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A STRUCTURE THEOREM FOR MOST UNIONS
OF COMPLETE INTERSECTIONS

ALFIO RAGUSA AND GIUSEPPE ZAPPALÀ

ABSTRACT. Using the connections among almost com-
plete intersection schemes, arithmetically Gorenstein schemes
and schemes that are a union of complete intersections,
we give a structure theorem for the arithmetically Cohen-
Macaulay union of two complete intersections of codimen-
sion 2, of type (d1, e1) and (d2, e2) such that min{d1, e1} ̸=
min{d2, e2}. We apply the results for computing Hilbert
functions and graded Betti numbers for such schemes.

Introduction. The simplest projective schemes which one can study
are those whose defining ideals can be generated by the minimal number
of equations with respect to their codimension c. These schemes
are complete intersection schemes whose defining ideals are minimally
generated by exactly c elements. In particular, this implies that they
can be generated by a regular sequence. Now, there are different ways
to generalize such a notion. For instance, one may study arithmetically
Cohen Macaulay schemes which can be generated by a number of
elements equal to one more than the codimension. These kinds of
schemes are usually denominated almost complete intersections and
are recently studied, for instance, in [6, 9, 10, 14, 15, 16]. Another
possibility is to study schemes which, as the complete intersections,
have Cohen-Macaulay type 1 or equivalently with principal last syzygies
module. In this case, we have arithmetically Gorenstein schemes and
we have a large literature on this theme (see, for instance, [1, 3, 7,
12, 13]). Finally, from a more geometric point of view, one can study
schemes which are a finite union of complete intersections with some
kind of generic property for realizing such unions.
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All of these generalizations are strictly related, as we show in this
paper in the codimension 2 case. Indeed, using information on an
almost complete intersection and on a Gorenstein scheme directly
linked to it, we obtain nice information on a union of two complete
intersection schemes. The idea is very simple. Start from a union
of two complete intersections X1 and X2 of codimension 2 in Pr

which realizes an arithmetically Cohen-Macaulay scheme X (this, in
particular, implies that X1 ∩ X2 is aCM of codimension 3. The
sum of their defining ideals IX1 and IX2 in the polynomial ring R =
k[x0, . . . , xr] defines an almost complete intersection of codimension 3.
Now, if we link IX1 + IX2 in a complete intersection generated by three
of its generators, we get a Gorenstein scheme G of codimension 3.

Now, we use the pfaffian resolution of this Gorenstein scheme to
obtain a free resolution of the given union IX obtaining in this way a
structure theorem for such schemes (Theorem 1.4). In order to do so
we need the assumption that, if X1 has type (d1, e1) and X2 has type
(d2, e2), then min{d1, e1} ≠ min{d2, e2}. As applications of this result
we obtain a description of the Hilbert functions of these schemes, in
particular, the starting degree and the Castelnuovo-Mumford regularity
for IX , and much information regarding their graded Betti numbers
(indeed, all up to very few cancellations). In many cases, our resolutions
are minimal; thus, in these cases we obtain the Hilbert-Burch matrix
of the defining ideal of these schemes.

1. Union of complete intersections of codimension two. Let k
be an algebraically closed field, and let R := k[x0, . . . , xr]. We consider
the standard grading on R and we consider only homogeneous ideals
in R.

An ideal IQ ⊂ R is said to be an almost complete intersection ideal
of codimension c if IQ is perfect and it is minimally generated by less
or equal to c+ 1 forms (note that we include complete intersections in
this definition).

Every almost complete intersection ideal IQ of codimension c is di-
rectly linked in a complete intersection to a Gorenstein ideal IG ⊂ R.
Indeed, if IZ ⊆ IQ is generated by c minimal generators of IQ, which
form a regular sequence, then IG := IZ : IQ is a Gorenstein ideal. By
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liaison theory (see [11] for a complete discussion on this argument) we
also have IQ = IZ : IG.

Gorenstein and almost complete intersection ideals in codimension 3
were extensively studied. In particular, it is well known that the
Gorenstein ideals of codimension 3 are generated by the (n−1)-pfaffians
of an alternating matrix of odd size n, see [1]. If A is an alternating
matrix, we will denote by pf A its pfaffian and by Pfr(A) the ideal
generated by the r-pfaffians of A.

Let X1, X2 ⊂ Pr, r ≥ 2, be two complete intersection schemes of
codimension 2 without common components. Assume that X1 ∪X2 is
aCM. For instance, note that this always occurs for a disjoint union of
two zero-dimensional complete intersection schemes of P2.

Remark 1.1. By the standard exact sequence,

(1.1) 0 −→ IX1 ∩ IX2 −→ IX1 ⊕ IX2 −→ IX1 + IX2 −→ 0,

we see that the homological dimension of R/(IX1 + IX2) is less than or
equal to 3 (by mapping cone); hence, since by assumption, X1 and X2

have no common components, it is exactly 3. Consequently, the ideal
IX1 + IX2 is Artinian for r = 2, and it is a saturated ideal for r ≥ 3;
precisely, when r ≥ 3, IX1 + IX2 = IX1∩X2 . Therefore, X1∩X2 is aCM
of codimension 3.

We give a structure theorem for schemes of the type X1 ∪X2, with
a light restriction about the degrees.

We begin by collecting some well-known facts about pfaffians and
determinants of skew-symmetric matrices which will be useful for
proving our results.

We introduce the following notation. If M is a matrix, we denote
by M[i1,...,ir;j1,...,js] the submatrix of M obtained by deleting the rows
labeled by the integers i1, . . . , ir and the columns labeled by the integers
j1, . . . , js. By M[i1,...,ir;−], we will denote the submatrix of M obtained
by deleting only the rows, and analogously for M[−;j1,...,js]. Moreover,
M[i1,...,ir;i1,...,ir] will be denoted by M(i1,...,ir).

In the sequel, if a1 < · · · < an are integers and (b1, . . . , bn) is
a permutation of them, we use sgn(b1, . . . , bn) as the sign of the
permutation (b1, . . . , bn) with respect to (a1, . . . , an).
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Lemma 1.2. Let A be an alternating matrix of odd size n. Then:

(i) detA[i;j] = pf A(i) pf A(j).

(ii) detA[i,j;h,k] = sgn(i, j) sgn(h, k)(sgn(i, j, h) pf A(i,j,h) pf A(k) −
sgn(i, j, k) pf A(i,j,k) pf A(h)) = sgn(h, k) sgn(i, j)(sgn(h, k, j) pf A(h,k,j)

× pf A(i) − sgn(h, k, i) pf A(h,k,i) pf A(j)).

Proof. The first result is due to Cayley, see [2]. The second is a
revision of a generalization due to Heymans, see [5, formula (3.31)]. �

Lemma 1.3. Let A be an alternating matrix of odd size n, and let
pi := (−1)i pf A(i). Let

B :=


0 a1 · · · an
b1
... A
bn

 .

Then

detB =
n∑

i=1

aipi

n∑
j=1

bjpj .

Proof. Using Lemma 1.2 (i), we know that

detA[i;j] = pf A(i) pf A(j).

Thus, to obtain the result, it is sufficient to compute detB by using
the Laplace rule with respect to the first row and the first column. �

Theorem 1.4.

(i) Let X1, X2 ⊂ Pr, r ≥ 2, be two complete intersection schemes
of codimension 2 without common components of type, respectively,
(d1, e1) and (d2, e2), with d1 ≥ e1, d2 ≥ e2, and assume that e1 > e2.
Suppose that X := X1 ∪X2 is aCM. Then, there exists an alternating
matrix A of odd size n with entries in R and 3n forms αi, βi, γi,
1 ≤ i ≤ n, such that IX is the ideal generated by the maximal minors
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of the matrix

M =



0 β1 β2 · · · βn−1 βn

0 α1 α2 · · · αn−1 αn

γ1
γ2
... A

γn−1

γn


.

Precisely, it is possible to choose four forms f1, g1, f2 and g2, with
g2 of minimal degree among the four forms, such that IX1 = (f1, g1),
IX2 = (f2, g2) and (f1, g1, f2) is a regular sequence, and we can choose
M in such a way that

f1 =
n∑

i=1

αipi, g1 =
n∑

i=1

βipi,

and

f2 =
n∑

i=1

γipi, g2 = pf A,

where pi = (−1)i pf A(i) and

A =



0 0 0 γ1 · · · γn
0 0 0 β1 · · · βn

0 0 0 α1 · · · αn

−γ1 −β1 −α1

...
...

... A
−γn −βn −αn


.
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(ii) If M is a matrix as above where Pfn−1 A is an ideal of height 3,
we set

f1 :=
n∑

i=1

αipi,

g1 :=
n∑

i=1

βipi,

f2 :=

n∑
i=1

γipi,

where the pi’s are as in (i). If (f1, g1, f2) is a regular sequence and f2
and pf A are coprime, then the ideal generated by the maximal minors
of M defines a scheme which is a union of two complete intersections
of codimension 2.

Proof.

(i) Let IX1 = (f1, g1) and IX2 = (f2, g2), with di = deg fi and
ei = deg gi for i = 1, 2. Consequently, we may choose f1, g1, f2
such that they form a regular sequence (this can be done since the
codimension of X1 ∩ X2 is 3). Denote by IQ = IX1 + IX2 and
IZ = (f1, g1, f2). Let IG := IZ : IQ, and note that, since IQ is
the ideal of an almost complete intersection and IZ is the ideal of a
complete intersection contained within it, IG is the ideal of a Gorenstein
scheme of codimension 3. By the structure theorem of Buchsbaum and
Eisenbud, see [1], there exists an alternating matrix A of odd size n such
that IG = Pfn−1(A). Thus, IG = (p1, . . . , pn), where pi = (−1)i pf A(i).
Since f1, g1, f2 ∈ IG, we can write

f1 =

n∑
i=1

αipi,

g1 =
n∑

i=1

βipi,

f2 =
n∑

i=1

γipi.

Furthermore, in this setting, since e1 > e2, using [14, Theorem 3.3], we
have that (f2, g2) = (f2, pf A) (in particular, if e2 < d2, then g2 = pf A,
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up to a unit). Then, we set

M :=



0 β1 β2 · · · βn−1 βn

0 α1 α2 · · · αn−1 αn

γ1
γ2
... A

γn−1

γn


.

We want to show that IX = In+1(M). At first, we show that

In+1(M) ⊆ IX = IX1 ∩ IX2 .

By Lemma 1.3, we immediately obtain that

detM[1;−] = f1f2, detM[2;−] = g1f2.

Now let t be an integer, 3 ≤ t ≤ n+2. We want to compute detM[t;−].
In order to do so, we apply the Laplace rule with respect to the first
row, the second row and the first column. Thus, if we set

σij :=

{
(−1)i+j if i < j

(−1)i+j+1 if i > j

τij :=

{
(−1)i+1 if i < j

(−1)i if i > j

and St := {(i, j, h) | 1 ≤ i, j, h ≤ n, i ̸= j, h ̸= t− 2}, 3 ≤ t ≤ n+ 2, we
obtain the following expansion

detM[t,−] =
∑
St

σijτh,t−2αiβjγh detA[t−2,h;i,j].

Applying Lemma 1.2 (ii), we have

detM[t,−]

=
∑
St

σijτh,t−2αiβjγh sgn(t− 2, h)

× sgn(i, j)(sgn(t− 2, h, i) pf A(t−2,h,i) pf A(j)

− sgn(t− 2, h, j) pf A(t−2,h,j) pf A(i))
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=
∑
St

(−1)i+h sgn(t− 2, h, i)αiβjγh pf A(t−2,h,i)pj

−
∑
St

(−1)j+h sgn(t− 2, h, j)αiβjγh pf A(t−2,h,j)pi

=
∑
j

( ∑
i ̸=j;h̸=t−2

(−1)i+h sgn(t− 2, h, i)αiγh pf A(t−2,h,i)

)
βjpj

−
∑
i

( ∑
j ̸=i;h ̸=t−2

(−1)j+h sgn(t− 2, h, j)βjγh pf A(t−2,h,j)

)
αipi.

Now we sum, subtract the quantity∑
k;h̸=t−2

(−1)k+h sgn(t− 2, h, k) pf A(t−2,h,k)αkγhβkpk

and obtain∑
j

( ∑
i;h ̸=t−2

(−1)i+h sgn(t− 2, h, i)αiγh pf A(t−2,h,i)

)
βjpj

−
∑
i

( ∑
j;h ̸=t−2

(−1)j+h sgn(t− 2, h, j)βjγh pf A(t−2,h,j)

)
αipi;

if we set

λ :=
∑

i;h̸=t−2

(−1)i+h sgn(t− 2, h, i)αiγh pf A(t−2,h,i)

and
µ :=

∑
j;h ̸=t−2

(−1)j+h sgn(t− 2, h, j)βjγh pf A(t−2,h,j),

we have

λ
∑
j

βjpj − µ
∑
i

αipi = λg1 − µf1 ∈ (f1, g1) = IX1 .

On the other hand,

detM[t,−] =
∑
St

σijτh,t−2αiβjγh detA[t−2,h;i,j].
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Applying the second equality in Lemma 1.2 (ii), we have

detM[t,−]

=
∑
St

σijτh,t−2αiβjγh sgn(h, t− 2) sgn(i, j)

× (sgn(i, j, t− 2) pf A(i,j,t−2) pf A(h)

− sgn(i, j, h) pf A(i,j,h) pf A(t−2))

=
∑
St

(−1)i+j+1 sgn(i, j, t− 2)αiβjγh pf A(i,j,t−2)ph

−
∑
St

(−1)i+j+h+1 sgn(i, j, h)αiβjγh pf A(i,j,h) pf A(t−2)).

Now sum and subtract the quantity∑
i,j;i ̸=j

(−1)i+j+1 sgn(i, j, t− 2)αiγjβt−2 pf A(i,j,t−2)pt−2.

Then, we obtain∑
h

( ∑
i,j;i̸=j

(−1)i+j+1 sgn(i, j, t− 2)αiβj pf A(i,j,t−2)

)
γhph

− pf A(t−2)

∑
i,j,h;i ̸=j

(−1)i+j+h+1 sgn(i, j, h)αiβjγh pf A(i,j,h)

=

( ∑
i,j;i ̸=j

(−1)i+j+1 sgn(i, j, t− 2)αiβj pf A(i,j,t−2)

)
×
∑
h

γhph − pf A(t−2) pf A

=

( ∑
i,j;i ̸=j

(−1)i+j+1 sgn(i, j, t− 2)αiβj pf A(i,j,t−2)

)
f2

− pf A(t−2) pf A ∈ (f2,pf A) = IX2 .

Note that, in the last step, we computed pf A by the Laplace rule with
respect to the 3 × 3 minors of the first three rows. Thus, In+1(M) is
contained in IX1 ∩ IX2 .

Now let Y be the scheme defined by the ideal In+1(M). In order to
complete the proof, it will be enough to show that deg Y = degX =
degX1 + degX2, i.e., we must show that deg Y = d1e1 + d2e2.
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From M , we can now deduce the degrees of a set of generators and
of the corresponding syzygies of IY . The degrees of generators are

d1 + d2, e1 + d2, e2 + π1, . . . , e2 + πn,

where πi = deg pi. The degrees of syzygies are

e2 + d2, d1 + e1 + d2 − π1, . . . , d1 + e1 + d2 − πn.

Now, by the degrees of generators and syzygies, the Hilbert function of
Y may be computed, from which one can easily deduce the degree of
Y . We obtain

2 deg Y = (e2 + d2)
2

+
n∑

i=1

(d1 + e1 + d2 − πi)
2 − (d1 + d2)

2 − (e1 + d2)
2

−
n∑

i=1

(e2 + πi)
2.

Since the pis are minimal generators for IG = IZ : IQ, we have that

2
n∑

i=1

πi = (n− 1)(d1 + e1 + d2 − e2),

see, for instance, [12]. Now a straightforward computation shows that

2 deg Y = 2d1e1 + 2d2e2,

and we are done.

(ii) Let IG := Pfn−1 A. IG defines an aG scheme of codimension 3.
Of course, IG contains the complete intersection ideal IZ := (f1, g1, f2).
Now, we set IQ := IZ : IG. Using [14, Theorem 3.3], IQ =

(f1, g1, f2, g2), where g2 := pf A. Let IX1 := (f1, g1) and IX2 := (f2, g2).
By the hypotheses, X1 and X2 are complete intersection schemes. By
(i), In+1(M) = IX1∪X2 . �

Remark 1.5. The hypothesis e1 > e2 is essential for our construction.
Indeed, if we consider IX1 := (x2, y2) and IX2 := (t2, (x + y + t)2) as
ideals in k[x, y, t], our construction produces the ideal IX1 ∩ IX′

2
where

IX′
2
:= (t2, xy + xt + yt) which is different from IX1 ∩ IX2 although

IX1 + IX2 = IX1 + IX′
2
.
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Corollary 1.6. Using the same hypotheses of Theorem 1.4, the ideal
IX1

∩ IX2
admits the following free graded resolution (not necessarily

minimal):

0 −→ R(−(d2 + e2))⊕
n⊕

i=1

R(−(d1 + e1 + d2 − πi))(1.2)

M−→ R(−(d1 + d2))⊕R(−(e1 + d2))⊕
n⊕

i=1

R(−(e2 + πi))

−→ IX1 ∩ IX2 −→ 0.

Proof. The result follows by the degree matrix of M . �

2. Applications to Hilbert functions and graded Betti num-
bers. From Theorem 1.4, we are able to describe all possible Hilbert
functions for aCM schemes which are a union of two complete intersec-
tion schemes of codimension 2 without common components. For this,
we need no assumption on the degrees.

In the sequel, we will set (a)+ := max{0, a}.

Proposition 2.1. Let X1, X2 ⊂ Pr, r ≥ 2, be two complete intersec-
tion schemes of codimension 2, without common components, of type,
respectively, (d1, e1) and (d2, e2), with d1 ≥ e1 and d2 ≥ e2 and say
e2 = min{e1, e2}. Then, the Hilbert function of the Artinian reduction
A of IX1 ∩ IX2 is:

HA(t) = t+ 1−
n∑

i=1

(t+ 1− e2 − πi)+

(2.1)

− (t+ 1− d1 − d2)+ − (t+ 1− e1 − d2)+

+

n∑
i=1

(t+ 1− d1 − e1 − d2 + πi)+ + (t+ 1− d2 − e2)+ ,

where the πis are the minimal generators degrees of an aG scheme
linked to X1 ∩X2 in a complete intersection of type (e1, d1, d2).

Proof. If e1 > e2, then this result follows immediately by Corol-
lary 1.2. Otherwise, the construction of Theorem 1.4 produces the
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scheme X1 ∪X ′
2 (where X ′

2 is a complete intersection of the same type
of X2) such that IX1

+IX′
2
= IX1

+IX2
. Thus, using sequence (1.1), we

obtain that the resolution of IX1 ∩ IX2 is up to cancelations the same
as the resolution of IX1

∩ IX′
2
, from which we get the assertion. �

Remark 2.2. By the formula (2.1), we deduce some facts about the
ideal IX1 ∩ IX2 . For this, we use the following setting d1 ≥ e1 and
πi ≤ πi+1 for every i.

(i) The degree of the first generator is e2+π1; indeed, since IZ ⊆ IG,
we have in particular that π1 ≤ e1 ≤ d1; thus, e2+π1 ≤ e1+d2 ≤ d1+d2.

(ii) The degree of the second generator is e2 + π2; indeed, by the
previous observation, π2 ≤ max{e1, d2}; thus, e2 + π2 ≤ e1 + d2 ≤
d1 + d2.

(iii) Let
σ := max{t | HA(t) > 0}

(the socle degree of the Artinian algebra A). Note that, since IZ ⊆ IG,
if we arrange (e1, d1, d2) in a manner that is not decreasing, we have
that they are, respectively, greater than or equal to π1 ≤ π2 ≤ π3.
In any case, σ ≤ e1 + d1 + d2 − π1 − 2 since the biggest degree of a
minimal syzygy of A is less than or equal to e1 + d1 + d2 − π1 because
d2+e2 ≤ e1+d1+d2−π1 (as e1 ≥ π1). This bound is sharp if and only
if e1 > π1. Whenever e1 = π1, σ ≤ e1 + d1 + d2 − π2 − 2 since, in this
case, the biggest degree of a minimal syzygy of A is less than or equal
to e1+d1+d2−π2 because d2+e2 ≤ e1+d1+d2−π2 (as d1 ≥ π2). This
bound is sharp if and only if e1 = π1 and d1 > π2. Whenever e1 = π1

and d1 = π2, σ ≤ max{e1 + d1 + d2 − π3 − 2, d2 + e2 − 2}; moreover, if
max{e1 + d1 + d2 − π3 − 2, d2 + e2 − 2} = e1 + d1 + d2 − π3 − 2, then
σ = e1 + d1 + d2 − π3 − 2.

(iv) Although the complete intersections have Hilbert function of
decreasing type, this is no longer true, in general, for the unions of two
of them, as we will see in the Proposition 2.3.

In Proposition 2.3 and Corollary 2.4 we consider some special cases.

Proposition 2.3. Let X1, X2 ⊂ Pr, r ≥ 2, be two complete intersec-
tion schemes of codimension 2 of type, respectively, (d1, e1) and (d2, e2).



UNIONS OF COMPLETE INTERSECTIONS 435

Assume that X1 ∪ X2 is aCM. Let IX1 = (f1, g1) and IX2 = (f2, g2),
deg fi = di and deg gi = ei. Suppose that f2 ∈ (f1, g1, g2), say
f2 = a1f1 + b1g1 + b2g2. Then the Hilbert-Burch matrix of IX1 ∩ IX2 is

M =

−g2 0
b1 f1
a1 −g1

 .

Consequently, IX1 ∩ IX2 = (f2 − b2g2, g1g2, f1g2).

The graded minimal free resolution of IX1 ∩ IX2 is

0 −→ R(−(d2 + e2)⊕R(−(e1 + e2 + d1)

−→ R(−d2)⊕R(−(e1 + e2))⊕R(−(d1 + e2)).

The Hilbert function of the Artinian reduction A of IX1 ∩ IX2 is

HA(t) = HA1(t− e2) +HA2(t),

where Ai is the Artinian reduction of IXi .

Proof. Let IY = I2(M). Note that ht IY = ht(f2−b2g2, g1g2, f1g2) =
2; namely, if ht IY = 1, the three generators should have a common
factor. Since (f1, g1) is a regular sequence, f2 should have a common
factor with g2, a contradiction.

Trivially, IY ⊆ IX1 ∩ IX2 ; on the other hand, an easy computation
shows that deg IY = d1e1+d2e2 = deg IX1∩IX2 . Thus, IY = IX1∩IX2 .

A minimal set of generators of IX1 ∩ IX2 , and its resolution can be
deduced immediately from the matrix M .

With regard to the Hilbert function, we have, for every t ∈ Z, that

HA(t) = (t+1)+−(t+1−d2)+−(t+1−e1−e2)+−(t+1−d1−e2)+

+(t+1−d2−e2)++(t+1−e1−e2−d1)+ ;

HA1(t−e2) = (t+1−e2)+−(t+1−e2−d1)+

−(t+1−e2−e1)++(t+1−e2−d1−e1)+ ;

HA2(t) = (t+1)+−(t+1−d2)+−(t+1−e2)++(t+1−d2−e2)+ ,

from which we obtain our formula. �
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Corollary 2.4. Let X1, X2 ⊂ Pr, r ≥ 2, be two complete intersection
schemes of codimension 2 of type, respectively, (d1, e1) and (d2, e2).
Assume that X1 ∪ X2 is aCM. Let IX1 = (f1, g1) and IX2 = (f2, g2),
deg fi = di and deg gi = ei. We suppose that d2 ≥ d1 + e1 + e2 − 2,
and (f1, g1, g2) is a regular sequence. Then, the same conclusions of
Proposition 2.3 hold.

In particular, when d2 > d1 + e1 + e2, then HA is no longer of
decreasing type, where A is the Artinian reduction of IX1 ∩ IX2 .

Proof. Our assumptions imply that IX1 + IX2 is an aCM ideal of
height 3. Let B be the Artinian reduction of the complete intersection
ideal (f1, g1, g2). Then, Bt = 0 for t ≥ d1 + e1 + e2 − 2; thus, since
d2 ≥ d1 + e1 + e2 − 2, f2 ∈ (f1, g1, g2). Now, applying Proposition 2.3,
we obtain our assertion.

If d2 > d1 + e1 + e2, then

HA(t) = HA1(t− e2) +HA2(t) = e2 < e1 + e2

for every t such that d1 + e1 + e2 − 1 ≤ t ≤ e2 − 1, i.e., HA takes the
same value (less than e1 + e2) in at least two adjacent degrees. �

In the next proposition, we collect results on the graded Betti
numbers of our schemes which are consequences of Theorem 1.4.

Proposition 2.5. Using the same assumptions of Theorem 1.4, we
have

(i) The graded Betti numbers can be obtained by the resolution (1.2),
only deleting at most three terms in degrees d1 + d2, e1 + d2 and
e2 + d2.

(ii) In any case, two among the products f1f2, f1g2, g1f2 or g1g2 are
minimal generators for IX1 ∩ IX2 .

Proof. (i) It is enough to observe that the only units in matrix M
can appear in the first two rows or in the first column.

(ii) If the resolution (1.2) is minimal, then f1f2 and g1f2 are the
first two maximal minors of the matrix M . Otherwise, suppose that,
say f1f2 is not a minimal generator for IX1 ∩ IX2 . This implies that
e1 = πi for some i and g1 is a minimal generators for IG; thus, we can
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replace pi with g1. Note that deg detM[i+2;−] = πi + e2 = e1 + e2, so
detM[i+2;−] can be chosen as a minimal generator for IX1

∩ IX2
. Now

detM[i+2;−] = q+g1 pf A (see the computation in the proof of Theorem

1.4). However, q + g1 pf A = q + g1g2 + λf2g1 for some q and λ. Then
g1g2 can replace it as a minimal generator for IX1 ∩ IX2 . Analogously,
when g1f2 is not a minimal generator for our ideal, the same argument
shows that we can take f1g2 as a minimal generator. �

Example 2.6. An example is given here in which the resolution (1.2)
is minimal free for IX1 ∩ IX2 . In R = k[x0, . . . , x8], we consider the
following two complete intersections IX1 = (f1, g1) and IX2 = (f2, g2),
where

f1 = x3
0x

3
1x7,

g1 = x3
2x

3
5x6

f2 = (x3
0 + x3

2 + x3
4)x

3
3x8 + (x3

0x7 − x3
5x8)x

3
1,

g2 = (x3
0 + x3

2 + x3
4)x6x7x8.

Let IG := (f1, g1, f2) : (f1, g1, f2, g2); IG is a Gorenstein ideal with five
generators in degree 6. Consequently, the resolution (1.2) is

0 → R(−13)⊕R(−15)5 → R(−12)5 ⊕R(−14)2 → IX1 ∩ IX2 → 0,

which is clearly minimal.

Remark 2.7. Note that, concerning the cancellations, we describe all
the possibilities which could occur in Proposition 2.5. Indeed, it will be
sufficient to choose for a suitable Gorenstein G a complete intersection
containing it and whose generators are or are not minimal generators
for G.

Remark 2.8. Note that, in resolution (1.2), a syzygy of degree d2+e2
appears. It induces the trivial syzygy on IX2 via the map in the exact
sequence (1.1). This implies that we will have a cancelation in degree
d2 + e2 in the mapping cone in the exact sequence (1.1). In fact, we
have

IX1 ∩ IX2 = (f1f2, g1f2, h1, . . . , hn),

where hi := detM[i+2;−] (see the proof of Theorem 1.4). The syzygy of
degree d2+e2, in the same notation of Theorem 1.4, is (0, 0, γ1, . . . , γn).
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From the proof of Theorem 1.4, we have that hi = λif2 + pi pf A; thus,
we obtain

n∑
i=1

γi(λif2 + pi pf A) = 0 =⇒
n∑

i=1

γiλif2 +

n∑
i=1

γipi pf A = 0.

Since
n∑

i=1

γipi = f2,

we are done.
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Università di Catania, Dip. di Matematica e Informatica, Viale A. Doria 6,
95125 Catania, Italy
Email address: zappalag@dmi.unict.it


