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KOSZUL PROPERTY OF DIAGONAL SUBALGEBRAS

NEERAJ KUMAR

ABSTRACT. Let S = K[x1, . . . , xn] be a polynomial ring
over a field K and I a homogeneous ideal in S generated
by a regular sequence f1, f2, . . . , fk of homogeneous forms
of degree d. We study a generalization of a result of
Conca et al. [9] concerning Koszul property of the diagonal
subalgebras associated to I. Each such subalgebra has the
form K[(Ie)ed+c], where c, e ∈ N. For k = 3, we extend
[9, Corollary 6.10] by proving that K[(Ie)ed+c] is Koszul as
soon as c ≥ d/2 and e > 0. We also extend [9, Corollary
6.10] in another direction by replacing the polynomial ring
with a Koszul ring.

1. Introduction. Let S = K[x1, . . . , xn] be a polynomial ring over
a field K and I a homogeneous ideal in S. For large c, the algebra
K[(Ie)c] is isomorphic to the coordinate ring of some embedding of the

blow up of Pn−1
K along the ideal sheaf Ĩ in a projective space [9].

Let Rees (I) =
⊕

j≥0 I
jtj be the Rees algebra of I. Since the

polynomial ring S[t] is a bigraded algebra with S[t](i,j) = Sit
j , we may

consider Rees (I) as a bigraded subalgebra of S[t] with Rees (I)(i,j) =

(Ij)it
j . Let c and e be positive integers. Let △ = {(cs, es) : s ∈ Z}.

We call △ the (c, e)-diagonal of Z2 [9]. Let R = ⊕(i,j)∈Z2R(i,j)

be a bigraded algebra, where R(i,j) denotes the (i, j)-th bigraded
component of R. The (c, e)-diagonal subalgebra of Rδ is defined as the
Z-graded algebra R△ =

⊕
s∈Z R(cs,es). Similarly, for every bigraded

R-module M , one defines the (c, e)-diagonal submodule of M as M△ =⊕
s∈Z M(cs,es). Notice that M△ is a module over R△.

When I is a homogeneous ideal in S generated by f1, f2, . . . , fk, of
homogeneous forms of degree d, then Rees (I) is a standard bigraded
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algebra by setting deg xi = (1, 0) and deg fjt = (0, 1). We observe that
K[(Ie)ed+c] is the (c, e)-diagonal subalgebra of Rees (I). We may also
view K[(Ie)ed+c] as a K-subalgebra of S generated by the forms of
degree ed+ c in the ideal Ie.

Given a field K, a positively graded K-algebra A =
⊕

i∈N Ai with
A0 = K is Koszul if the field K, viewed as an A-module via the
identification K = A/A+, has a linear free resolution. Koszul algebras
were introduced by Priddy [15] in 1970. During the last four decades
Koszul algebra has been studied in various contexts. A good survey
on Koszul algebra was given by Fröberg in [12] during the 90’s and
recently by Conca, De Negri and Rossi in [10].

Diagonal subalgebras have been intensely studied by several authors
(e.g., see [1], [9], [16]) because they naturally appear in Rees algebras
and symmetric algebras. In [9], Conca, et al. discuss some algebraic
properties of diagonal subalgebras, such as Cohen-Macaulayness and
Koszulness. In [14], Kurano et al. showed that Cohen-Macaulayness
property holds in [9] even if the polynomial ring is replaced by a Cohen-
Macaulay ring of dimension d ≥ 2. In this article, we study the Koszul
property of certain diagonal subalgebras of bigraded algebras, with
focus and applications to diagonals of Rees algebras. We generalize
some of the important results of [9] regarding the Koszulness of certain
diagonal subalgebras of bigraded algebras.

For any homogeneous ideal I, there exist integers c0, e0 such that
the K-algebra K[(Ie)ed+c] is Koszul for all c ≥ c0 and e ≥ e0, see
[9, Corollary 6.9]. If I is a complete intersection ideal generated by
f1, f2, . . . , fk, of homogeneous forms of degree d, then the K-algebra
K[(Ie)ed+c] is quadratic if c ≥ d/2 and e > 0; furthermore K[(Ie)ed+c]
is Koszul if c ≥ d(k − 1)/k and e > 0, see [9, Corollary 6.10].

The main results of this paper are the following:

(i) Let I be an ideal of the polynomial ringK[x1, . . . , xn] generated
by a regular sequence f1, f2, f3, of homogeneous forms of
degree d. Then K[(Ie)ed+c] is Koszul for all c ≥ d/2, and
e > 0.

(ii) Let A be a standard graded Koszul ring. Let I be an ideal of A
generated by a regular sequence f1, f2, . . . , fk, of homogeneous
forms of degree d. Then K[(Ie)ed+c] is Koszul for all c ≥
d(k − 1)/k and e > 0.
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Let R be a standard bigraded K-algebra. In Section 2, we study
homological properties of shifted modules R(−a,−b)△, which play
an important role in the transfer of homological information from R
to R△. It is important to bound the homological invariants of the
shifted diagonal module R(−a,−b)△ as an R△-module. For a bigraded
polynomial ring R, it is proved in [9] that R(−a,−b)△ has a linear
R△ resolution. Proposition 2.10 is an extension of [9, Theorem 6.2]
for certain bigraded complete intersection ideals and crucial in proving
Theorem 3.1.

Let S = K[x1, . . . , xn] be a polynomial ring. In [9, page 900],
the authors mentioned that, for a complete intersection ideal I in S
generated by f1, f2, . . . , fk, of homogeneous forms of degree d, the
algebra K[(Ie)ed+c] is expected to be Koszul as soon as c ≥ d/2. For
k = 1, 2, it is obvious. The first nontrivial case is k = 3. In Section 3,
we answer their expectation affirmatively for k = 3, see Theorem 3.1.
The motivation for such generalization came from the work of Caviglia
[7] and Caviglia and Conca [8]. Note that, for k = 3, the result of [8]
is just the case: d = 2 and c = 1; furthermore, the main result of [7]
correspond to the case: d = 2, c = 1, f1 = x2

1, f2 = x2
2, f3 = x2

3 and
n = 3.

In Section 4, we generalize [9, Theorem 6.2] and some of its relevant
corollaries. The main result of this section is Theorem 4.5, which is a
generalization of [9, Corollary 6.10] regarding the Koszulness of certain
diagonals of the Rees algebra of an ideal in the polynomial ring. We
show that the Koszulness property holds even if the polynomial ring is
replaced by a Koszul ring. The reason for such a generalization comes
from the fact that, from a certain point of view, Koszul algebras behave
homologically as polynomial rings.

2. Generalities and preliminary results. Let A be a standard
graded K-algebra, i.e., A =

⊕
Ai = S/I, where S is a polynomial

ring and I a homogeneous ideal of S. For a finitely generated graded
A-module M = ⊕Mi, set

tAi (M) = sup{j : TorAi (M,K)j ̸= 0},

with tAi (M) = −∞ if TorAi (M,K) = 0.
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Definition 2.1. The Castelnuovo-Mumford regularity regA(M) of an
A-module M is defined to be

regAM = sup{tAi (M)− i : i ≥ 0}.

When A = S is a polynomial ring, one has

regSM = max{tSi (M)− i : i ≥ 0}.

For a polynomial ring S = K[x1, . . . , xn], one can also compute regSM
via the local cohomology modules Hi

m(M) for i = 0, 1, . . . , n. One has

regSM = max{j + i : Hi
m(M)j ̸= 0}.

Definition 2.2 (Koszul algebra). A standard graded K-algebra A
is said to be a Koszul algebra if the residue field K has a linear A-
resolution. Equivalently, A is Koszul when regA(K) = 0.

Example 2.3. Let A = K[x]/(x2). Then K has a linear A-resolution

· · · −→ A(−2)
x−→ A(−1)

x−→ A −→ K −→ 0.

The property of being a Koszul algebra is preserved under various
constructions, in particular under taking tensor products, Segre prod-
ucts and Veronese subrings, see Backelin and Fröberg [4].

Let A be a Koszul algebra, and let S be the polynomial ring mapping
onto A. Then the regularity of any finitely generated graded module
M over A is always finite; in fact, regAM ≤ regSM , see Avramov and

Eisenbud [3, Theorem 1]. If M =
⊕b

i=a Mi with Mb ̸= 0, then

(1) regAM ≤ regSM = b.

If A =
⊕

i≥0 Ai is a graded algebra, then the c-th Veronese subalgebra

is A(c) =
⊕

i≥0 Aic. An element in Aic is considered to have degree i.

Definition 2.4. Consider a standard graded K-algebra A. Given
k,m ∈ N and 0 ≤ k < m, we set

VA(m, k) =
⊕
i∈N

Aim+k.
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We observe that A(m) = VA(m, 0) is the usual m-th Veronese subring
of A, and that the VA(m, k) are A(m)-modules known as the Veronese
modules of A. For a finitely generated graded A-module M , similarly
we define

M (m) =
⊕
i∈Z

Mim.

We consider A(m) as a standard graded K-algebra with homogeneous
component of degree i equal to Aim andM (m) as a graded A(m)-module
with homogeneous components Mim of degree i.

Definition 2.5. LetA andB be a positively gradedK-algebra. Denote
by A⊗B the Segre product

A⊗B =
⊕
i∈N

Ai ⊗K Bi,

of A and B. Given graded modules M and N over A and B, one may
form the Segre product

M⊗N =
⊕
i∈Z

Mi ⊗K Ni,

of M and N . Clearly, M⊗N is a graded A⊗B-module.

A beautiful introduction to construction of multigraded objects
including Segre products is given by Goto and Watanabe in [13,
Chapter 4]. Segre products have been studied in the sense of Koszulness
by several authors, e.g., Backelin et al. [4], Eisenbud et al. [11], Conca
et al. [9], Fröberg [12] and Blum [5]. We will use their results at several
occasions in this paper.

Let A and B be Koszul K-algebras. Let M be a finitely generated
graded A-module andN a finitely generated graded B-module. Assume
M and N have linear resolutions over A and B, respectively. Also
assume M⊗N ̸= 0. Then, by [9, Lemma 6.5], M⊗N has a linear
A⊗B-resolution and

(2) regA⊗BM⊗N = max{regAM, regBN}.

We will use this relation on regularity for Segre products in the proof
of Theorems 4.1 and 4.5.
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Remark 2.6. It is to be noticed that [9, Lemma 6.5] also needs the
hypothesis M⊗N ̸= 0. For instance, Assume M = K and N = K(−1).
Then M⊗N = 0, and this leads to inconsistency in (2).

The following lemma is very useful. We will use this lemma in the
proof of Proposition 2.10, Theorem 3.1 and Theorem 4.5.

Lemma 2.7 (Technical lemma). Let

M : · · · −→ Mk+1 −→ Mk −→ Mk−1 −→ · · · −→ M1 → M0 −→ 0,

be a complex of graded A-modules with maps of degree 0. Set Hi =
Hi(M). Then, for every i ≥ 0, one has

(3) tAi (H0) ≤ max{α, β},

where α = sup{tAi−j(Mj) : j = 0, . . . , i} and β = sup{tAi−j−1(Hj) : j =
1, . . . , i− 1}. Moreover, one has

(4) regA(H0) ≤ max{α′, β′},

where α′ = sup{regA(Mj)−j : j ≥ 0} and β′ = sup{regA(Hj)−(j+1) :
j ≥ 1}.

Proof. Let Zi, Bi and Hi denote the ith cycles, boundaries and
homology modules respectively. We have short exact sequences

0 −→ Bi −→ Zi −→ Hi −→ 0,

and
0 −→ Zi+1 −→ Mi+1 −→ Bi −→ 0,

with Z0 = M0. Therefore, by [6, Lemma 2.2(a)], one has

tAi (H0) ≤ max{tAi (M0), t
A
i−1(B0)},

tAi−1(B0) ≤ max{tAi−1(M1), t
A
i−2(Z1)},

tAi−2(Z1) ≤ max{tAi−2(B1), t
A
i−2(H1)},

tAi−2(B1) ≤ max{tAi−2(M2), t
A
i−3(Z2)},
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and so on. Summarizing the details, one has:

tAi (H0)

≤ max{tAi (M0), t
A
i−1(M1), . . . , t

A
i−j(Mj), t

A
i−2(H1), . . . , t

A
i−j−1(Hj)}.

Take α = sup{tAi−j(Mj) : j = 0, . . . , i} and β = sup{tAi−j−1(Hj) : j =

1, . . . , i − 1}. Then we obtain the desired result (3) for tAi (H0). The
second inequality (4) follows from ( 3). �

Let R = ⊕(i,j)∈Z2R(i,j) be a bigraded standard K-algebra. Here
standard means that R(0,0) = K and R is generated as a K-algebra by
the K-vector spaces R(1,0) and R(0,1) of finite dimension.

Definition 2.8 (Diagonal subalgebra). Let R be a bigraded standard
K-algebra. Let c and e be positive integers. Let△ be the (c, e)-diagonal
of Z2. The (c, e)-diagonal subalgebra R△ of R is defined as

R△ =
⊕
s∈Z

R(cs,es).

We observe that R△ is the K-subalgebra of R generated by R(c,e),
and hence it is a standard graded K-algebra. Similarly, one de-
fines the (c, e)-diagonal submodule of any bigraded R-module M =
⊕(i,j)∈Z2M(i,j) as M△ =

⊕
s∈Z M(cs,es). Notice that M△ is a mod-

ule over R△. The map M 7→ M△, being a selection of homogeneous
components, defines an exact functor from the category of bigraded R-
modules and maps of degree 0 to the category of graded R△-modules
with maps of degree 0.

Notation 2.9. We have △ = {(cs, es) : s ∈ Z}, but the bounds on c
and e change from time to time. Note that c, s, △ will always be used
in this way, with c and s changing as described. For a real number α,
we use ⌈α⌉ for the smallest integer m such that m ≥ α.

For (a, b) ∈ Z2, let R(−a,−b) be a shifted copy of R. By definition,

R(−a,−b)△ =
⊕
s∈Z

R(−a+cs,−b+es).
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Since R is positively graded, we may consider only those s ∈ Z for which
−a+cs ≥ 0 and −b+es ≥ 0. Assume max{⌈a/c⌉, ⌈b/e⌉} = ⌈a/c⌉. Then

R(−a,−b)△ =
⊕

s≥⌈a/c⌉

R(−a+cs,−b+es).

Therefore, R(−a,−b)△ is an R△-submodule of R generated by

R(−a+c⌈a/c⌉,−b+e⌈a/c⌉).

The other case is similar; summarizing the details, one has:

R(−a,−b)△=

{
R(−a+ c⌈a

c ⌉,−b+ e⌈a
c ⌉)△(−⌈a

c ⌉) if ⌈a
c ⌉ ≥ ⌈ b

e⌉;
R(−a+ c⌈ b

e⌉,−b+ e⌈ b
e⌉)△(−⌈ b

e⌉) if ⌈a
c ⌉ ≤ ⌈ b

e⌉.

The homological properties of the shifted diagonal module R(−a,−b)△
play an important role in the transfer of homological information from
R to R△. In the following proposition, we try to bound the homolog-
ical invariant (regularity) of the shifted diagonal module R(−a,−b)△
as an R△-module. The following proposition is crucial in proving The-
orem 3.1.

Proposition 2.10. Let S = K[x1, . . . , xm, t1, . . . , tn] be a polynomial
ring bigraded by deg xi = (1, 0) for i = 1, . . . ,m and deg ti = (0, 1) for
i = 1, . . . , n. Let I be an ideal of S generated by a regular sequence with
elements all of bidegree (d, 1) and R = S/I. Let d/2 ≤ c < 2d/3 and
e > 0. Then:

(a) R△ is Koszul.
(b) regR△

R(−a,−b)△ ≤ max{⌈a/c⌉, ⌈b/e⌉}.

Proof. Let h be the codimension of I. The proof is by induction
on h. If h = 0, then R△ is the Segre product of K[x1, . . . , xm](c) and

K[t1, . . . , tn]
(e). Thus, R△ is Koszul by [4]. For (b), see [9, proof of

Theorem 6.2].

Assume h > 0. We may write R = T/(f) where f is a T -regular
element of bidegree (d, 1) and where T is defined as the quotient of S
by an S-regular sequence of length h− 1 of elements of bidegree (d, 1).
We have a short exact sequence of T -modules:

(5) 0 −→ T (−d,−1) −→ T −→ R −→ 0
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and, applying −△, we have an exact sequence of T△-modules:

0 −→ T (−d,−1)△ −→ T△ −→ R△ −→ 0.

By induction, we know T△ is Koszul and that regT△
T (−d,−1)△ ≤

⌈d/c⌉. As d/c ≤ 2, one has

regT△
R△ ≤ 1.

By [8, Lemma 2.1 (3)], we may conclude that R△ is Koszul, as T△ is
Koszul by induction. Now, to prove (b), we consider the following two
cases.

Case 1. Assume ⌈a/c⌉ < ⌈b/e⌉. Shifting (5) by (−a,−b) and then
applying −△, we get a short exact sequence of T△-modules:

0 −→ T (−a− d,−b− 1)△ −→ T (−a,−b)△ −→ R(−a,−b)△ −→ 0.

So we have:

regT△
R(−a,−b)△

≤ max{regT△
T (−a,−b)△, regT△

T (−a− d,−b− 1)△ − 1}.

By induction, one has regT△
T (−a,−b)△ ≤ ⌈b/e⌉, and

regT△
T (−a− d,−b− 1)△ ≤ max

{⌈
a+ d

c

⌉
,

⌈
b+ 1

e

⌉}
.

Since ⌈
a+ d

c

⌉
≤

⌈
a

c

⌉
+

⌈
d

c

⌉
≤

(⌈
b

e

⌉
− 1

)
+ 2 =

⌈
b

e

⌉
+ 1

and ⌈
b+ 1

e

⌉
≤

⌈
b

e

⌉
+ 1,

we conclude that regT△
T (−a− d,−b− 1)△ ≤ ⌈b/e⌉+1. Thus, we have

regT△
R(−a,−b)△ ≤

⌈
b

e

⌉
.

Since we have already shown that regT△
R△ ≤ 1, we may conclude by

[8, Lemma 2.1 (1)] that

regR△
R(−a,−b)△ ≤

⌈
b

e

⌉
.
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Case 2. Assume ⌈a/c⌉ ≥ ⌈b/e⌉. Setting P = (t1, . . . , tn) ⊂ S, we
have

R(−a,−b)△ = R

(
− a+ c

⌈
a

c

⌉
,−b+ e

⌈
a

c

⌉)
△

(
−
⌈
a

c

⌉)
.

So we have to prove that regR△
R(α, β)△ ≤ 0 where α = −a + c⌈a/c⌉

and β = −b+ e⌈a/c⌉. Consider the minimal free (bigraded) resolution
of S/P β as an S-module:

F : 0 −→ Fn −→ Fn−1 −→ · · · −→ F1 −→ F0 −→ 0,

with F0 = S and Fi = S♯(0,−β− i+1) for i > 0 where ♯ denotes some
integer depending on n, β and i that is irrelevant in our discussion.
The homology of F⊗R is TorS• (S/P

β , R). We may as well compute

TorS• (S/P
β , R) as the homology of S/P β ⊗G where G is a free reso-

lution of R as an S-module. By assumption, we may take G to be a
Koszul complex on a sequence of elements of bidegree (d, 1). It follows
that:

Hi(F⊗R) =

{
a subquotient of (S/P β)♯(−di,−i) if 0 ≤ i ≤ h;

0 if i > h.

Shifting with (α, β) and applying−△, we have a complex (F⊗R(α, β))△.
We claim this complex has no homology. Shifting and applying −△
are compatible operations with taking homology. Therefore, to prove
(F⊗R(α, β))△ has no homology at all, we only need to check that

(6) [(S/P β)(−di+ α,−i+ β)]△ = 0 for all i.

To prove (6), take the jth degree component

[[(S/P β)(−di+ α,−i+ β)]△]j = (S/P β)(cj−di+α,ej−i+β).

We will show that

(7) (S/P β)(cj−di+α,ej−i+β) = 0.

The case i = 0 will be dealt with separately. Assume i > 0. Clearly (7)
holds if ej− i+β ≥ β, that is, if ej ≥ i. To complete the argument for
(7), it is enough to show that cj−di+α < 0 for ej < i. Let a = qc+ r;
0 ≤ r < c. Then ⌈

a

c

⌉
=

{
q + 1 if r ̸= 0;

q if r = 0.
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Therefore,

(8) cj − di+ α =

{
cj − di+ c− r if r ̸= 0;

cj − di if r = 0.

Assume r = 0 and ej < i. It is easy to see that

cj − di < i

(
c

e
− d

)
< i

(
2d

3e
− d

)
< 0.

Assume r ̸= 0 and ej < i. By assumption, we have j ≤ i/e − 1/e and
cj − di+ c− r < c(j + 1)− id. One has

(9) c(j + 1)− di ≤ c

(
i

e
− 1

e
+ 1

)
− di = i(

c

e
− d)− c

e
+ c.

As d/2 ≤ c < 2d/3 and e > 0, we may write

(10)
c

e
− d <

2d

3e
− d =

d(2− 3e)

3e
and − c

e
≤ − d

2e
.

Thus, by (9) and (10), we have

c(j + 1)− di < i

(
d(2− 3e)

3e

)
− d

2e
+

2d

3

=
d

6e
[i(4− 6e) + (4e− 3)].

It is easy to see that i(4−6e)+(4e−3) < 0 for all i > 0. Assume i = 0.
Denote by C the complex (F⊗R(α, β))△. If H0(C) ̸= 0, then either
ej+β < β or cj+α ≥ 0 in (7). Thus, H0(C) ̸= 0 if −α/c ≤ j < 0, which
is impossible since j has to be an integer and, by previous discussion
in (8), one has −1 < −α/c ≤ 0. Since Hi(C) = 0 for all i ≥ 0, we have
the following exact complex C:

0 −→ R(α,−i+ 1)△ −→ · · · −→ R(α,−1)△

−→ R(α, 0)△ −→ R(α, β)△ −→ 0.

From the exact complex C, we build another complex:

T : 0 −→ R(α,−i+ 1)△ −→ · · · −→ R(α,−1)△ −→ R(α, 0)△ −→ 0.
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Then the homology of the new complex T is given by

Hi(T) =

{
R(α, β)△ if i = 0;

0 if i > 0.

Thus, applying Lemma 2.7 to the complex T, one has

regR△
R(α, β)△ ≤ max{regR△

R(α,−i)△ − i : i ≥ 0}.

Note that, by Case 1, we have regR△
R(α,−i)△ ≤ ⌈i/e⌉, since ⌈−α/c⌉ ≤

⌈i/e⌉. Thus, we conclude that regR△
R(α, β)△ ≤ 0. Hence, Claim (b)

follows. �

Remark 2.11. Note that Proposition 2.10 is an extension of [9,
Theorem 6.2] for certain bigraded complete intersection ideal. Note
also that the statement of Proposition 2.10 is similar to (and more
general than) [8, Proposition 2.2].

3. Improvement of bounds. Let S = K[x1, . . . , xn] be a poly-
nomial ring. Let I be a homogeneous ideal in S generated by a reg-
ular sequence f1, f2, . . . , fk, of homogeneous forms of degree d. Let
c and e be positive integers. Consider the K-subalgebra of S gener-
ated by the homogeneous forms of degree ed + c in the ideal Ie, that
is, K[(Ie)ed+c]. We have seen that K[(Ie)ed+c] is the (c, e)-diagonal
subalgebra of Rees (I).

By [9, Corollary 6.10], K[(Ie)ed+c] is shown to be quadratic if
c ≥ d/2 and Koszul if c ≥ d(k − 1)/k. In [9, page 900], the
authors mentioned that they expect K[(Ie)ed+c] to be Koszul also for
d/2 ≤ c < d(k − 1)/k. For k = 1, 2, it is obvious that K[(Ie)ed+c] is
Koszul. The very first nontrivial instance of this problem occurs for
d = 2 and k = 3, in which case the only possible value is c = 1. For
c = 1, the answer is positive and solved by Caviglia and Conca [8].

In this Section, for k = 3 and for any d, we prove that K[(Ie)ed+c] is
Koszul as soon as c ≥ d/2 and e > 0. The main theorem of this section
is as follows.

Theorem 3.1. Let I be an ideal of the polynomial ring K[x1, . . . , xn]
generated by a regular sequence f1, f2, f3, of homogeneous forms of
degree d. Then K[(Ie)ed+c] is Koszul for all c ≥ d/2 and e > 0.
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We consider the Rees algebra, Rees (I) ⊂ S[t] of I with its stan-
dard bigraded structure induced by deg (xi) = (1, 0) and deg (fjt) =
(0, 1). It can be realized as a quotient of the polynomial ring S′ =
K[x1, . . . , xn, t1, t2, t3] bigraded with deg (xi) = (1, 0) and deg (tj) =
(0, 1), by the ideal J generated by the 2-minors of

M =

(
f1 f2 f3
t1 t2 t3

)
.

Let h1, h2 and h3 be the 2-minors of M with the appropriate sign, say
hi equal to (−1)i+1 times the minor of M obtained by deleting the ith
column. Hence,

J = I2(M) = (h1, h2, h3).

The sign convention is chosen so that the rows of the matrix M are
syzygies of h1, h2 and h3. We will use the following lemma to prove
Theorem 3.1.

Lemma 3.2. [8, Lemma 3.1] (Technical lemma).

(i) h1, h2 form a regular S′-sequence.
(ii) (h1, h2) : h3 = (f3, t3).
(iii) (h1, h2) : t3 = J .
(iv) (t3, h1, h2) : f3 = (t1, t2, t3).

Remark 3.3. Note that Lemma 3.2 is proved for d = 2 in [8, Lemma
3.1]. We observe that the proof of [8, Lemma 3.1] is independent of
the degrees of polynomial. Hence, Lemma 3.2 also holds for all d.

We are now ready for the proof of Theorem 3.1:

Proof. Recall that K[(Ie)ed+c] is Koszul for all c ≥ 2d/3 and e > 0
[9, Corollary 6.10]. We will show that K[(Ie)ed+c] is Koszul also for
d/2 ≤ c < 2d/3 and e > 0.

We set B = S′/(h1, h2). By Lemma 3.2 (i), we may apply to
B the result of Proposition 2.10. Hence, B△ is Koszul. One also
has B/h3B = Rees (I). It is enough to show for the (c, e)-diagonal
subalgebra of Rees (I), one has

regB△
(Rees (I)△) ≤ 1.
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Since h3t3 = 0 in B, we have a complex

(11) F : · · · t3−−−→ B(−2d,−3)
h3−−−→ B(−d,−2)

t3−−−→ B(−d,−1)

h3−−−→ B −→ 0,

where F0 = B, F2i = B(−id,−2i) and F2i+1 = B(−(i+ 1)d,−2i− 1).
The homology of F can be described by using Lemma 3.2

Hk(F) =


Rees (I) if k = 0,

0 if k = 2i and i > 0,

[S′/(t1, t2, t3)](−(i+1)d−d,−2i−1) if k = 2i+1 and i≥0.

The assertion for k = 0 holds by construction. For k even and positive,
it holds because of Lemma 3.2. For k odd and positive by Lemma
3.2 (ii), we have

H2i+1(F) =
(t3, f3)

(t3, h1, h2)
(−(i+ 1)d,−2i− 1).

Hence, H2i+1(F) is cyclic generated by the residue class of f3 mod
(t3, h1, h2) that has degree (−(i + 1)d − d,−2i − 1). Using Lemma
3.2 (iv) and keeping track of the degree, we get the desired result.
Applying the −△ functor to (11), we obtain a complex F△:

(12) · · · −−→ B(−2d,−3)△ −−→ B(−d,−2)△

−−→ B(−d,−1)△ −−→ B△ −−→ 0,

where

(Fk)△ =


B△ if k = 0,

B(−id,−2i)△ if k = 2i,

B(−(i+ 1)d,−2i− 1)△ if k = 2i+ 1.

Note that H2i(F△) = 0 and H0(F△) = Rees (I)△. We observe that
H2i+1(F△) is not necessarily zero for all e ≥ 1. Assume e ≥ 2. Then
we claim that H2i+1(F△) = 0. Take the j-th degree component

(H2i+1(F)△)j = [S′/(t1, t2, t3)](−(i+1)d−d+jc,−2i−1+je).

We will show that

(13) [S′/(t1, t2, t3)](−(i+1)d−d+jc,−2i−1+je) = 0.
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Clearly, (13) holds if −2i− 1+ ej ≥ 1, that is, if ej ≥ 2(i+1). So, it is
enough to show that −(i + 1)d− d + jc < 0 for ej < 2(i + 1), that is,
j < (i+ 2)d/c for j < 2(i+ 1)/e. This is an easy consequence of the
following inequalities:

2(i+ 1)

e
<

3(i+ 2)

2
<

(i+ 2)d

c
.

Assume e = 1. We know that H2i+1(F△) = H2i+1(F)△. Take the
j-th degree component of H2i+1(F)△. Then (H2i+1(F)△)j = 0 if
−(2i + 1) + j ≥ 1, that is, if j ≥ 2i + 2. So, the largest degree of
a non zero component of H2i+1(F△) is at most 2i + 1. Therefore, by
(1), one has regB△

Hk(F△) ≤ regS′Hk(F△) ≤ k for all k ≥ 1. Applying

Lemma 2.7 to (12), we obtain

(14) regB△
(Rees (I)△) ≤ sup{α′, β′},

where
α′ = sup{regB△

(Fk)△ − k : k ≥ 0}

and
β′ = sup{regB△

Hk(F△)− (k + 1) : k ≥ 1}.

Since B is defined by a regular sequence of elements of bidegree (d, 1),
we may apply Proposition 2.10 to (12):

regB△
(Fk)△ ≤

{
max{⌈ id

c ⌉, ⌈
2i
e ⌉} if k = 2i,

max{⌈ (i+1)d
c ⌉, ⌈ 2i+1

e ⌉} if k = 2i+ 1.

Since 3/2 < d/c ≤ 2, we conclude that α′ ≤ 1. Since regB△
Hk(F△) ≤ k

for all k ≥ 1, we conclude that β′ ≤ −1. Therefore, by (14), one has

regB△
(Rees (I)△) ≤ 1.

Thus, we conclude that Rees (I)△ is Koszul. �

Remark 3.4. We observe that, in the proof of [8, Theorem 3.2],
Hk(F)△ = 0 for all k, whereas in our case this is true for all e ≥ 2, and
not for e = 1. This affects the proof of Theorem 3.1 much more than
that of [8, Theorem 3.2]. To achieve our goal, we first have to deduce
Lemma 2.7. We use the fact that, if the homology module is non zero
and its regularity is bounded by the homology module at zero position,
then by (1), Lemma 2.7 and Proposition 2.10, we conclude the proof.
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4. More general base rings. In this section, the two main results
that we generalize are [9, Theorem 6.2] and [9, Corollary 6.10]. We
show that the Koszulness property holds even if the assumption of the
polynomial ring is replaced by a Koszul ring.

Conca et al. in [9, page 900] posed two interesting questions, one
of which was positively answered by Aramova, Crona and De Negri
[1] who showed that for an arbitrary bigraded standard algebra R, the
defining ideal of R△ has quadratic Grobner basis for c, e ≫ 0, and
another one by Blum [5], who showed that all the diagonal algebras
of bigraded standard Koszul algebra R are Koszul. We will use these
results in the proofs of Theorem 4.1 and Theorem 4.5.

Let A and B be two standard graded Koszul algebras. Let A =
K[A1], where A1 = ⟨X1, . . . Xm⟩ is a K vector space generated by
linear forms with deg(Xi) = 1. Similarly, let B = K[B1], where
B1 = ⟨Y1, . . . Yn⟩ is a K vector space generated by linear forms with
deg(Yj) = 1. We set T = A⊗K B. Then T is bigraded standard by
setting deg(Xi) = (1, 0) and deg(Yj) = (0, 1). Let R be a bigraded
quotient of T , that is, R = T/I for some bihomogeneous ideal I of T .

Let c and e be positive integers. We will study the Koszul property
of (c, e)-diagonal subalgebra R△ of bigraded algebra R. Consider the
bigraded free resolution of R over T :

(15) · · · −→ Fi −→ · · · −→ F1 −→ T −→ R −→ 0,

where
Fi =

⊕
(a,b)∈N2

T (−a,−b)βi,(a,b) .

Set

(16) ti,1 = max{a : there exists b such that βi,(a,b) ̸= 0},

and
ti,2 = max{b : there exists a such that βi,(a,b) ̸= 0}.

With this notation, the following is a generalization of [9, Theorem
6.2].

Theorem 4.1. Let A and B be standard graded Koszul algebras. We
set T = A⊗K B and R a bi-graded quotient of T . Then:
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(i) T is Koszul and regTR is finite.
(ii) If c ≥ sup{ti,1/(i+ 1) : i ≥ 1} ∈ R and e ≥ sup{ti,2/(i+ 1) :

i ≥ 1} ∈ R, then R△ is Koszul.
(iii) In particular, if c ≥ (regTR− 1)/2 and e ≥ (regTR− 1)/2,

then R△ is Koszul.

Proof. For (i), T is Koszul by [4] and regTR is finite by [3, Theorem
1]. For (ii), applying −△ functor to the bigraded free resolution (15)
of R over T , one obtains an exact complex:

(17) · · · −→ (Fi)△ −→ · · · −→ (F1)△ −→ T△ −→ R△ −→ 0,

of T△-modules, where

(Fi)△ =
⊕

(a,b)∈N2

T (−a,−b)
βi,(a,b)

△ .

Note that T△ = A(c)⊗B(e), where A(c) denotes the c-th Veronese

subring of A, and B(e) denotes the e-th Veronese subring of B. Note
that T△ is Koszul [5, Theorem 2.1]. To show that R△ is Koszul, it is
enough to show that

regT△
R△ ≤ 1.

Applying [9, Lemma 6.3 (ii)] to (17), we get

regT△
R△ ≤ sup{regT△

(Fi)△ − i : i ≥ 1}.

Thus, it is enough to show that

(18) regT△
(Fi)△ − i ≤ 1 for all i ≥ 1.

Since
(Fi)△ =

⊕
(a,b)∈N2

T (−a,−b)
βi,(a,b)

△ ,

one has

(19) regT△
(Fi)△ = max{regT△

T (−a,−b)△ : βi,(a,b) ̸= 0}.

Now we need to evaluate regT△
T (−a,−b)△. We denote by VA(c, α),

the Veronese modules of A, that is, VA(c, α) =
⊕

s∈N Asc+α for
α = 0, . . . , c − 1. Similarly, denote VB(e, β), the Veronese modules
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of B. Hence, for the shifted module T (−a,−b)△ we can write

T (−a,−b)△ =
⊕
s

[Asc−a ⊗Bse−b]

= VA(c, α)

(
−
⌈
a

c

⌉)
⊗VB(e, β)

(
−
⌈
b

e

⌉)
,

where α = −a mod (c), 0 ≤ α ≤ c − 1 and β = −b mod (e),
0 ≤ β ≤ e− 1.

The Veronese modules VA(c, α) and VB(e, β) have a linear resolutions
as an A(c)-module and B(c)-module, respectively, see [6, Lemma 5.1].
Hence, by (2), one has

(20) regT△
T (−a,−b)△ = max

{⌈
a

c

⌉
,

⌈
b

e

⌉}
.

Thus, by (16), (18), (19) and (20), we conclude that R△ is Koszul,
provided that

(21) max

{⌈
ti,1
c

⌉
,

⌈
ti,2
e

⌉}
≤ i+ 1 for all i ≥ 1.

From (21), we conclude that if c ≥ sup{ti,1/(i+ 1) : i ≥ 1} and
e ≥ sup{ti,2/(i+ 1) : i ≥ 1}, then R△ is Koszul. By definition, one has
ti,1 ≤ ti ≤ regTR− i. Thus, we have:

(22)
ti,1
i+ 1

≤ ti
i+ 1

≤ regTR− i

i+ 1
.

We know that regTR is finite. Notice that
regTR− i

i+ 1
is a decreasing

function of i, as i varies over the natural numbers. Taking the sup in
(22), we get

sup

{
ti,1
i+ 1

: i ≥ 1

}
≤ sup

{
ti

i+ 1
: i ≥ 1

}
≤ sup

{
regTR− i

i+ 1
: i ≥ 1

}
.

Similarly, the other case

sup

{
ti,2
i+ 1

: i ≥ 1

}
≤ sup

{
ti

i+ 1
: i ≥ 1

}
≤ sup

{
regTR− i

i+ 1
: i ≥ 1

}
.

Note that

sup

{
regTR− i

i+ 1
: i ≥ 1

}
≤ regTR− 1

2
.
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Thus, we observe that the numbers sup{ti,1/(i+ 1) : i ≥ 1} and
sup{ti,2/(i+ 1) : i ≥ 1} are in fact some finite real numbers, bounded
by (regTR− 1)/2. Thus, claims (ii) and (iii) follow. �

Remark 4.2. Note that in the Theorem 4.1, if we take A =
K[x1, . . . , xm] and B = K[y1, . . . , yn], then we will re-obtain [9, Theo-
rem 6.2].

The following is the generalization of [9, Corollary 6.9].

Corollary 4.3. Let I be the homogeneous ideal of a standard graded
Koszul ring A. Let d denote the highest degree of a minimal generator of
I. Then there exist integers c0, e0 such that the K-algebra K[(Ie)ed+c]
is Koszul for all c ≥ c0 and e ≥ e0.

Proof. Let B = K[t1, . . . , tk] in Theorem 4.1. Then T = A[t1, . . . , tk]
is a polynomial extension of A. Note that T is a bigraded standard
algebra by setting degXi = (1, 0) and deg tj = (0, 1). By replacing I
with the ideal generated by Id, we may assume that I is generated by
forms of degree d. Then Rees (I) ⊂ A[t] is a bigraded standard algebra
by setting degXi = (1, 0) and deg ft = (0, 1) for all f ∈ Id. Moreover,
Rees (I) can also be realized as the bigraded quotient of T .

By Theorem 4.1 (i), we have T is Koszul and reg TRees (I) is finite.
Note that the numbers c and e exist from Theorem 4.1 (ii) such that
Rees (I)△ is Koszul. In particular, if c, e ≥ (reg TRees (I)− 1)/2, then
Rees (I)△ is Koszul by Theorem 4.1 (iii). Thus, the claim follows, since
Rees (I)△ = K[(Ie)ed+c]. �

Remark 4.4. In Corollary 4.3, the integers c0 and e0 can be computed
explicitly whenever one knows the shifts in the bigraded free resolution
of Rees (I) over the Koszul ring T . For instance, when I is a complete
intersection ideal generated by homogeneous forms of degree d, one has
Theorem 4.5.

The following is a generalization of [9, Corollary 6.10].

Theorem 4.5. Let A be a standard graded Koszul ring. Let I be an
ideal of A generated by a regular sequence f1, f2, . . . , fk, of homogeneous



404 NEERAJ KUMAR

forms of degree d. Then K[(Ie)ed+c] is Koszul for all c ≥ d(k − 1)/k
and e > 0.

Proof. Let A = K[A1], where A1 = ⟨X1, . . . Xm⟩ is a K vector space
generated by linear forms with deg (Xi) = 1. Let A′ = A[t1, . . . , tk] be
a polynomial extension of A. Then A′ is a bigraded standard algebra
by setting degXi = (1, 0) and deg tj = (0, 1). Let I be an ideal of A
generated by a regular sequence f1, f2, . . . , fk, of homogeneous forms
of degree d. Then Rees (I) ⊂ A[t] is a bigraded standard algebra by
setting degXi = (1, 0) and deg fjt = (0, 1). Let

ϕ : A[t1, t2, . . . , tk] 7−→ A[It]

be the surjective map by sending tj to fjt. Since I is a complete
intersection ideal, one has

ker(ϕ) = I2

(
f1 f2 · · · fk
t1 t2 · · · tk

)
.

The resolution of A[It] over A′ is given by the Eagon-Northcott complex
(23). We know that ker(ϕ) is a determinantal ideal and grade (ker(ϕ)) =
k − 1; hence, the Eagon-Northcott complex (23) is the minimal free
resolution of A[It] over A′:

(23) 0 −→ Fk−1 −→ · · · −→ F1 −→ F0 −→ A[It] −→ 0,

where

Fi =

i⊕
j=1

A′(−jd,−i− 1 + j)♯i .

Here ♯i denotes some integer which is irrelevant in our discussion.
Applying the −△ functor to (23), one obtains an exact complex:

(24) 0 −→ (Fk−1)△ −→ · · · −→ (F1)△ −→ (F0)△ −→ A[It]△ −→ 0

of A′
△-modules, where

(Fi)△ =
i⊕

j=1

A′(−jd,−i− 1 + j)♯i△.

From the exact complex (24), we build another complex:

F : 0 −→ (Fk−1)△ −→ · · · −→ (F1)△ −→ (F0)△ −→ 0
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of A′
△-modules. Then the homology of the new complex F is given by

Hi(F) =

{
A[It]△ if i = 0;

0 if i > 0.

Thus, applying Lemma 2.7 to the complex F, one has

regA′
△
(A[It]△) ≤ sup{regA′

△
(Fi)△ − i : i = 1, 2, . . . , k − 1}.

Note that A′
△ is Koszul [5, Theorem 2.1]. To show that A[It]△ is

Koszul, it is enough to show that

(25) regA′
△
(Fi)△ − i ≤ 1 for all i = 1, 2, . . . , k − 1.

One has

regA′
△
(Fi)△ = max{regA′

△
A′(−jd,−i− 1 + j)△ : j = 1, 2, . . . , i}.

By a similar argument as used in Theorem 4.1 to obtain equation (20),
we get

regA′
△
(Fi)△ = max

{⌈
jd

c

⌉
,

⌈
i+ 1− j

e

⌉
: j = 1, 2, . . . , i

}
.

Thus, we have

(26) regA′
△
(Fi)△ = max

{⌈
id

c

⌉
,

⌈
i

e

⌉}
.

Therefore, by (25) and (26), we conclude that K[(Ie)ed+c] is Koszul if
c ≥ d(k − 1)/k and e > 0. �

We conclude the section with one final remark, and with an open
question.

Remark 4.6. The claim by Conca, et al. in [9, page 900] together with
Theorems 3.1 and 4.5 in this paper suggest that the following question
may have a positive answer.

Question 4.7. Let I be an ideal of a Koszul ring A generated by a
regular sequence f1, f2, . . . , fk, of homogeneous forms of degree d. Is it
true that K[(Ie)ed+c] is Koszul for all c ≥ d/2 and e > 0?
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