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SIMPLE POLYOMINOES ARE PRIME

AYESHA ASLOOB QURESHI, TAKAFUMI SHIBUTA
AND AKIHIRO SHIKAMA

ABSTRACT. In this paper, we show that the polyomino
ideal of a simple polyomino coincides with the toric ideal of a
weakly chordal bipartite graph, and hence, it has a quadratic
Gröbner basis with respect to a suitable monomial order.

Introduction. Polyominoes are two-dimensional objects which orig-
inated in recreational mathematics and combinatorics. They have been
widely discussed in connection with tiling problems of the plane. Typ-
ically, a polyomino is plane figure obtained by joining squares of equal
sizes, which are known as cells. In connection with commutative alge-
bra, polyominoes were first discussed in [8] by assigning each polyomino
the ideal of its inner 2-minors or the polyomino ideal. The study of the
ideal of t-minors of an m × n matrix is a classical subject in commu-
tative algebra. The class of polyomino ideals widely generalizes the
class of ideals of 2-minors of m× n matrix as well as the ideal of inner
2-minors attached to a two-sided ladder.

Let P be a polyomino and K a field. We denote by IP the polyomino
ideal attached to P, in a suitable polynomial ring over K. The residue
class ring defined by IP is denoted by K[P]. It is natural to investigate
the algebraic properties of IP depending upon the shape of P. In [8],
it was shown that, for a convex polyomino, the residue ring K[P] is
a normal Cohen-Macaulay domain. More generally, it was also shown
that polyomino ideals attached to a row or column convex polyomino
are also prime ideals. Later, in [2], a classification of the convex
polyominoes whose polyomino ideals are linearly related was given. For
some special classes of polyominoes, the regularity of polyomino ideals
is discussed in [3].
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In [8], it was conjectured that a polyomino ideal attached to a simple
polyomino is prime ideal. Roughly speaking, a simple polyomino is
a polyomino without ‘holes.’ This conjecture was further studied in
[5], where the authors introduced balanced polyominoes and proved
that polyomino ideals attached to balanced polyominoes are prime.
They expected that all simple polyominoes are balanced, which would
then prove that simple polyominoes are prime. This question was
further discussed in [4], where the authors proved that balanced and
simple polyominoes are equivalent. Independent of the proofs given in
[4], in this paper, we show, by using simpler arguments, that simple
polyominoes are prime by identifying the attached residue class ring
K[P] with the edge rings of weakly chordal graphs. This identification
is profitable because it allows us to benefit from the result of [6]
which states that the toric ideal of the edge ring of a weakly chordal
bipartite graph has a quadratic Gröbner basis with respect to a suitable
monomial order, which implies that K[P] is Koszul.

1. Polyominoes and polyomino ideals. First, we recall some
definitions and notation from [8]. Given a = (i, j) and b = (k, l) in
N2, we write a ≤ b if i ≤ k and j ≤ l. The set

[a, b] = {c ∈ N2 : a ≤ c ≤ b}

is called an interval. If i < k and j < l, then the elements a and
b are called diagonal corners, and (i, l) and (k, j) are called anti-
diagonal corners of [a, b]. An interval of the form C = [a, a + (1, 1)]
is called a cell (with left lower corner a). The elements (corners)
a, a+ (0, 1), a+ (1, 0), a+ (1, 1) of [a, a+ (1, 1)] are called the vertices
of C. The sets {a, a+ (1, 0)}, {a, a+ (0, 1)}, {a+ (1, 0), a+ (1, 1)} and
{a + (0, 1), a + (1, 1)} are called the edges of C. We denote the set of
edges of C by E(C).

Let P be a finite collection of cells of N2. The vertex set of P,
denoted by V (P) is given by

V (P) =
∪
C∈P

V (C).

The edge set of P, denoted by E(P) is given by

E(P) =
∪
C∈P

E(C).
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Let C and D be two cells of P. Then C and D are said to be connected,
if there is a sequence of cells C : C = C1, . . . , Cm = D of P such that
Ci∩Ci+1 is an edge of Ci for i = 1, . . . ,m−1. If, in addition, Ci ̸= Cj for
all i ̸= j, then C is called a path (connecting C and D). The collection
of cells P is called a polyomino if any two cells of P are connected, see
Figure 1.

Figure 1. Polyomino.

Let P be a polyomino, and let K be a field. We denote by S the
polynomial ring overK with variables xij with (i, j) ∈ V (P). Following
[8], a 2-minor xijxkl − xilxkj ∈ S is called an inner minor of P if all
the cells [(r, s), (r + 1, s + 1)] with i ≤ r ≤ k − 1 and j ≤ s ≤ l − 1
belong to P. In this case, the interval [(i, j), (k, l)] is called an inner
interval of P. The ideal IP ⊂ S generated by all inner minors of P is
called the polyomino ideal of P. We also set K[P] = S/IP .

Let P be a polyomino. Following [5], an interval [a, b] with a = (i, j)
and b = (k, l) is called a horizontal edge interval of P if j = l and the
sets {(r, j), (r + 1, j} for r = i, . . . , k − 1 are edges of cells of P. If
a horizontal edge interval of P is not strictly contained in any other
horizontal edge interval of P, then we call it a maximal horizontal edge
interval. Vertical edge intervals and maximal vertical edge intervals of
P are similarly defined.

Let {V1, . . . , Vm} be the set of maximal vertical edge intervals and
{H1, . . . , Hn} the set of maximal horizontal edge intervals of P. We
denote by G(P) the associated bipartite graph of P with vertex set

{v1, . . . , vm}
⊔

{h1, . . . , hn},

and the edge set is defined as:

E(G(P)) = {{vi, hj} | Vi ∩Hj ∈ V (P)}.
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Example 1.1. Figure 2 shows a polyomino P with maximal vertical
and maximal horizontal edge intervals labeled as {V1, . . . , V4} and
{H1, . . . , H4}, respectively, and Figure 3 shows the associated bipartite
graph G(P) of P.

V1

V2
V3

V4

V5

H1

H2

H3

H4

Figure 2. Maximal intervals of P.

h1 h2 h3 h4

v1 v2 v3 v4 v5

Figure 3. Associated bipartite graph of P.

Let S be the polynomial ring over field K with variables xij with
(i, j) ∈ V (P). Note that |Vp ∩ Hq| ≤ 1. If Vp ∩ Hq = {(i, j)},
then we may write xij = xVp∩Hq

, when required. To each cycle
C : vi1 , hj1 , vi2 , hj2 , . . . , vir , hjr in G(P), we associate a binomial in S
given by

fC = xVi1∩Hj1
· · ·xVir∩Hjr

− xVi2∩Hj1
· · ·xVi1∩Hjr

.



SIMPLE POLYOMINOES ARE PRIME 417

We recall the definition of a cycle in P from [5]. A sequence of
vertices CP = a1, a2, . . . , am in V (P) with am = a1 and such that
ai ̸= aj for all 1 ≤ i < j ≤ m−1 is a called a cycle in P if the following
conditions hold:

(i) [ai, ai+1] is a horizontal or vertical edge interval of P for all
i = 1, . . . ,m− 1;

(ii) for i = 1, . . . ,m we have: if [ai, ai+1] is a horizontal edge
interval of P, then [ai+1, ai+2] is a vertical edge interval of
P and vice versa. Here, am+1 = a2.

We set V (CP) = {a1, . . . , am}. Given a cycle CP in P, we attach to
CP the binomial

fCP =

(m−1)/2∏
i=1

xa2i−1 −
(m−1)/2∏

i=1

xa2i .

Moreover, we call a cycle in P primitive if each maximal interval of P
contains at most two vertices of CP .

Note that, if C : vi1 , hj1 , vi2 , hj2 , . . . , vir , hjr defines a cycle in G(P),
then the sequence of vertices CP : Vi1∩Hj1 , Vi2∩Hj1 , Vi2∩Hj2 , . . . , Vir∩
Hjr , Vi1 ∩Hjr is a primitive cycle in P and vice versa. Also, fC = fCP .

We set

K[G(P)] = K[vphq | {p, q} ∈ E(G(P))] ⊂ T = K[v1, . . . , vm, h1, . . . , hn].

The subalgebraK[G(P)] is called the edge ring of G(P). Let φ : S → T
be the surjective K-algebra homomorphism defined by φ(xij) = vphq,
where {(i, j)} = Vp ∩Hq. We denote the toric ideal of K[G(P)] by JP .
It is known from [7] that JP is generated by the binomials associated
with cycles in G(P).

2. Simple polyominoes are prime. Let P be a polyomino, and
let [a, b] an interval with the property that P ⊂ [a, b]. According to
[8], a polyomino P is called simple if, for any cell C not belonging
to P, there exists a path C = C1, C2, . . . , Cm = D with Ci /∈ P for
i = 1, . . . ,m and such that D is not a cell of [a, b]. For example, the
polyomino illustrated in Figure 1 is not simple, but that in Figure 4 is
simple. It is conjectured in [8] that IP is a prime ideal if P is simple.
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Figure 4. Simple polyomino.

We recall from graph theory that a graph is called weakly chordal
if every cycle of length greater than 4 has a chord. In order to prove
following lemma, we define some terms. We say that a cycle CP :
a1, a2, . . . , am in P with am = a1 has a self crossing if there exist indices
i and j such that ai, ai+1 ∈ Vk and aj , aj+1 ∈ Hl and ai, ai+1, aj , aj+1

are all distinct and Vk ∩Hl ̸= ∅. In this situation, if C is the associated
cycle in G(P), then it also shows that {vk, hl} ∈ E(G(P)) which gives
us a chord in C.

Let CP : a1, a2, . . . , ar be a cycle in P which does not have any self
crossing. Then we call the area bounded by edge intervals [ai, ai+1]
and [ar, a1] for i ∈ {1, r − 1}, the interior of CP . Moreover, we call a
cell C is an interior cell of CP if C belongs to the interior of CP .

Lemma 2.1. Let P be a simple polyomino. Then the graph G(P) is
weakly chordal.

Proof. Let C be a cycle of G(P) of length 2n with n ≥ 3, and let CP
be the associated primitive cycle in P. We may assume that CP does
not have any 1. Otherwise, by following the definition of self crossing,
we know that C has a chord.

Let
C : vi1 , hj1 , vi2 , hj2 , . . . , vir , hjr

and

CP : Vi1 ∩Hj1 , Vi2 ∩Hj1 , Vi2 ∩Hj2 , . . . , Vir ∩Hjr , Vi1 ∩Hjr .

Wemay write a1 = Vi1∩Hj1 , a2 = Vi2∩Hj1 , a3 = Vi2∩Hj2 , . . . , a2r−1 =
Vir ∩Hjr , a2r = Vi1 ∩Hjr . Also, we may assume that a1 and a2 belong
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to the same maximal horizontal edge interval. Then, a2r and a1 belong
to the same maximal vertical edge interval.

First, we show that every interior cell of CP belongs to P. Suppose
that we have an interior cell C of CP which does not belong to P. Let
J be any interval such that P ⊂ J . Then, by using the definition of
simple polyomino, we obtain a path of cells C = C1, C2, . . . , Ct with
Ci /∈ P , i = 1, . . . t and Ct a boundary cell in J . This shows that

V (C1) ∪ V (C2) ∪ . . . ∪ V (Ct)

intersects at least one of [ai, ai+1] for i ∈ {1, . . . , r−1} or [ar, a1], which
is not possible since CP is a cycle in P. Hence, C ∈ P. This shows that
an interval in the interior of CP is an inner interval of P.

Let I be the maximal inner interval of CP to which a1 and a2 belong,
and let b and c be the corner vertices of I. We may assume that a1 and
c are the diagonal corners and a2 and b are the anti-diagonal corners
of I. If b, c ∈ V (CP), then primitivity of C implies that C is a cycle
of length 4. We may assume that b /∈ V (CP). Let H ′ be the maximal
horizontal edge interval which contains b and c. The maximality of I
implies that H ′ ∩ V (CP) ̸= ∅. For example, see Figure 5. Therefore,
{vi1 , h′} is a chord in C, as desired. �

a1

a2

a3 a4

a5a6

a7a8

a9a10

a1 a2

a3a4

a5 a6

a7

a8

a9a10

a11 a12

Figure 5. Self crossings.

Theorem 2.2. Let P be a simple polyomino. Then, IP = JP .

Proof. First we show that IP ⊂ JP . Let f = xijxkl − xilxkj ∈
IP . Then, maximal vertical edge intervals Vp and Vq and maximal
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I

a1 a2

b cH
′

Figure 6. When b, c ∈ V (CP).

a1 a2

b c

I

H
′

Figure 7. When b /∈ V (CP).

horizontal edge intervals Hm and Hn of P exist such that (i, j), (i, l) ∈
Vp, (k, j), (k, l) ∈ Vq and (i, j), (k, j) ∈ Hm, (i, l), (k, l) ∈ Hn. This
gives that

ϕ(xijxkl) = vphmhnvq = ϕ(xilxkj),

which implies that f ∈ JP .

Next, we show that JP ⊂ IP . It is known from [6, 7] that the toric
ideal of the weakly chordal bipartite graph is minimally generated by
quadratic binomials associated with cycles of length 4. It suffices to
show that fC ∈ IP , where C is a cycle of length 4 in G(P).

Let I be an interval such that P ⊂ I. Let C : h1, v1, h2, v2. Then,
CP : a11 = H1 ∩ V1, a21 = H2 ∩ V1, a22 = H2 ∩ V2 and a12 = H1 ∩ V2 is
the associated cycle in P which also determines an interval in I. Let
a11 and a22 be the diagonal corners of this interval. We must show that
[a11, a22] is an inner interval in P. Assume that [a11, a22] is not an inner
interval of P, that is, a cell C ∈ [a11, a22] exists which does not belong
to P. Using the fact that P is a simple polyomino, we obtain a path of
cells C = C1, C2, . . . , Cr with Ci /∈ P, i = 1, . . . , r and Cr a cell in I.
Then, V (C1 ∪ . . .∪Cr) intersects at least one of the maximal intervals
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H1,H2, V1, V2, say H1, which contradicts the fact that H1 is an interval
in P. Hence, [a11, a22] is an inner interval of P and fC ∈ IP . �

Corollary 2.3. Let P be a simple polyomino. Then K[P] is Koszul
and a normal Cohen-Macaulay domain.

Figure 8. Polyomino with prime polyomino ideal.

Figure 9. Polyomino with “one hole.”

Proof. From [6], we know that JP = IP has a squarefree quadratic
Gröbner basis with respect to a suitable monomial order. Hence, K[P]
is Koszul. By a theorem of Sturmfels [9], we obtain that K[P] is
normal and then, following a theorem of Hochster [1, Theorem 6.3.5],
we obtain that K[P] is Cohen-Macaulay. �

A polyomino ideal may be prime even if the polyomino is not simple.
The polyomino ideal attached to the polyomino in Figure 8 is prime.
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However, the polyomino ideal attached to the polyomino attached in
Figure 9 is not prime. It would be interesting to find a complete
characterization of polyominoes whose attached polyomino ideals are
prime, but it is not easy. However, as a first step, it is already an
interesting question to classify polyominoes with only “one hole” such
that their associated polyomino ideal is prime.
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