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THE BUCHBERGER RESOLUTION

ANDA OLTEANU AND VOLKMAR WELKER

ABSTRACT. We define the Buchberger resolution, which
is a graded free resolution of a monomial ideal in a
polynomial ring. Its construction uses a generalization of the
Buchberger graph and encodes much of the combinatorics of
the Buchberger algorithm. The Buchberger resolution is a
cellular resolution that, when it is minimal, coincides with
the Scarf resolution. The simplicial complex underlying the
Buchberger resolution is of interest for its own sake, and
its combinatorics is not fully understood. We close with a
conjecture on the clique complex of the Buchberger graph.

Introduction. Let S = k[x1, . . . , xn] be the polynomial ring in n
variables over a field k and I a monomial ideal of S. The construction of
the minimal graded free resolution of I over S is an important problem
in commutative algebra. Even though there are good algorithms that
construct the minimal graded free resolution for general monomial
ideals, there is no known combinatorial construction of the minimal free
graded resolution. In this paper, we provide a construction of a new free
resolution for all monomial ideals and then identify the ideals for which
it is minimal. We call this resolution the Buchberger resolution since its
combinatorics is derived from the Buchberger algorithm, an idea first
employed in the three variable case [5]. The Buchberger resolution is a
cellular resolution. Roughly speaking, a cellular resolution is given by
simplicial complex (or, more generally, CW-complex) with a labelling of
its vertices by generators of a monomial ideal and an induced labelling
of its simplices by the lcms of their vertices. If the conditions from
[1, Lemma 2.2] are fulfilled, then the homogenized simplicial chain
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complex of the simplicial complex with coefficients in the polynomial
ring supports a free resolution of the ideal.

One prominent example of a cellular resolution is the Taylor resolu-
tion [10] which is defined for arbitrary monomial ideals and supported
by the full simplex on the set G(I) of minimal monomial generators
of I; rarely, the Taylor resolution is minimal. In [1, Theorem 3.2], it
is shown that there is a subcomplex of the simplex on G(I), the Scarf
complex, which, for example, supports a minimal free resolution for
generic monomial ideals, but that it does not even support a free res-
olution in general. In [5], the Buchberger graph of a monomial ideal
is studied and, in the case of three variables, its planar embeddings
are used to define a simplicial complex supporting a minimal free res-
olution for strongly generic ideals. Our Buchberger resolution will be
supported on a simplicial complex that generalizes the Scarf complex
and the planar map of a Buchberger graph. It is shown to coincide
with the Scarf complex and the planar map of the Buchberger graph
in cases where the Buchberger resolution is minimal. For references to
other constructions of cellular resolutions, we refer the reader to [7].

The paper is organized as follows. In Section 1, we fix the notation
and recall the concept of the Buchberger graph associated to a mono-
mial ideal from [5]. Then, we define the Buchberger complex and show
that it is a contractible simplicial complex. Therefore, by inductive
reasoning and [1, Lemma 2.2], it supports a graded free resolution,
which we call the Buchberger resolution. Section 2 is devoted to the
relation between the Buchberger resolution and the Scarf complex. The
Buchberger resolution turns out to be minimal precisely when the Scarf
complex is a resolution.

1. Cellular resolutions, the Buchberger graph and the Buch-
berger complex. In this section, we associate the Buchberger com-
plex to any monomial ideal, the vertices of which are labeled by the
minimal monomial generators (1.7), and we show that it supports a
resolution. For the case of monomial ideals which are not squarefree,
this simplicial complex is “smaller” than the Taylor complex, see Ex-
ample 1.9. Therefore, the resolution obtained will be smaller than the
Taylor resolution but still in general not minimal.
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We begin by recalling the notion of a cellular resolution of a mono-
mial ideal I in the polynomial ring

S = k[x1, . . . , xn]

over a field k in its original definition [1].

Let ∆ be a simplicial complex whose vertices are bijectively labeled
by the monomials from the set of minimal monomial generators G(I)
of I. Each face F ∈ ∆ is labeled by the least common multiple of its
vertices, which we denote by mF . The multidegrees of these monomials
define an Nn-grading of ∆. Let F∆ be the Nn-graded chain complex
of ∆ over S with differentials homogenized with respect to the grading
(see [1] for details).

Proposition 1.1 ([1, Lemma 2.2]). The complex F∆ is exact and
defines a free resolution of I if and only if, for every monomial m, the
simplicial complex

∆[m] = {F ∈ ∆ | mF divides m}

is empty or acyclic over k.

If the complex F∆ is exact, then it is called the resolution supported
by the (labeled) simplicial complex ∆. Moreover, if F∆ is exact, one
can determine whether or not it is a minimal free resolution of I.

Proposition 1.2 ([2, Remark 1.4]). Let F∆ be a free resolution of the
monomial ideal I supported by the labeled simplicial complex ∆. Then
F∆ is a minimal free resolution if and only if any two comparable faces
F ⊂ G of the complex ∆ have distinct degrees, that is mF ̸= mG.

Next, we describe the construction of the Buchberger graph [6] and
its connection to minimal free resolutions.

We define a partial order < on Nn as follows. For a,b ∈ Nn, where

a = (a1, . . . , an),

b = (b1, . . . , bn).
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One says that a < b if ai < bi for all 1 ≤ i ≤ n such that bi ̸= 0 and
ai = bi if bi = 0. Given a monomial,

u = xu1
1 · · ·xun

n in S,

we denote its multidegree by mdeg(u), that is, mdeg(u) = (u1, . . . , un).
For two monomials u and v ∈ S, one says that u properly divides v if
u divides v and mdeg(u) < mdeg(v). We will denote this by u |p v.

In [5], Miller and Sturmfels associate to any monomial ideal its
Buchberger graph which first appeared under this name in [6].

Definition 1.3. The Buchberger graph of the monomial ideal I, de-
noted BuG(I), is the graph on vertex set G(I) with edges F = {m,m′}
for distinct monomials m,m′ ∈ G(I) such that there is no monomial
m′′ ∈ G(I) which properly divides the least common multiple mF .

The Buchberger graph plays an important role in Gröbner basis
theory [6] and also appears in the study of special classes of monomial
ideals such as strongly generic ideals.

Definition 1.4. A monomial ideal I ⊆ S is called strongly generic if,
for any two monomials u, v ∈ G(I),

u = xu1
1 · · ·xun

n

and

v = xv1
1 · · ·xvn

n ,

the condition (ui ̸= vi or ui = vi = 0 for all 1 ≤ i ≤ n) is fulfilled.

In the case of polynomial rings in three variables, there is a con-
nection between the minimal graded free resolution of strongly generic
ideals and their corresponding Buchberger graphs.

Proposition 1.5 ([6, Proposition 3.9]). Let I ⊆ k[x, y, z] be a strongly
generic ideal. Then BuG(I) is planar and connected.

A planar graph G, together with an (sufficiently nice) embedding
of G into the plane R2 is called a planar map. The vertices of the
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embedded graph can be considered as 0-cells, the edges as 1-cells and
the regions bounded by G as 2-cells. Viewed from this perspective, the
embedding defines a CW-complex. In [6, page 51], it is shown that this
complex supports a free resolution of some monomial ideal. Moreover:

Theorem 1.6 ([6, Theorem 3.11]). Let I ⊆ k[x, y, z] be a strongly
generic ideal. Then any planar map of BuG(I) with vertices labeled by
the generators and edges and faces labeled by the lcms of its vertices
supports a minimal free resolution of I.

It is natural to ask: Can this result be extended to strongly generic
ideals in a polynomial ring in n variables, S = k[x1, . . . , xn]?

In order to answer this question, we generalize the Buchberger graph
to a suitable simplicial complex and then prove that this simplicial
complex supports a free resolution.

Definition 1.7. Let I ⊆ k[x1, . . . , xn] be a monomial ideal. The
Buchberger complex Bu(I) of I, is the collection of all subsets F of
G(I) such that no u ∈ G(I) properly divides mF .

The set system Bu(I) is indeed a simplicial complex. To see this,
assume that F ∈ Bu(I) and G ( F , G /∈ Bu(I). Then mG | mF . But
G /∈ Bu(I), and hence, there is a minimal monomial generator u ∈ I
such that u |p mG, which implies u |p mF , a contradiction.

Remark 1.8.

• The 1-skeleton Bu(I)⟨1⟩ of the Buchberger complex Bu(I) of
the monomial ideal I is the Buchberger graph BuG(I) of I.

• If I is a squarefree monomial ideal, then its Buchberger complex
is the full simplex 2G(I).

Example 1.9. Let

I = (x2
1, x

2
2, x

2
3, x1x3, x2x4) ⊆ k[x1, x2, x3, x4].

It is easy to see that x1x3 |p x2
1x

2
3 = lcm(x2

1, x
2
3); therefore, {x2

1, x
2
3} /∈

Bu(I). In this case, the Buchberger complex has two facets (see
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Figure 1), namely,

Bu(I) = ⟨{x2
1, x

2
2, x1x3, x2x4}, {x2

3, x
2
2, x1x3, x2x4}⟩.

x2
2

x2
1

x2
3

x1x3

x2x4

Figure 1. Buchberger complex of I = (x2
1, x

2
2, x

2
3, x1x3, x2x4).

In order to verify the conditions from Proposition 1.1 for the Buch-
berger complex, we must introduce some combinatorial constructions
and exhibit some of their properties.

Let P be a finite poset and ∆(P ) its order complex, that is, the
simplicial complex whose simplices are the chains in the poset P .
Through the geometric realization of ∆(P ), we then can speak of
homotopy type, homotopy equivalence and contractability of posets
(see [12]). We associate to a monomial ideal I its lcm-lattice LI , which
is the poset on the least common multiples mF of subsets F ⊆ G(I)
ordered by divisibility [4]. It is easily checked that LI indeed is a lattice
with least element 1 = lcm(∅). For a monomial m ∈ LI , we write (1,m)
for the open interval of all m′ ∈ LI such that 1 < m′ < m.
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In the next two lemmas we collect basic topological properties of the
lcm lattice that will prove crucial for our first main result.

Lemma 1.10. Let m ∈ LI . If there is a monomial w ∈ G(I) such that
w |p m, then the interval (1,m) is contractible.

Proof. Let w ∈ G(I) be a monomial which properly divides m. We
consider the map f : (1,m) → (1,m), defined by f(u) = lcm(u,w).
Since w properly divides m, it follows that f(u) ∈ (1,m) for all
u ∈ (1,m). By construction for u, u′ ∈ (1,m) and u ≤ u′ it follows
that f(u) ≤ f(u′). Again, by definition, f(f(u)) = f(u), and hence,
f is a closure operator on the poset (1,m). By [3, Corollary 10.11]
this shows that the interval (1,m) and its image under f are homotopy
equivalent. Moreover, the image of (1,m) under f has w as its unique
smallest element. Therefore, the order complex of the image of f is
a cone over w, and hence, contractible. Thus, (1,m) is contractible
itself. �

Lemma 1.11. Let PI be the poset of all monomials m ∈ LI \ {1} such
that there is no monomial w ∈ G(I) which properly divides m. Then
PI is contractible.

Proof. By Lemma 1.10, we know that, for each m ∈ LI for which
there is a w ∈ G(I) that properly divides m, the interval (1,m) is
contractible. Let M be the set of all m ∈ LI with this property. Then
a simple application of the Quillen fiber lemma (see [3, Theorem 10.11])
shows that

LI \ (M ∪ {1})

is homotopy equivalent to LI \ {1}. But LI \ {1} has lcmG(I) as
its unique maximal element, and hence, its geometric realization is a
cone. Therefore, it is contractible. But this shows that PI must be
contractible. �

For the proof of our first main theorem we need yet another concept
from topological combinatorics. We call a subset B of a poset P
bounded if there are elements m and m′ in P such that m ≤ n ≤ m′

for all n ∈ B. A poset P is called an antichain if any two elements
of P are incomparable. A crosscut A in P is an antichain such that,
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for every chain C ⊆ P , there exists an element a ∈ A such that a
is comparable with all elements in C, and every bounded subset B
of A has an infimum and a supremum. Let Γ(P,A) be the collection
of subsets of A that are bounded. It is easily seen that Γ(P,A) is a
simplicial complex. It is called the crosscut complex of P and A.

Example 1.12. We consider the poset P on the ground set {1, . . . , 7},
whose Hasse diagram is represented in Figure 2. The set A = {3, 4, 5}
is a crosscut in P . Then the crosscut complex of P and A is

Γ(P,A) = ⟨{3, 4}, {4, 5}⟩.

x

x

x

xx

x

x

1 2

5 4 3

67

Figure 2.

The relation between the crosscut complex Γ(P,A) and the topology
of P is given by the homotopy version of Rota’s crosscut theorem, which
says that (see [3, Theorem 10.8]) for a finite poset P and a crosscut A
in P , the complexes Γ(P,A) and ∆(P ) are homotopy equivalent.

Theorem 1.13. Let I be a monomial ideal. Then the Buchberger
complex Bu(I) supports a cellular resolution of I.

Proof. We will first verify that Bu(I) is contractible and then show
that this implies the criterion from Proposition 1.1 for a simplicial
complex to support a free resolution.

Let PI be the poset of all monomials m ∈ LI \ {1} such that there
is no monomial w ∈ G(I) which properly divides m. If m ∈ PI and
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m′ ∈ LI divides m, then m′ ∈ PI . Otherwise, there is m′′ ∈ LI

which properly dividesm′, and hence, properly dividesm, contradicting
m ∈ PI . Thus, PI is a lower order ideal in LI \ {1}. As LI is a
lattice this implies that any subset of PI which is bounded from below
(respectively, above) has an infimum (respectively, supremum) in PI .

Let A = G(I), so A ⊆ PI . Since A is a generating set of the monomial
ideal I, for every chain in PI , there is an element from A comparable
with all elements from the chain. Moreover, A is an antichain due to
the fact that any two monomials from the minimal set of generators
are incomparable with respect to divisibility. Since we know that any
bounded subset of PI has an infimum and supremum in PI it follows
that A is a crosscut in PI . Moreover, it follows that the crosscut
complex Γ(PI , A) is the Buchberger complex Bu(I). Therefore, by
Lemma 1.11 and the crosscut theorem [3, Theorem 10.8], it follows
that Bu(I) is contractible.

Set ∆ = Bu(I), and let m be some monomial such that ∆[m] is non-
empty. Then ∆[m] consists of all subsets F ∈ Bu(I) of G(I) such that
mF divides m. Thus, F ∈ ∆[m] if and only if mF divides m, and there
is no u ∈ G(I) that properly divides mF . Let Jm be the monomial
ideal generated by all u ∈ G(I) such that u divides m. Then, F ∈ ∆[m]
if and only if F ⊆ G(Jm), and there is no u ∈ G(Jm) that properly
divides mF . This implies that F ∈ ∆[m] if and only if F ∈ Bu(Jm),
and hence, ∆[m] = Bu(Jm). But, then, by the first part of the proof,
it follows that ∆[m] is contractible and hence acyclic.

Thus, we have verified the conditions from Proposition 1.1 for
∆ = Bu(I), and hence, Bu(I) supports a cellular resolution of I. �

We call the complex FBu(I) supported on the Buchberger complex
Bu(I) the Buchberger resolution of the monomial ideal I. Next, we
characterize when the Buchberger resolution is minimal.

Proposition 1.14. Let I be a monomial ideal and Bu(I) its Buch-
berger complex. Then the Buchberger resolution is a minimal free
resolution of I if and only if, whenever F,G ⊂ G(I) are such that
mF = mG, then there is a monomial u ∈ G(I) such that u properly
divides mF = mG.
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Proof. “⇐.” Let us assume by contradiction that the Buchberger
resolution is not minimal. This means that there are F,G ∈ Bu(I)
and G ⊂ F such that mF = mG. By hypothesis, there is a monomial
u ∈ G(I) such that u properly dividesmF = mG, that is, G,F /∈ Bu(I),
a contradiction.

“⇒.” Assume that the Buchberger resolution is a minimal free
resolution of I. Let F,G ∈ Bu(I) be such that mF = mG. If F ⊆ G
or G ⊆ F , then Proposition 1.2 implies that F = G, and we are done.
Thus, we can assume that F and G are incomparable with respect to
inclusion. Thus, we can choose mα ∈ F \ G and mβ ∈ G \ F . Then,
{mα,mβ} ∈ Bu(I) for allmβ ∈ G, since otherwise there exists u ∈ G(I)
with

u|p lcm(mα,mβ)|mF

and F /∈ Bu(I), a contradiction. Therefore, {mα} ∪G ∈ Bu(I). Since
the resolution is minimal andmG = m{mα}∪G, one has G and {mα}∪G
are not faces in Bu(I), a contradiction. �

Now we return to the monomial ideal from Example 1.9 and ex-
plicitly construct the Buchberger resolution. Moreover, one can easily
check or use Proposition 1.14 in order to prove that the resolution is
minimal.

Example 1.15. Let

I = (x2
1, x

2
2, x

2
3, x1x3, x2x4) ⊆ k[x1, x2, x3, x4].

Then, counting faces in Figure 1 provides

0 −→ S2 −→ S7 −→ S9 −→ S5 −→ I −→ 0

as its minimal free resolution over S. Moreover, the differentials are
easily written out by homogenizing the simplicial differential (see [1],
for instance).

For a monomial m ∈ LI , we say that m is a Buchberger degree if
there is no u ∈ G(I) that properly divides m. If m is a Buchberger
degree for I, then we denote by Bm(I) the poset of all subsets A of
[n] := {1, . . . , n} such that, for some m′ ∈ (1,m), the set A is the set
of indices i ∈ [n] such that the exponents of xi in m′ and m coincide.
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Corollary 1.16. Let I be a monomial ideal and m ∈ LI . Then either
βi,m = 0 if m is not a Buchberger degree or

βi,m = dimk H̃i−1(Bm(I);k).

Proof. By Proposition 1.14, we know that βi,m = 0 if m is not a
Buchberger degree. Assume m is a Buchberger degree. Consider the
map f : (1,m) → Bm(I) that sends a monomial m′ to the set of
indices i for which the exponents of xi in m and m′ coincide. For any
A ∈ Bm(I), the lower fiber f−1(Bm(I)≤A) consists of all m′ ∈ (1,m)
for which the set of indices such that the exponents of xi in m and
m′ coincide is a subset of A. Since A ̸= [n], it follows that the lcm
of all elements of f−1(Bm(I)≤A) is an element of (1,m). Hence, the
fiber f−1(Bm(I)≤A) has a unique maximal element given by this lcm.
Thus, its order complex is a cone, and hence, the fiber is contractible.
Then the Quillen fiber lemma says that (1,m) and Bm(I) are homotopy
equivalent (see [9], [12, Theorem 5.2.1]). In particular, they have the
same reduced homology. Since

βi,m = dimk H̃i−1((1,m);k),

the result follows. �

Note that, if m is a monomial on n variables x1, . . . , xn, then Bm(I)
is a subset of the Boolean lattice 2[n] on [n]. Indeed, Bm(I) ∪ {∅, [n]}
is a lattice whose join operation coincides with the union of sets. It
is atomic, and its atoms are images of the generators of I dividing m.
Now Corollary 1.16 shows that, for a monomial m on n variables, the
Betti number βi,m is bounded from above by the maximal rank of the
(i − 1)st homology of an atomic join sublattice of the Boolean lattice
on n elements. It is also worthwhile to study what can be said about
the poset of all m that are Buchberger degrees. Does this poset have
an interesting structure? By Corollary 1.16, this question relates to
the even more challenging poset of all m for which βi,m is nonzero for
some i. A study of this poset was initiated in [11, Section 8], where
first results can be found.

2. Minimality and relation to the Scarf complex. In this
section, we are interested in determining the connections between the
Buchberger complex and the Scarf complex and the related question
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of when the Buchberger complex defines a minimal free resolution. As
before, let I be a monomial ideal with minimal monomial generating
set

G(I) = {m1, . . . ,mr}.

We recall the definition of the Scarf complex.

Definition 2.1. The Scarf complex ScI of I is the collection of all
subsets of G(I) whose least common multiple is unique:

ScI = {σ ⊆ {1, . . . , r} : mσ = mτ =⇒ (σ = τ)}.

We call the complex FSc(I) of free S-modules, supported on the Scarf
complex Sc(I), the algebraic Scarf complex of the monomial ideal I.

Note that, in general, FSc(I) is not a free resolution of I (see details
below).

The following remark clarifies the connection between the Scarf
complex, the Buchberger graph and the Buchberger complex.

Remark 2.2.

(i) It is easily seen that Sc
⟨1⟩
I ⊆ BuG(I), but the converse does not

hold in general.
(ii) One has that ScI ⊆ Bu(I). Indeed, let us assume by contra-

diction that F ∈ ScI and F /∈ Bu(I). Then, there must be
a monomial u ∈ G(I) such that u |p mF . But, in this case,
lcm(u,mF ) = mF , that is, F /∈ ScI , a contradiction.

We can characterize the minimality of the Buchberger resolution in
terms of the Scarf complex.

Proposition 2.3. Let I be a monomial ideal in S. The following are
equivalent :

(a) FBu(I) is a minimal resolution of I.
(b) The Scarf complex Sc(I) and the Buchberger complex Bu(I) coin-

cide.
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Proof. (a) ⇒ (b). Let FBu(I) be a minimal free resolution. Assume
that there is a face F ∈ Bu(I) which is not in the Scarf complex Sc(I).
The latter implies that there is a G ⊆ G(I) such that mF = mG.
By the minimality of the resolution, Proposition 1.14, we obtain that
there is a monomial u ∈ G(I) which properly divides mF . But this is
a contradiction with F ∈ Bu(I).

(b)⇒ (a). IfScI = Bu(I), it is clear that the least common multiple
of the monomials from each face of Bu(I) is unique. The statement
follows. �

Since it is known [6] that the Scarf complex of a monomial ideal
I defines a free resolution of I if and only if it defines a minimal free
resolution of I, the following corollary is now straightforward.

Corollary 2.4. Let I be a monomial ideal in S. If FBu(I) is a minimal
resolution of I, then FSc(I) is a minimal resolution of I.

The following example shows that the converse does not hold, in
general (see [8, Theorem 5.3] for more details on when the Scarf
complex supports a minimal free resolution).

Example 2.5. Let I = (xa, yb, zc, xyz) be a monomial ideal in the
polynomial ring k[x, y, z, a, b, c]. Since I is a squarefree monomial ideal,

Bu(I) = ⟨{xa, yb, zc, xyz}⟩,

so FBu(I) is the Taylor resolution, while the Scarf complex is

Sc(I) = ⟨{xa, yb, xyz}, {xa, zc, xyz}, {yb, zc, xyz}⟩,

since lcm(xa, yb, zc, xyz) = lcm(xa, yb, zc). One may check that FSc(I)

is a resolution and therefore is minimal.

A class of monomial ideals for which the algebraic Scarf complex
is a minimal resolution is that of generic monomial ideals (see [1,
Theorem 3.2] and [6, Theorem 6.13]).

Definition 2.6. Amonomial ideal I is generic if, whenever two distinct
minimal generators m,m′ ∈ G(I) have the same positive (nonzero)
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degree in some variable, a third generator m′′ ∈ G(I) strictly divides
their least common multiple lcm(m,m′).

One may note that every strongly generic ideal is generic. This
implies that the algebraic Scarf complex is a minimal free resolution
for strongly generic ideals.

Next we derive a slight generalization of results from [6, Theo-
rem 6.26]. For its formulation, we write m for the ideal (x1, . . . , xn)
in S and mu+1 for the ideal

(xu1+1
1 , . . . , xun+1

n ),

where u = (u1, . . . , un) is an n-tuple of nonnegative integers.

Proposition 2.7. Fix a vector

u = (u1, . . . , un)

of nonnegative integers and an ideal

I ⊆ k[x1, . . . , xn]

generated by monomials dividing xu. Set

I = I +mu+1M,

where M is a monomial with support in

k[xn+1, . . . , xm], m > n.

If I is generic, then FBu(Ī) is a minimal free resolution of I. Moreover,

FSc(Ī) is a minimal free resolution of I.

In order to prove this result, we need the following lemma.

Lemma 2.8. Let
I ⊆ S = k[x1, . . . , xn]

be a monomial ideal. The following are equivalent :

(a) Sc(I) = Bu(I);
(b) If F /∈ Sc(I) there is a monomial w ∈ I which properly divides

mF .
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Proof. (a) ⇒ (b). Let us assume that Sc(I) = Bu(I), and let
F /∈ Sc(I), that is, F /∈ Bu(I). Therefore, there is a monomial
w ∈ G(I) which properly divides mF .

(b) ⇒ (a). By using Remark 2.2 (ii), we only have to prove that
Bu(I) ⊆ Sc(I). Let us assume by contradiction that there is an
F ∈ Bu(I) such that F /∈ Sc(I). By our assumption, since F /∈ ScI ,
there is a monomial w ∈ I which properly divides mF . In particular,
there is a monomial w′ ∈ G(I) which properly divides mF , which
implies F /∈ Bu(I), a contradiction. �

Proof of Proposition 2.7. By Proposition 2.3 and Lemma 2.8, we
only need to show that, if F /∈ Sc(I), there is a monomial w ∈ I
which properly divides mF . The proof of this statement is identical to
the implication [6, Theorem 6.26] “(a) ⇒ (g).” We recall it here for
the sake of completeness.

Let F /∈ Sc(I), that is, there is a G ⊆ G(I) such that mF = mG.
Let us assume that F is maximal with respect to the inclusion among
the subsets of G(I) with the same label mF . Therefore, there is some
m′ ∈ F such that mF = mF\{m′}. If supp(mF ) = supp(mF\{m′}),
then m′ |p mF , which ends the proof. Here, for a monomial m =
xa1
1 · · ·xan

n , supp(m) = {xi : ai ̸= 0}. Therefore, we assume
that supp(mF ) ̸= supp(mF\{m′}). Since mF = mF\{m′}, there is a
monomial m′′ ∈ F , m′′ ̸= m′, and a variable xk ∈ supp(m′′) such
that degk(m

′) = degk(m
′′) > 0. Here we denote the exponent of

the variable xk in the monomial m by degk(m). Since m′′ ̸= m′,
we must have that neither m′ nor m′′ are in G(mu+1M). Therefore,
m′,m′′ ∈ G(I) and, since I is generic, there is a monomial w ∈ G(I)
such that w|p lcm(m′,m′′). Since lcm(m′,m′′) | mF , the statement
follows. �

The preceding results show that the Buchberger complex is an
interesting object and encodes very well the combinatorics and algebra
of monomial ideals. Nevertheless, there is an alternative object which
equally generalizes well the Buchberger graph from [5] in the situation
where it can be embedded with triangular cells. For a monomial ideal
I and its Buchberger graph BuG(I), let Cl(BuG(I)) be the simplicial
complex whose simplices are the subsets of G(I) that induce a clique in
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BuG(I); this construction is also known as the clique complex or Rips
complex of BuG(I).

We conjecture the following.

Conjecture 2.9. For a monomial ideal I the clique complex Cl(BuG(I))
of the Buchberger graph BuG(I) is contractible.

In particular, if the conjecture holds true, then simple reasoning
shows that Cl(BuG(I)) also supports a minimal free resolution of I.
Clearly, Bu(I) ⊆ Cl(BuG(I)), and therefore the construction, will
not yield more cases where we can construct a cellular minimal free
resolution. Nevertheless, we believe the conjecture seems appealing
from a combinatorial point of view. The conjecture is supported by
Theorem 1.6 in the three variable cases and many experiments.

Acknowledgments. The authors thank Lukas Katthän for pointing
out an error in the formulation of Corollary 2.4 in a previous version
of this paper.

REFERENCES

1. D. Bayer, I. Peeva and B. Sturmfels, Monomial resolutions, Math. Res. Lett.

5 (1998), 31–46.

2. D. Bayer and B. Sturmfels, Cellular resolution of monomial modules, J. reine
angew. Math. 502 (1998), 123–140.

3. A. Björner, Topological methods, in Handbook of combinatorics, II, R.L.
Graham, M. Grötschel and L. Lovász, eds., Elsevier, Amsterdam, 1995.

4. V. Gasharov, I. Peeva and V. Welker, The lcm-lattice in monomial resolu-
tions, Math. Res. Lett. 6 (1999), 521–532.

5. E. Miller and B. Sturmfels, Monomial ideals and planar graphs, in Applied
algebra, algebraic algorithms and error-correcting codes, Lect. Notes Comp. Sci.
1719 (1999), 19–28.

6. , Combinatorial commutative algebra, Grad. Texts Math., Springer,
2005.

7. I. Peeva, Graded syzygies, Alg. Appl. 14, Springer, London, 2011.

8. I. Peeva and M. Velasco, Frames and degenerations of monomial resolutions,
Trans. Amer. Math. Soc. 363 (2011), 2029–2046.

9. D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a
group, Adv. Math. 28 (1978), 74–95.

10. D. Taylor, Ideals generated by an R-sequence, Ph.D. dissertation, University

of Chicago, Chicago, 1966.



THE BUCHBERGER RESOLUTION 587

11. A. Tchernev and M. Varisco, Modules over categories and Betti posets of
monomial ideals, Proc. Amer. Math. Soc. 143 (2015), 5113–5128.

12. M.L. Wachs, Poset topology: Tools and applications, Lect. Notes IAS/Park
City Graduate Summer School Geom. Combin., 2004.

University Politehnica of Bucharest, Faculty of Applied Sciences, Splaiul
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