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A NOTE ON QUASI LAURENT POLYNOMIAL
ALGEBRAS IN n VARIABLES

ASAWARI M. ABHYANKAR AND S.M. BHATWADEKAR

ABSTRACT. Let S be a principal ideal domain. Re-
call that a Laurent polynomial algebra over S is an S-

algebra of the form S[T1, . . . , Tn, T
−1
1 , . . . , T−1

n ]. Gener-
alizing this notion, we call an S-algebra of the form

S[T1, . . . , Tn, f
−1
1 , . . . , f−1

n ] a quasi Laurent polynomial al-
gebra in n variables over S if T1, . . . , Tn are algebraically
independent over S and fi = aiTi + bi, where ai ∈ S\0 and
bi ∈ S are such that (ai, bi)S = S, for each i = 1, . . . , n. It
has been shown recently that a locally Laurent polynomial
algebra in n variables over S is itself a Laurent polynomial
algebra. Now suppose A is a locally quasi Laurent polyno-
mial algebra in n variables over S. In this note, we investi-
gate the question: ‘is A necessarily quasi Laurent polynomial
in n variables over S?’ We first give a sufficient condition for
the question to have an affirmative answer. Moreover, when
S is semi-local with two maximal ideals and contains the
field of rationals Q, we give examples of S-algebras which
are locally quasi Laurent polynomial in two variables but not
quasi Laurent polynomial in two variables.

1. Introduction. In [1], the following notion of a quasi A∗ algebra
over an integral domain S has been introduced: an S-algebra C is said
to be quasi A∗ if there exists an element T in C which is transcendental
over S such that

C = S
[
T, (aT + b)−1

]
for some a ∈ S \ 0, b ∈ S satisfying (a, b)S = S.

In a similar manner (keeping in mind that an S-algebra of the form
S[T, T−1] is referred to as “ A∗ ” over S), we call an S-algebra C
“quasi Laurent polynomial (quasi LP) in n variables over S” if there
exist elements T1, . . . , Tn in C which are algebraically independent over
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S such that

C = S
[
T1, . . . , Tn, (a1T1 + b1)

−1, . . . , (anTn + bn)
−1

]
for some ai ∈ S \ 0, bi ∈ S satisfying (ai, bi)S = S, for i = 1, . . . , n.

Let C = S[T1, . . . , Tn, f
−1
1 , . . . , f−1

n ] be a quasi Laurent polynomial
algebra in n variables over S, where fi = aiTi + bi for i = 1, . . . , n. Let
K be the quotient field of S. Then observe that:

(1) C is faithfully flat over S,
(2) C ⊗S K is a Laurent polynomial (LP) algebra in n variables

over K, and if a1, . . . , an are units in S, then C is a Laurent
polynomial algebra in n variables over S.

We call an S-algebra C locally quasi Laurent polynomial in n variables
over S if C ⊗S Sm is quasi Laurent polynomial in n variables over the
local ring Sm for every maximal ideal m of S.

In [1, Corollary 4.5], it is proved that, if S is a Noetherian factorial
domain and C is a finitely generated, faithfully flat S-algebra such that
C ⊗S SP is quasi A∗ over SP for every height one prime ideal P in S,
then C is quasi A∗ over S. In particular, if S is a principal ideal domain
(P.I.D.) and C is a finitely generated, locally quasi Laurent polynomial
algebra in one variable over S, then C is a quasi Laurent polynomial
algebra in one variable. Moreover, a special case of Theorem 2.3 in
[2] says that a locally Laurent polynomial algebra in n variables over
a P.I.D. S is in fact a Laurent polynomial algebra over S.

In view of these results, it is natural to ask: let S be a P.I.D. and
C a finitely generated S-algebra which is locally quasi LP in n (≥ 2)
variables. Is C necessarily quasi LP in n variables over S?

In this note, we first give a sufficient condition for the above question
to have an affirmative answer (Proposition 3.3). Subsequently, we show
that the above question may not always have an affirmative answer
implying that, in general, we cannot expect nice behavior in the case of
a locally quasi Laurent polynomial algebra in n (≥ 2) variables which is
not a locally Laurent polynomial algebra (Examples 4.1, 4.5 and 4.6).

2. Preliminaries. All the rings in this note are assumed to be
commutative and contain unity. For a ring S, let S[n] denote a
polynomial ring in n variables over S and S∗ the multiplicative group
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of units in S. For a prime ideal P of S and an S-algebra A, AP denotes
the ring A⊗S SP (= T−1A), where T = S\P .

We state below some results which can be proved easily.

Lemma 2.1. Let S be an integral domain. Let t1, . . . , tn be non-zero
elements of S. If π is a prime element of S such that π - ti for each
i = 1, . . . , n, then π remains prime in S[t−1

1 , . . . , t−1
n ].

Lemma 2.2. Let S be an integral domain. Let π1, . . . , πn be prime
elements of S, no two of which are associates. Then each unit in
S[π−1

1 , . . . , π−1
n ] is of the form λπr1

1 · · ·πrn
n for some λ ∈ S∗ and integers

r1, . . . , rn.

Lemma 2.3. Let S be an integral domain and T an indeterminate over
S. If a ∈ S\0 and b ∈ S are such that (a, b)S = S, then aT + b is a
prime element of S[T ].

Lemma 2.4. Let S be an integral domain, π a prime element of S and
D = S[T,W ] (= S[2]). Let h1 ∈ S[T ], h2 ∈ S[W ] and h1, h2 denote
the images of h1 and h2 respectively, in D/πD. If h1, h2 /∈ S/πS, then
h1, h2 are algebraically independent over S/πS.

Lemma 2.5. Let D ⊆ B be integral domains. Suppose there exists a
non-zero element π in D such that D[1/π] = B[1/π] and the canonical
map D/πD → B/πB is injective. Then D = B.

The following lemma will be required very often in Section 4.

Lemma 2.6. Let S ⊆ B be integral domains. Let X,Y be prime
elements of B which are algebraically independent over S and A =
B[X−1, Y −1]. Suppose

(I) B∗ = S∗ and
(II) A = S[T,W, f−1, g−1], a quasi Laurent polynomial algebra in

two variables over S, where f = aT + b and g = cW + d.

Then, there exist m,n, r, s,m′, n′, r′, s′ ∈ Z and λ, µ, λ1, µ1 ∈ S∗ such
that
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(i) ms− nr = m′s′ − n′r′ = ±1,

(ii) X = λfmgn, Y = µfrgs, f = λ1X
m′

Y n′
and g = µ1X

r′Y s′ .

In particular, S[X,Y,X−1, Y −1] = S[f, g, f−1, g−1].

Proof. By the definition of a quasi Laurent polynomial algebra in
two variables, we have (a, b)S = (c, d)S = S. Then, by Lemma 2.3,
f and g are prime elements of S[T,W ]. Hence, by Lemma 2.2, there
exist λ, µ ∈ S∗ and m,n, r, s ∈ Z such that

(2.1) X = λfmgn and Y = µfrgs.

On the other hand, by (I) and Lemma 2.2, the units f, g of A can be
expressed as

(2.2) f = λ1X
m′

Y n′
and g = µ1X

r′Y s′

for some λ1, µ1 ∈ S∗ and m′, n′, r′, s′ ∈ Z. From (2.1) and (2.2), we
obtain

X = (λλm
1 µn

1 )X
mm′+nr′ Y mn′+ns′

and

Y = (µλr
1µ

s
1)X

rm′+sr′ Y rn′+ss′ .

Therefore, (
m n
r s

)(
m′ n′

r′ s′

)
=

(
1 0
0 1

)
and hence m,n, r, s,m′, n′, r′, s′ ∈ Z are such that ms − nr = m′s′ −
n′r′ = ±1.

Also, from (2.1) and (2.2), it follows that

S[X,Y,X−1, Y −1] = S[f, g, f−1, g−1].

�

Lemma 2.7. Let S be an integral domain. Let A be a quasi Laurent
polynomial algebra in n variables over S. Then every prime element of
S remains prime in A.

Proof. Let A = S[X1, . . . , Xn, f
−1
1 , . . . , f−1

n ], where fi = aiXi + bi
for i = 1, . . . , n. Let π be a prime element of S. First, note that
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π remains prime in S[X1, . . . , Xn]. Since (ai, bi)S = S, π - fi in
S[X1, . . . , Xn] for each i = 1, . . . , n. Therefore, π is a prime element of
A by Lemma 2.1. �

The following lemma is easy to prove.

Lemma 2.8. Let S be an integral domain and P = πS a prime
ideal of S. Let T ⊆ (S\P ) be a multiplicative subset of S. Then
S = S[1/π]∩T−1S and S∗ = (S[1/π])∗ ∩ (T−1S)∗. Moreover, if A is a
flat S-algebra, then A = A[1/π]∩T−1A and A∗ = (A[1/π])∗∩(T−1A)∗.

Lemma 2.9. Let S be an integral domain and P a prime ideal of S.
Let A be a flat S-algebra. If PAP is a prime ideal of AP , then PA is
a prime ideal of A.

Proof. Since A is S-flat,

S/P ↪→ SP /PSP =⇒ A⊗S S/P ↪→ A⊗S SP /PSP

=⇒ A/PA ↪→ AP /PAP .

Hence, the proof. �

3. A sufficient condition. Let S be a P.I.D. Let A be an S-algebra.
If A is a locally Laurent polynomial algebra in n variables over S, then
by [2, Theorem 2.3], A is a Laurent polynomial algebra over S. But,
even if n = 1, a locally quasi LP algebra is not necessarily quasi LP
over S. In fact, by an example that follows, a locally quasi LP algebra
in one variable over S need not be even finitely generated over S.

Example 3.1. Let S = Z and B = Z[X,X/2, X/3, . . . , X/p, . . .] where
p varies over the set of prime integers. Let f = X − 1 and A = B[f−1].
For a prime integer p, let P = pZ. Then BP = ZP [X/p], and hence A
is locally quasi Laurent polynomial in one variable over Z. But, since
B is not finitely generated over Z, A cannot be a finitely generated
Z-algebra, by [1, Theorem 5.7].

Now, let A be a locally quasi Laurent polynomial algebra in n
variables over S which also satisfies the following condition:
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A[1/π] is a Laurent polynomial algebra in n variables over S[1/π]
for some prime π in S.

Observe that, under this condition, AP is a Laurent polynomial
algebra in n variables over SP for every maximal ideal P ( ̸= πS) of S.
In other words, we can say that A is almost locally Laurent polynomial
algebra in n variables over S.

We show that this is a sufficient condition for A to be quasi Laurent
polynomial in n variables over S. First we prove a lemma.

Lemma 3.2. Let S be a factorial domain and A a flat S-algebra. Let
m = πS be a prime ideal of S. Suppose

(1) Am = Sm[X1, . . . , Xn, f
−1
1 , . . . , f−1

n ], a quasi Laurent polyno-
mial algebra in n variables over Sm, where fi = aiXi + bi, for
i = 1, . . . , n and

(2) A[1/π] = S[1/π][U1, . . . , Un, g
−1
1 , . . . , g−1

n ], a quasi Laurent
polynomial algebra in n variables over S[1/π], where gi =
ciUi + di for i = 1, . . . , n.

Then, f1, . . . , fn and g1, . . . , gn can be chosen such that:

S[f1, . . . , fn, f
−1
1 , . . . , f−1

n ] = S[g1, . . . , gn, g
−1
1 , . . . , g−1

n ] (⊆ A).

Proof. From (1) and Lemma 2.7, we see that mAm is a prime ideal of
Am and, since A is S-flat, by Lemma 2.9, π remains prime in A. Now,
let Q = tS be a prime ideal of S, other than πS. From (2), it follows
that AQ is a quasi Laurent polynomial algebra in n variables over SQ.
Again, by Lemmas 2.7 and 2.9, t is a prime element of A. Thus, every
prime element of S remains prime in A.

Since g1, . . . , gn are units in A[1/π] and π is a prime in A, by
Lemma 2.2, we can write gi = λiπ

ri for some λi ∈ A∗ and ri ∈ Z
(for i = 1, . . . , n). Therefore, replacing gi by π−rigi, if required, we can
assume that g1, . . . , gn ∈ A∗.

Since f1, f
−1
1 ∈ Am, write f1 = a/s and f−1

1 = a′/s′, where
a, a′ ∈ A and s, s′ ∈ S\m. Let {π1, . . . , πr} be the set of all distinct
prime divisors of a least common multiple of s and s′ in S. Also
assume that no two of π1, . . . , πr are associates. Then note that
f1, f

−1
1 ∈ A[π−1

1 , . . . , π−1
r ] (⊆ Am), i.e., f1 is a unit in A[π−1

1 , . . . , π−1
r ].

By Lemma 2.2, we can write f1 = µπl1
1 · · ·πlr

r , for some µ ∈ A∗ and
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l1, . . . , lr ∈ Z. Replacing f1 by µ, if required, we can assume that
f1 ∈ A∗. Similarly, assume that f2, . . . , fn ∈ A∗.

From the above discussion, it follows that f1, . . . , fn and g1, . . . , gn
can be chosen such that

S[g1, . . . , gn, g
−1
1 , . . . , g−1

n ] ⊆ A

and

S[f1, . . . , fn, f
−1
1 , . . . , f−1

n ] ⊆ A.

By Lemma 2.3, f1, . . . , fn are prime elements of Sm[X1, . . . , Xn]. There-
fore, by Lemma 2.2, for each i (1 ≤ i ≤ n), gi ∈ A∗ (⊆ A∗

m) can be
expressed as

(3.1) gi = αif
pi1

1 fpi2

2 · · · fpin
n

for some αi ∈ S∗
m and pij ∈ Z, 1 ≤ j ≤ n.

Since g1, . . . , gn are prime elements of S[1/π][U1, . . . , Un], again using
Lemma 2.2, for each i (1 ≤ i ≤ n), fi ∈ A∗ (⊆ (A[1/π])∗) can be
expressed as

(3.2) fi = βig
qi1
1 gqi22 · · · gqinn

for some βi ∈ (S[1/π])∗ and qij ∈ Z, 1 ≤ j ≤ n.

Let K be the quotient field of S. From equations (3.1) and (3.2), we
obtain the following expressions (in A⊗S K):

gi = αiβ
pi1

1 βpi2

2 · · ·βpin
n gp1

1 gp2

2 · · · gpn
n ,

fi = βiα
qi1
1 αqi2

2 · · ·αqin
n fq1

1 fq2
2 · · · fqn

n ,

where pr =
∑n

j=1 pijqjr and qr =
∑n

j=1 qijpjr for r = 1, . . . , n.

From the above expressions, it follows that (in K),

αiβ
pi1

1 βpi2

2 · · ·βpin
n = 1 =⇒ αi = β−pi1

1 β−pi2

2 · · ·β−pin
n

and

βiα
qi1
1 αqi2

2 · · ·αqin
n = 1 =⇒ βi = α−qi1

1 α−qi2
2 · · ·α−qin

n .
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Hence αi, βi ∈ S∗
m∩ (S[1/π])∗ = S∗ (by Lemma 2.8). As a consequence

of this, from equations (3.1) and (3.2), we see that

S[g1, . . . , gn, g
−1
1 , . . . , g−1

n ] = S[f1, . . . , fn, f
−1
1 , . . . , f−1

n ].

�

Now we prove the following proposition.

Proposition 3.3. Let S be a factorial domain and A a faithfully flat
S-algebra. Suppose

(1) AP is quasi Laurent polynomial in n variables over SP for every
height one prime ideal P of S and

(2) A[1/π] is a Laurent polynomial algebra in n variables over
S[1/π] for some prime element π in S.

Then A is quasi Laurent polynomial in n variables over S. As a
consequence, A is finitely generated over S.

Proof. From (1), Lemma 2.7 and Lemma 2.9, it follows that every
prime element of S remains prime in A. Let m = πS. Since A[1/π]
is a Laurent polynomial algebra in n variables over S[1/π], there exist
U1, . . . , Un ∈ A[1/π] which are algebraically independent over S[1/π]
such that

A[1/π] = S[1/π][U1, . . . , Un, U
−1
1 , . . . , U−1

n ].

Since Am is quasi Laurent polynomial in n variables over Sm, we can
write

Am = Sm[X1, . . . , Xn, f
−1
1 , . . . , f−1

n ],

where X1, . . . , Xn ∈ Am are algebraically independent over Sm and
fi = aiXi + bi (for i = 1, . . . , n).

By Lemma 3.2, without loss of generality, we can assume that

S[U1, . . . , Un, U
−1
1 , . . . , U−1

n ] = S[f1, . . . , fn, f
−1
1 , . . . , f−1

n ] (⊆ A).

Let K be the quotient field of S. Let Ci = A ∩K[Xi], for i = 1, . . . , n.
Note the following properties of the S-algebra Ci (for each i = 1, . . . , n):

(i) πA ∩ Ci = πCi, and hence π remains prime in Ci.

(ii) (Ci)m = Ci ⊗S Sm = Am ∩K[Xi] = Sm[Xi] = S
[1]
m .
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(iii)
S

πS
↪→ Sm

πSm
↪→ Am

πAm
.

Therefore, the following composite map is injective

S

πS
→ Ci

πCi
↪→ A

πA
↪→ Am

πAm
.

Then we have

S

πS
↪→ Ci

πCi
↪→ A

πA
.(3.3)

Therefore, πCi ∩ S = πS. Also,

(Ci)m
π(Ci)m

∼=
Sm

πSm
[Xi];

hence, tr.degS/πSCi/πCi = 1.

(iv)

Ci[1/π] = A[1/π] ∩K[Xi]

= S[1/π][U1, . . . , Un, U
−1
1 , . . . , U−1

n ] ∩K[Xi]

= S[1/π][f1, . . . , fn, f
−1
1 , . . . , f−1

n ] ∩K[fi]

= S[1/π][fi] = S[1/π][1].

(v) Let y ∈ A/πA (↪→ Am/πAm) be algebraic over S/πS. Since
Sm/πSm is algebraically closed in Am/πAm, it can be seen that
y ∈ A/πA ∩ Sm/πSm. But, since A/πA is faithfully flat over
S/πS, we have A/πA ∩ Sm/πSm = S/πS. Then y ∈ S/πS.
Therefore, S/πS is algebraically closed in A/πA, and hence in
Ci/πCi by (3.3).

Because of these properties of Ci, by the Russell-Sathaye criterion ([3,
2.3.1]) for an algebra to be a polynomial ring in one variable, we see
that Ci = S[1], for each i = 1, . . . , n.

Let Ci = S[Ti] (= S[1]), 1 ≤ i ≤ n. Then from (ii) we have
(Ci)m = Sm[Xi] = Sm[Ti]. Therefore, for each i = 1, . . . , n, there exist
a′i ∈ S∗

m and b′i ∈ Sm such that Xi = a′iTi + b′i. Then fi = aiXi + bi =
aia

′
iTi+aib

′
i+bi. Set ci := aia

′
i and di := aib

′
i+bi. Note that ci, di ∈ Sm

with ci ̸= 0. And then fi = ciTi + di. Since fi ∈ Ci = S[Ti], it follows
that ci, di ∈ S.
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Set A′ := S[T1, . . . , Tn, f
−1
1 , . . . , f−1

n ].

Since fi ∈ (A′)∗, fi = ciTi + di ⇒ 1 = f−1
i ciTi + f−1

i di. Then
we have (ci, di)A

′ = A′. Also, A′ is a flat subalgebra of a faithfully
flat S-algebra A. Therefore, A′ is faithfully flat over S. Hence,
(ci, di)S = (ci, di)A

′ ∩ S = A′ ∩ S = S, for each i = 1, . . . , n. Thus, A′

is a quasi Laurent polynomial algebra in n variables over S.

Claim. A′ = A. First observe that A′ ⊆ A and, by Lemma 2.8,
we have A′ = A′[1/π] ∩A′

m, A = A[1/π] ∩Am. Since Sm[Xi] = Sm[Ti],
we obtain

A′
m = Sm[T1, . . . , Tn, f

−1
1 , . . . , f−1

n ]

= Sm[X1, . . . , Xn, f
−1
1 , . . . , f−1

n ]

= Am.

Also, since S[f1, . . . , fn, f
−1
1 , . . . , f−1

n ] ⊆ A′ ⊆ A, we obtain

S[1/π][f1, . . . , fn, f
−1
1 , . . . , f−1

n ] ⊆ A′[1/π]

⊆ A[1/π]

= S[1/π][U1, . . . , Un, U
−1
1 , . . . , U−1

n ]

= S[1/π][f1, . . . , fn, f
−1
1 , . . . , f−1

n ]

⇒ A′[1/π] = A[1/π].

Hence, A′ = A′[1/π] ∩A′
m = A[1/π] ∩Am = A. �

As a particular case of Proposition 3.3, it follows that, if S is a P.I.D.
and A is a locally quasi Laurent polynomial algebra in n variables over
S such that A[1/π] is a Laurent polynomial algebra in n variables over
S[1/π] for some prime π in S, then A is a quasi Laurent polynomial
algebra in n variables over S.

4. Examples. Throughout this section, S denotes a semi-local
P.I.D. with only two maximal ideals m1 = π1S and m2 = π2S. As-
sume that S contains the field of rationals Q. Let K be the quotient
field of S and k1 = S/m1, k2 = S/m2.

Since m1 and m2 are comaximal ideals of S, we see that Sm1 =
S[1/π2] and Sm2 = S[1/π1].
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In this section, we give examples of locally quasi Laurent polynomial
algebras in two variables over S which are not quasi Laurent polyno-
mial. Let A be such an algebra. In view of Proposition 3.3, neither
A[1/π2] nor A[1/π1] can be a Laurent polynomial algebra in two vari-
ables over the discrete valuation rings S[1/π2] and S[1/π1], respectively.
Hence, neither of the closed fibres A/π1A and A/π2A of A can be a
Laurent polynomial algebra in two variables over the respective field.

In the first example (of an S-algebra A) that follows, both the closed
fibres of A are polynomial algebras in two variables over the respective
fields.

Example 4.1. Let λ, µ be units of S such that λ− 1, µ+ 1 ∈ m1 and
λ − 2, µ − 2 ∈ m2. Let B = S[U, V1] (= S[2]) and V = U + π1π2V1.
Let X = π1π2U + λ, Y = π1π2V + µ and A = B[X−1, Y −1] =
S[U, V1, X

−1, Y −1].

We list below some useful facts:

(i) In k1, the images of λ and µ are 1 and −1, respectively. On
the other hand, in k2, both λ and µ have the same image 2.

(ii) Let bar denote the images in B/π1B. Then note that X,Y ∈
k∗1 , B/π1B = k1[U, V1] and

A/π1A = B/π1B[X
−1

, Y
−1

] = B/π1B = k
[2]
1 .

(iii) Let tilde denote the images in B/π2B. Then, X̃, Ỹ ∈ k∗2 ,

B/π2B = k2[Ũ , Ṽ1] and

A/π2A = B/π2B[X̃−1, Ỹ −1] = B/π2B = k
[2]
2 .

(iv) S[U, V1] ⊆ A ⊆ S[[U, V1]] (since X,Y are units in S[[U, V1]], the
second inclusion is justified). By (ii), it follows that

S[U, V1]

π1S[U, V1]

(
=

A

π1A

)
↪→ S[[U, V1]]

π1S[[U, V1]]
.

Hence, π1S[[U, V1]]∩A = π1A. Similarly, using (iii), we obtain
π2S[[U, V1]] ∩A = π2A.

Claim (1). A is a locally quasi LP algebra in two variables over
S.
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Let f1 = XY −1 and g1 = Y . Note that X,Y ∈ A∗ ⇒ f1, g1 ∈ A∗.
In S[[U, V1]] we have,

f1 = (π1π2U + λ)(π1π2V + µ)−1

= λµ−1(1 + π1π2λ
−1U)(1 + π1π2µ

−1V )−1

=⇒ λ−1µf1 = 1 + (λ−1 − µ−1)π1π2U − (π1π2)
2µ−1V1−

µ−1(λ−1 − µ−1)(π1π2)
2U2 + (π1π2)

3F(4.1)

where F ∈ S[[U, V1]] ∩A.

Since λ− 2, µ− 2 ∈ m2 = π2S, λ− µ ∈ π2S ⇒ λ−1 − µ−1 ∈ π2S ⇒
λ−1 − µ−1 = π2β, for some β ∈ S. Then, note that π1 - β in S.

Substituting for λ−1 − µ−1 in (4.1), we obtain

λ−1µf1 − 1 = π1π
2
2

[
βU − π1µ

−1V1 − µ−1βπ1π2U
2 + π2

1π2F
]
.(4.2)

By (4.2), it follows that λ−1µf1 − 1 ∈ A ∩ π1π
2
2S[[U, V1]] = π1π

2
2A. If

we set T1 := (λ−1µf1 − 1)/π1π
2
2 , then

T1 = βU − π1µ
−1V1 − µ−1βπ1π2U

2 + π2
1π2F ∈ A.(4.3)

Now, g1 = Y = µ + π1π2U + (π1π2)
2V1. Set W1 := (g1 − µ)/π1π2.

Then we have

W1 =
g1 − µ

π1π2
= U + π1π2V1 ∈ A(4.4)

Note that f1 = (λµ−1π1π
2
2)T1 + λµ−1 and g1 = π1π2W1 + µ.

Let A1 = S[T1,W1, f
−1
1 , g−1

1 ]. Then A1 ⊂ A. Note that π2 is a
prime element of A1 and A both. We show that A1[1/π1] = A[1/π1].
Clearly, A1[1/π1] ⊆ A[1/π1] and

A1 [1/π1, 1/π2] = K[f1, g1, f
−1
1 , g−1

1 ] = K[X,Y,X−1, Y −1]

= A [1/π1, 1/π2] (= A⊗S K).

Let tilde denote the images in A/π2A. By (4.3) and (4.4), T̃1 =

β̃Ũ − π̃1 µ̃−1 Ṽ1, W̃1 = Ũ and

A1[1/π1]

π2A1[1/π1]
=

A1

π2A1

∼= k2[T̃1, W̃1] ↪→ k2[Ũ , Ṽ1] =
A

π2A
=

A[1/π1]

π2A[1/π1]
.
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Then, by Lemma 2.5, A1[1/π1] = A[1/π1]. Hence, A[1/π1] is a quasi
Laurent polynomial algebra in two variables over S[1/π1] given by

A[1/π1] = S[1/π1][T1,W1, f
−1
1 , g−1

1 ](4.5)

Now, let f2 = XY and g2 = Y . Clearly, f2, g2 ∈ A∗ and

f2 = λµ+ (λ+ µ)π1π2U + λ(π1π2)
2V1 + (π1π2)

2U2 + (π1π2)
3UV1.

Since λ − 1, µ + 1 ∈ m1 = π1S, λ + µ ∈ π1S ⇒ λ + µ = π1δ for some
δ ∈ S. Note that π2 - δ in S. Substituting for λ+ µ in f2, we obtain

f2 − λµ = π2
1π2

[
δU + λπ2V1 + π2U

2 + π1π2UV1

]
=⇒ T2 :=

f2 − λµ

π2
1π2

= δU + λπ2V1 + π2U
2 + π1π

2
2UV1 ∈ A.

Set W2 := (g2 − µ)/π1π2 (= U + π1π2V1 ∈ A). Note that f2 =
π2
1π2T2 + λµ and g2 = π1π2W2 + µ.

Let A2 = S[T2,W2, f
−1
2 , g−1

2 ]. Then, A2 ⊂ A and π1 is a prime
element of A2 and A both. A2[1/π2] ⊆ A[1/π2] and A2 ⊗S K =
K[X,Y,X−1, Y −1] = A ⊗S K. Let bar denote the images in A/π1A.

Then, T2 = δ U + λ π2 V1 + π2 U
2
and W2 = U . Also, k1[T2,W2] ↪→

k1[U, V1] = A/π1A and again, using Lemma 2.5, A2[1/π2] = A[1/π2].
Thus,

A[1/π2] = S[1/π2][T2,W2, f
−1
2 , g−1

2 ].(4.6)

Equations (4.5) and (4.6) together prove claim (1).

Remark 4.2. A1 $ A. For, if equality holds, then A/π1A =

k1[T1,W1] = k1[β U,U ] = k1[U ], a contradiction to the fact that

A/π1A = k
[2]
1 . Similarly, using images in A/π2A, it follows that

A2 $ A.

Claim (2). A is not a quasi LP algebra in two variables over
S. Suppose it is. Let A = S[T,W, f−1, g−1]. Since B∗ = S∗ and
A = B[X−1, Y −1], where X,Y are prime elements of B which are
algebraically independent over S, by Lemma 2.6, there exist integers
m,n, r, s satisfying ms − nr = ±1 and units α1, α2 in S such that
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f = α1X
mY n and g = α2X

rY s. In S[[U, V1]] we have

α−1
1 f = λmµn

[
1 + (mλ−1 + nµ−1)π1π2U + (π1π2)

2(nµ−1V1 + F1)
]
,

where F1 ∈ S[[U, V1]] ∩A and

α−1
2 g = λrµs

[
1 + (rλ−1 + sµ−1)π1π2U + (π1π2)

2(sµ−1V1 +G1)
]
,

where G1 ∈ S[[U, V1]] ∩A. Set

T3 :=
λ−mµ−nα−1

1 f − 1

π1π2

= (mλ−1 + nµ−1)U + nπ1π2µ
−1V1 + π1π2F1

and

W3 : =
λ−rµ−sα−1

2 g − 1

π1π2

= (rλ−1 + sµ−1)U + sπ1π2µ
−1V1 + π1π2G1.

Then note that T3 ∈ A ∩ K[f ] = A ∩ K[T ] = S[T ] and W3 ∈ S[W ].
The images of T3 and W3 in A/π1A are

T3 = (mλ−1 + nµ−1) U and W3 = (rλ−1 + sµ−1) U,

respectively. Since these images are algebraically dependent over k1,
by Lemma 2.4, either T3 or W3 is an element of k1, i.e.,

π1 | (mλ−1 + nµ−1) or (rλ−1 + sµ−1) in S.

Considering the images in A/π2A, it can be shown that

π2 | (mλ−1 + nµ−1) or (rλ−1 + sµ−1) in S.

Thus, (mλ−1 + nµ−1)(rλ−1 + sµ−1) is an element of both π1S and
π2S. Using the images of λ, µ in k1 and k2, respectively, we obtain the
following:

(m− n)(r − s) = 0 and (m+ n)(r + s) = 0.

As ms− nr = ±1, the only two possibilities are:

(m− n = 0 and r + s = 0) or (r − s = 0 and m+ n = 0).

In the first case, i.e., if m = n and s = −r, then ms−nr = m(s− r) =
m(s+s) = 2ms. But, then ms−nr = ±1 ⇒ 2ms = ±1 ⇒ ms = ±1/2,
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a contradiction. A similar contradiction is obtained in the second case.
This proves claim (2).

Before moving towards the next examples, we describe two methods
(Propositions 4.3 and 4.4) of obtaining quasi Laurent polynomial alge-
bras in two variables over a discrete valuation ring containing the field
of rationals Q.

Proposition 4.3. Let R be a discrete valuation ring containing the
field of rationals Q. Let πR be its unique maximal ideal, K the quotient
field and k the residue field. Let

B =
R[X,Y, Z]

(πlZ − (Xr − Y m))
,

where X,Y are algebraically independent over R and l, r,m are positive
integers with r,m relatively prime. Let x, y denote the images of X,Y
respectively, in B. Let A = B[x−1, y−1]. Then A is a quasi Laurent
polynomial algebra in two variables over R.

Proof. Let z denote the image of Z in B. Note that πlz = xr−ym ⇒
πl(y−mz) = xry−m−1. SetW1 := y−mz and g1 := πlW1+1(= xry−m).
Then, as x, y are units in A; W1, g1, g

−1
1 are elements of A. Since m, r

are relatively prime, there exist s, n ∈ Z such that ms − nr = 1.
Then the determinant

∣∣ r −m
s −n

∣∣ = 1. Set T1 := xsy−n, and let A′ =

R[T1, T
−1
1 ,W1, g

−1
1 ]. Then A′ ⊆ A. Also, x = g−n

1 Tm
1 , y = g−s

1 T r
1 and

z = ymW1 ⇒ x, y ∈ A′∗, z ∈ A′. Hence, A = A′. �

Proposition 4.4. Let R be a discrete valuation ring containing the
field of rationals Q. Let πR be its unique maximal ideal, K the quotient
field and k the residue field. Let

B =
R[X,Y, Z]

(πlZ − (XrY m − 1))
,

where X,Y are algebraically independent over R and l, r,m are positive
integers with r,m relatively prime. Let x, y denote the images of X,Y
respectively, in B. Let A = B[x−1, y−1]. Then A is a quasi Laurent
polynomial algebra in two variables over R.
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Proof. Let z denote the image of Z in B. Since πlz = xrym − 1,
if we set W1 := z and g1 := πlW1 + 1, then because x, y are units
in A, g1, g

−1
1 ∈ A. Now since r,m are relatively prime, there exist

s, n ∈ Z such that ms − nr = 1, i.e., the determinant | r m
−s −n | = 1.

Set T1 := x−sy−n, and let A′ = R[T1, T
−1
1 ,W1, g

−1
1 ]. Then A′ ⊆ A.

Also, x = g−n
1 T−m

1 , y = gs1T
r
1 ⇒ x, y ∈ A′∗ and z = W1 ∈ A′. Hence,

A = A′. �

In the next example, both the closed fibres of A contain exactly one
transcendental unit.

Example 4.5. Let

B =
S[X,Y, Z]

(π1π2Z − π1(X2 − Y 3)− π2(XY − 1))
,

where X,Y are algebraically independent over S. Let x, y, z denote the
images of X, Y and Z respectively, in B. Let A = B[x−1, y−1].

First note the following:

(I) Let bar denote the images in B/π1B. Then x y = 1, B/π1B =
k1[x, x

−1, z] and

A/π1A = B/π1B[x−1, y−1] = k1[x, x
−1, z] = B/π1B.

(II) Let tilde denote the images in B/π2B. Then x̃2 = ỹ3 and
B/π2B = k2[x̃, ỹ, z̃]. Also

B/π2B ↪→ A/π2A = B/π2B[x̃−1, ỹ−1] = k2[θ, θ
−1, z̃],

where θ = x̃ ỹ−1. Note that θ3 = x̃ and θ2 = ỹ.

Claim (1). A is a locally quasi LP algebra in two variables over
S.

Note that S[1/π1][X,Y, Z] = S[1/π1][X,Y, Z1], where Z1 = π1Z −
(XY − 1). Therefore,

B[1/π1] =
S[1/π1][X,Y, Z1]

(π2Z1 − π1(X2 − Y 3))
.

Then, A[1/π1] = B[1/π1][x
−1, y−1] is a quasi Laurent polynomial

algebra in two variables over the D.V.R. S[1/π1] (by Proposition 4.3).
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Now, S[1/π2][X,Y, Z] = S[1/π2][X,Y, Z2], where Z2 = π2Z− (X2−
Y 3). Therefore,

B[1/π2] =
S[1/π2][X,Y, Z2]

(π1Z2 − π2(XY − 1))
.

Then, A[1/π2] = B[1/π2][x
−1, y−1] is a quasi Laurent polynomial

algebra in two variables over the D.V.R. S[1/π2] (by Proposition 4.4).

Claim (2). A is not a quasi LP algebra in two variables over
S. Suppose it is. Let A = S[T,W, f−1, g−1], where f = aT + b
and g = cW + d. Since B∗ = S∗ and x, y are prime elements of B
which are algebraically independent over S, by Lemma 2.6, there exist
m,n, r, s ∈ Z withms−nr = ±1 and α1, α2 ∈ S∗ such that x = α1f

mgn

and y = α2f
rgs.

Because of the structure of A/π1A and A/π2A described in (I) and
(II), we have the following four possibilities:

(i) π1 | a, π1 - c, π2 - a, π2 | c, (ii) π1 - a, π1 | c, π2 | a, π2 - c,
(iii) π1 | a, π1 - c, π2 | a, π2 - c, (iv) π1 - a, π1 | c, π2 - a, π2 | c.

Consider case (i). In this case, A[1/π2] = S[1/π2][T, f
−1, g, g−1]. In

A/π1A, the image of f is f = b (∈ k∗1) and

x y = 1 =⇒ α1 α2 b
(m+r)

g(n+s) = 1 =⇒ g(n+s) ∈ k∗1 .

Therefore, n+ s = 0.

Also, A[1/π1] = S[1/π1][f, f
−1,W, g−1]. In A/π2A, the image of g

is g̃ = d̃ ∈ k∗2 and

x̃2 = ỹ3 =⇒ f̃ (2m−3r) ∈ k∗2 .

Therefore, 2m− 3r = 0, and we can write m = 3m′, r = 2m′ for some
integer m′, so that ms− nr = ms+ sr = s(m+ r) = 5sm′. But, then
ms − nr = ±1 ⇒ 5sm′ = ±1, a contradiction. In case (ii), also, we
obtain a contradiction of the same type.
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Now consider case (iv). In this case,

A[1/π2] = S[1/π2][f, f
−1,W, g−1],

A/π1A = k1[f, f
−1

,W ]

and

x y = 1 =⇒ f
(m+r) ∈ k∗1 =⇒ m+ r = 0.

Also, in this case, we have

A[1/π1] = S[1/π1][f, f
−1,W, g−1],

A/π2A = k2[f̃ , f̃
−1, W̃ ]

and

x̃2 = ỹ3 =⇒ f̃ (2m−3r) ∈ k∗2 =⇒ 2m− 3r = 0.

Solvingm+r = 0 and 2m−3r = 0 simultaneously, we obtainm = r = 0.
But, then ms − nr = 0, a contradiction. A similar contradiction is
obtained in case (iii). This proves Claim (2).

In the following example, one closed fibre of A is a polynomial alge-
bra in two variables whereas the other contains exactly one transcen-
dental unit.

Example 4.6. Let C = S[U, V ] = S[2]. LetX = π2U+1, Y = π2
2V +1.

Let p, q(≥ 2) be relatively prime integers, and let

B =
S[U, V, Z]

(π1Z − {(π2U + 1)q − (π2
2V + 1)p})

.

Let x, y, z denote the images of X,Y and Z respectively, in B. Let
A = B[x−1, y−1].

First note the following:

(I) B∗ = S∗ and x, y are prime elements of B which are alge-
braically independent over S.

(II) B[1/π1] = S[1/π1][U, V ], and hence

A[1/π1] = S[1/π1][U, V,X
−1, Y −1].
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Therefore, A[1/π1] is a quasi Laurent polynomial algebra in
two variables over S[1/π1]. And

A/π2A =
A[1/π1]

π2A[1/π1]
= k

[2]
2 .

(III) S[1/π2][U, V ] = S[1/π2][X,Y ]. Then we have

B[1/π2] =
S[1/π2][X,Y, Z]

(π1Z − (Xq − Y p))
.

Therefore, A[1/π2] = B[1/π2][x
−1, y−1] is a quasi Laurent

polynomial algebra in two variables over S[1/π2], by Propo-
sition 4.3.

Let bar denote the images in A/π1A. Then

A/π1A =
A[1/π2]

π1A[1/π2]
= k1[x, y, z, x

−1, y−1]

= k1[θ, θ
−1, z] (= k1[θ, θ

−1][1]),

where θ = xp′
y(−q′) and p′, q′ are integers such that pp′−qq′ =

1. Note that x = θp and y = θq.
(IV) Let R = S[1/π1]. Since A[1/π1] = R[U, V,X−1, Y −1] and X,Y

are units in R[[U, V ]], we have R[U, V ] ⊆ A[1/π1] ⊆ R[[U, V ]].
Hence, A[1/π1] ∩ π2R[[U, V ]] = π2A[1/π1].

From (II) and (III), A is a locally quasi Laurent polynomial algebra in
two variables over S.

Claim. A is not a quasi LP algebra in two variables over S.
Suppose it is. Let A = S[T,W, f−1, g−1] where f = aT + b and
g = cW+d. In view of (I), by Lemma 2.6, there existm,n, r, s ∈ Z with
ms − nr = ±1 and α1, α2 ∈ S∗ such that f = α1x

myn, g = α2x
rys.

Since A/π2A = k
[2]
2 , π2 | a and π2 | c.

In R[[U, V ]], we have

α−1
1 f = xmyn = (π2U + 1)m(π2

2V + 1)n

= 1 +mπ2U + nπ2
2V + π2

2F,
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where F ∈ R[[U, V ]] ∩A[1/π1]. Then

α−1
1 f − 1 = mπ2U + nπ2

2V + π2
2F

∈ π2R[[U, V ]] ∩A[1/π1] = π2A[1/π1]

=⇒ T1 :=
α−1
1 f − 1

π2
= mU + nπ2V + π2F ∈ A[1/π1].

Similarly,

W1 :=
α−1
2 g − 1

π2
= rU + sπ2V + π2G ∈ A[1/π1],

where G ∈ R[[U, V ]] ∩A[1/π1].

Note that T1 ∈ A[1/π1] ∩ K[f ] = A[1/π1] ∩ K[T ] = R[T ] and

W1 ∈ R[W ]. The images T̃1 = mŨ and W̃1 = rŨ of T1 and W1,

respectively, in (A[1/π1])/(π2A[1/π1]) (= k2[T̃ , W̃ ]), are algebraically

dependent over k2. Therefore, by Lemma 2.4, either T̃1 or W̃1 ∈ k2,
and hence either m = 0 or r = 0.

As A/π1A = k1[θ, θ
−1, z] (= k1[θ, θ

−1][1]) = k1[T ,W, f
−1

, g−1], it
follows that π1 divides a or c (but not both). Without loss of generality,
we assume that π1 - a (and hence π1 | c). Then, g ∈ k∗1 and

A/π1A = k1[f, f
−1

,W ]. Since g = α2x
rys and y = θq /∈ k∗1 , r cannot

be zero. Hence, m must be zero. Then

nr = ±1 =⇒ n = ±1 =⇒ f = α1y
±1

=⇒ f = α1 y
(±1) = α1 θ

(±q),

which is a contradiction, because q ≥ 2 and

A

π1A
= k1

[
f, f

−1
,W

]
= k1

[
θ, θ−1, z

]
.
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