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POSTULATION AND REDUCTION VECTORS OF
MULTIGRADED FILTRATIONS OF IDEALS

PARANGAMA SARKAR AND J.K. VERMA

ABSTRACT. We study the relationship between postula-
tion and reduction vectors of admissible multigraded filtra-
tions F = {F(n)}n∈Zs of ideals in Cohen-Macaulay local
rings of dimension at most two. This is enabled by a suitable
generalization of the Kirby-Mehran complex. An analysis of
its homology leads to an analogue of Huneke’s fundamen-
tal lemma which plays a crucial role in our investigations.
We also clarify the relationship between the Cohen-Macaulay
property of the multigraded Rees algebra of F and reduction
vectors with respect to complete reductions of F .

1. Introduction. The objective of this paper is to study properties
of Hilbert functions and Hilbert polynomials of multigraded filtrations
of ideals under certain cohomological conditions. Among the themes
presented are:

(1) an analogue of Huneke’s fundamental lemma in terms of the
homology of the generalized Kirby-Mehran complex for multigraded
filtrations of ideals using complete reductions, (2) the relationship
between postulation vectors and reduction vectors for multigraded
filtrations of ideals in Cohen-Macaulay local rings of dimension at
most two, (3) providing necessary and sufficient conditions for the
equality of multigraded Hilbert functions and polynomials in terms
of reduction numbers with respect to complete reductions, and finally,
(4) the relationship between the Cohen-Macaulay property of the Rees
algebra of multigraded filtrations of ideals and reduction numbers in
two dimensional Cohen-Macaulay local rings.
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Hilbert functions of mutigraded filtrations of ideals were found useful
in the work of Teissier [17], who used them in his investigations of
Milnor numbers of singularities of complex analytic hypersurfaces. To
wit, let (R,m) be a d-dimensional local ring of an isolated singularity of
a complex analytic hypersurface, and let f be the defining polynomial.
Then, the Jacobian ideal J := J(f) is an m-primary ideal, and the
function B(r, s) = λ(R/mrJs) is a polynomial P (r, s) of degree d in
r and s. Here, λ denotes length. Teissier proved that the normalized
coefficients of monomials of degree d in P (r, s) are the Milnor numbers
of linear sections of the isolated singularity. Joint reductions and the
Bhattacharya function B(r, s) = λ(R/IrJs) for m-primary ideals I and
J were used by Rees in several contexts. For example, he characterized
pseudo-rational local rings of dimension 2 in terms of the constant
term of the normal Hilbert polynomial for the normal Hilbert function
λ(R/IrJs).

We now describe the contents of the paper. We recall a few
definitions and set up notation to explain the results of this paper.

Throughout this paper, let (R,m) be a Noetherian local ring of
dimension d, and let I1, . . . , Is be m-primary ideals of R. For s ≥ 1, we
set e = (1, . . . , 1), 0 = (0, . . . , 0) ∈ Zs and ei = (0, . . . , 1, . . . , 0) ∈ Zs

where 1 occurs at the ith position. Let n = (n1, . . . , ns) ∈ Zs. Then,
we write In = In1

1 · · · Ins
s and n+ = (n+

1 , . . . , n
+
s ), where

n+
i =

{
ni if ni > 0,

0 if ni ≤ 0.

For α = (α1, . . . , αs) ∈ Ns, we set |α| = α1 + · · · + αs. Define
m = (m1, . . . ,ms) ≥ n = (n1, . . . , ns) if mi ≥ ni for all i = 1, . . . , s.
By the phrase “for all large n” we mean n ∈ Ns and ni ≫ 0 for all
i = 1, . . . , s.

Definition 1.1. A set of ideals F = {F(n)}n∈Zs is called a Zs-graded
I = (I1, . . . , Is)-filtration if, for all m,n ∈ Zs,

(i) In ⊆ F(n),
(ii) F(n)F(m) ⊆ F(n+m), and
(iii) if m ≥ n, F(m) ⊆ F(n).
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Let t1, . . . , ts be indeterminates. For n ∈ Zs, set tn = tn1
1 · · · tns

s , and
denote the Ns-graded Rees ring of F by

R(F) =
⊕
n∈Ns

F(n)tn

and the Zs-graded extended Rees ring of F by

R′(F) =
⊕
n∈Zs

F(n)tn.

For an Ns-graded ring S =
⊕

n≥0 Sn, we denote the ideal
⊕

n≥e Sn by

S++. For F = {In}n∈Zs , we set R(F) = R(I), R′(F) = R′(I) and
R(I)++ = R++.

Definition 1.2. A Zs-graded I = (I1, . . . , Is)-filtration F = {F(n)}n∈Zs

of ideals in R is called an I = (I1, . . . , Is)-admissible filtration if
F(n) = F(n+) for all n ∈ Zs and R′(F) is a finite R′(I)-module.

For an m-primary ideal I, the Hilbert function HI(n) is defined as
HI(n) = λ(R/In) for all n ∈ Z. Here, we adopt the convention that
In = R if n ≤ 0. Samuel [16] showed that, for sufficiently large n,
HI(n) coincides with a polynomial PI(n) of degree d, called the Hilbert
polynomial of I. For all n ∈ Z, PI(n) is often written in the form

PI(n) =
d∑

i=0

(−1)iei(I)
(
n+ d− 1− i

d− i

)
.

The coefficients ei(I) are integers for all i = 0, 1, . . . , d, called the Hilbert
coefficients of I. The leading coefficient e0(I) is sometimes denoted by
e(I) and called the multiplicity of I.

Let s ≥ 2 and F = {F(n)}n∈Zs be an I-admissible filtration of
ideals in a Noetherian local ring (R,m) of dimension d. For the Hilbert
function HF (n) = λ(R/F(n)) of F , Rees [15] proved that there exists
a polynomial of degree d, called the Hilbert polynomial of F ,

PF (n) =
∑

α=(α1,...,αs)∈Ns

|α|≤d

(−1)d−|α|eα(F)
(
n1 + α1 − 1

α1

)
· · ·

(
ns + αs − 1

αs

)
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such that PF (n) = HF (n) for all large n. Here, eα(F) are integers
called the Hilbert coefficients of F . This was proved by Bhattacharya
for the filtration F = {IrJs}r,s∈Z in [1], where I and J are m-primary
ideals. Teissier [17] showed the existence of PF (n) for the filtration
F = {In}n∈Zs .

Let I be an m-primary ideal in a local ring (R,m) of dimension d ≥ 1.
An integer n(I) is called the postulation number of I if PI(n) = HI(n)
for all n > n(I) and PI(n(I)) ̸= HI(n(I)). An ideal J ⊆ I is called
a reduction of I if JIn = In+1 for some n. We say J is a minimal
reduction of I if, whenever K ⊆ J and K is a reduction of I, then
K = J . Let

rJ(I) = min{m : JIn = In+1 for n ≥ m}

and

r(I) = min{rJ (I) : J is a minimal reduction of I}.

The analogues of reduction and postulation numbers for I-admissible
multigraded filtration F = {F(n)}n∈Zs are described as follows.

Definition 1.3. A vector n ∈ Zs is called a postulation vector of F if
HF (m) = PF (m) for all m ≥ n.

Rees [15] introduced the concept of complete reduction for {In}n∈Zs .
In a similar manner, we define complete reduction of an I-admissible
filtration F = {F(n)}n∈Zs .

Definition 1.4. Let F be an I-admissible filtration. A set of elements
A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} is called a complete reduction
of F if, for all large n ∈ Ns, yj = x1j · · ·xsj for all j = 1, . . . , d and
J = (y1, . . . , yd),

JF(n) = F(n+ e).

Definition 1.5. Let F be an I-admissible filtration. A complete
reduction A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} of F is called a good
complete reduction if, for all large m ∈ Ns and y1 = x11 · · ·xs1,

F(m) ∩ (y1) = y1F(m− e).
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Let A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} be a complete
reduction F , yj = x1j · · ·xsj for all j = 1, . . . , d and J = (y1, . . . , yd).

Definition 1.6. A vector r ∈ Ns is called a reduction vector of F with
respect to A if, for all n ≥ r, JF(n) = F(n+ e).

Definition 1.7. An integer k ∈ N is called the complete reduction
number of F with respect to A if JF(n) = F(n + e) for all n ≥ ke
and, whenever k ̸= 0, there do not exist any 0 ≤ t < k such that
JF(n) = F(n+ e) for all n ≥ te.

We use the following notation

(1) P(F) = {n ∈ Zs | n is a postulation vector of F}.
(2) RA(F) = {n ∈ Zs | n is a reduction vector of F with respect to
A}.

(3) rA(F) is the complete reduction number of F with respect to A.

We now describe the main results proved in this paper. In Section 2,
we prove some preliminary results regarding the coefficients of the
Hilbert polynomial of a multigraded filtration of ideals which we use
to prove our main results. Let f(n) : Zs → Z be an integer-valued
function. Define the first difference function of f(n) by ∆1(f(n)) =
f(n+ e)− f(n). For all k ≥ 2, we define ∆k(f(n)) = ∆k−1(∆1(f(n))).
In [7], Huneke proved the following fundamental lemma.

Lemma 1.8 ([7, Lemma 2.4]). Let (R,m) be a two-dimensional local
Cohen-Macaulay ring, and let x, y ∈ m be any system of parameters
of R. Let I be any ideal integral over (x, y). Then, for all n ≥ 1,

λ

(
In+1

(x, y)In

)
− λ

(
(In : (x, y))

In−1

)
= ∆2

(
PI(n− 1)−HI(n− 1)

)
.

Huckaba [5] extended this result for dimension d ≥ 1. In Section 3,
for l ≥ 1, 1 ≤ k ≤ d and y[l] = (y1

l, . . . , yk
l), we introduce an

analogue of the Kirby-Mehran complex [9] for multigraded filtrations:
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C · (y[l],F(n)):

0 −→ R

F(n)
dk−→

(
R

F(n+ le)

)(k1) dk−1−→ · · ·

d2−→
(

R

F(n+ (k − 1)le)

)( k
k−1)

d1−→ R

F(n+ kle)

d0−→ 0

and prove an analogue of Huneke’s fundamental lemma for multigraded
filtration of ideals.

Theorem 1.9. Let (R,m) be a Cohen-Macaulay local ring of dimension
d ≥ 1 with infinite residue field, let I1, . . . , Is be m-primary ideals of R
and let F = {F(n)}n∈Zs be an I-admissible filtration of ideals in R. Let
A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} be any complete reduction of
F , yj = x1j · · ·xsj for all j = 1, . . . , d. Let y = y1, . . . , yd and J = (y).
Then, for all n ∈ Zs,

∆d(PF (n)−HF (n))=λ

(
F(n+de)

JF(n+(d−1)e)

)
−

d∑
i=2

(−1)iλ(Hi(C ·(y,F(n)))).

In Section 4, for d ≥ 2, we compute the n degree component of
local cohomology module H1

R++
(R(F))n for all n ∈ Ns and give an

equivalent criterion for the vanishing of H1
R++

(R(F))n for all n ∈ Ns.

We discuss vanishing of Hilbert coefficients and generalize some results
due to Marley [10] in the Cohen-Macaulay local ring of dimension
1 ≤ d ≤ 2.

Theorem 1.10. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 1 ≤ d ≤ 2 with infinite residue field, let I1, . . . , Is be m-primary
ideals of R and let F = {F(n)}n∈Zs be an I-admissible filtration of
ideals in R. Let e(d−1)ei(F) = 0 for i = 1, . . . , s. Then,

(i) for d = 1, PF (n) = HF (n) for all n ∈ Ns.
(ii) For d = 2, if H1

R++
(R(F))n = 0 for all n ∈ Ns, then

PF (n) = HF (n) for all n ∈ Ns and e0(F) = 0.

Theorem 1.11. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 1 ≤ d ≤ 2 with infinite residue field, and let I, J be m-primary
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ideals of R. Let F = {F(r, s)}r,s∈Z be a Z2-graded (I, J)-admissible
filtration of ideals in R. Then, the following statements are equivalent.

(i) e(d−1)ei(F) = 0 for i = 1, 2.
(ii) I and J are generated by a system of parameters, PF (r, s) =

HF (r, s) for all r, s ∈ N and F(r, s) = IrJs for all r, s ∈ Z.
(iii) eα(F) = 0 for |α| ≤ d− 1.

In [11], Marley proved that, for the Cohen-Macaulay local ring of
dimension d ≥ 1, r(I) = n(I) + d under some depth condition of the
associated graded ring of I. In his thesis [10], Marley extended this
result for Z-graded I-admissible filtrations. We generalize this result
for multigraded filtration of ideals when d = 1, 2. In Section 5, we
prove the next theorem.

Theorem 1.12. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 1 with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R. Let F = {F(n)}n∈Zs be an I-admissible filtration of ideals in R
and A = {ai ∈ Ii : i = 1, . . . , s} a complete reduction of F . Then,

P(F) ⊆ Ns and P(F) = RA(F).

Moreover, the set RA(F) is independent of any complete reduction A
of F .

We also show that, for the one-dimensional Cohen-Macaulay local
ring (R,m), rA(F) is independent of any complete reduction A of F .

In Section 6, we provide a relation between reduction vectors of good
complete reductions and postulation vectors of multigraded filtration
of ideals in two-dimensional Cohen-Macaulay local rings. For bigraded
filtration, we prove a result which relates the Cohen-Macaulayness of
the bigraded Rees algebra, the complete reduction number, reduction
numbers and the joint reduction number.

Theorem 1.13. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R and s ≥ 2. Let F = {F(n)}n∈Zs be an I-admissible filtration
of ideals in R and A = {xij ∈ Ii : j = 1, 2; i = 1, . . . , s} a good com-
plete reduction of F . Let H1

R++
(R(F))n = 0 for all n ≥ 0. Then,
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P(F) ⊆ Ns, and there exists a one-to-one correspondence

f : P(F)←→ {r ∈ RA(F) | r ≥ e}

defined by f(n) = n+ e where f−1(r) = r − e.

Theorem 1.14. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R and s ≥ 2. Let F = {F(n)}n∈Zs be an I-admissible filtration of
ideals in R and H1

R++
(R(F))n = 0 for all n ≥ 0. Then, the following

statements are equivalent.

(i) P(F) = Ns, i.e., PF (n) = HF (n) for all n ≥ 0.
(ii) rA(F) ≤ 1 for any good complete reduction A of F .
(ii′) There exists a good complete reduction A of F such that rA(F)

≤ 1.

In order to state the final result we recall the definition of joint
reduction of multigraded filtrations [12]. The joint reduction of F of
type q = (q1, . . . , qs) ∈ Ns is a collection of qi elements xi1, . . . , xiqi ∈ Ii
for all i = 1, . . . , s such that q1 + · · ·+ qs = d and

s∑
i=1

qi∑
j=1

xijF(n− ei) = F(n) for all large n.

We say that the joint reduction number of F with respect to a joint
reduction {xij ∈ Ii : j = 1, . . . , qi; i = 1, . . . , s} of type q is zero if

s∑
i=1

qi∑
j=1

xijF(n− ei) = F(n) for all n ≥
∑
i∈A

ei, where A = {i | qi ̸= 0}.

We say that the joint reduction number of F of type q is zero if the joint
reduction number of F with respect to any joint reduction of type q is
zero.

Theorem 1.15. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion two with infinite residue field and I, J be m-primary ideals of R.
Let F = {F(n)}n∈Z2 be a Z2-graded (I, J)-admissible filtration of ideals
in R. Then the following are equivalent.

(i) The Rees algebra R(F) is Cohen-Macaulay.
(ii) P(F) = N2, i.e., PF (n) = HF (n) for all n ≥ 0.
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(iii) For any good complete reduction A of F , rA(F) ≤ 1 and
H1

R++
(R(F))n = 0 for all n ≥ 0.

(iii′) There exists a good complete reduction A of F such that
rA(F) ≤ 1 and H1

R++
(R(F))n = 0 for all n ≥ 0.

(iv) For the filtrations F (i) = {F(nei)}n∈Z, r(F (i)) ≤ 1 where
i = 1, 2 and the joint reduction number of F of type e is zero.

2. Preliminary results. In this section, we discuss the existence of
good complete reduction of an I-admissible filtration F = {F(n)}n∈Zs

and prove some results regarding Hilbert coefficients, which we will
use in the following sections. For an admissible multigraded filtration
F = {F(n)}n∈Zs , by Rees’s lemma [12, Lemma 2.2] and [15, Lemma
1.2], we obtain elements xi ∈ Ii for all i = 1, . . . , s, called superficial
elements for F such that, for each i, there exist an integer ri and
(xi) ∩ F(n) = xiF(n− ei) for all n ≥ riei. In [15, Theorem 1.3], Rees
proved the existence of complete reduction of the filtration {In}n∈Zs .
Using the same lines of proof of this theorem and existence of superficial
elements we obtain the next theorem.

Theorem 2.1. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R. Let F be an I-admissible filtration of ideals in R. Then, there
exists a good complete reduction of F .

Lemma 2.2. Let (R,m) be a Noetherian local ring of dimension d ≥ 1,
and let I1, . . . , Is be m-primary ideals of R. Put I = I1 · · · Is. Then,∑

α=(α1,...,αs)∈Ns

|α|=d

d!eα(I)

α1! · · ·αs!
= e0(I) and e0(I) = ed(I).

Proof. Since, for large n,

PI(ne) = HI(ne) = λ

(
R

Ine

)
= λ

(
R

In

)
= PI(n),

comparing the coefficients of nd and constant terms, the required result
is obtained. �
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Proposition 2.3. Let s ≥ 1 be a fixed integer, and let i1, . . . , is ∈ N
be such that g = i1 + · · ·+ is ≥ 1. Then, ∆g(n1

i1 · · ·ns
is) = g!, where

nk ∈ Z for all k = 1, . . . , s.

Proof. We use induction on g. Let g = 1. Then, without loss
of generality, assume i1 = 1 and ik = 0 for all k ̸= 1. Therefore,
∆1(n1) = (n1 + 1) − n1 = 1. Let g ≥ 2, and assume the result is true
up to g − 1. Now,

∆g(n1
i1 · · ·ns

is) = ∆g−1
[
∆1(n1

i1 · · ·ns
is)

]
= ∆g−1

[ s∑
k=1

ik(n1
i1 · · ·nk

ik−1 · · ·ns
is)

]

=

s∑
k=1

ik∆
g−1(n1

i1 · · ·nk
ik−1 · · ·ns

is)

=
s∑

k=1

ik(g − 1)! = g!. �

Proposition 2.4. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1, and let I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs

be an I-admissible filtration of ideals in R. Then:

(1) eα(F) = eα(I) for all α ∈ Ns where |α| = d.
(2) ∆d(PF (n)) = ∆d(PI(n)) = e0(I1 · · · Is).
(3) For an ideal J ⊆ F(e) such that JF(n) = F(n+ e) for all large

n ∈ Ns, we have ∆d(PF (n)) = e0(J) = e0(I1 · · · Is).

Proof.

(1) This follows from [15, Theorem 2.4].

(2) Using Proposition 2.3, we obtain

∆d(PF (n))

= ∆d

( ∑
|α|≤d

(−1)d−|α|eα(F)
(
n1 + α1 − 1

α1

)
· · ·

(
ns + αs − 1

αs

))

= ∆d

( ∑
|α|=d

eα(F)
α1! · · ·αs!

n1
α1 · · ·ns

αs

)
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=
∑
|α|=d

eα(F)
α1! · · ·αs!

[
∆d(n1

α1 · · ·ns
αs)

]
=

∑
|α|=d

eα(F)
α1! · · ·αs!

(α1 + · · ·+ αs)! =
∑
|α|=d

d!
eα(F)

α1! · · ·αs!
.

In a similar manner, we obtain

∆d(PI(n)) =
∑
|α|=d

d!
eα(I)

α1! · · ·αs!
.

By (1) and Lemma 2.2, ∆d(PF (n)) = ∆d(PI(n)) = e0(I1 · · · Is).
(3) Since JF(n) = F(n + e) for all large n, there exists an integer

k ∈ N such that JF(n) = F(n+ e) for all n ≥ ke. Now, for all n ≥ k,
Jn−kF(ke) = F(ne), and hence, Jn ⊆ F(ne) ⊆ Jn−k. This implies

λ

(
R

Jn−k

)
≤ λ

(
R

F(ne)

)
≤ λ

(
R

Jn

)
for all n ≥ k. Therefore, for all n ≥ k, we have

lim
n→∞

PJ (n− k)

nd/d!
≤ lim

n→∞

PF (ne)

nd/d!
≤ lim

n→∞

PJ(n)

nd/d!

which implies ∆d(PF (n)) = e0(J). Hence, using part (2), we get the
required result. �

Proposition 2.5. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1, depthR ≥ 1, and let I1, . . . , Is be m-primary ideals of R.
Let F = {F(n)}n∈Zs be an I-admissible filtration of ideals in R and
A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} be a complete reduction of F .
Then, Ji = (xi1, . . . , xid) is a reduction of Ii for all i = 1, . . . , s.

Proof. For all large n, JF(n) = F(n + e) where yj = x1j · · ·xsj

for all j = 1, . . . , d and J = (y1, . . . , yd). Since F is an I-admissible
filtration, for each i ∈ {1, . . . , s}, there exists an ri ∈ N such that, for
all n ≥ riei, F(n+ ei) = IiF(n). Hence, for all large n,

IiF(n+e−ei)⊇JiF(n+e−ei)⊇JF(n)=F(n+e)⊇IiF(n+e−ei).

Now, by [15, Lemma 1.5], Ji is a reduction of Ii for all i = 1, . . . , s. �
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Proposition 2.6. Let
f(n) : Zs −→ Z

be an integer-valued function such that, for all large n ∈ Ns, f(n) = 0.
Let

B = {n ∈ Zs : f(m) = 0 for all m ≥ n}

and, for all j ≥ 0,

Cj = {n ∈ Zs : ∆j(f(m)) = 0 for all m ≥ n}.

Then, for j ≥ 0, B = Cj.

Proof. For j = 0, the results hold due to the definition of B. It
is sufficient to prove the statement for j = 1. Let n ∈ B. Then,
∆1(f(m)) = f(m + e) − f(m) = 0 for all m ≥ n. This implies
that n ∈ C1. Conversely, let n ∈ C1. Then, for all m ≥ n,
0 = ∆1(f(m)) = f(m + e) − f(m). Let k ∈ Ns be such that f(r) = 0
for all r ≥ k. Let m ≥ n. For all i = 1, . . . , s, define

u(m)i =

{
ki −mi if ki > mi,

0 if ki ≤ mi.

Let u(m) = max{u(m)1, . . . , u(m)s}+ 1. Then, for all m ≥ n,

0 = f(m+ u(m)e) = · · · = f(m+ e) = f(m).

Hence, n ∈ B. �

Proposition 2.7. Let

R =
⊕
n∈Ns

Rn

be a standard Noetherian Ns-graded ring, S an Ns-graded R-algebra
and b ∈ Re. Let

Sn
·b−→ Sn+e

be an injective map for all large n and grade(S++) ≥ 1. Then, b is a
nonzerodivisor of S.

Proof. Let m ∈ Ns be such that, for all n ≥ m, Sn
·b→ Sn+e

is an injective map. Let x ∈ (0 :S b) ∩ Sk for some k ∈ Ns. We
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show that x(S++)
m+1 = 0, where m = max{m1, . . . ,ms}. Let

0 ̸= z ∈ (S++)
m+1 ∩ Sp. Now, xz ∈ Sk+p and bxz = 0. Since

k + p ≥ (m+ 1)e, xz = 0. Thus,

x ∈ (0 :S (S++)
m+1) = 0. �

3. An analogue of Huneke’s fundamental lemma. Throughout
this section, (R,m) is a Cohen-Macaulay local ring of dimension d ≥ 1
with infinite residue field, and I1, . . . , Is are m-primary ideals of R. Let
F = {F(n)}n∈Zs be an I-admissible filtration of ideals in R. In [8],
Jayanthan and Verma generalized the Kirby-Mehran complex [6, 9]
for the bigraded filtration {IrJs}r,s∈Z where I, J are m-primary ideals
and studied the relation between cohomology modules of the complex
and local cohomology modules of R(I, J). We construct a multigraded
analogue of the Kirby-Mehran complex and compute its homology
modules. As a consequence of this we prove an analogue of Huneke’s
fundamental lemma [5, 7].

Let y1, . . . , yk be elements in I1 · · · Is where 1 ≤ k ≤ d. For l ≥ 1
and

(yt)[l] = y1
ltle, . . . , yk

ltle,

consider the Koszul complex K · ((yt)[l],R′(F)):

0 −→ R′(F) −→ R′(F)(le)(
k
1) −→ · · · −→ R′(F)((k − 1)le)(

k
k−1)

−→ R′(F)(kle) −→ 0.

This complex has a Zs-graded structure inherited from R′(F). The
graded component of degree n of the above complex isK·n((yt)[l],R′(F)):

0 −→ F(n) −→ (F(n+ le))(
k
1) −→ · · · −→ (F(n+ (k − 1)le))(

k
k−1)

−→ F(n+ kle) −→ 0.

Let y[l] = y1
l, . . . , yk

l. We can consider the above complex as a sub-

complex of the Koszul complex K · (y[l], R):

0 −→ R −→ R(k1) −→ · · · −→ R( k
k−1) −→ R −→ 0.

Hence, we have a chain map of complexes 0 → K ·n ((yt)[l],R′(F)) →
K · (y[l], R) which produces a quotient complex C · (y[l],F(n)):
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0 −→ R

F(n)
dk−→

(
R

F(n+ le)

)(k1) dk−1−→ · · ·

d2−→
(

R

F(n+ (k − 1)le)

)( k
k−1)

d1−→ R

F(n+ kle)

d0−→ 0.

In the next proposition, we compute homology modules of the above
complex.

Proposition 3.1. For all l ≥ 1, n ∈ Zs and 1 ≤ k ≤ d,

(1) H0(C · (y[l],F(n))) = R/(F(n+ kle), y[l]),

(2) Hk(C · (y[l],F(n))) = (F(n+ le) : (y[l]))/F(n),
(3) if y1, . . . , yk is a regular sequence then

H1(C · (y[l],F(n))) =
((y[l]) ∩ F(n+ kle))

(y[l])F(n+ (k − 1)le)
.

Proof.

(1) Since ker d0 = R/F(n+ kle) and im d1 = ((y[l]) + F(n +
kle))/F(n+ kle), we obtain

H0(C · (y[l],F(n))) = ker d0/im d1 = R/(F(n+ kle), y[l]).

(2) Since im dk+1 = 0,

Hk(C · (y[l],F(n))) = ker dk

= {x+ F(n) ∈ R/F(n) | xyil ∈ F(n+ le) for all i = 1, . . . , k}

= {x+ F(n) ∈ R/F(n) | x ∈ ∩ki=1(F(n+ le) : (yi
l))}

= {x+ F(n) ∈ R/F(n) | x ∈ (F(n+ le) : (y[l]))}.

(3) Since y1, . . . , yk is a regular sequence, the following sequence is
exact

R( k
k−2) ϕ2−→ R( k

k−1) ϕ1−→ (y[l])
ϕ0−→ 0.
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Tensoring by R/(F(n+ (k − 1)le)), we obtain an exact sequence(
R

F(n+ (k − 1)le)

)( k
k−2) ϕ2−→

(
R

F(n+ (k − 1)le)

)( k
k−1)

ϕ1−→ (y[l])/(y[l])F(n+ (k − 1)le)
ϕ0−→ 0.

Hence imϕ2 = im d2, and we obtain the following commutative diagram
of exact rows:

0 −−−−→ im d2 −−−−→
(

R
F(n+(k−1)le)

)( k
k−1)

−−−−→ (y[l])

(y[l])F(n+(k−1)le)
→ 0

i

y I1···Is
y θ

y
0 −−−−→ ker d1 −−−−→

(
R

F(n+(k−1)le)

)( k
k−1)

−−−−→ R
F(n+kle) ,

where i is the inclusion map and id is the identity map. Then, by the
Snake lemma,

H1(C · (y[l],F(n))) =
ker d1
im d2

∼= ker θ =
((y[l]) ∩ F(n+ kle))

(y[l])F(n+ (k − 1)le)
. �

Theorem 3.2 (Analogue of Huneke’s fundamental lemma). Let (R,m)
be a Cohen-Macaulay local ring of dimension d ≥ 1 with infinite residue
field, let I1, . . . , Is be m-primary ideals of R and F = {F(n)}n∈Zs

an I-admissible filtration of ideals in R. Let A = {xij ∈ Ii : j =
1, . . . , d; i = 1, . . . , s} be any complete reduction of F , yj = x1j · · ·xsj

for all j = 1, . . . , d. Let y = y1, . . . , yd and J = (y). Then, for all
n ∈ Zs,

∆d(PF (n)−HF (n)) = λ

(
F(n+ de)

JF(n+ (d− 1)e)

)
−

d∑
i=2

(−1)iλ(Hi(C · (y,F(n)))).

Proof. By Propositions 2.4 and 3.1, we obtain:

∆d(PF (n)−HF (n)) = e0(J)−∆d(HF (n))
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= e0(J)−
d∑

i=0

(−1)iλ(Hi(C · (y,F(n))))

= λ

(
R

(y)

)
− λ

(
R

(F(n+ de), (y))

)
+ λ

(
(y) ∩ F(n+ de)

(y)F(n+ (d− 1)e)

)

−
d∑

i=2

(−1)iλ(Hi(C · (y,F(n))))

= λ

(
F(n+ de)

(y)F(n+ (d− 1)e)

)
−

d∑
i=2

(−1)iλ(Hi(C · (y,F(n))))

= λ

(
F(n+ de)

JF(n+ (d− 1)e)

)
−

d∑
i=2

(−1)iλ(Hi(C · (y,F(n)))). �

4. Vanishing of Hilbert coefficients. In this section, we compute
the local cohomology module H1

R++
(R(F))n for all n ≥ 0 [2, 8]. We

discuss the vanishing of Hilbert coefficients of an I-admissible filtration
F and generalize some results due to Marley [10] in Cohen-Macaulay
local ring of dimension 1 ≤ d ≤ 2.

The filtration F̆ = {F̆(n)}n∈Zs of ideals for a Zs-graded I-filtration
F = {F(n)}n∈Zs is called the Ratliff-Rush closure filtration of F where

F̆(n) =
∪
k≥1

(F(n+ ke) : F(e)k)

for all n ∈ Ns and
F̆(n) = F̆(n+)

for all n ∈ Zs [12]. In order to compute H1
R++

(R(F))n, we follow the

lines of [2, Proof of Theorem 3.3].

Proposition 4.1. Let (R,m) be a Cohen-Macaulay local ring of di-
mension d ≥ 2 with infinite residue field, let I1, . . . , Is be m-primary
ideals of R and F = {F(n)}n∈Zs be an I-admissible filtration of ideals
in R. Then, for all n ∈ Ns,

H1
R++

(R(F))n ∼=
F̆(n)
F(n)

.



POSTULATION AND REDUCTION VECTORS 579

Proof. Let A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} be any com-
plete reduction of F , yj = x1j · · ·xsj for all j = 1, . . . , d. For each

n, l ≥ 1, (yt)[l] = y1
ltle, . . . , yd

ltle and y[l] = y1
l, . . . , yd

l, we have the
following exact sequence

0 −→ K.n((yt)
[l],R′(F)) −→ K · (y[l], R) −→ C · (y[l],F(n)) −→ 0.

For each i ∈ {1, . . . , d}, the commutative diagram of complexes:

K · (yil, R) : 0 −−−−→ R
yi

l

−−−−→ R −−−−→ 0

id

y yi

y
K · (yil+1, R) : 0 −−−−→ R

yi
l+1

−−−−→ R −−−−→ 0

gives a map K · (y1l, . . . , ydl, R) = ⊗d
i=1K · (yil, R) → K · (y1l+1, . . . ,

yd
l+1, R) = ⊗d

i=1K · (yil+1, R). The maps can be restricted to K ·n
(y1

ltle, . . . , yd
ltle,R′(F)). Hence, for all l ≥ 1, we get morphisms of

exact sequences

0 // K · n((yt)[l],R′(F))

��

// K · (y[l], R)

��

// C · (y[l],F(n))

��

// 0

0 // K ·n ((yt)[l+1],R′(F)) // K · (y[l+1], R) // C · (y[l+1],F(n)) // 0

which produce an inductive system of exact sequences of complexes.
Applying lim

−→
l

to the long exact sequence of cohomology modules, we

obtain

0 −→ H0
(yt)(R

′(F))n −→ H0
(y)(R) −→ lim

−→
l

H0(C · (y[l],F(n)))

−→ H1
(yt)(R

′(F))n −→ · · · .

Since (R,m) is Cohen-Macaulay, Hi
(y)(R) = 0 for 0 ≤ i ≤ d−1. Hence,

H1
(yt)(R

′(F))n ∼= lim
−→
l

H0(C · (y[l],F(n))) = lim
−→
l

Hd(C · (y[l],F(n)))

= lim
−→
l

(F(n+le):(y[l]))

F(n) .
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Since
√
R++ =

√
(yt), by [12, Proposition 3.1, Proposition 4.2], for

all n ∈ Ns,

H1
R++

(R(F))n ∼= H1
R++

(R′(F))n ∼=
F̆(n)
F(n)

. �

For all i = 1, . . . , s, we denote the associated multigraded ring of F
with respect to F(ei) by

Gi(F) =
⊕
n∈Ns

F(n)
F(n+ ei)

.

For F = {In}n∈Zs , we set Gi(F) = Gi(I). In the next proposition, we
give an equivalent criterion for the vanishing of H1

R++
(R(F))n for all

n ≥ 0 in terms of grade(Gi(F)++) for all i = 1, . . . , s.

Proposition 4.2. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d ≥ 2 with infinite residue field, I1, . . . , Is the m-primary ideals of
R and F = {F(n)}n∈Zs an I-admissible filtration of ideals in R. Then
the following statements are equivalent.

(1) For all n ∈ Ns, H1
R++

(R(F))n = 0.

(2) For all i = 1, . . . , s, grade(Gi(F)++) ≥ 1.

Proof. Fix i. Denote
R′(F)
R′(F)(ei)

by G′
i(F). Consider the short exact sequence of R(I)-modules,

0 −→ R′(F)(ei) −→ R′(F) −→ G′
i(F) −→ 0.

This induces a long exact sequence of local cohomology modules,

(4.1) 0 −→ H0
R++

(G′
i(F))n −→ H1

R++
(R′(F))n+ei −→ · · · .

Since H1
R++

(R(F))n = 0 for all n ∈ Ns, by [12, Proposition 4.2],

we have H1
R++

(R′(F))n = 0 for all n ∈ Ns. Hence, from the exact

sequence (4.1) and [12, Proposition 4.2], for all n ∈ Ns, we obtain

H0
Gi(F)++

(Gi(F))n ∼= H0
Gi(F)++

(G′
i(F))n ∼= H0

R++
(G′

i(F))n = 0.
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Conversely, suppose that grade(Gi(F)++) ≥ 1 for all i = 1, . . . , s. By
[12, Theorem 3.3], for all n ∈ Ns,

F̆(n+ ei) ∩ F(n) = F(n+ ei).

We show that, if F̆(n) = F(n) for some n ≥ 0, then F̆(m) = F(m) for
all m ≥ n. Let ti = mi − ni for all i = 1, . . . , s. For each i,

F(n+ ei) = F̆(n+ ei) ∩ F(n) = F̆(n+ ei) ∩ F̆(n) = F̆(n+ ei).

Continuing this process ti times, for each i, we get F̆(m) = F(m). Since

F̆(0) = F(0), by Proposition 4.1, we obtain the required result. �

Remark 4.3. Note that, if (R,m) is an analytically unramified local
ring of dimension d ≥ 1, I1, . . . , Is are m-primary ideals of R, then, for
the filtration F = {In}n∈Zs , by [12, Corollary 3.4], H1

R++
(R(F))n = 0

for all n ∈ Ns.

Proposition 4.4. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion d ≥ 2 with infinite residue field, and let I1, . . . , Is be m-primary
ideals of R. Let F = {F(n)}n∈Zs be an I-admissible filtration of ideals
in R and A = {xij ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} be a good complete
reduction of F . Set y1 = x11 . . . xs1. Let H1

R++
(R(F))n = 0 for all

n ∈ Ns. Then,

(1) yi1 = y1 + Ie+ei ∈ Gi(I)e is Gi(F)-regular for all i = 1, . . . , s.
(2) (y1) ∩ F(n) = y1F(n− e) for all n ≥ e.

Proof.

(1) Fix i. Let m ≥ e be such that (y1) ∩ F(n) = y1F(n − e) for

all n ≥ m. We show that (Gi(F))n
·yi1−→ (Gi(F))n+e is injective for all

n ≥ m. Let (z+F(n+ei))yi1 = F(n+e+ei). Then, y1z ∈ F(n+e+ei).
Since n ≥ m, z ∈ F(n+ ei). Hence, by Propositions 2.7 and 4.2, yi1 is
a nonzerodivisor of Gi(F).

(2) For all i = 1, . . . , s, consider the Koszul complex Ki· = Ki ·
(yi1, Gi(F)):

0 −→ Gi(F) −→ Gi(F)(e) −→ 0.

The nth component of this complex is Ki · (yi1, Gi(F), n):

0 −→ Gi(F)(n) −→ Gi(F)n+e −→ 0.
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Hence, for all i = 1, . . . , s and n ≥ 0, we have the exact sequence of
complexes

0 −→ Ki.(yi1, Gi(F), n) −→ C ·(y1,F(n+ei)) −→ C ·(y1,F(n)) −→ 0,

which gives a long exact sequence of homology modules

· · · −→ Hj(Ki · (yi1, Gi(F), n)) −→ Hj(C · (y1,F(n+ ei)))

−→ Hj(C · (y1,F(n))) −→ · · · .

Since yi1 is a nonzerodivisor of Gi(F) for all i = 1, . . . , s, we have
H1(Ki · (yi1, Gi(F), n)) = 0 for all n and i = 1, . . . , s. Due to the fact
that H1(C · (y1,F(0))) = 0, applying the above exact sequence several
times for all i = 1, . . . , s, we obtain H1(C · (y1, n)) = 0 for all n ≥ 0.
Hence, F(n) ∩ (y1) = y1F(n− e) for all n ≥ e. �

Proposition 4.5. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 and I1, . . . , Is the m-primary ideals of R. Let F = {F(n)}n∈Zs

be an I-admissible filtration of ideals in R and A = {xij ∈ Ii : j =
1, 2; i = 1, . . . , s} a good complete reduction of F . Let yj = x1j · · ·xsj

for all j = 1, 2 and H1
R++

(R(F))n = 0 for all n ∈ Ns. Then

H2(C · (y1, y2,F(n))) = 0 for all n ≥ 0.

Proof. Fix i. Let yij = yj + Ie+ei ∈ Gi(I)e for all j = 1, 2 and
i = 1, . . . , s. Consider the Koszul complex K · (yi1, yi2, Gi(F)):

0 −→ Gi(F) −→ (Gi(F)(e))2 −→ Gi(F)(2e) −→ 0

whose nth component is

0 −→ Gi(F)n −→ (Gi(F)n+e)
2 −→ Gi(F)n+2e −→ 0.

For all n ≥ 0, we have the exact sequence

0 −→ K · (yi1, yi2, Gi(F), n) −→ C · (y1, y2,F(n+ ei))

−→ C · (y1, y2,F(n)) −→ 0.

This gives a long exact sequence of homology modules

· · · −→ Hj(K · (yi1, yi2, Gi(F), n)) −→ Hj(C · (y1, y2,F(n+ ei)))

−→ Hj(C · (y1, y2,F(n))) −→ · · ·
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for all n ≥ 0. Since, by Proposition 4.4, yi1 is a regular element in
Gi(F) for all i = 1, . . . , s, we have H2(K · (yi1, yi2, Gi(F))) = 0 for all
n and i = 1, . . . , s. Due to the fact that H2(C ·(y1, y2,F(0))) = 0, using
the above exact sequence several times for all i = 1, . . . , s, we obtain
H2(C · (y1, y2,F(n))) = 0 for all n ≥ 0. �

Theorem 4.6. Let (R,m) be a Cohen-Macaulay local ring of dimension
1 ≤ d ≤ 2 with infinite residue field, I1, . . . , Is the m-primary ideals of
R and F = {F(n)}n∈Zs an I-admissible filtration of ideals in R. Let
e(d−1)ei(F) = 0 for i = 1, . . . , s. Then,

(1) For d = 1, PF (n) = HF (n) for all n ∈ Ns.
(2) For d = 2, if H1

R++
(R(F))n = 0 for all n ∈ Ns, then PF (n) =

HF (n) for all n ∈ Ns and e0(F) = 0.

Proof.

(1) For d = 1, since e0(F) = 0, we obtain PF (0) = HF (0).
Therefore, by the difference formula [12, Theorem 4.3], we obtain

λR(H
1
R++

(R(F))0) = 0.

Since dimR = 1, by [12, Lemma 2.11], for all n ∈ Ns, H1
R++

(R(F))n =

0. Therefore, again using the difference formula [12, Theorem 4.3], we
obtain PF (n)−HF (n) = 0 for all n ∈ Ns.

(2) Let d = 2,

A = {xij ∈ Ii : j = 1, 2; i = 1, . . . , s}

be any good complete reduction of F , yj = x1j · · ·xsj for j = 1, 2 and
J = (y1, y2). Fix i. Let R′ = R/(xi1) and ′ denote the image of an
ideal in R′. For all large n, consider the following exact sequence

0 −→ (F(n) : (xi1))

F(n− ei)
−→ R

F(n− ei)

·xi1−→ R

F(n)
−→ R

(xi1,F(n))
−→ 0.

Since A is a good complete reduction, for all large n, (F(n) : (xi1)) =
F(n− ei) and

λ

(
R

(xi1,F(n))

)
= λ

(
R

F(n)

)
− λ

(
R

F(n− ei)

)
.
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Therefore, for the filtration F ′ = {F(n)R′}n∈Zs ,we have PF ′(n) =
PF (n)− PF (n− ei). This implies that the constant term of PF ′(n) is
eei(F) = 0. Due to the fact that A′ = {x′

i2 ∈ Ii : i = 1, . . . , s} is a
complete reduction of F ′, J ′ = (y′2) and dimR′ = 1, by Theorem 3.2,
Proposition 2.6 and part (1), we have

λ

(
F(n+ e)R′

J ′F(n)R′

)
= ∆1(PF ′(n)−HF ′(n)) = 0 for all n ∈ Ns.

Thus, we obtain F(n+ e) = y2F(n)+ ((xi1)∩F(n+ e)) for all n ∈ Ns.
We show that (xi1) ∩ F(n+ e) = xi1F(n+ e− ei) for all n ∈ Ns. It is
clear that xi1F(n + e − ei) ⊆ (xi1) ∩ F(n + e). Let axi1 ∈ F(n + e).
Then, ay1 ∈ F(n+2e−ei). Since H1

R++
(R(F))n = 0 for all n ∈ Ns and

A is a good complete reduction, by Proposition 4.4, a ∈ F(n+ e− ei).
Hence, we obtain

F(n+ e) = y2F(n)+ xi1F(n+ e− ei) for all n ∈ Ns and i = 1, . . . , s.

We show that F(n+2e) = JF(n+e) for all n ∈ Ns. Let n ∈ Ns. Then,

F(n+ 2e) = y2F(n+ e) + x11F(n+ 2e− e1)

= y2F(n+ e) + x11(y2F(n+ e− e1)

+ x21F(n+ 2e− e1 − e2))

⊆ y2F(n+ e) + x11x21F(n+ 2e− e1 − e2)

...

⊆ y2F(n+ e) + x11 · · ·xs1F(n+ e)

= (y1, y2)F(n+ e) = JF(n+ e).

Since H1
R++

(R(F))n = 0 for all n ∈ Ns, by Theorem 3.2 and Proposi-

tion 4.5, for all n ∈ Ns, we obtain

∆2(PF (n)−HF (n)) = λ

(
F(n+ 2e)

JF(n+ e)

)
,

and hence, by Proposition 2.6, we have PF (n) = HF (n) for all n ∈ Ns.
Setting n = 0 in the above equality, we obtain e0(F) = 0. �

Theorem 4.7. Let (R,m) be a Cohen-Macaulay local ring of dimension
1 ≤ d ≤ 2 with infinite residue field and I, J the m-primary ideals of
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R. Let F = {F(r, s)}r,s∈Z be a Z2-graded (I, J)-admissible filtration of
ideals in R. Then, the following statements are equivalent.

(1) e(d−1)ei(F) = 0 for i = 1, 2.
(2) I and J are generated by a system of parameters, PF (r, s) =

HF (r, s) for all r, s ∈ N and F(r, s) = IrJs for all r, s ∈ Z.
(3) eα(F) = 0 for |α| ≤ d− 1.

Proof.

(1) ⇒ (2). Let F (1) = {F(r, 0)}r∈Z and F (2) = {F(0, s)}s∈Z. Since
F is an (I, J)-admissible filtration, F (1) and F (2) are I-admissible
and J-admissible filtrations, respectively. By [10, Lemma 3.19], [12,
Theorem 5.5] and [13], we have

0 ≤ e1(I) ≤ e1(F (1)) ≤ e(d−1)e1(F) = 0,

0 ≤ e1(J) ≤ e1(F (2)) ≤ e(d−1)e2(F) = 0.

Then, by [10, Theorem 3.21], we obtain that I and J are generated by
a system of parameters, F(r, 0) = Ir and F(0, s) = Js for all r, s ∈ Z.
Let d = 1. Then, by Theorem 4.6, PF (r, s) = HF (r, s) for all r, s ∈ N.
It is sufficient to prove that F(r, s) = IrJs for all r, s ≥ 1. Since I and
J are generated by the system of parameters, for r, s ≥ 1, we have

λ

(
R

F(r, s)

)
= PF (r, s) = re(I) + se(J)

= λ

(
R

Ir

)
+ λ

(
R

Js

)
= λ

(
R

Ir

)
+ λ

(
Ir

IrJs

)
= λ

(
R

IrJs

)
.

This implies that F(r, s) = IrJs for all r, s ≥ 1. Let d = 2. Since I
and J are parameter ideals, we have

e(I)− ee1(F) = e(I) = λ

(
R

I

)
= λ

(
R

F(1, 0)

)
,

e(J)− ee2(F) = e(J) = λ

(
R

J

)
= λ

(
R

F(0, 1)

)
.

Therefore, by [12, Theorem 7.3], we obtain PF (r, s) = HF (r, s) for all
r, s ∈ N. It is sufficient to prove that F(r, s) = IrJs for all r, s ≥ 1. By
[12, Theorem 7.3], the joint reduction number of F of type e is zero.
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Let (a, b) be a joint reduction of F of type e. Then,

F(r, s) = aF(r − 1, s) + bF(r, s− 1) for all r, s ≥ 1.

We use induction on r + s. Let r, s ≥ 1. If r + s = 2, then r = s = 1
and

F(1, 1) = aF(0, 1) + bF(1, 0) = aJ + bI ⊆ IJ ⊆ F(1, 1).

Let r+ s > 2. Then r ≥ 2 or s ≥ 2. Without loss of generality, assume
that r ≥ 2. If s = 1, then using induction, we get

F(r, 1) = aF(r − 1, 1) + bF(r, 0) = aIr−1J + bIr ⊆ IrJ ⊆ F(r, 1).

Hence, we may assume that s ≥ 2. Therefore,

F(r, s) = aF(r − 1, s) + bF(r, s− 1)

= aIr−1Js + bIrJs−1 ⊆ IrJs ⊆ F(r, s).

(2) ⇒ (3). For d = 1, putting r = s = 0 in the equation
PF (r, s) = HF (r, s), we obtain the required result. Let d = 2. Since
PF (r, s) = HF (r, s) for all r, s ∈ N, we have e0(F) = 0,

e(I)− ee1(F) = λ

(
R

F(1, 0)

)
and

e(J)− ee2(F) = λ

(
R

F(0, 1)

)
.

Since I and J are parameter ideals and F(r, s) = IrJs for all r, s ∈ Z,
by [12, Theorem 5.5], we have

ee1(F) = e1(F (1)) = e1(I) = 0 and ee2(F) = e1(F (2)) = e1(J) = 0.

(3) ⇒ (1). It follows directly. �

Example 4.8. Let R = k[|X,Y |]. Then, R is a regular local ring
of dimension 2. Let I = (X,Y 2) and J = (X2, Y ). Then, I
and J are complete parameter ideals in R. Consider the filtration
F = {IrJs}r,s∈Z. Since I and J are complete ideals, by [18, Theorem
2′, Appendix 5], Ir, Js and IrJs are complete ideals as well. By [14,
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Theorem 1.2],

ee1(F) = e1(I) = e1(I) = 0 and ee2(F) = e1(J) = e1(J) = 0.

Since

e(I)− ee1(F) = e(I) = λ

(
R

I

)
= λ

(
R

I

)
,

e(J)− ee2(F) = e(J) = λ

(
R

J

)
= λ

(
R

J

)
,

by [12, Theorem 7.3], we obtain PF (r, s) = HF (r, s) for all r, s ∈ N.

5. Postulation and reduction vectors in dimension 1. Let
(R,m) be a Cohen-Macaulay local ring of dimension 1 with infinite
residue field, and let I1, . . . , Is be m-primary ideals of R. Let F =
{F(n)}n∈Zs be an I-admissible filtration of ideals in R. In this section,
we prove that the set of reduction vectors of F with respect to any
complete reduction is the same as the set of postulation vectors of F .
Thus, the set of reduction vectors of F with respect to any complete
reduction is independent of the choice of complete reduction. Then,
we show that the complete reduction number of F with respect to any
complete reduction is independent of the choice of complete reduction.

Theorem 5.1. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 1 with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R. Let F = {F(n)}n∈Zs be an I-admissible filtration of ideals in R
and A = {ai ∈ Ii : i = 1, . . . , s} a complete reduction of F . Then,

P(F) ⊆ Ns and P(F) = RA(F).

Moreover, the set RA(F) is independent of any complete reduction A
of F .

Proof. First, we prove that P(F) ⊆ Ns. Suppose that there exists
an n ∈ Zs \ Ns such that n ∈ P(F). Then, there exists at least one
i ∈ {1, . . . , s} such that ni < 0. Therefore,

PF (n+ ei) = λ

(
R

F(n+ ei)

)
= λ

(
R

F(n)

)
= PF (n)
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implies e0(Ii) = PF (n+ei)−PF (n) = 0. This contradicts the fact that
e0(Ii) > 0. Thus, P(F) ⊆ Ns. Let J = (a1 · · · as). By Theorem 3.2,
for all n ≥ 0,

∆1(PF (n)−HF (n)) = λ

(
F(n+ e)

JF(n)

)
.

Hence, by Proposition 2.6, we obtain the required result. �

Example 5.2. Let R = k[|t3, t4, t5|]. Then, R is a one dimensional
Cohen-Macaulay local ring with unique maximal ideal m = (t3, t4, t5).
Consider I = (t3, t4) and J = (t3). Then, JI2 = I3. Since (t6)(IJ)2 =

(IJ)3, A =
(

t3

t3

)
is a complete reduction for the filtration I =

{IrJs}r,s∈Z. We have λ(R/Jn) = 3n for all n ∈ N.
Now, λ(R/I) = 2, λ(R/I2) = 4 and, for n ≥ 3,

In = Jn−2I2 = (t3n−6)(t6, t7, t8) = (t3n, t3n+1, t3n+2).

Hence, for all n ≥ 2, λ(R/In) = 3n− 2. Let

PI(n) = ne0(I)− e1(I),

PJ(n) = ne0(J)− e1(J),

PIJ(n) = ne0(IJ)− e1(IJ)

and
PI(n) = n1e0(I) + n2e0(J)− e0(I)

denote the Hilbert polynomials of I, J , IJ and I, respectively, where
n ∈ Z and n = (n1, n2) ∈ Z2. Then, e0(I) = e0(J) = 3, e1(I) = 2 and
e1(J) = 0. Now, by Lemma 2.2, e0(I) = e1(IJ). For large n,

PIJ (n) = ne0(IJ)− e1(IJ) = λ

(
R

(IJ)n

)
= λ

(
R

I2n

)
= 6n− 2.

Hence, e0(I) = e1(IJ) = 2. This implies PI(n) = 3n1 + 3n2 − 2.
Since (t6)(IJ) = IJ3 ̸= I2J2 and (t6)(IJ)2 = I2J4 = I3J3, we have
rA(I) = 2.

Note that (t6)I2 = J2I2 = JI3 and (t6)I = J2I ̸= I2J . Let
(1, n) ∈ Z2 be such that n ≥ 1. Then,

(t6)IJn = IJn+2 = (t3, t4)(t3n+6) = (t3n+9, t3n+10)

̸= (t3n+9, t3n+10, t3n+11) = I2Jn+1.
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Hence, RA(I) = {m ∈ N2 | m ≥ (2, 0)}.
For all n1 ≥ 2 and n2 ≥ 0,

PI(n1, n2) = 3n1+3n2− 2 = λ

(
R

In1+n2

)
= λ

(
R

In1Jn2

)
= HI(n1, n2)

and

PI(1, 0) = 1 ̸= 2 = λ

(
R

I

)
.

Let (1, n) ∈ Z2 be such that n ≥ 1. Then, PI(1, n) = 3n+ 1 and

HI(1, n) = λ

(
R

IJn

)
= λ

(
R

(t3n+3, t3n+4)

)
= 3n+ 2.

Hence, for all n = (1, n) where n ≥ 0, PI(1, n) ̸= HI(1, n). Thus,
RA(I) = P(I).

In the next example, we show that we cannot drop the condition of
Cohen-Macaulayness in Theorem 5.1.

Example 5.3. Let

R =
k[|X,Y |]
(X2, XY )

.

Then, R is a one-dimensional local ring which is not Cohen-Macaulay.
Consider the ideals I = (x, y) and J = (y) of R. Then, JI = I2. Since
(y2)(IJ) = I2J2, A = ( yy ) is a complete reduction for the filtration
I = {IrJs}r,s∈Z. We have

λ

(
R

Jn

)
= n+ 1 for all n ≥ 1.

Now λ(R/I) = 1 and, for n ≥ 2, In = Jn−1I = (yn−1)(x, y) = (yn).
Hence, for all n ≥ 2, λ(R/In) = n+ 1. Let

PI(n) = ne0(I)− e1(I),

PJ(n) = ne0(J)− e1(J),

PIJ(n) = ne0(IJ)− e1(IJ)

and
PI(n) = n1e0(I) + n2e0(J)− e0(I)
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denote the Hilbert polynomials with respect to I, J , IJ and I, respec-
tively, where n ∈ Z and n = (n1, n2) ∈ Z2. Then, e0(I) = e0(J) = 1.
Now, by Lemma 2.2, e0(I) = e1(IJ). For large n,

PIJ (n) = ne0(IJ)− e1(IJ) = λ

(
R

(IJ)n

)
= λ

(
R

I2n

)
= 2n+ 1.

Hence, e0(I) = e1(IJ) = −1. This implies PI(n) = n1 + n2 + 1. Now
IJ = (x, y)(y) = (y2). Hence, rA(I) = 0. This implies RA(I) = N2;
however, PI(0, 0) = 1 ̸= 0 = HI(0, 0). Therefore, RA(I) ̸= P(I).

Theorem 5.4. Let (R,m) be a one dimensional Cohen-Macaulay
local ring, and let I1, . . . , Is be m-primary ideals of R. Let F =
{F(n)}n∈Zs be an I-admissible filtration of ideals in R. Then, the
complete reduction number of F with respect to any complete reduction
is independent of the choice of complete reduction of F .

Proof. Let A = {ai ∈ Ii : i = 1, . . . , s} be a complete reduction of
F , J = (a1 · · · as) and rA(F) = k. First, we show that

k = min {max {t1, . . . , ts : t = (t1, . . . , ts) ∈ RA(F)}}.

If k = 0, then it is true. Suppose that k ≥ 1. Let n ∈ Ns be such that
ni < k for all i = 1, . . . , s and n ∈ RA(F). Let u = max {n1, . . . , ns}.
Then, u < k and n ≤ ue ≤ (k− 1)e. Hence, JF(m) = F(m+ e) for all
m ≥ (k−1)e. This contradicts the fact that k is the complete reduction
number of F with respect to A. Thus, t ∈ RA(F) implies ti ≥ k for
at least one i. Since JF(n) = F(n + e) for all n ≥ ke, there exists an
r ∈ RA(F) such that max {r1, . . . , rs} = k. Hence,

k = min {max {t1, . . . , ts : t = (t1, . . . , ts) ∈ RA(F)}}.

Therefore, by Theorem 5.1, we obtain the required result. �

6. Postulation and reduction vectors in dimension 2. Let
(R,m) be a Cohen-Macaulay local ring of dimension 2 with infinite
residue field and I1, . . . , Is the m-primary ideals of R. Let F =
{F(n)}n∈Zs be an I-admissible filtration of ideals in R. In this section,
we provide a relation between the reduction vectors of F with respect
to any good complete reduction and the postulation vectors of F . For
a bigraded filtration F , we prove a result which relates the Cohen-
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Macaulayness of the bigraded Rees algebra, the complete reduction
number, reduction numbers and the joint reduction number.

Theorem 6.1. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 with infinite residue field, and let I1, . . . , Is be m-primary ideals
of R and s ≥ 2. Let F = {F(n)}n∈Zs be an I-admissible filtration of
ideals in R and

A = {xij ∈ Ii : j = 1, 2; i = 1, . . . , s}

a good complete reduction of F . Let H1
R++

(R(F))n = 0 for all n ≥ 0.

Then, P(F) ⊆ Ns, and there exists a one-to-one correspondence

f : P(F)←→ {r ∈ RA(F) | r ≥ e}

defined by f(n) = n+ e where f−1(r) = r − e.

Proof. First, we prove that P(F) ⊆ Ns. Suppose that there exists
an n ∈ Zs \ Ns such that n ∈ P(F). Then, there exists at least one
i ∈ {1, . . . , s} such that ni < 0. Therefore, for any j ∈ {1, . . . , s} with
j ̸= i and l ≥ 0,

PF (n+lej+ei) = λ

(
R

F(n+ lej + ei)

)
= λ

(
R

F(n+ lej)

)
= PF (n+lej).

Thus, for l = 1, we obtain

0 = PF (n+ ej + ei)− PF (n+ ej)

= (ni + 1)e0(Ii) +
∑
k ̸=i,j

nkeek+ei(F)

+ (nj + 1)eej+ei(F)− eei(F).

Then, for l = 0, we obtain

0 = PF (n+ ei)− PF (n)

= (ni + 1)e0(Ii) +
∑
k ̸=i

nkeek+ei(F)− eei(F)

= −eej+ei(F).

This contradicts the fact that eej+ei(F) > 0 [15, Theorem 2.4]. Hence,
P(F) ⊆ Ns.
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Let yj = x1j · · ·xsj for j = 1, 2 and J = (y1, y2). Then, by
Theorem 3.2 and Proposition 4.5, for all n ≥ 0,

∆2(PF (n)−HF (n)) = λ

(
F(n+ 2e)

JF(n+ e)

)
.

Hence, by Proposition 2.6, we get the required result. �

Theorem 6.2. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 with infinite residue field and I1, . . . , Is the m-primary ideals of
R and s ≥ 2. Let F = {F(n)}n∈Zs be an I-admissible filtration of
ideals in R and H1

R++
(R(F))n = 0 for all n ≥ 0. Then, the following

statements are equivalent.

(1) P(F) = Ns, i.e., PF (n) = HF (n) for all n ≥ 0.
(2) rA(F) ≤ 1 for any good complete reduction A of F .
(2′) There exists a good complete reduction A of F such that

rA(F) ≤ 1.

Proof.

(1) ⇒ (2). Let PF (n) = HF (n) for all n ≥ 0 and A = {xij ∈
Ii : j = 1, 2; i = 1, . . . , s} be any good complete reduction of F . Let
yj = x1j · · ·xsj for j = 1, 2 and J = (y1, y2). Then, by Theorem 3.2,
Propositions 2.6 and 4.5, for all n ≥ 0,

λ

(
F(n+ 2e)

JF(n+ e)

)
= 0 =⇒ JF(n+ e) = F(n+ 2e).

Hence, rA(F) ≤ 1.

The implication (2) ⇒ (2′) is trivial.

(2′) ⇒ (1). Suppose that there exists a good complete reduction
A = {xij ∈ Ii : j = 1, 2; i = 1, . . . , s} of F such that rA(F) ≤ 1.
Let yj = x1j · · ·xsj for j = 1, 2 and J = (y1, y2). Then, again by
Theorem 3.2 and Proposition 4.5, for all n ≥ 0,

∆2(PF (n)−HF (n)) = 0.

Now, using Proposition 2.6, we obtain PF (n)−HF (n) = 0 for all n ≥ 0.
Since P(F) ⊆ Ns, we obtain the required result. �
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In the next example, we show that we cannot drop the condition on
H1

R++
(R(F))n in Theorem 6.2.

Example 6.3. Let R = k[|X,Y |]. Then R is a two-dimensional Cohen-
Macaulay local ring with unique maximal ideal m = (X,Y ). Let I = m2

and J = (X2, Y 2). Since (X4, Y 4)IJ = (X4, Y 4)m4 = m8 = I2J2, we
have

A =

(
X2 Y 2

X2 Y 2

)
is a complete reduction for the filtration I = {IrJs}r,s∈Z. By [4,
Proposition 1.2.2], for all large n = (n1, n2) ∈ N2, we obtain

(X4) ∩ In1Jn2 = X4(In1Jn2 : (X4)) = X4In1−1Jn2−1.

Hence, A is a good complete reduction for the filtration I. Note that,

since
︸ ︸
Ie2 = J̆ = (IkJ1+k : IkJk) for some large k, JI = I2 and m is

parameter ideal, we have

J̆ = (m4k+2 : m4k) = m2 ̸= J,

and hence, H1
R++

(R(I))(0,1) ̸= 0. Since (X4, Y 4)IJ = I2J2, we obtain

rA(I) ≤ 1. For n ≥ 1,

λ

(
R

In

)
= λ

(
R

m2n

)
=

(
2n+ 1

2

)
= 4

(
n+ 1

2

)
− n = PI(n),

Since J is parameter ideal and JI = I2,

λ

(
R

Jn

)
= 4

(
n+ 1

2

)
= PJ (n),

λ

(
R

(IJ)n

)
= λ

(
R

m4n

)
=

(
4n+ 1

2

)
= 16

(
n+ 1

2

)
− 6n = PIJ(n)

and

λ

(
R

I2nJn

)
= λ

(
R

m6n

)
=

(
6n+ 1

2

)
= 36

(
n+ 1

2

)
− 15n = PI2J(n).

Hence, e0(I) = e0(J) = 4. Now, for large n, PIJ(n) = λ(R/(IJ)n) =
PI(ne) and PI2J(n) = λ(R/(I2nJn))) = PI(2n, n). Comparing the
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coefficients on both sides, we obtain

PI(r, s) = 4

(
r + 1

2

)
+ 4

(
s+ 1

2

)
+ 4rs− r − s.

Then PI(0, 1) = 3 ̸= 4 = λ(R/J).

Theorem 6.4. Let (R,m) be a Cohen-Macaulay local ring of dimen-
sion 2 with infinite residue field and I, J the m-primary ideals of R. Let
F = {F(n)}n∈Z2 be a Z2-graded (I, J)-admissible filtration of ideals in
R. Then, the following statements are equivalent.

(1) The Rees algebra R(F) is Cohen-Macaulay.
(2) P(F) = N2, i.e., PF (n) = HF (n) for all n ≥ 0.
(3) For any good complete reduction A of F , rA(F) ≤ 1 and

H1
R++

(R(F))n = 0 for all n ≥ 0.

(3′) There exists a good complete reduction A of F such that
rA(F) ≤ 1 and H1

R++
(R(F))n = 0 for all n ≥ 0.

(4) For the filtrations F (i) = {F(nei)}n∈Z, r(F (i)) ≤ 1 where
i = 1, 2, and the joint reduction number of F of type e is zero.

Proof. Implications (1) ⇒ (2) ⇒ (4) ⇒ (1) and (3) ⇒ (3′) ⇒
(2) follow from [12, Theorem 7.3] and Theorem 6.2, respectively.
It is sufficient to show (1) ⇒ (3). Suppose that R(F) is Cohen-
Macaulay. Then, by [12, Theorem 2.15, Proposition 7.2], we obtain
H1

R++
(R(F))n = 0 for all n ≥ 0. Since (1) implies (2), by Theorem 6.2,

we obtain the required result. �

The next example illustrates Theorems 6.1, 6.2 and 6.4.

Example 6.5. Let R = K[|X,Y |]. Then, R is a two dimensional
Cohen-Macaulay local ring with unique maximal ideal m = (X,Y ).
Let I = m2 and J = m3. Since

(X5, Y 5)IJ = (X5, Y 5)m5 = m10 = I2J2,

we have

A =

(
X2 Y 2

X3 Y 3

)
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is a complete reduction for filtrations I = {IrJs}r,s∈Z and rA(I) ≤ 1.
By [4, Proposition 1.2.2], for all large n = (n1, n2) ∈ N2, we obtain

(X5) ∩ In1Jn2 = X5(In1Jn2 : (X5)) = X5In1−1Jn2−1.

Hence, A is a good complete reduction for the filtration I.

We show that H1
R++

(R(I))n = 0 for all n ≥ 0. For n = (n1, n2) ≥ 0,

we have ︸ ︸
In = (In+ke : Ike) = (m2n1+3n2+5k : m5k)

for some large k. Since m is a parameter ideal,
︸ ︸
In = m2n1+3n2 = In for

all n ≥ 0. For n ≥ 1,

λ

(
R

In

)
= λ

(
R

m2n

)
=

(
2n+ 1

2

)
= 4

(
n+ 1

2

)
− n = PI(n),

λ

(
R

Jn

)
= λ

(
R

m3n

)
=

(
3n+ 1

2

)
= 9

(
n+ 1

2

)
− 3n = PJ(n),

λ

(
R

(IJ)n

)
= λ

(
R

m5n

)
=

(
5n+ 1

2

)
= 25

(
n+ 1

2

)
− 10n = PIJ(n)

and

λ

(
R

InJ2n

)
= λ

(
R

m8n

)
=

(
8n+ 1

2

)
= 64

(
n+ 1

2

)
− 28n = PIJ2(n).

Hence, e0(I) = 4 and e0(J) = 9.

Now, for large n,

PIJ(n) = λ

(
R

(IJ)n

)
= PI(ne)

and

PIJ2(n) = λ

(
R

InJ2n

)
= PI(n, 2n).

Comparing the coefficients on both sides, we obtain

(6.1) PI(n1, n2) = 4

(
n1 + 1

2

)
+ 9

(
n2 + 1

2

)
+ 6n1n2 − n1 − 3n2.

Hence, by [12, Theorem 6.2], the joint reduction number of I of
type e is zero. Since (X2, Y 2)I = I2 and (X3, Y 3)J = J2, we have
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r(I(i)) ≤ 1 for i = 1, 2, where I(1) = {Ir}r∈Z and I(2) = {Js}s∈Z.

By [3, Corollaries 2.3, 2.4], R(I(1)) and R(I(2)) are Cohen-Macaulay.
Hence, by [12, Theorem 7.1], R(I) is Cohen-Macaulay.

Using (6.1), we obtain PI(n1, n2) = HI(n1, n2) for all n = (n1, n2) ∈
N2. Thus, P(I) = N2. Since (X5, Y 5)IJ = I2J2, (X5, Y 5)I ̸= I2J ,
(X5, Y 5)J ̸= IJ2, (X5, Y 5)I2 = I3J and(X5, Y 5)J2 = IJ3, we have

RA(I) = {m ∈ N2 | m ≥ e}∪{m ∈ N2 | m ≥ 2e1}∪{m ∈ N2 | m ≥ 2e2}.
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