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WHEN IS A NAKAYAMA CLOSURE SEMIPRIME?

JANET C. VASSILEV

ABSTRACT. Many well-known closure operations such
as integral closure and tight closure are both semiprime
operations and Nakayama closures. In this short note, we
begin the study on the overlap between Nakayama closures
and semiprime operations. We exhibit examples of closure
operations which are either semiprime or Nakayama but not
the other. In the case of a discrete valuation ring we show
that a closure operation c is Nakayama if and only if it is

semiprime and
0)F° = ume

n>1
for any ideal I.

1. Introduction. Closure operations and their related constructs
on commutative rings and modules have been linked to classifying
singularities, proving some difficult theorems like the Briancon-Skoda
theorem and some versions of the homological conjectures. In recent
years, interest has been sparked to study closure operations in their
own right.

Many well-known closure operations ¢ are semiprime operations,
meaning they preserve products, (I¢J¢)¢ = (IJ)¢. In addition, on
local rings (R, m), they are Nakayama, that is, if I C J C (I + mJ)¢,
then I¢ = J°. These properties may not seem at all related, but we
would like to determine what conditions force a closure operation to
satisfy both properties.

We first look at the case when (R,m) is a discrete valuation ring
and observe that a closure operation c¢ is Nakayama if and only if it is
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semiprime and satisfies the additional assumption

(0) = (U")"

n>1

for any I. The radical on rings of dimension at least one and the
semiprime operations defined on discrete valuation rings which do not

satisfy
0 = Ny

n>1

for some I are examples of semiprime operations which are not
Nakayama. We are also able to exhibit some examples of closure op-
erations, even in rings of dimension one, which are Nakayama but not
semiprime. One of these closures is Mono(-), the monomial support of
an ideal in a polynomial ring. We give further credence to the possi-
bility that when c is semiprime and satisfies (0)¢ = Np>1(I™)¢, then ¢
is Nakayama, by exhibiting this fact on the cuspidal cubic.

We now give a brief outline of the paper. In Section 2, we will discuss
closure operations and some related operations: c-operations. We give
several examples to highlight the various properties a closure operation
may satisfy. Section 3 contains the results that we discussed in the
previous paragraph.

2. Preliminaries. Let R be a commutative ring and Z a set of ideals
of R satisfying the property if I € Z and I C J, then J € Z. There are
many properties in the literature that a function ¢ : Z — 7 may satisfy.
For example,

(C1) (The expansive property). I C ¢(I) for all ideals I € 7.
(C2) (The order preserving property). If I C J, then ¢(I) C ¢(J).
(C3) (Idempotence). c(I) = c(c(I)).

For the rest of the paper, we will denote ¢(I) := I°.

Definition 2.1. Let R be a commutative ring and Z a set of ideals of
R satisfying the property if I € Zand I C J,then J €Z. If c: 7T > T
satisfies (C1)—(C3) above, we call ¢ a closure operation on Z. If T is
the set of all ideals in R, we call ¢ a closure operation on R.
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Ratliff and Rush modified these properties slightly and defined a
function ¢ : Z — Z to be a c-operator if (C1l) holds and as long as
I C J C I° then I¢ = J° [8]. This second weaker property implies
the idempotence of ¢ but only gives the order preserving property for
c-reductions of I, ideals sandwiched between I and its “closure” I€.

Further properties that a closure operation or a c-operator may
satisfy are the following:

e If 7 is additionally multiplicatively closed, we say that c satisfies
the semiprime property if I¢J¢ C (IJ)¢. If ¢ is a closure
operation, then we will call ¢ a semiprime operation.

e A semiprime operation c is prime if aI¢ = (al)° for any regular
element a. If R is a domain, these operations are also called
star operations. In a recent paper, [3], Epstein extended this
notion to non-domains.

o If (R,m) is a local ring, then we say that a closure c¢ satisfies
the Nakayama property if

ICJC(I+mJ) then I¢=J".

Epstein called a closure operation with the Nakayama prop-
erty a Nakayama closure in 2005 [1]. Prior to this, in 2002,
Ratliff and Rush in [8] called a c-operation with the Nakayama
property a c*-operator. We have named this property after
Nakayama because of its obvious relationship to Nakayama’s
lemma.

Certainly, if M is a set of all submodules of an R-module M, we can
similarly consider functions ¢ : M — M satisfying (C1)—(C3) and the
additional properties above. These are called closure operations on M.
Although we don’t concern ourselves with closure operations defined
on M, this is discussed in papers of Epstein [2] and Kirby [6]. Also,
for a nice overview on closure operations on rings and modules, please
refer to Epstein’s recent guide, [3]. We include some common examples
below.

Our first example is the integral closure of an ideal, I. We say r € R
is in the integral closure, I of I, if there exists a monic polynomial
p(x) = 2" + a2 + -+ + a, with a; € I* such that p(r) = 0. Note
that the integral closure is always semiprime. If R is a normal domain,



442 JANET C. VASSILEV

then the integral closure is prime and, if R is local ring, then I — T is
Nakayama.

Let R be a Noetherian ring of prime characteristic p > 0. Denote
positive powers of p by ¢ and R = R\UP where P ranges over the set of
minimal primes of R. If [ = (zy,...,2,), we define 19 = (2,...,29).
We say = € I*, the tight closure of I, if there exists a ¢ € R° such that
cz? € 119 for all large ¢. The tight closure is also a semiprime operation.
Tight closure of a principal ideal is equal to its integral closure in
Noetherian domains with infinite residue field [5, Example 1.6.1]. This
in conjunction with the fact that (zI)* : x = I'* [3, Proposition 4.1.3]
in a normal domain implies that tight closure is a prime operation for
normal domains. Epstein has shown [1, Proposition 2.1] that if R is a
local ring with a weak test element, then I — I* is Nakayama.

The basically full closure of an m-primary ideal I in a local ring
(R, m) was introduced by Heinzer, Ratliff and Rush to be (mI : m).
They showed that the basically full closure I — I®f on the set of m-
primary ideals is semiprime [4, Theorem 4.2]. They also showed that
I+ I% is a Nakayama closure [4, Lemma 5.4].

The Ratliff-Rush closure,

I=|)att.m

T

Il
_

(2

was introduced in 1977 by Ratliff and Rush in [9]. The Ratliff-Rush
closure is a c-operator and not a closure operation since [ is not order

preserving (unless I C T [8]). However, I ~ I does satisfy the

semiprime property IJ C IJ. One can see this as follows: Suppose
a€ (" 1") and b € (JH 0 J™); then ab € (L))" @ (IJ)").

)

Also, Ratliff and Rush show that I — I is a c*-operator satisfying the
Nakayama property in [8].

The radical, VI = {r | 7" € I for some n € N}, is a semiprime
operation since for € /I and s € v/J we have " € I for some
n € N and s™ € J for some m € N and (rs)™" = r™s"(r"s™) € I1.J
implying that rs € v/I.J. However, unless R is zero-dimensional, the
radical is not Nakayama. For example, Suppose P C m is a prime,
then P Cm C /(P+m?) =m, but P = VP # m. However, as a
c-operator, the radical is a c¢*-operator.
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The author has classified the semiprime and prime operations on the
set of ideals for Dedekind domains and the complete cuspidal cubic in
[10]. For example, if (R, P) is a discrete valuation ring, the nonzero
ideals of R can always be expressed in the form P* for some i > 0 and
the ideals are totally ordered. The semiprime operations are either the
identity operation or of the form f, or g, where

ﬂxpﬁzz{PZ“ri<” and f,((0)) = (0)

Prfori>n

and

. Pifori<n
n(PY) = and ¢,((0)) = P"
n(P) Lmb”Zn 92((0)
[10, Proposition 3.2]. The only prime operation is the identity [10,
Proposition 3.4].

Recall that the Krull intersection theorem says that, if (R, m) is a
Noetherian local domain and I an ideal, then

(1" = (0).

i>0

Definition 2.2. Let R be a Noetherian ring. We will call a closure
operation ¢ Krull if

or=(Nr) =N

i>0 i>0

Not so surprisingly, we will see that f,, are not Nakayama closures,
whereas the g,, are Nakayama closures.

Recall that, if R is a domain with field of fractions K, a fractional
ideal I is a finitely generated R-submodule of K satisfying the property
cI C R for some nonzero ¢ € R. If we extend Z to include the fractional
ideals of R, we define closure operations on the finitely generated R-
submodules of K. We have noted in [11] that, if R is a discrete
valuation ring, then if ¢ is a semiprime operation on the set of fractional
ideals of R, and ¢ must be the identity.
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3. Results. Nakayama closure operations on the set of ideals of a
discrete valuation ring (R, P) are semiprime as we will see in the next
theorem. Closures which take P’ to P™ on a finite interval n <i < m
with m # n such as the following example

ine P for1<i<2
(P =19 . .
P*  otherwise,

will never be Nakayama. Note that P? C P C (P3 + P?)° = P but
(P3)¢ # P¢. Similarly, if ¢ = f, is one the semiprime operation on
a discrete valuation ring (R, P) defined in [10, Proposition 3.2] then
¢ will not be Nakayama. Note that (0) C P? for all i > 0. If ¢
were Nakayama, then (0) C P" C (P"*1)¢ = P" would imply that
(0)¢ = (P™)¢ = P™. However, this is not the case. The previous
example exhibits why we need to assume that our semiprime operation
is also Krull in the following.

Theorem 3.1. Let (R,P) be a discrete valuation ring. A closure
operation ¢ on R is a Nakayama closure if and only if it a semiprime
operation which is Krull.

Proof. Suppose ¢ is a Nakayama closure. All the nonzero ideals in
R can be expressed of the form P? where P is the maximal ideal and
the ideals are totally ordered.

Suppose for some j < k, Pk C Pi C (_P"’ + P_H‘l)c. Since ¢ is
Nakayama, then (P¥)¢ = (P7)¢. Because (P?)¢ 2 P’, then (P7)¢ = P!
for some i < j. For any i < r < j, (P")¢ = P! since

P! = (P)° C (P)° C (P')° = P'.
Similarly for i <7 <k, (P")¢ = P' since
Pi = (P*)° C (P")° C (PP)° = P
Note (0) € P*¥=1 C ((0) + PP*~1))c = (P*)¢ = P'. Now, by the
Nakayama property, (0)¢ = (P¥~1)¢ = P!, Combining this with the

fact that (0) C P" C P* for all » > k, we see that (P")¢ = P? for all
r> k.
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Suppose now that P™ C (P™)¢ = P™ for some m < n < i. Consider
Again the Nakayama property would imply that (P?)¢ = (P™)¢ = P™,
contradicting that (P")¢ = P'. Thus, (P™)¢ = P" for all n < i.

Since _
(0)° = Py = P,

r>0

¢ corresponds to the semiprime operation g; given in [10, Proposition
3.4].

Now suppose that I is semiprime and satisfies
0)° = (P,
i>0
then c is determined by g,, for some n or is the identity map e. Then,
clearly, P* C P7 C g, (P*+ P’*1). For, if i > j > n, then
P'C PI C g,(P"+ Pty = p"
does imply that g,(P?) = g,(P’), and if i > n,
(0) g PZ g gn(PZ-‘rl) — pn

does imply g,,(0) = g, (P?). O

When the ring is not a discrete valuation ring, there are examples
of Nakayama closures which are not semiprime. We illustrate a few
below.

For the following two examples recall that the order of an ideal I in
a local ring (R, m) is

1) nif I Cm™ but I ¢ m"*!
[0} =
oo if I ¢ m” for all n € N.

Definition 3.2. Let (R, m) be a local ring. The order operation on R
is
m°U) if o(I) < oo

(] m™ otherwise.
n>1

ord (I) =
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Proposition 3.3. Let (R, m) be a local ring. Then the order operation
is a closure operation on R.

Proof. We break the proof into the two cases:
1) when o([) is finite and 2) when o(I) is infinite.

1) Suppose o(I) = n. Then I C m™ = ord(I). If I C J then
o(I) > o(J) and ord (I) = m°) C m°) = ord (J). If ord (I) =
then ord (m™) = m"™ implies ord (ord (1)) = ord (I).

2) Now we assume that o(I) = co implying I C m™ for all n € N.

Thus
1< () m"=ord(I).

n>1

7L

If I C J, then either o(J) = m for some m € N or o(J) is infinite. In
the first case
ord (I) = ﬂ m” Cm"™ = ord(J).

n>1

In the second case,
ord (I ﬂ m” = ord (J
n>1
which again gives the containment ord (I) C ord (J). If

ord (I ﬂ m”

n>1

ﬂm”gm"

n>1

then

for all n € N. Thus,

ord ( N m”) = () m" = ord (I)

n>1 n>1

O

We will use the following observations to justify that the following
examples are Nakayama.
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Observation 3.4. In a local ring (R, m), for ideals I, J C R,
o(I +J)=min{o(I),o(J)}.
As a consequence, we obtain
Ord (I+ J) — mmin{o([),O(J)}.
Similarly, for ideals I1,...,I, C R,
O(Il +--+ In) = min{o(ll)a cety O(In)}

Proof. The elements of I 4+ J are of the form x + y for some x € I
and y € J. First, suppose o(I) = co = o(J). Then I,J C m™ for all
n € N. Now, for all z € I, y € J and n € N we have that z € I C m",
yeJCm”and x+y € m”. Thus, I +J C m” for all n € N and
o(I+ J) = oo = min{o(I),o(J)}. Now assume o(I) = n is finite and

o(J) is infinite. Since o(I) = n, there exists an « € I C I+ J such that
r € m™\ m"!. Noting that

a:—i—ﬂmngm” but a:—&—ﬂm”@m”“,
n>1 n>1

we will have o(I + J) = n = min{o(I),o(J)}. The only case left to
consider is if o(I) = n and o(J) = m are both finite. Let z € m™\ m"*1
and y € m™ \ m™*L. Then z,y € I + J, and clearly,

o(I + J) =min(n,m) = min{o(I),o(J)}.
By induction, we obtain

o(I1 + -+ I,) = min{o(I1),...,0(I,)}. O
Observation 3.5. In a local ring (R, m), o(IJ) > o(I) + o(J).
Proof. Suppose o(I) = 0o or o(J) = oo, then

o(IJ) =00 =o0o(I)+ o(J).

Now assume that o(I) = n and o(J) = m for n,m € N. Then, for some
re€landy e J, z € m®\m" ! and y € m™\m™ !, Now zy € m"+™,
implying that o(zy) > n + m. Every element of I.J is of the form

n
E TiYi-
=1
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From Observation 3.4, we know that

0( Zn: xiyi> = min{o(z1y1), . .. o(znyn)}-

i=1

Putting these facts together, we obtain o(IJ) > o(I) 4 o(J). O
For the remainder of the paper we will assume that k is a field.

Example 3.6. Take the ring R = k[[z, y]]/(xy). Consider the order
operation on R. Note that ord (x + y?)ord (y + 2?) = m? and since
(z+y*)(y+2?) = (22 +3?), then ord (2® + y?) = m®. Clearly, m* ¢ m?
implies the order operation is not semiprime. The order operation is
Nakayama. Note if I C J with T C J C ord (I +mJ), then

o(I) > o(J) > o(ord (I + mJ)) = min{o(I),o(m.J)},
where the last equality follows from Observation 3.4. If
min(o(I),o(mJ)) = o(I),
then o(I) = o(J) implies ord (I) = ord (J). If
min{o(I),o(mJ)} = o(mJ),
then by Observation 3.5, we obtain o(J) > o(J) + 1, which can only

be the case if o(J) = o(I) = co and, since R is Noetherian, this means
that I = J = (0).

Example 3.7. Take the ring k[[z%, 23]]. Consider the order operation
on R. Since o((z3,21)) = 1, we see that (ord (z3,2%))? = m?, but

o((a?,2%)?) = o((2°,2)) = o(m?) = 3,

implies ord (23, 2%)? = m3. As in the previous example, m> ¢ m? again

implies that the order operation is not semiprime. The order operation
is Nakayama as in the previous example.

The order operation can be semiprime. Clearly, the order oper-
ation is the identity map on a discrete valuation ring (R, P) which is
semiprime. The order operation on any power series ring k[[x1, .. ., Z»]]
or localized polynomial ring k[z1,...,2Zn](z,,.. z,) IS semiprime since
o(I) = min{o(f) | f € I}. Now, if f € I with o(f) = o(I)
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and g € J with o(g) = o(J), then o(IJ) = o(fg) = o(f) + o(g).
Clearly, o(fg) > o(f) + o(g) by Observation 3.5, but the other in-
equality is straightforward since both the power series ring the lo-

calized polynomial ring over a field have no zero divisors. Thus,
ord (Iord (J) = ord (IJ).

Before discussing our next example, we consider the monomial
support of an ideal I, Mono (I), defined in [7] on the ring k[z1,. .., z4].
Polini, Ulrich and Vitulli discuss Mono (I) in terms of an algorithm for
computing the core of an ideal. We will see that Mono is a closure
operation.

Remark 3.8. Let R = k[z1,...,24]. A monomial is a polynomial of
the form 7' --- 23" with a; € Np for i = 1,...,d. As shorthand, we
will write 2% := z{*--- 25? where o = (a1,...,aq) € Nd. Let A be a

finite subset of Nd and 0 # b, € k. Any polynomial f € R can be
expressed in the form
Z boz®.

acA

The monomial support of f is the ideal Mono (f) := (z* | « € A). For
any ideal I C R, I = (f1,..., fn).- We define

Mono (I) = Z Mono (f;).

This is the smallest monomial ideal containing I. If I = (0), then
Mono (I) = (0). We will often denote a monomial by m,m; or m;;
instead of x® for ease of expressing the elements in R.

Proposition 3.9. Let R = k[z1,...,z4]. Mono is a closure operation
on the set of ideals of R.

Proof. Note that I C Mono (I) by definition.
Let J = (f1,... fn). Suppose

T
fi= E Mg,
J=1
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where 0 # a; € k and m;; are monomials. Then
Mono (J) = (m;; |1 <i<n, 1 <j<ry).

Suppose g € I C J. Thus,

n

g=9f1+ gnfn= Zzgiag‘mij~

i=1 j=1

Since g; has order at least 0, then the monomials in g are contained in
Mono (J). This implies that if I C J, Mono (I) € Mono (J).

Since the smallest monomial ideal containing a monomial ideal is
itself, then Mono (Mono (1)) = Mono (I). O

The following lemmas illustrate some additional properties that
Mono satisfies.

Lemma 3.10. Let R = k[x1,...,z4]. For ideals I,J C R,
Mono (I + J) = Mono (I) + Mono (J).
Proof. For monomial ideals K and L, to show that K C L, it is
enough to show that any monomial m € K is also a monomial in L.
Let m € Mono (I+J) be a monomial. Then m is a monomial appearing

in some polynomial h € I + J. Since h = f + g for some f € I and
g € J, then m is either a monomial appearing in f or g, thus

m € Mono (I) € Mono (I) + Mono (J)
or
m € Mono (J) € Mono (I) + Mono (J).
Note that Mono (1) € Mono (I 4+ J) and Mono (J) € Mono (I + J)
since Mono is a closure operation. Thus
Mono (I) + Mono (J) € Mono (I + J).
]
Lemma 3.11. Let R = k[z1,...,24) and I C R an ideal. For any

monomial m,
Mono (mI) = mMono ().
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Proof. For any f €I, f =aymi+asms+---+a,m, for 0 #a; € k
and m; a monomial. Then mf = aymmy + aommso + -+ + a,mm,
is a typical element in mI. Thus, Mono (mf) = (mmq,...mm,) =
mMono (f). Let I = (f1,..., f-). By definition of Mono, we see

Mono (mI) = ZMono (mf;) = mZMono(fi) = mMono (I).

i=1 i=1

O

Lemma 3.12. Let R = k[x1,...,24) withm = (z1,...,24) and I C R
be an ideal. Then Mono (mI) = mMono (I).

Proof. By Lemma 3.11 2;Mono (I) = Mono (z;I) for all j =1,...d.
Thus,

mMono (I) = 21Mono (I) + xeMono (I) + - - - + 24 Mono (I)
= Mono (z11) + Mono (z2I) 4 - - - + Mono (x41)
= Mono (x1] + xol 4+ -+ -+ x4])
= Mono (mI)

where the second to last equality follows from Lemma 3.10. ]

Example 3.13. Take the ring k[z, y](5,,) With closure Mono. Consider
I'=(x+vy)and J = (z—y). Mono (I) =m = Mono (J), but
2

Mono (I.J) = Mono (2% — y*) = (2*,y*) 2 m* = Mono (I)Mono ().
Hence, Mono is not semiprime.

The closure Mono is Nakayama, since if I C J C Mono (I + mJ),
then clearly Mono (I) € Mono (J) € Mono (I+mJ). Suppose Mono (J)
is minimally generated by my, ..., m,. Then

m; ¢ mMono (J) = Mono (mJ)
by Lemma 3.12. Lemma 3.10 implies that
Mono (I +mJ) = Mono (I) + Mono (m.J).

Hence, Mono (J) € Mono (I) + Mono (m.J) imply that the monomials
in Mono (J) must be contained in Mono (I) implying Mono (I) =
Mono (J).
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The author believes that all semiprime operations defined on one-
dimensional domains which are Krull will be Nakayama. Some evidence
of this can be seen in the following.

Proposition 3.14. Let R = k[[z%,2%]] and I — I° a semiprime
operation which is Krull, then I — I¢ is Nakayama.

Proof. The author, in [10, Theorem 4.8, Theorem 4.9], classified
all the semiprime operations on R. All the ideals of k[[x2,z3%]] are
minimally generated by at most two elements. We denote the nonzero
nonunit ideals

M; = (z',2""") and P, = (2" +az'™h)

for i > 2 and a € k. Note that the maximal ideal is M5. The semiprime
operations which are Krull are the following, where S and T" are subsets
of the field k:

IifIQPm,a%SorIQPi+17b,b¢T

(1) zl,Ig,T(I) == Tlf]gMH_Q, I:Pi,aa a€sS
or I =P1p,beT
IforIDP,,
My,—q for I = Pp_1y, forallbek
(2) gl .(I) =4 My forI=Pny, b#a, I=Puiia,

forallde kor I = M4+
P for I CP,,
for m > 2 and a € k,
ITforIDP,q,a¢ SorIDPyi1p,bdT
¥ _ Ifor Ppy1qgCICJ J=P,q,a€S
(3) gn,S,T,m(I) - or J = Pn+17b7b eT
M,, for I C M,
form—1>n>2 S#0and,if m=n+1,T =k,
IforIDP,, a¢SorIDP,114,b¢T
Ifor My, o CICJ J= Pra,a€ S
@) gl srm(D) =4 orJ=PuipbeT
My for I = mel,d; M1
M,, for I C M,
form—-2>n>2 8 #0.

It is straightforward to check that all of these semiprime operations
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are also Nakayama closures. For example, for a € S,
Pio C© M; C %7 (Pia+ MiMo) = [i% 7(Pia) = M;

and ;,xlg,T(Pi,a): zmgT(Ml) 0

Note that, if ¢ is a semiprime operation on a one-dimensional domain
satisfying m® = R, then since all m-primary ideals I satisfy m™ C I for
some n > 1, we can conclude that R = (m¢)™ C I¢ since © is semiprime.
Thus, I¢ = R for all m-primary ideals. Now since ¢ is Krull, then
(0)¢ = R and all ideals satisfy J C I C (J +mI)¢ implies J¢ = I° = R.

If ¢ is a semiprime operation satisfying m® = m, then since c is
semiprime,
ml¢=mI° C (m])°.

Suppose J C I. Then J¢ C I°¢ since semiprime operations are order
preserving. If I satisfies I¢ C (J + mI)¢, then we do not necessarily
have that I¢ C J°4+mI°. If we knew this, then I¢ = J°+mI¢. Now, by
Nakayama’s lemma, 1° = J¢ and c is a Nakayama closure. In the above
theorem, we see that all the semiprime operations defined on k[[x2, 23]]
actually do satisfy the stronger condition I¢ C J¢ 4+ mI¢ where we
can apply Nakayama’s lemma. It may be the case that all semiprime
operations which are Krull will be Nakayama if R is a one-dimensional
domain, but at this time we have no way of generalizing the above
proof.
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