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⋆-REDUCTIONS OF IDEALS AND PRÜFER
v-MULTIPLICATION DOMAINS

E. HOUSTON, S. KABBAJ AND A. MIMOUNI

ABSTRACT. Let R be a commutative ring and I an ideal
of R. An ideal J ⊆ I is a reduction of I if JIn = In+1

for some positive integer n. The ring R has the (fi-
nite) basic ideal property if (finitely generated) ideals of
R do not have proper reductions. Hays characterized (one-
dimensional) Prüfer domains as domains with the finite basic
ideal property (basic ideal property). We extend Hays’s re-
sults to Prüfer v-multiplication domains by replacing “basic”
with “w-basic,” where w is a particular star operation. We
also investigate relations among ⋆-basic properties for certain
star operations ⋆.

1. Introduction. Throughout, all rings considered are commuta-
tive with identity. Let R be a ring and I an ideal of R. An ideal J ⊆ I
is a reduction of I if JIn = In+1 for some positive integer n [18]. An
ideal that has no reduction other than itself is called a basic ideal [10].
The notion of reduction was introduced by Northcott and Rees, who
stated:

...first, it defines a relationship between two ideals
which is preserved under homomorphisms and ring ex-
tensions; secondly, what we may term the reduction
process gets rid of superfluous elements of an ideal
without disturbing the algebraic multiplicities associ-
ated with it... [18].
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For both early and recent developments on reduction theory, we refer
the reader to [10, 11, 13, 14, 18, 19, 20, 21].

In [10, 11], Hays investigated reductions of ideals in commutative
rings with a particular focus on Prüfer domains. He studied the notion
of basic ideal and examined domains subject to the basic ideal property,
i.e., every ideal is basic. This class is shown to be strictly contained in
the class of Prüfer domains (domains in which every nonzero finitely
generated ideal is invertible); and a new characterization for Prüfer
domains is provided, namely, a domain is Prüfer if and only if it
has the finite basic ideal property (i.e., every finitely generated ideal
is basic) [10, Theorem 6.5]. The second main result of these two
papers characterizes domains with the (full) basic ideal property as
one-dimensional Prüfer domains ([10, Theorem 6.1] combined with
[11, Theorem 10]). Our primary goal is to extend Hays’s results to
Prüfer v-multiplication domains (PvMDs).

Let R be a domain and I a nonzero fractional ideal of R. The v- and
t-closures of I are defined, respectively, by Iv := (I−1)−1 and It := ∪Jv,
where J ranges over the set of finitely generated subideals of I. Recall
that I is a t-ideal if It = I and a t-finite (or v-finite) ideal if there exists
a finitely generated fractional ideal J of R such that I = Jt = Jv; and
R is called a Prüfer v-multiplication domain (PvMD) if the set of its
t-finite t-ideals forms a group under ideal t-multiplication

(I, J) 7−→ (IJ)t.

A useful characterization is that R is a PvMD if and only if each
localization at a maximal t-ideal is a valuation domain [9, Theorem
5]. The class of PvMDs strictly contains the classes of factorial
and Prüfer domains. The t-operation nowadays is a cornerstone of
multiplicative ideal theory and has been thoroughly investigated by
many commutative algebraists since the 1980s.

For the convenience of the reader, Figure 1 displays a diagram
of implications summarizing the relations among many well-studied
classes of domains, putting PvMDs in perspective. In the diagram,
classes on top become the classes directly underneath by means of
replacing the definitions with a corresponding t-version. For example,
a GCD-domain is a domain in which It is principal for each nonzero
finitely generated ideal I, and a PvMD is a domain in which each
nonzero finitely generated ideal is t-invertible.
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Figure 1. PvMDs in perspective.

The t- and v-operations are examples of star operations (defined
below). We also require the w-operation: for a nonzero fractional ideal
I of a domainR, Iw =

∪
(I : J), where the union is taken over all finitely

generated ideals J of R that satisfy Jv = R; equivalently, Iw =
∩
IRM ,

where the intersection is taken over the set of maximal t-ideals of R. It
follows that, for each I and maximal t-ideal M , we have IwRM = IRM .
(This can be done in greater generality–see [1].) In Figure 1, “t” can
be replaced by “w” to go from top to bottom.

In Section 2, we discuss the notion of ⋆-basic ideals and prove that
a domain with the finite ⋆-basic ideal property (⋆-basic ideal property)
must be integrally closed (completely integrally closed). We also
observe that a domain has the v-basic ideal property if and only if it is
completely integrally closed. Section 3 is devoted to generalizing Hays’
results; we show that a domain has the finite w-basic ideal property (w-
basic ideal property) if and only if it is a PvMD (of t-dimension one). In
Section 4, we present a diagram of implications among domains having
various ⋆-basic properties and give examples showing that most of the
implications are not reversible. For example, a domain with the w-basic
ideal property must also have the t-basic ideal property, and a v-domain
must have the finite v-basic ideal property, but neither implication is
reversible.



494 E. HOUSTON, S. KABBAJ AND A. MIMOUNI

Notation is standard, as in [8]. In particular, for a domain D with
quotient field K and submodules A,B of K, we use (A : B) to denote
the D-module {x ∈ K | xB ⊆ A}.

2. ⋆-basic ideals. Let R be a domain with quotient field K, and
let F(R) denote the set of nonzero fractional ideals of R. A map
⋆ : F(R) → F(R), I 7→ I⋆, is said to be a star operation on R if the
following conditions hold for every nonzero a ∈ K and I, J ∈ F(R):

(a) (aI)⋆ = aI⋆ and R⋆ = R;

(b) I ⊆ I⋆ and I ⊆ J implies I⋆ ⊆ J⋆; and (c) I⋆⋆ = I⋆. It is
common to denote the trivial star operation (I 7→ I) by “d.”

Definition 2.1. Let R be an integral domain and ⋆ a star operation
on R. Let I be a nonzero ideal of R.

(i) An ideal J ⊆ I is a ⋆-reduction of I if (JIn)⋆ = (In+1)⋆ for some
integer n ≥ 0. The ideal J is a trivial ⋆-reduction of I if J⋆ = I⋆.

(ii) I is ⋆-basic if it has no ⋆-reduction other than the trivial ⋆-
reduction(s).

(iii) R has the ⋆-basic ideal property if every nonzero ideal (or, equiv-
alently, every ⋆-ideal) of R is ⋆-basic.

(iv) R has the finite ⋆-basic ideal property if every nonzero finitely
generated ideal (or, equivalently, every ⋆-finite ideal) of R is ⋆-
basic.

Note that this is not to be confused with the identically named notion
of Epstein [3, 4, 5], which generalizes the original notion of reduction
in a different way: if c is a closure operation, then an ideal J ⊆ I is
a c-reduction of I if Jc = Ic. Thus, for c := ⋆, Epstein’s c-reduction
coincides with our trivial ⋆-reduction.

It is clear that ⋆-reductions can be extended to fractional ideals;
in particular, if R has the ⋆-basic ideal property, then every nonzero
fractional ideal of R is ⋆-basic.

It is easy to see that, if ⋆1 ≤ ⋆2 are star operations on a domain R
(meaning that I⋆1 ⊆ I⋆2 for each I ∈ F(R)), then each ⋆1-reduction of
an ideal is also a ⋆2-reduction. The converse is false. In particular, a
t-reduction may not be a (d-)reduction. For a very simple example, let



⋆-REDUCTIONS OF IDEALS AND PvMDS 495

R = k[x, y] be a polynomial ring in two indeterminates over a field k,
and let M = (x, y). Then, M is basic, i.e., M has no reductions other
than itself [10, Theorem 2.3]. On the other hand, Mt = R, see e.g.,
[16, Exercise 1, p. 102], from which it follows that any power of M
is a (trivial) t-reduction of M . (A “better” example is given following
Proposition 2.4 below.)

Lemma 2.2. In an integral domain R, ⋆-invertible ideals and ⋆-
idempotent ideals are ⋆-basic.

Proof. Let J ⊆ I be a ⋆-reduction of the ideal I of R, so that
(JIn)⋆ = (In+1)⋆ for some positive integer n. If I is ⋆-invertible,
then multiplication by (I−1)n and taking ⋆-closures immediately yields
J⋆ = I⋆. Next, assume that (I2)⋆ = I⋆. Then, I⋆ = (In+1)⋆ =
(JIn)⋆ ⊆ J⋆ ⊆ I⋆ so that, again, J⋆ = I⋆, as desired. �

Lemma 2.3. (cf., [10, Lemma 6.4]). Let ⋆ be a star operation on a
domain R. If R has the finite ⋆-basic ideal property, then R is integrally
closed.

Proof. Let x, y ∈ R be such that x/y is integral over R. As in the
proof of [10, Lemma 6.4], (y) is a reduction of (x, y). We then have
x ∈ (x, y)⋆ = (y)⋆ = (y), whence x/y ∈ R. �

Recall that a domain R is said to be completely integrally closed if
every nonzero ideal of R is v-invertible.

Proposition 2.4. Let ⋆ be a star operation on an integral domain R.

(i) If R has the ⋆-basic ideal property, then R is completely integrally
closed.

(ii) R has the v-basic ideal property if and only if R is completely
integrally closed.

Proof.

(i) Assume that R has the ⋆-basic ideal property. Let I be a nonzero
ideal of R, and set J := II−1. It is well known that J−1 = (J : J),
and hence, J−1 is a ring. Now, let 0 ̸= a ∈ J , and set A := aJ−1

and B := aR. Clearly, A and B are v-ideals of R with B ⊆ A and
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BA = A2, that is, B is a reduction (and, a fortiori, a ⋆-reduction) of A.
By the ⋆-basic hypothesis, aJ−1 = A⋆ = B⋆ = aR, whence R = J−1.
Therefore, (II−1)v = Jv = R, as desired.

(ii) The “only if” assertion is a special case of (i), and the converse
is handled by Lemma 2.2. �

Next, we give an example of t-ideals I, J in a Noetherian domain R
such that J is a t-reduction, but not a d-reduction, of I. Since the v-
and t-operations coincide in any Noetherian domain, such an R cannot
be (completely) integrally closed by Proposition 2.4.

Example 2.5. Again, let k be a field and x, y indeterminates over k.
Let T = k[x, y] = k +M , where M = (x, y)T . Now let R = k +M2.
Observe that R is Noetherian (see, e.g., [2]). As in the discussion
preceding Lemma 2.2, as an ideal of T , M has no reductions other
than itself. In particular, M2 is not a reduction of M in T , and it
follows easily that M2 is not a reduction of (the fractional ideal) M in
R. However, we claim that M2 is a nontrivial t-reduction of M . To
verify this, proceed as follows. First, we have (T : M) = T (as before).
It follows that M ⊆ M−1 (= (R : M)) ⊆ T . On the other hand, if
f ∈ T satisfies fM ⊆ R, then, writing f = a + m with a ∈ k and
m ∈ M , we immediately obtain that aM ⊆ R, whence a = 0, i.e.,
f ∈ M . Thus M−1 = M , whence also Mt = Mv = M . However,
(R : T ) = M2, whence (M2)−1 = ((R : M) : M) = (M : M) = T
and then (M2)t = (M2)v = (R : T ) = M2. A similar argument yields
(Mn)t = M2 for n ≥ 2. Hence M2 = (M3)t = (M2M)t, and therefore
J := M2 is a nontrivial t-reduction of I := M , as claimed. (To obtain
an example involving integral ideals, replace M by xM and M2 by
xM2.) �

We recall that a domain R is a v-domain if each nonzero finitely
generated ideal of R is v-invertible. From Lemma 2.2, the following is
immediate:

Proposition 2.6. A v-domain has the finite v-basic ideal property. �

Now, recall that to any star operation ⋆ on a domain R, we may
define an associated star operation ⋆f by setting, for each I ∈ F(R),

I⋆f =
∪

J⋆,
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the union being taken over all finitely generated subideals J of I. The
star operation ⋆ has finite type if ⋆ = ⋆f . Note that vf = t. If ⋆
is a finite-type star operation on a domain R, then minimal primes
of ⋆-ideals are themselves ⋆-ideals, and each ⋆-ideal is contained in a
maximal ⋆-ideal.

Lemma 2.7. Let ⋆ be a star operation of finite type on an integral
domain R. If I is a finitely generated ideal of R and J is a ⋆-reduction
of I, then there is a finitely generated ideal K ⊆ J such that K is a
⋆-reduction of I.

Proof. Suppose that I is a finitely generated ideal of R and that
(JIn)⋆ = (In+1)⋆ for some ideal J ⊆ I and some positive integer n.
Suppose that In+1 is generated by b1, . . . , br in R. Since bi ∈ (JIn)⋆,
there is a finitely generated subideal Ki of J such that bi ∈ (KiI

n)⋆.
For K =

∑r
i=1 Ki, we then have In+1 ⊆ (KIn)⋆, as desired. �

Proposition 2.8. If a domain R has the finite ⋆-basic ideal property,
then R also has the finite ⋆f -basic ideal property. In particular, if R
has the finite v-basic ideal property, then R also has the finite t-basic
ideal property.

Proof. Let R be a domain with the ⋆-basic ideal property. Let I be
a finitely generated ideal of R, and let J be a ⋆f -reduction of I. By
Lemma 2.7, we may assume that J is finitely generated. Since J is also
a ⋆-reduction of I, we have J⋆f = J⋆ = I⋆ = I⋆f . Hence, R has the
⋆f -basic ideal property. �

Corollary 2.9. A v-domain has the finite t-basic ideal property. �

3. Characterizations. We begin with an analogue of Hays’s first
result that a domain is a Prüfer domain if and only if it has the finite
basic ideal property. We shall need a result of Kang [15, Theorem 3.5]
that characterizes PvMDs as integrally closed domains in which the t-
and w-operations coincide. We denote the set of maximal t-ideals of a
domain R by Maxt(R).
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Theorem 3.1. (cf., [10, Theorem 6.5]). A domain R is a PvMD if
and only if it has the finite w-basic ideal property.

Proof. If R is a PvMD, then, as mentioned above, the t- and w-
operations coincide, and R has the finite w-basic ideal property by
Corollary 2.9.

Now assume that R has the finite w-basic ideal property. Then R is
integrally closed by Lemma 2.3. Let M ∈ Maxt(R), and let a, b ∈ M .
Since (a2, b2) is a reduction of (a, b)2, we have (a2, b2)w = ((a, b)2)w,
and hence, (as mentioned in the introduction) (a2, b2)RM = (a, b)2RM .
Thus, RM is a valuation domain [8, Theorem 24.3(4)]. Therefore, R is
a PvMD. �

Hays proved that, in a Prüfer domain, the definition of a reduction
can be restricted, namely, J ⊆ I is a reduction if and only if JI = I2

[11, Proposition 1]. The next lemma establishes a similar property
for t-reductions and also shows that this notion is local in the class of
PvMDs. It is useful to note that, if J is a t-reduction of an ideal I,
then a prime t-ideal of R contains I if and only if it contains J . We
shall also need the fact (which follows easily from [22, Lemma 4] and
is stated explicitly in [15, Lemma 3.4]) that, if I is a nonzero ideal
of a domain R and S is a multiplicatively closed subset of R, then
(ItRS)tRS

= (IRS)tRS
.

Lemma 3.2. Let R be a PvMD and J ⊆ I nonzero ideals of R. Then,
the following assertions are equivalent :

(i) J is a t-reduction of I;
(ii) JRMIRM = (IRM )2 for each M ∈ Maxt(R);
(iii) (JI)t = (I2)t.

Proof.

(i) ⇒ (ii). Assume that J is a t-reduction of I such that (JIn)t =
(In+1)t for some positive integer n, and let M ∈ Maxt(R). Since RM

is a valuation domain, the t-operation is trivial on RM (tRM
= dRM

).
Using this and the remarks above, we have

In+1RM = ((In+1)tRM )tRM
= ((JIn)tRM )tRM

= JInRM .
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Hence, JRM is a reduction of IRM in RM , and thus, JRMIRM =
(IRM )2 by [11, Proposition 1].

(ii) ⇒ (iii). By [15, Theorem 3.5], we have

(JI)t =
∩

M∈Maxt(R)

JIRM =
∩

M∈Maxt(R)

(I2RM ) = (I2)t.

(iii) ⇒ (i). Trivial. �

Lemma 3.3. (cf. [11, Proposition 9]). Let x be a nonzero element of
a PvMD R, let P be a minimal prime of xR, and let I = xRP ∩ R.
Then,

(i) I is a w-ideal of R,
(ii) xR+ I2 is a w-reduction of I, and
(iii) if I is w-basic, then P ∈ Maxt(R).

Proof.

(i)–(ii). Let M be a maximal t-ideal of R containing P . Then, Iw ⊆
IRM ∩R ⊆ IRP ∩R = I, proving (i). Now, since I is P -primary, IRM

is PRM -primary, and, since RM is a valuation domain, this implies
that IRM = IRP = xRP . Thus, I2RM = I2RP = xIRP = xIRM .1

It easily follows that (xR+ I2)IRM = xIRM = I2RM . Again, since I
is P -primary, we also have (xR + I2)IRN = I2RN for N ∈ Maxt(R)
with N + P . Therefore, ((xR + I2)I)w = (I2)w, and thus, xR + I2 is
a w-reduction of I.

(iii) Assume that I is w-basic. Then (xR + I2)w = Iw by (ii).
Suppose thatM ∈ Maxt(R) properly contains P , and choose y ∈ M\P .
Then, P is minimal over yx, and I = yxRP ∩ R. Thus, as above, we
have I2RM = yxIRM , and hence, x ∈ IRM = (yxR+I2)RM ⊆ yxRM ,
a contradiction. Therefore, P ∈ Maxt(R). �

Theorem 3.4. A domain R has the w-basic ideal property if and only
if R is a PvMD of t-dimension 1.

Proof. Let R be a PvMD with t-dim(R) = 1, and let J ⊆ I be
nonzero ideals of R with (JI)w = (I2)w. Let M be a maximal t-ideal
of R. Then, JIRM = I2RM . We want to show that JRM = IRM , and
for this, we may as well assume that I ⊆ M and IRM is not invertible.
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Since RM is a valuation domain, we then have IRM = IMRM ,
and since RM is also one-dimensional, [6, Proposition 2.1] yields
IRM (RM : IRM ) = MRM . Hence, multiplying both sides of the
equation JIRM = I2RM by (RM : IRM ) yields JRM ⊇ JMRM =
IMRM = IRM . We then obtain Jw = Iw. Therefore, by Lemma 3.2,
R has the w-basic ideal property.

Conversely, suppose that R has the w-basic ideal property. Then, R
is a PvMD by Theorem 3.1. Let M be a maximal t-ideal of R, let Q be
a nonzero prime of R contained in M , let x be a nonzero element of Q,
and shrink Q to a prime P minimal over x. Then, since I := xRP ∩R
is w-basic by hypothesis, Lemma 3.3 yields P = Q = M . Therefore,
htM = 1, as desired. �

..Krull.

w-basic = PvMD + t-dim 1

.

finite w-basic = PvMD

.

v-domain

.

finite v-basic

.
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.
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Figure 2. ⋆-basic properties in perspective.

4. Examples. Consider the diagram of implications (Figure 2) in-
volving various ⋆-basic properties.

Of these implications, (1)–(3) and (9) are well known. Implications
(4)–(8) follow from Proposition 2.6, Proposition 2.8, Lemma 2.3, The-
orem 3.4 (and the fact that w = t in a PvMD), and Proposition 2.4,
respectively.
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Irreversibility of arrows (1)–(3) and (9) is again well known. We
do not know whether (5) is reversible. The remainder of the paper is
devoted to examples for (irreversibility of) the other implications.

Example 4.1. Arrow (4) is irreversible.

Proof. Let k be a field and X,Y, Z indeterminates over k. Let T :=
k((X))+M and R := k[[X]]+M , whereM := (Y,Z)k((X))[[Y,Z]]. Let
A be an ideal of R. Then, A is comparable to M . Suppose that A ⊆ M
and A is not invertible. If AA−1 ) M , then AA−1 is principal, and
hence, A is invertible, contrary to assumption. Hence, AA−1 ⊆ M . We
claim that (AA−1)v = M . In order to verify this, first recall that M is
divisorial in R. Then, since AA−1 is a trace ideal, that is, (AA−1)−1 =
(AA−1 : AA−1), we have (AA−1)−1 ⊆ (AA−1T : AA−1T ) = T = M−1

(the first equality holds since T is Noetherian and integrally closed).
This forces (AA−1)−1 = M−1, whence (AA−1)v = Mv = M , as
claimed.

Now let I be a finitely generated ideal of R and J a v-reduction of
I such that (JIn)v = (In+1)v for some positive integer n. We shall
show that J−1 = I−1 (and hence, that Jv = Iv), and for this, we may
assume that I is not invertible. Suppose, by way of contradiction, that
IT (T : IT ) = T , i.e., that IT is invertible in T . Then, since T is local,
IT is principal and, in fact, IT = aT for some a ∈ I. We then have
R ⊆ a−1I ⊆ T . Then, k[[X]] ∼= R/M ⊆ a−1I/M ⊆ T/M ∼= k((X)),
from which it follows that a−1I/M must be a cyclic k[[X]]-module.
However, this is easily seen to imply that a−1I, hence I, is principal,
the desired contradiction. We therefore have (T : IT )I ⊆ M , whence

(IM)−1 = (R : IM) = ((R : M) : I) = (T : I) = (M : I) ⊆ I−1.

This immediately yields I−1 = (IM)−1.

Now set Q = In(In)−1. From the above (setting A = In), we have
Qv = M . Therefore,

I−1 ⊆ J−1 ⊆ (JM)−1 = (JQ)−1 = (IQ)−1 = (IM)−1 = I−1,

which yields J−1 = I−1, as desired. Hence, R has the finite v-basic
property. Finally, again from the above, we have ((y, z)(y, z)−1)v = M ,
so that R is not a v-domain. �
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Example 4.2. Arrow (6) is irreversible.

Proof. Let k be a field and X,Y indeterminates over k. Let V =
k(X)[[Y ]] and R = k + M , where M = Y k(X)[[Y ]]. Clearly, R
is an integrally closed domain. Of course, M is divisorial in R.
Also, (M2)−1 = ((R : M) : M) = (V : M) = Y −1V , and thus,
(M2)v = (R : Y −1V ) = Y (R : V ) = YM = M2, i.e., M2 is also
divisorial. We claim that R does not have the finite t-basic ideal
property. Indeed, let W := k+Xk, and consider the finitely generated
ideal I of R given by I = Y (W + M). We have (k : W ) = (0);
otherwise, we have 0 ̸= f ∈ (k : W ), and both f and fX ∈ k,
whence X ∈ k, a contradiction. Therefore, I−1 = Y −1M , and thus,
It = Iv = YM−1 = M . Now, let J = Y R. Then, Jt = Y R ( M = It.
However,

(JI)t = (Y I)t = Y It = YM = M2 = ((It)
2)t = (I2)t,

and thus, R does not have the finite t-basic ideal property. �

Example 4.3. Arrow (7) is irreversible.

Proof. In [12], Heinzer and Ohm give an example of an essential
domain that is not a PvMD. In that example, k is a field, y, z and
{xi}∞i=1 are indeterminates over k, and D = R ∩ (

∩∞
i=1 Vi), where

R = k({xi})[y, z](y,z)k({xi})[y,z] and Vi is the rank-one discrete valuation
ring on k({xj}∞j=1, y, z) with xi, y, z all having value 1 and xj having
value 0 for j ̸= i (using the “infimum” valuation). As further described
in [17, Example 2.1], we have Max(D) = {M} ∪ {Pi}, where M is the
contraction of (y, z)R to D and the Pi are the centers of the maximal
ideals of the Vi; moreover, DM = R and Vi = DPi .

It was pointed out in [7, Example 1.7] that each finitely generated
ideal of D is contained in almost all of the Vi. In fact, one can say
more. Let a be an element of D. We may represent a as a quotient f/g
with f, g ∈ T := k[{xi}, y, z](y,z)k[{xi},y,z] and g /∈ (y, z)T (and hence,
g /∈ M). Since f and g involve only finitely many xj and g /∈ M , the
sequence {vi(a)} must be eventually constant, where vi is the valuation
corresponding to Vi. We denote this constant value by w(a). A similar
statement holds for finitely generated ideals of D.
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Let K be a nonzero ideal of D. Then

KtDPi ⊇ KDPi = (KDPi)tDPi
= (KtDPi)tDPi

⊇ KtDPi ,

whence KtDPi = KDPi .

Now suppose that we have nonzero ideals J ⊆ I of D with (JIn)t =
(In+1)t. Let a ∈ I, and choose a0 ∈ I such that w(a0) is minimal.
Then, aan0 ∈ In+1 ⊆ (JIn)t, and thus, aan0 ∈ (BAn)v for finitely
generated ideals B ⊆ J and A ⊆ I. With the observation in the
preceding paragraph, we then have aan0 ∈ BAnDPi for each i. However,
since w(a0) ≤ w(A), it must be the case that w(a) ≥ w(B), i.e.,
for some integer k, a ∈ BDPi for all i > k. Since the equality
(JIn)t = (In+1)t yields JDPi = IDPi for each i, we may choose
elements bj ∈ J for which vj(a) = vj(bj), j = 1, . . . , k. With
B′ = (B, b1, . . . , bk), we then have a ∈ B′DPi for each i. This yields

a(B′)−1 ⊆
∩

DPi .

Next, we consider extensions to DM . From (JIn)t = (In+1)t, we
obtain (JInDM )tDM

= (In+1DM )tDM
. Since DM is a regular local

ring, each nonzero ideal of DM is t-invertible, and we may cancel to
obtain (IDM )tDM

= (JDM )tDM
. There is a finitely generated subideal

B1 of J with B1DM = JDM . We then have

IB−1
1 ⊆ IDMB−1

1 DM = IDM (B1DM )−1 ⊆ (JDM (JDM )−1)tDM
⊆ DM .

Now let B2 = B′ +B1. Then

a(B2)
−1 ⊆ DM ∩

∩
DPi = D,

whence a ∈ (B2)v ⊆ Jt. It follows that D has the t-basic property.
However, since D is not a PvMD, D cannot have the (finite) w-basic
property. �

Example 4.4. Arrow (8) is irreversible.

Proof. Let D denote the ring of entire functions. It is well known
that D is a completely integrally closed Prüfer domain of infinite Krull
dimension. Since D is a Prüfer domain, each nonzero ideal is a t-ideal.
The fact that dimD = ∞ then yields that D does not have the (t-)
basic property by [11, Theorem 10]. �



504 E. HOUSTON, S. KABBAJ AND A. MIMOUNI

ENDNOTES

1. We thank Tom Lucas for this simplification of our original
argument.
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