i.e., a homeomor-
phism, is called geometric. A well-known example for a graded geo-
metric quotient is the proj construction of a Z-graded ring.

Example 4.12. Let R be a Z-graded ring with degZ(R
+) ⊆ Z≥0, and

consider the proper Z-graded ideal

a =
⊕
n>0

Rn.

Let X := SpecZ(R), and set X̂ := X \V (a). Then the quotients Xf →
Spec((Rf )0) for f ∈ a ∩ R+ glue to a good quotient q : X̂ → Proj(R)
by Z which is even bijective, i.e., geometric. However, unless R = R0,
the structure sheaf of Proj(R) will differ from q∗OX̂ .

Remark 4.13. If q : X̂ → X is a good quotient by K and X̂ is K-
integral, then X is integral.

G-graded schemes also occur naturally as relative G-spectra of a
quasi-coherent G-graded sheaves on schemes:
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Construction 4.14. Let X be a scheme, and let R be a quasi-coherent
G-graded OX-algebra. Then, SpecG(R(U)) is open in SpecG(R(V )) for
any two affine open U ⊆ V ⊆ X, and hence, the G-prime spectra of
R(U) for all affine U glue to a G-graded scheme, called the relative
G-spectrum SpecG,X(R) of R, and there is a commutative diagram

SpecX(R) //

''NN
NNN

NNN
NNN

X

SpecG,X(R)
q

::tttttttttt

and q∗OSpecG,X(R) = R holds. If R0 = OX , then q is a good quotient.

Remark 4.15. Let L ≤ WDiv(X) be any subgroup mapping onto

Cl(X), and let X̃ := SpecL,X(OX(L)). For any Cox sheaf R, ev-

ery CBE π : OX(L) → R induces a graded homeomorphism X̂ :=

SpecCl(X),X(R) → X̃, which is an isomorphism if and only if L maps

isomorphically onto Cl(X) (which in turn can only occur if Cl(X) is
free).

5. Proofs of Theorems 0.4 and 0.5.

Proof of Theorem 0.4. First, suppose that conditions (i)–(iii) hold.

Consider the cover of X by all affine open U . Then, X̂ is covered

by their preimages Û = q−1(U), and this cover has a finite subcover.

Consequently, X has a finite affine cover and each O(U) = O(Û)0 is a

Krull ring since O(Û) is a G-Krull ring. Since integrality of X follows

from graded integrality of X̂, we conclude that X is a Krull scheme.

We show that R := q∗OX̂ is a Cox sheaf by applying Theorem 0.1.
Set S := q∗KX̂ . Then, S is G-simple and S0 = KX by condition (ii).

For the verification of Theorem 0.1 (i), consider a G-prime divisor

Ŷ and its image Y := q(Ŷ ). Due to (ii), we have Z(Y ) = q∗Z(Ŷ ) and

q∗ WDivG ∼= WDiv, and

µY := q∗νŶ : S+ −→ Z(Y )

restricts to νY on K∗. By definition, the family {µY }Y defines R as a
G-Krull sheaf in S.
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For Theorem 0.1 (iii), we first observe that divG,X :=
∑
Y µY,X =

q∗div
G
X is surjective because divG

X̂
is so, due to ClG(X̂) = 0. Since

R(X)+,∗ = R(X)∗0 and degG(S(X)+) = G, Theorem 0.1 now implies
that R is a Cox sheaf on X.

Now, suppose that R is a Cox sheaf and

q : X̂ = SpecG,X(R) −→ X

its characteristic space. Let S be the constant sheaf assigning Rξ.
Since, for affine open U ⊆ X, the map (O(U)\0)−1R(U)→ Q+(R(U))
is an isomorphism, we conclude that Rξ → OX̂,ξ̂ is an isomorphism.

Hence, the canonical map q∗ : S → q∗KX̂ is an isomorphism.

Let X = U1 ∪ . . . ∪ Ud be an affine open cover. Then, X̂ =
q−1(U1) ∪ · · · ∪ q−1(Ud) is an affine open cover by spectra of G-Krull
rings, and the sets q−1(Ui) intersect pairwise non-trivially because

the sets Ui do so. Thus, X̂ is irreducible. Since each O(q−1(Ui)) is
G-integral, its localizations at G-prime ideals are G-integral and, in

particular, G-reduced. Hence, X̂ is G-integral, and we have verified

that X̂ is a G-Krull scheme.

Since {µY }Y are the essential G-valuations of R and they restrict
to {νY }Y , there are natural bijections

α : ⟨µ−1
Y,U (Z>0) ∩ O(Û)+⟩ 7−→ ⟨ν−1

Y,U (Z>0) ∩ O(U)⟩ = Y

between the G-prime divisors of Û = SpecG(R(U)) and the prime
divisors of U . Because q is affine, these glue to an isomorphism

α : WDivG(X̂) −→WDiv(X), Ŷ 7−→ q(Ŷ ).

Thus, for a G-prime divisor Ŷ with generic point η̂, we have q(η̂) ∈ U
if and only if η̂ ∈ q−1(U) for all open U ⊆ X, meaning that Z(q(Ŷ ) =

q∗Z(Ŷ ). This induces an isomorphism of presheaves q∗ : Q∗ WDivG ∼=
WDiv. By construction, we have q∗νŶ ◦ q

∗ = µq(Ŷ ), which gives

q∗ ◦q∗divG ◦q∗ = divG, the first supplement. In particular, q∗ ◦q∗divG ◦
q∗|K∗ = div holds and assertions (i)–(iii) are verified.

For the second supplement, consider a G-prime divisor Ŷ with

generic point η̂. Then, Y := q(Ŷ ) is a closed, irreducible proper subset
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of X which contains η := q(η̂). On the other hand, the closure of η has
codimension dim(OX,η) = 1, and thus, η is the generic point of Y .

For an x ∈ X, let x̂ ∈ X̂ be the unique point in the preimage of x
which is contained in the closures of all other points mapped to x. If

x̂ ∈ Ŷ , then x ∈ Y . Conversely, if x ∈ Y , then Ŷ contains a point z

with q(z) = x, and we conclude that x̂ ∈ {z} ⊆ Ŷ .

Thus, we obtain

Rx =
∩
x∈Y

S(X)µY,X
=

∩
x̂∈Ŷ

K(X̂)ν
Ŷ ,X̂

= OX̂,x̂

in Rξ = OX̂,ξ̂. In particular, for x = η, the point x̂ lies in the closure

of {η̂} and OX̂,x̂ = Rη = OX̂,η̂, which implies x̂ = η̂. �

The following lemma is necessary to show graded locality of the
stalks OX(L)x and Rx in the respective proofs.

Lemma 5.1. Let R be a Cox sheaf on X, and let f, f ′ ∈ R(U)[D] \ 0
with f + f ′ ̸= 0. Then,

|divG,U (f)| ∩ |divG,U (f ′)| ⊆ |divG,U (f + f ′)|.

Accordingly, for g, g′ ∈ OX(D)(U) \ 0 with g + g′ ̸= 0, we have

|divU (g) +D| ∩ |divU (g′) +D| ⊆ |divU (g + g′) +D|.

Proof. It suffices to consider the case that U is affine. Using
Proposition 4.9, we calculate

|divG,U (f)| ∩ |divG,U (f ′)|

= q(|divGq−1(U)(q
∗(f))|) ∩ q(|divGq−1(U)(q

∗(f ′))|)

= q(|divGq−1(U)(q
∗(f))| ∩ |divGq−1(U)(q

∗(f ′))|)
= q(Vq−1(U)(q

∗(f)) ∩ Vq−1(U)(q
∗(f ′)))

⊆ q(Vq−1(U)(q
∗(f + f ′))) = |divG,U (f + f ′)|. �

Proof of Theorem 0.5. First, let R = R(X) be the Cox ring of X.
Then (i), (ii) and (iii) follow from Theorem 0.1. For assertion (iv),
we additionally suppose that X has an affine cover by complements of
Weil divisors. Let p be a G-prime divisor. By G-factoriality, we have
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p = ⟨f⟩ with some G-prime f ∈ R. Then Y := divG,X(f) is contained
in some affine open set U = X \ |D| with some effective Weil divisor
D. Let OX(L) map onto R. Then, there exists a g ∈ OX(L)(X)
with D = divL,X(g) = divG,X(πX(g)). Let h := πX(g). Since
divG,X(f) � divG,X(h), f does not divide h, which means that h /∈ p.
Hence, Rp = (Rh)p, and the second ring has units in every G-degree
by Theorem 1.10 (iii) and Proposition 1.13 (iv).

Now, let G be finitely generated and R an algebraic Cox ring, i.e.,
a G-graded ring satisfying conditions (i), (ii) and (iv). We claim that
there is a set of pairwise non-associated G-primes f1, . . . , fr such that
⟨degG(fj); j ̸= k⟩ = G for every k = 1, . . . , r. Since G is finitely
generated, there are pairwise non-associated G-primes f1, . . . , fm with
⟨degG(f1), . . . , degG(fm)⟩ = G. The localization R⟨f1⟩ has units in
every degree by (iv), so there are fractions g1/h1, . . . , gn/hn, where
none of the gj , hj are divisible by f1, whose degrees together generateG.
Decomposing gives fm+1, . . . , ft such that f1, . . . , ft are pairwise non-
associated G-primes and ⟨degG(f2), . . . , degG(ft)⟩ = G. Proceeding
in this way for k = 2, . . . ,m, we arrive at a set f1, . . . , fr with the
requested properties.

For j = 1, . . . , r, let Rj be the localization by the product of all

fk with k ̸= j. Let X̂ be the union over the open affine subsets

X̂j := SpecG(Rj) of X := SpecG(R). Then, by choice of f1, . . . , fr,
all Xj = Spec((Rj)0) contain X ′ = Spec((Rf1···fr )0) as a principal
open subset and thus glue to a scheme X. Since Rj has units in every

G-degree, the maps X̂j → Xj are geometric good quotients and they

glue to a good quotient q : X̂ → X by G. Since Xi∩Xj = X ′ for i ̸= j,
we obtain that the diagonal morphism of X is affine.

We verify that R is the Cox ring of X by showing that q is a graded

characteristic space. X̂ is a G-Krull scheme since every Rj is a G-Krull

ring (they are even G-factorial). Each X̂j contains all G-prime divisors

of X except the G-principal divisors of those fk with k ̸= j. Thus,

X̂ contains every G-prime divisor of X, which implies O(X̂) = R and

O(X̂)+,∗ = O(X̂)∗0 by (ii). Moreover, KG(X̂) = KG(X̂j) = Q+(R),

and hence, ClG(X̂) = Cl(R) = 0 by (i).

By (iv), each of the rings Rj has units of every G-degree. Firstly,
this yields Q+(Rj)0 = Q((Rj)0) and degG(Rj) = G. Hence, the map
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q∗ : KX → (q∗KX̂)0 is an isomorphism, and we have degG(KX̂(X̂)+) =
G. Secondly, there are bijections respecting sums, products, intersec-
tions and inclusions between the G-graded ideals of Rj and the ideals of

(Rj)0. In particular, the assignment Ŷ 7→ q(Ŷ ) defines an isomorphism

WDivG(X̂j) → WDiv(Xj) and, for every G-prime divisor η̂ ∈ X̂j ,
the generator of the maximal ideal of OXj ,q(Ŷ ) also generates the G-

maximal ideal of OX̂j ,Ŷ
. The induced isomorphism α : WDivG(X̂) →

WDiv(X) therefore satisfies α ◦ divG
X̂
◦ q∗|K(X)∗ = divX . Moreover, α

induces an isomorphism q∗ : q∗ WDivG → WDiv of presheaves on X,
which fits into a commutative diagram as required. Thus, Theorem 0.4
gives the assertion.

For the supplement, note that, if R is a finitely generated K-algebra,
then G-integrality implies that R is reduced. Hence, the localizations
Rj are finitely generated over K and reduced. The ring (Rj)0 is then
the ring of invariants with respect to the action of H = Spec(K[G]) on

X̂j . Since H is reductive, (Rj)0 is also finitely generated. Thus, X is
reduced and of finite type over K. �

Remark 5.2. Conditions (i), (ii) and (iv) irredundantly characterize
Cox rings of Krull schemes with affine cover by divisor complements
and finitely generated class group. Indeed, [5] offers examples of rings
satisfying (i) and (ii) but not (iv). In addition, one may take any
G-graded Cox ring R and trivially extend the grading to a G ⊕ Z-
grading. The monoid R+ stays the same and its units remain in degree
0; however, degG(R

+) = G ⊕ 0 ̸= G ⊕ Z, so the units of Rp cannot
attain degrees outside of G⊕ 0.

Examples with (i) and (iv), but not (ii), are obtained in Construc-
tion 1.9 whenever Cl(A) is not free and ϕ := idDiv(A) is chosen. Ex-
amples with (ii) and (iv), but not (i), are also obtained from Construc-
tion 1.9 whenever Cl(A) is free and ϕ is the inclusion of a subgroup
G ⊂ Div(A) which maps injectively but not surjectively to Cl(A).

6. Graded schemes and diagonalizable actions. The defining
algebraic data of a graded scheme (X,OX) also define a scheme:
by equipping each OX(U) with the trivial 0-grading, a 0-graded

quasi-coherent OX -algebra O(0)
X may be obtained whose 0-graded rel-

ative spectrum X(0) := SpecX(O(0)
X ) is a scheme. The canonical
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affine morphism X(0) → X is surjective and restricts to Spec(R) →
SpecG(R), p 7→ p+ on affine charts.

In this section, let K be an algebraically closed field. We will
indicate how the functor f : X 7→ X(0) induces an equivalence between
the category A of graded reduced schemes X of finite type over K
with finitely generated grading groups gr(X) and the category B of
prevarieties over K with quasi-torus actions admitting affine invariant
covers. This allows us to translate the characterization of graded
characteristic spaces into terms of invariant geometry of quasi-torus
actions.

Definition 6.1. Let Z be a prevariety over K with the action of a
diagonalizable group H := Specmax(K[G]). Then, Z has an induced
H-invariant topology ΩZ,H consisting of the H-invariant Zariski open
sets. The G-graded sheaf of rings obtained by restricting OZ to ΩZ,H
is denoted OZ,H and called the H-invariant structure sheaf.

If Z is affine, then the ΩZ,H -closed (and ΩZ,H -irreducible) subsets
are precisely the Zariski closed sets with G-homogeneous (G-prime)
vanishing ideal. Equivalently, a subset Y of Z is ΩZ,H -closed and ΩZ,H -
irreducible if it is ΩZ-closed and H operates transitively on the set of
ΩZ-irreducible components of Y .

Proposition 6.2. Let t denote the functor sending a ringed space to
its space of closed irreducible subsets with induced structure sheaf. Let
g be the equivalence from schemes of finite type over K to prevarieties
over K. Then, we have mutually essentially inverse equivalences of
categories

A ←→ B

r : X 7−→ g(f(X)) = Specmax,X(O(0)
X )

t(Z,ΩZ,H ,OZ,H)←−[ [H × Z → Z] : s.

Here, r(X) comes with the action by Specmax(K[gr(X)]), which is
induced on affine charts by the map R→ K[gr(X)]⊗KR, fw 7→ χw⊗fw.

Remark 6.3. Let Z be an affineH-variety. Then, H-orbits correspond
naturally to G-prime ideals of R := O(Z) of the form m+ = ⟨m ∩R+⟩,
where m is a maximal ideal of R. Let X := SpecG(R), and, for a point
z ∈ Z, set Sz := degG(R

+ \ I(Hz)). The set VX(I(Hz)) of G-prime
ideals containing I(Hz) fits into the known correspondence (e.g., [18,
Proposition 3.8]) between the orbits contained inHz ∼= Specmax(K[Sz])
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and the faces of Sz in the following manner:

orbits(Hz)←→ VX(I(Hz)) ←→ faces(Sz)
Hz0 7−→ I(Hz0), p 7−→ degG(R

+ \ p)
Op ←−[ p, pτ ←−[ τ

where Op := VZ(p)\
∪

p̸=q∈VX(p) VZ(q) and pτ := I(Hz)+
∑
w∈Sz\τ Rw.

The above bijections are mutually inverse and order-reversing, where
the order on orbits is defined as Hz0 < Hz1 : ⇔ Hz0 ⊆ Hz1 and the
other sets are ordered by inclusion.

For an ΩZ,H -closed-irreducible subset Y ⊆ Z, the stalk of OZ,H at
Y is defined as

(OZ,H)Y := lim−→
U∈ΩZ,H

U∩Y ̸=∅

OZ(U).

It coincides with the stalk of Os(Z) at the point η ∈ s(Z) corresponding
to Y . If Z is ΩZ,H -irreducible, then we denote by KH the constant sheaf
assigning the stalk at Z.

Remark 6.4. ΩZ,H has a basis of affine H-invariant open sets if and
only if Z ∈ B (e.g., Z allows a good quotient by H). In this case, the
following statements hold:

(i) the stalk (OZ,H)Y at Y coincides with the graded localization
O(U)I(Y ) for every affine invariant open set U meeting Y . In particular,
if Z is ΩZ,H -irreducible, then KH is a G-simple sheaf.

(ii) The generic isotropy group of an ΩZ,H -closed ΩZ,H -irreducible

set Y is Specmax(K[G/ degG((OZ,H)+,∗Y )]). In particular, H acts freely
on a big open subset of Z if and only ifH acts freely on non-empty open
subsets of all H-prime divisors, i.e., if and only if the stalks (OZ,H)Y
at all H-prime divisors have units in every degree.

A graded scheme X in A is of finite type, in particular, G-
Noetherian. Hence, a G-integral X is a G-Krull scheme if and only
if it is G-normal, i.e., X has a cover by G-spectra of G-normal rings.
Correspondingly, an H-prevariety Z ∈ B is called H-normal if and only
if the sections of OZ,H over affine invariant subsets are X(H)-normal.
A H-prime divisor is an ΩZ,H -closed ΩZ,H -irreducible subset Y , which
is maximal among the proper subsets of Z with these properties. An
equivalent condition is that Y is closed and the ΩZ-irreducible compo-
nents of Y are one-codimensional and are permuted by H, compare [2,
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Section I.6.4]. Each H-prime divisor Y on an H-normal prevariety Z
defines a discrete value sheaf Z(Y ) on ΩZ,H , which takes values Z if U in-

tersects Y and 0 otherwise, and a discrete G-valuation νY : K+
H → Z(Y ).

These define the G-Krull sheaf OZ,H =
∩
Y (KH)νY ⊆ KH . Their sum

defines a morphism

divH :=
∑
Y

νY : K+
H −→WDivH :=

⊕
Y

Z(Y )

to the presheaf of H-Weil divisors. The image and cokernel presheaf
are the H-principal divisors PDivH , respectively, the H-class group
ClH . In this terminology, Theorem 0.4 translates into the following
characterization of characteristic spaces SpecZ(R)→ Z of Cox sheaves
of finite type.

Theorem 6.5. Let q : Ẑ → Z be a H-invariant morphism of prevari-
eties. Then, Z is normal and q is a characteristic space if and only if
the following hold :

(i) Ẑ is H-normal with degG(KH(Ẑ)+) = G;

(ii) q is a good quotient and induces a commutative diagram of
presheaves:

K∗ div //

∼=q∗

��

WDiv

(q∗KH)∗0
q∗div

H

// q∗ WDivH

Ŷ 7→q(Ŷ )∼=

OO

(iii) ClH(Ẑ) = 0, and O(Ẑ)+,∗ = O(Ẑ)∗0.

If Ẑ = SpecZ(R) with a Cox sheaf R, then with divG :=
∑
Y µY the

following commutative diagram extends the diagram of (ii):

S+ divG // //

∼=q∗

��

WDiv

q∗K+
H

q∗div
H

// // q∗ WDivH

Ŷ 7→q(Ŷ )∼=

OO

Each prime divisor Y is the image q(Ŷ ) of a unique H-prime divisor

Ŷ . If Hẑ ⊆ Ẑ is the unique closed orbit in q−1(z), then Hẑ ⊆ Ŷ if and
only if z ∈ Y . In particular, (OX̂,H)Hẑ = Rz.



CHARACTERIZATIONS OF COX SHEAVES 41

This result only required those properties of normal prevarieties
which they share with Krull schemes. Using the fact that Xreg is big
in X, and WDiv(Xreg) = CaDiv(Xreg) combined with Noetherianity
yields additional properties of characteristic spaces, e.g., irreducibility
and normality, and the property that q−1(Xreg) is a big subset on which
H acts freely and q is geometric, see [2, Sect. I.5, I.6] for proofs and
further properties of characteristic spaces.

Remark 6.6. Recall that a lattice is a finitely generated free abelian
group. By a separated toric graded scheme over K, we mean a quasi-
compact separated graded scheme X of finite type over K such that

(i) the grading group M = gr(X) is a lattice;

(ii) X is M -normal, i.e., O(U) is M -normal for every affine open
U ⊆ X;

(iii) X contains SpecM (K[M ]) as a dense open subset;

(iv) X is effectively graded, i.e., ⟨degM (O(U))⟩ = M for all affine
open U ⊆ X.

Z ∈ B is a (separated) toric variety if and only if X = s(Z) ∈ A
is a separated toric graded scheme. If Σ is the fan in N = M∗

describing Z where M = gr(X), then ΩZ,T is finite and its basis
consists of the affine invariant charts {Zσ}σ∈Σ. The ΩZ,T -irreducible
ΩZ,T -closed subsets are the orbit closures {V (σ)}σ∈Σ. For σ ∈ Σ, let
Iσ E K[M ∩σ∨] be the vanishing ideal of the closed orbit of Zσ. Then,
OX,Iσ = K[M ∩ σ∨]Iσ = K[M ∩ σ∨], and there is a natural bijection

Σ −→ X

σ 7−→ Iσ

degM (OX,p)∨ ←−[ p.
Furthermore, applying Example 4.3 to each monoid σ∨ ∩M and its
monoid algebra K[σ∨∩M ], we see that X is canonically homeomorphic
to the F1-scheme AΣ obtained by gluing the spectra of (σ∨∩M)⊔{∞}.
For a cone σ ∈ Σ, we denote by pσ the closed point (σ∨ ∩M) ⊔ {∞} \
(σ⊥ ∩M) of Spec((σ∨ ∩M) ⊔ {∞}). The canonical bijection between
AΣ and Σ is

Σ −→ AΣ

σ 7−→ pσ

(OAΣ,p \ {∞})∨ ←−[ p.
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Thus, we may view AΣ as the orbit space of the toric variety ZΣ. This
observation complements the connection between the categories of F1-
schemes of finite type and toric varieties established in [14].
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