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6. Connection between Fröberg’s conjecture and the WLP . . . . . . . . . . 347

7. Positive characteristics and enumerations . . . . . . . . . . . . . . . . . . . . . . . . . 350

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

ABSTRACT. An artinian graded algebra, A, is said to have
the weak Lefschetz property (WLP) if multiplication by a gen-
eral linear form has maximal rank in every degree. A vast
quantity of work has been done studying and applying this
property, touching on numerous and diverse areas of algebraic
geometry, commutative algebra and combinatorics. Amaz-
ingly, though, much of this work has a “common ancestor”
in a theorem originally due to Stanley, although subsequently
reproved by others. In this paper we describe the different
directions in which research has moved starting with this the-
orem, and we discuss some of the open questions that continue
to motivate current research.

1. Introduction. The weak and strong Lefschetz properties are
strongly connected to many topics in algebraic geometry, commutative
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algebra and combinatorics. Some of these connections are quite sur-
prising and still not completely understood, and much work remains
to be done. In this expository paper we give an overview of known
results on the weak and strong Lefschetz properties, with an emphasis
on the vast number of different approaches and tools that have been
used, and connections that have been made with seemingly unrelated
problems. One goal of this paper is to illustrate the variety of methods
and connections that have been brought to bear on this problem for
different families of algebras. We also discuss open problems.

Considering the amazing breadth and depth of results that have been
found on this topic, and the tools and connections that have been
associated with it, it is very interesting to note that, to a large degree,
one result motivated this entire area. This result is the following. It was
proved by Stanley [53] in 1980 using algebraic topology, by Watanabe
in 1987 using representation theory, by Reid, Roberts and Roitman
[48] in 1991 with algebraic methods, by Herzog and Popescu [30]
(unpublished) in 2005, essentially with linear algebra, and it follows
from the work of Ikeda [50] in 1996 using combinatorial methods.

Theorem 1.1. Let R = k[x1, . . . , xr ], where k has characteristic
zero. Let I be an artinian monomial complete intersection, i.e.,

I = 〈xa1
1 , . . . , xar

r 〉.

Let � be a general linear form. Then, for any positive integers d and i,
the homomorphism induced by multiplication by �d,

×�d : [R/I]i → [R/I]i+d

has maximal rank. (In particular, this is true when d = 1.)

This paper is organized around the ways that subsequent research
owes its roots to this theorem.

Our account is by no means exhaustive. Fortunately, the manuscript
[27] has appeared recently. It gives an overview of the Lefschetz
properties from a different perspective, focusing more on the local
case, representation theory and combinatorial connections different
from those presented here.
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There is one topic that is neither treated in [27] nor here but
that is worth mentioning briefly. In [39], examples of monomial
ideals were exhibited that did not have the WLP but that could be
deformed to ideals with the WLP. A systematic way for producing
such deformations that preserve the Hilbert function has been proposed
by Cook and Nagel in [19]. The idea is to lift the given monomial
ideal to the homogenous ideal of a set of points and then pass to a
general hyperplane section of the latter. It is shown in [19] that this
procedure does indeed produce ideals with the WLP for a certain class
of monomial ideals without the WLP.

In May 2011, the first author gave a talk at the Midwest Commutative
Algebra and Geometry Conference at Purdue University on this topic.
This paper is a vast expansion and extension of that talk, containing
many more details and several new topics.

2. Definitions and background. Let k be an infinite field. We
will often take char (k) = 0, but we will see that changing the charac-
teristic produces interesting new questions (and even more interesting
answers!).

Let R = k[x1, . . . , xr] be the graded polynomial ring in r variables
over k. Let

A = R/I =

n⊕
i=0

Ai

be a graded artinian algebra. Note that A is finite dimensional over k.

Definition 2.1. For any standard graded algebra A (not necessarily
artinian), the Hilbert function of A is the function

hA : N −→ N

defined by hA(t) = dim [A]t. One can express hA as a sequence

(h0 = 1, h1, h2, h3, . . . ).

An O-sequence is a sequence of positive integers that occurs as the
Hilbert function of some graded algebra. When A is Cohen-Macaulay,
its h-vector is the Hilbert function of an artinian reduction of A. In
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particular, when A is artinian, its Hilbert function is equal to its h-
vector.

Definition 2.2. An almost complete intersection is a standard
graded algebra A = R/I which is Cohen-Macaulay, and for which the
number of minimal generators of I is one more than its codimension.

Definition 2.3. A is level of Cohen-Macaulay type t if its socle
is concentrated in one degree (e.g., a complete intersection) and has
dimension t.

Definition 2.4. Let � be a general linear form. We say that A has
the weak Lefschetz property (WLP) if the homomorphism induced by
multiplication by �,

×� : Ai −→ Ai+1,

has maximal rank for all i (i.e., is injective or surjective). We say that
A has the strong Lefschetz property (SLP) if

×�d : Ai −→ Ai+d

has maximal rank for all i and d (i.e., is injective or surjective).

Remark 2.5. (a) One motivation for the work described in this paper
is that something interesting should be going on if multiplication by a
general linear form does not induce a homomorphism of maximal rank,
even in one degree.

(b) Later we will see that there is a strong connection to Fröberg’s
conjecture. In this regard, we note that �d should not be considered to
be a “general” form of degree d, since in the vector space [R]d (d > 1),
those forms that are pure powers of linear forms form a proper Zariski-
closed subset.

(c) Suppose that deg f = d and ×f : [R/I]i → [R/I]i+d has
maximal rank, for all i. Pardue and Richert [47] call such an f semi-
regular. Reid, Roberts and Roitman [48] call such an f faithful. If
×f j : [R/I]i → [R/I]i+dj has maximal rank for all i and all j, they call
such an f strongly faithful. So R/I has the WLP if R contains a linear
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faithful element, and R/I has the SLP if R contains a linear strongly
faithful element.

(d) Several authors consider the question of the ranks that arise if
×�d is replaced by ×F for a general F of degree d. This is the essence
of the Fröberg conjecture, is related to the WLP, and will be discussed
below in Section 6.

How do we determine if R/I fails to have the WLP? Let � be a general
linear form and fix an integer i. Then we have an exact sequence

[R/I]i−1
×�−→ [R/I]i −→ [R/(I, �)]i −→ 0.

Thus, ×� fails to have maximal rank from degree i − 1 to degree i if
and only if

dim [R/(I, �)]i > max{0, dim [R/I]i − dim [R/I]i−1}.

More precisely, if we want to show that the WLP fails, it is enough to
identify a degree i for which we can produce one of the following two
pieces of information:

(i) dim [R/I]i−1 ≤ dim [R/I]i and dim [R/(I, �)]i > dim [R/I]i −
dim [R/I]i−1; in this case, we loosely say that WLP fails because of
injectivity; or

(ii) dim [R/I]i−1 ≥ dim [R/I]i and dim [R/(I, �)]i > 0; in this case,
we loosely say that WLP fails because of surjectivity.

In general, even identifying which i is the correct place to look can be
difficult. Then, determining which of (i) or (ii) holds, and establishing
both inequalities, is often very challenging. This is where computer
algebra programs have been very useful, in suggesting where to look
and what to look for! On the other hand, to prove that R/I does have
the WLP, the following result is helpful:

Proposition 2.6 [39, Proposition 2.1]. Let R/I be an artinian
standard graded algebra, and let � be a general linear form. Consider
the homomorphisms φd : [R/I]d → [R/I]d+1 defined by multiplication
by �, for d ≥ 0.

(a) If φd0 is surjective for some d0, then φd is surjective for all d ≥ d0.
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(b) If R/I is level and φd0 is injective for some d0 ≥ 0, then φd is
injective for all d ≤ d0.

(c) In particular, if R/I is level and dim [R/I]d0 = dim [R/I]d0+1 for
some d0 then R/I has the WLP if and only if φd0 is injective (and
hence is an isomorphism).

This result helps to narrow down where one has to look, especially in
the situation where we want to show that the WLP does hold. In this
case you have to find the critical degrees and then show that surjectivity
and (usually) injectivity do hold just in two (or occasionally one) spots.

In the case of one variable, the WLP and SLP are trivial since all
ideals are principal. The case of two variables also has a nice result, at
least in characteristic 0:

Theorem 2.7 [28]. If char (k) = 0 and I is any homogeneous ideal
in k[x, y], then R/I has the SLP.

The proof of this result used generic initial ideals with respect to the
reverse lexicographic order. In the case of the WLP, it is not hard to
show that the above theorem is true in any characteristic ([20, 35,
44]). However, the characteristic zero assumption cannot be omitted
for guaranteeing the SLP. In fact, also the WLP may fail if there are
at least three variables. The following is an easy exercise:

Lemma 2.8. Assume char (k) = p. Consider the ideal

I = 〈xp
1, . . . , x

p
r〉 ⊂ R = k[x1, . . . , xr],

where r ≥ 2. Then

• R/〈xp
1, . . . , x

p
r〉 fails the SLP for all r ≥ 2.

• It fails the WLP for all r ≥ 3.

• It has the WLP when r = 2.

Remark 2.9. It was pointed out to us by the referee that, in order for
failure of SLP to hold, one does not even need to take the exponents
to be p for all the variables. It suffices to take exponents at most
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p summing to at least p + r. For example, I = 〈x2+p−r
1 , x2

2, . . . , x
2
r〉

works if p ≥ r, and I = 〈x2
1, x

2
2, . . . , x

2
r〉 works if p ≤ r. For the WLP

one can as well use I = 〈xp
1, x

p
2, x

2
3, . . . , x

2
r〉.

In Section 7 we will discuss the presence of the WLP in positive
characteristic in more detail.

A useful consequence of knowing that an algebra A has the WLP
or SLP is that its Hilbert function is unimodal. In fact, the Hilbert
functions of algebras with the WLP have been completely classified:

Proposition 2.10 [28]. Let h = (1, h1, h2, . . . , hs) be a finite
sequence of positive integers. Then h is the Hilbert function of a graded
artinian algebra with the WLP if and only if the positive part of the
first difference is an O-sequence and after that the first difference is
non-positive until h reaches 0. Furthermore, this is also a necessary
and sufficient condition for h to be the Hilbert function of a graded
artinian algebra with the SLP.

The challenge is thus to study the WLP and SLP (or their failures),
and the behavior of the Hilbert function, for interesting families of
algebras. Most of the results below fall into this description. It should
also be noted that, conversely, some Hilbert functions h force any
algebra with Hilbert function h to have the WLP; these were classified
in [44].

In the rest of this paper, we indicate different directions of research
that have been motivated by Theorem 1.1; in most cases, there also
remain many intriguing open problems.

3. Complete intersections and Gorenstein algebras. By semi-
continuity, a consequence of Theorem 1.1 is that a general complete
intersection with fixed generator degrees has the WLP and the SLP.

Question 3.1. Do all artinian complete intersections have the WLP
or the SLP in characteristic 0?

We know that the answer is trivially “yes” in one and two variables.
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In three or more variables, the following is the most complete result
known to date.

Theorem 3.2 [28]. Let R = k[x, y, z], where char (k) = 0. Let
I = 〈F1, F2, F3〉 be a complete intersection. Then R/I has the WLP.

The proof of this result introduced the use of the syzygy module of I,
and its sheafification, the syzygy bundle. Subsequently, several papers
have used the syzygy module to study the WLP for different kinds of
ideals (see, e.g., [11, 12, 20, 26, 39, 51]). In the case of complete
intersections in k[x, y, z], the syzygy bundle has rank 2. The WLP
is almost immediate in the “easy” cases, and semi-stability and the
Grauert-Mülich theorem give the needed information about R/(I, �) in
the “interesting” cases.

Remark 3.3. (i) The SLP is still wide open for complete intersections
in three or more variables and, in fact, even the WLP is open for
complete intersections of arbitrary codimension ≥ 4. Some partial
results on the WLP for arbitrary complete intersections in four variables
have been obtained recently by the authors together with Boij and
Miró-Roig, in work in progress.

(ii) It was conjectured by Reid, Roberts and Roitman [48] that the
answer to both parts of Question 3.1 is yes.

We have seen that conjecturally (and known in special cases), all
complete intersections have the WLP. Complete intersections are a
special case of Gorenstein algebras. Does the conjecture extend to
the Gorenstein case? That is,

Question 3.4. Do all graded artinian Gorenstein algebras have the
WLP? If not, what are classes of artinian Gorenstein algebras that do
have this property?

The answer to the first question is a resounding “no.” Indeed, Stanley
[52] in 1978 gave an example of an artinian Gorenstein algebra with
Hilbert function (1, 13, 12, 13, 1), which, because of non-unimodality,
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clearly does not have the WLP. Other examples of non-unimodality
for Gorenstein algebras were given by Bernstein and Iarrobino [3], by
Boij [4] and by Boij and Laksov [5]. Even among Gorenstein algebras
with unimodal Hilbert functions, WLP does not necessarily hold. For
instance, an example in codimension 4 was given by Ikeda [32] in 1996.

On the other hand, the problem in three variables is still wide open,
with only special cases known (see for instance [1, 45]):

Question 3.5. Does every artinian Gorenstein quotient of k[x, y, z]
have the WLP, provided char (k) = 0? What about the SLP?

Given the complete intersection result for three variables mentioned
above, this is a very natural and intriguing question.

In four variables, the result of Ikeda mentioned above shows that
WLP need not hold. Nevertheless, the main result of [43] shows that,
for small initial degree, the Hilbert functions are still precisely those of
Gorenstein algebras with the WLP. More precisely, it was shown that,
if the h-vector is (1, 4, h2, h3, h4, . . . ) and h4 ≤ 33, then this result
holds. More recently, using the same methods, Seo and Srinivasan [51]
extended this to h4 = 34. Thus, the result holds for initial degree ≤ 4.

Another interesting special case is the situation in which the gen-
erators of the ideal have small degree. We say that an algebra R/I
is presented by quadrics if the ideal I is generated by quadrics. Such
ideals occur naturally, for example, as homogeneous ideals of sufficiently
positive embeddings of smooth projective varieties ([23]) or as Stanley-
Reisner ideals of simplicial flag complexes ([55]). Gorenstein algebras
presented by quadrics are studied, for example, in [42]. There, the
following conjecture has been proposed.

Conjecture 3.6 [42]. Any artinian Gorenstein algebra presented by
quadrics, over a field k of characteristic zero, has the WLP.

The conjecture predicts, in particular, that if the socle degree is at
least 3 then the multiplication by a general linear form from degree one
to degree two is injective. Though this is established in some cases in
[42], even this special case of the conjecture is open.
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The analog of Question 3.4 is also of interest for rings of positive
dimension. If A is a Gorenstein ring of dimension d, then A is said to
have the WLP if a general artinian reduction of A has the WLP, that
is, if A/〈L1, . . . , Ld〉 has the WLP, where L1, . . . , Ld ∈ A are general
forms of degree 1. Recall that the Stanley-Reisner ring of the boundary
complex of a convex polytope is a reduced Gorenstein ring. The so-
called g-theorem classifies their Hilbert functions. The necessity of the
conditions on the Hilbert function is a consequence of the following
result by Stanley.

Theorem 3.7 [54]. The Stanley-Reisner ring of the boundary com-
plex of a convex polytope over a field k has the SLP if char (k) = 0.

The so-called g-conjecture states that the above-mentioned conditions
on the Hilbert function characterize in fact the Hilbert functions of the
Stanley-Reisner rings of triangulations of spheres. Note that there are
many more such triangulations than boundary complexes of convex
polytopes. In this regard, the following question merits highlighting:

Question 3.8. Does a general artinian reduction of a reduced,
arithmetically Gorenstein set of points in Pn have the WLP, provided
char (k) = 0?

We point out that, if this question has an affirmative answer, then, by
the main result of [41], we have a classification of the Hilbert functions
of reduced, arithmetically Gorenstein schemes: their h-vectors are
precisely the SI-sequences, meaning that they are symmetric, with the
first half itself a differentiable O-sequence.

An affirmative answer to Question 3.8 would also imply the g-
conjecture, thus providing a characterization of the face vectors of
triangulations of a sphere. Moreover, the methods used to establish the
WLP could lead to information about the face vectors of triangulations
of other manifolds as well. In fact, Novik and Swartz [46, Theorem
1.4], show that a certain quotient of the Stanley-Reisner ring of any
orientable k-homology manifold without boundary is a Gorenstein ring.
Kalai conjectured that this Gorenstein ring has the SLP. If true, this
would establish new restrictions on the face vectors of these complexes.
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A special case of Kalai’s conjecture has been proved in Theorem 1.6 of
[46].

4. Monomial level algebras. Note that R/〈xa1
1 , . . . , xar

r 〉 is also
a level artinian monomial algebra.

Question 4.1. Which (if any) level artinian monomial algebras fail
the WLP or SLP?

The first result in this direction is a positive one:

Theorem 4.2 (Hausel [29, Theorem 6.2]). Let A be a monomial
artinian level algebra of socle degree e. If the field k has characteristic
zero, then for a general linear form �, the induced multiplication

×� : Aj −→ Aj+1

is an injection, for all j = 0, 1, . . . , 	(e− 1)/2
. In particular, over any
field the sequence

1, h1 − 1, h2 − h1, . . . , h�(e−1)/2�+1 − h�(e−1)/2�

is an O-sequence, i.e., the “first half” of h is a differentiable O-
sequence.

Thus, roughly “half” the algebra does satisfy the WLP. What about
the second half? The first counterexample was due to Zanello ([57,
Example 7]), who showed that the WLP does not necessarily hold for
monomial level algebras even in three variables. His example had h-
vector (1, 3, 5, 5). Subsequently, Brenner and Kaid ([11, Example 3.1])
produced an example of a level artinian monomial almost complete
intersection algebra that fails the WLP; this algebra has h-vector
(1, 3, 6, 6, 3) and, in particular, Cohen-Macaulay type 3. The study
of such almost complete intersections was continued by Migliore, Miró-
Roig and Nagel [39], and more recently by Cook and Nagel [18, 20]
(see also Section 7).

The Hilbert functions of the algebras considered in Question 4.1 are
of great interest in a number of areas. In fact, they are better known
under a different name.
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Definition 4.3. A pure O-sequence of type t in r variables is the
Hilbert function of a level artinian monomial algebra k[x1, . . . , xr]/I of
Cohen-Macaulay type t.

Question 4.4. We have already seen that level artinian monomial al-
gebras do not necessarily have the WLP. Nevertheless, are their Hilbert
functions unimodal? That is, are all pure O-sequences unimodal? If
not, can we find subfamilies, depending upon the type t and/or the
number of variables r, that are unimodal? And, if they are not neces-
sarily unimodal, “how non-unimodal” can they be?

Remark 4.5. If I is a monomial ideal in R = k[x1, . . . , xr ], then the
linear form � = x1 + · · ·+ xr is “general enough” to determine whether
R/I has the WLP or SLP. This observation has been extremely useful
in simplifying calculations to show the existence or failure of the WLP.
In [39, Proposition 2.2], this was stated for the WLP, but the same
proof also gives it for the SLP.

For the remainder of this section we will assume that k has character-
istic 0, unless explicitly mentioned otherwise. We have seen that, in one
or two variables, we always have the WLP (and even SLP). Turning to
the next case, the following seemingly simple result in fact has a very
intricate and long proof. It illustrates the subtlety of these problems.

Theorem 4.6 [8, Theorem 6.2]. A level artinian monomial algebra
of type 2 in three variables has the WLP.1

Of course, this has the following consequence.

Corollary 4.7. A pure O-sequence of type 2 in three variables is
unimodal.

The monograph [6] gave a careful study of families of level artinian
monomial algebras that fail the WLP. As a consequence, we have the
following conclusion.
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Theorem 4.8 [6]. If R = k[x1, . . . , xr] and R/I is a level artinian
monomial algebra of type t, then, for all r and t, examples exist where
the WLP fails, except if:

• r = 1 or 2;

• t = 1 (this is Theorem 1.1);

• r = 3, t = 2 (this is Theorem 4.6).

In particular, the first case where WLP can fail is when r = 3 and
t = 3. This occurs, for instance, if I = 〈x3, y3, z3, xyz〉 (see [11,
Example 3.1]). Nevertheless, Boyle has shown that, despite the failure
of the WLP, all level artinian monomial algebras with r = 3 and t = 3
have strictly unimodal Hilbert function (that is, in addition to being
unimodal, once the function decreases then it is strictly decreasing
from that point until it reaches zero):

Theorem 4.9 [9]. Any pure O-sequence of type 3 in three variables
is strictly unimodal.

In more variables, the first case where the WLP can fail is when
r = 4 and t = 2. Here again, Boyle has shown that, nevertheless, such
algebras have strictly unimodal Hilbert function:

Theorem 4.10 [10]. Any pure O-sequence of type 2 in four variables
is strictly unimodal.

Since the WLP is not available in these cases, Boyle’s method is a
classification theorem followed by a decomposition of the ideals and a
careful analysis of sums of Hilbert functions of complete intersections.

However, there is no hope of such a result for all pure O-sequences,
even when r = 3:

Theorem 4.11 [8]. Let M be any positive integer, and fix an integer
r ≥ 3. Then there exists a pure O-sequence in r variables which is
non-unimodal, having exactly M maxima.
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In view of the last two results, we have the following natural question.

Question 4.12. What is the smallest socle degree and (separately)
the smallest socle type t for which non-unimodal pure O-sequences
exist? This is especially of interest when r = 3.

In [6], Boij and Zanello produced a non-unimodal example with r = 3
and socle degree 12. In [8], for r = 3, we produced a non-unimodal
example for socle type t = 14. It was also shown that pure O-sequences
can fail unimodality if and only if the socle degree is at least 4 (but one
may need many variables for small socle degree).

It is also natural to ask how things change when you remove “mono-
mial” and ask about artinian level algebras. Some work in progress by
Boij, Migliore, Miró-Roig, Nagel and Zanello indicates that the behav-
ior of such algebras from the point of view of the Hilbert function can
become surprisingly worse, in the sense that dramatic non-unimodality
is possible even in early degrees, which would violate Hausel’s theorem
(Theorem 4.2) for instance, in the monomial case.

5. Powers of linear forms. In this section we always assume
that k has characteristic zero. Note that xi is a linear form, and
that if L1, . . . , Ln (n ≥ r) are general linear forms, then, without
loss of generality, (by a change of variables) we can assume that
L1 = x1, . . . , Lr = xr . Thus, Theorem 1.1 is also a result about ideals
generated by powers of linear forms. It says that, in k[x1, . . . , xr],
an ideal generated by powers of r general linear forms has the WLP
and the SLP. It also leads to an interesting connection to Fröberg’s
conjecture, which we discuss in Section 6.

Question 5.1. Which ideals generated by powers of general linear
forms define algebras that fail the WLP or SLP?

We saw in Theorem 2.7 that all such ideals (and in fact all homoge-
neous ideals) in two variables satisfy both the WLP and the SLP. More
surprisingly, Schenck and Seceleanu showed a similar result in three
variables:
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Theorem 5.2 [51]. Let R = k[x, y, z], where char (k) = 0. Let
I = 〈La1

1 , . . . , Lam
m 〉 be any ideal generated by powers of linear forms.

Then R/I has the WLP.

A shorter proof of this result is given in [40]. One reason that it
is surprising is that the same is not true for SLP. For instance, if
I = 〈L3

1, L
3
2, L

3
3, L

3
4〉 (where Li is general in k[x, y, z]), then (×�3) fails to

have maximal rank. The case of three variables acts as a bridge case: we
will see that, for four or more variables, even WLP fails very commonly.
Some recent work in this area was motivated by the following example
of Migliore, Miró-Roig and Nagel:

Example 5.3 [39]. Let r = 4. Consider the ideal I = 〈xN
1 , xN

2 , xN
3 ,

xN
4 , LN 〉 for a general linear form L. By computation using CoCoA,

R/I fails the WLP, for N = 3, . . . , 12.

There are some natural questions arising from this example:

Problem 5.4. • Prove the failure of the WLP in Example 5.3 for
all N ≥ 3.

• What happens for mixed powers?

• What happens for almost complete intersections, that is, for r + 1
powers of general linear forms in r variables when r > 4?

• What about more than r + 1 powers of general linear forms?

This example motivated two different projects at the same time:
by Migliore, Miró-Roig, Nagel [40] and by Harbourne, Schenck and
Seceleanu [26]. Both of these papers used the dictionary between ideals
of powers of general linear forms and ideals of fat points in projective
space, provided by the following important result of Emsalem and
Iarrobino:

Theorem 5.5 [24]. Let

〈La1

1 , . . . , Lan
n 〉 ⊂ k[x1, . . . , xr ]

be an ideal generated by powers of n linear forms. Let ℘1, . . . , ℘n be
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the ideals of the n points in Pr−1 corresponding to the linear forms.
Then, for any integer j ≥ max{ai},

dim k[R/〈La1
1 , . . . , Lan

n 〉]j = dim k

[
℘j−a1+1
1 ∩ · · · ∩ ℘j−an+1

n

]
j
.

One important difference between the two papers is that [26] assumed
that the powers are uniform, and usually that the powers are “large
enough.” Usually they allow more than r + 1 forms. On the other
hand, most of the results in [40] allow mixed powers. We quote some
of the results of these two papers. Together they form a nice start to an
interesting topic. The conjectures listed later indicate that more work
is to be done!

Theorem 5.6 [26]. Let

I = 〈Lt
1, . . . , L

t
n〉 ⊂ k[x1, x2, x3, x4],

with Li ∈ R1 generic. If n ∈ {5, 6, 7, 8}, then the WLP fails, respec-
tively, for t ≥ {3, 27, 140, 704}.

Theorem 5.7 [26]. For

I = 〈Lt
1, . . . , L

t
2k+1〉 ⊂ R = k[x1, . . . , x2k]

with Li generic linear forms, k ≥ 2 and t � 0, R/I fails the WLP.

(See also Theorem 5.10 below.) The following result gives the most
complete picture to date, about the case of four variables, when the
exponents are not assumed to be uniform and the ideal is assumed
to be an almost complete intersection (i.e. the number of minimal
generators is one more than the number of variables). It summarizes
several theorems in [40, Section 3], and we refer to that paper for the
more detailed individual statements.

Theorem 5.8 (Four variables, [40]). Let

I = 〈La1
1 , La2

2 , La3
3 , La4

4 , La5
5 〉 ⊂ R = k[x1, x2, x3, x4],
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where all Li are generic. Without loss of generality, assume that
a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. Set

λ =

{
(a1 + a2 + a3 + a4)/2− 2 if a1 + a2 + a3 + a4 is even

(a1 + a2 + a3 + a4 − 7)/2 if a1 + a2 + a3 + a4 is odd.

(a) If a5 ≥ λ, then R/I has the WLP.

(b) If a1 = 2, then R/I has the WLP.

(c) Most other cases (explicitly described in terms of a1, a2, a3, a4) are
proven to fail the WLP.

(d) For the few open cases, experimentally sometimes the WLP holds
and sometimes it does not.

Notice that the case where all the ai are equal and at least 3 is
contained in Theorem 5.6.

In more than four variables, it becomes progressively more difficult to
obtain results for mixed powers. We have the following partial result.

Theorem 5.9 (Five variables, almost uniform powers [40]). Assume
r = 5. Let L1, . . . , L6 be general linear forms. Let e ≥ 0 and

I = 〈Ld
1, L

d
2, L

d
3, L

d
4, L

d
5, L

d+e
6 〉.

(a) If e = 0, then R/I fails the WLP if and only if d > 3.

(b) If e ≥ 1 and d is odd, then R/I has the WLP if and only if
e ≥ (3d− 5)/2.

(c) If e ≥ 1 and d is even, then R/I has the WLP if and only if
e ≥ (3d− 8)/2.

We also have the following improvement of Theorem 5.7, which has
the additional assumption that t � 0.

Theorem 5.10 (Even number of variables, uniform powers [40]).
Let

I = 〈Lt
1, . . . , L

t
2k+1〉 ⊂ R = k[x1, . . . , x2k]
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with Li generic linear forms and k ≥ 2. Then R/I fails the WLP if
and only if t > 1.

(The case k = 2 is contained in Theorem 5.8.)

What about an odd number of variables? Here is a result for seven
variables:

Theorem 5.11 [40]. Let

I = 〈Lt
1, . . . , L

t
8〉 ⊂ k[x1, . . . , x7],

where L1, . . . , L8 are general linear forms.

• If t = 2, then R/I has the WLP.

• If t ≥ 4, then R/I fails the WLP.

Interestingly, for t = 3, CoCoA [16] says that the WLP fails, but we
do not have a proof. We can believe a computer that says that the
WLP holds, but otherwise we have to be skeptical about whether its
choice of forms was “general enough.”

For these results, sometimes it was necessary to prove failure of
surjectivity (when hi−1 ≥ hi in the relevant degrees), sometimes failure
of injectivity (when hi−1 ≤ hi), and sometimes we had to show that
the WLP does hold. These present quite different challenges.

After making the translation to fat points, as described above, the
first difficulty is to determine the degrees where WLP fails. Then,
it is necessary to find the dimension of a linear system of surfaces
in a suitable projective space vanishing to prescribed multiplicity at
a general set of suitably many points. To do this, in [40], Cremona
transformations and works of Dumnicki (2009), Laface-Ugaglia (2006)
and De Volder-Laface (2007) were used as the main tools, plus ad hoc
methods. These Cremona transformation results are central to the
proofs in [40].

Much remains to be shown on this topic. Here are two conjectures
from [26, 40].



SURVEY ARTICLE: LEFSCHETZ PROPERTIES 347

Conjecture 5.12 [26]. For I = 〈Lt
1, . . . , L

t
n〉 ⊂ R = [x1, . . . , xr]

with Li ∈ R1 generic and n ≥ r + 1 ≥ 5, the WLP fails for all t � 0.

Conjecture 5.13 [40]. Let R = k[x1, . . . , x2n+1]. Let L1, . . . , L2n+2

be general linear forms and I = 〈Ld
1, . . . , L

d
2n+1, L

d
2n+2〉.

• If n = 3 and d = 3, then R/I fails the WLP. (This is the only open
case in Theorem 5.11.)

• If n ≥ 4, then R/I fails the WLP if and only if d > 1.

These conjectures are supported by a great deal of computer evidence,
using CoCoA [16] and Macaulay2 [25].

6. Connection between Fröberg’s conjecture and the WLP.
In this section we continue to assume that our field has characteristic
zero. Closely related to the SLP is the so-called maximal rank property
(MRP), which just replaces �d by a general form of degree d in
Definition 2.4. Nevertheless, it is known that the MRP does not
imply the SLP. See [38, 58] for some connections between these two
properties.

One way of stating Fröberg’s conjecture is as follows.

Conjecture 6.1 (Fröberg). Any ideal of general forms has the MRP.
More precisely, fix positive integers a1, . . . , as for some s > 1. Let
F1, . . . , Fs ⊂ R = k[x1, . . . , xr] be general forms of degrees a1, . . . , as,
respectively, and let I = 〈F1, . . . , Fs〉. Then, for each i, 2 ≤ i ≤ s, and
for all t, the multiplication by Fi on R/〈F1, . . . , Fi−1〉 has maximal
rank, from degree t− ai to degree t. As a result, the Hilbert function of
R/I can be computed inductively.

This conjecture is known to be true in two variables. This follows,
for example, from Theorem 2.7. In three variables it was shown to
be true by Anick [2]. In this section, we explore the following natural
questions.

Question 6.2. What is the Hilbert function of an ideal generated by
powers of general linear forms of degrees a1, . . . , an? In particular, is
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it the same as the Hilbert function predicted by Fröberg? What, if any,
is the connection to the WLP?

Theorem 1.1 says that, when n = r + 1, the answer to the second
question is yes.

The fact that the answer is often “no” for n = r+2 was first observed
by Iarrobino [31]. Chandler [13, 14] also gave some results in this
direction. Concerning the connection to the WLP, the following result
of Migliore, Miró-Roig and Nagel gives a partial answer.

Proposition 6.3 [40]. (a) If Fröberg’s conjecture is true for all ideals
generated by general forms in r variables, then all ideals generated by
general forms in r + 1 variables have the WLP.

(b) Let R = k[x1, . . . , xr+1], let � ∈ R be a general linear form and let
S = R/〈�〉 ∼= k[x1, . . . , xr ]. Fix positive integers s, d1, . . . , ds, ds+1. Let
L1, L2, . . . , Ls, Ls+1 ∈ R be linear forms. Denote by the restriction
from R to S ∼= R/〈�〉. Make the following assumptions:

(i) The ideal I = 〈Ld1

1 , . . . , Lds
s 〉 has the WLP.

(ii) The multiplication ×L
ds+1

s+1 : [S/I]j−ds+1 → [S/I]j has maximal
rank.

Then R/〈Ld1
1 , . . . , L

ds+1

s+1 〉 has the WLP.

Remark 6.4. (a) Part of this result was in fact contained in the paper
[38] of Migliore and Miró-Roig. It was used there to show that any ideal
of general forms in k[x1, x2, x3, x4] satisfies the WLP, because Anick [2]
had shown much earlier that any ideal of general forms in k[x1, x2, x3]
satisfies Fröberg’s conjecture.

(b) It was shown in [40] that this result also leads to a short proof
of Theorem 5.2. The point is that the restriction of such ideals
corresponds to an ideal in k[x, y], and in characteristic zero all such
ideals have the SLP by Theorem 2.7.

The following corollary was also shown in [40]:

Corollary 6.5 [40]. Assume the characteristic is zero. Let R =
k[x1, . . . , xr+1], let � ∈ R be a general linear form and let S =
R/〈�〉 ∼= k[x1, . . . , xr]. For integers d1, . . . , dr+2, if an ideal of the
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form 〈Ld1
1 , . . . , L

dr+2

r+2 〉 ⊂ R of powers of general linear forms fails
to have the WLP, then an ideal of powers of general linear forms

〈Ld1

1 , . . . , L
dr+2

r+2 〉 ⊂ S fails to have the Hilbert function predicted by
Fröberg’s conjecture.

Thus, the results in the previous section give additional insight to
the observations of Iarrobino [31] and Chandler [13, 14] that, when
n = r + 2, there are many cases when an ideal of powers of general
linear forms does not have the same Hilbert function as that predicted
by Fröberg for general forms. Since Theorem 5.8 covers almost all
possible choices of exponents, it gives a much more complete answer
to the question of exactly which powers of five general linear forms
in three variables fail to have the Fröberg-predicted Hilbert function,
contrasting with the result of Anick which says that an ideal of general
forms of any fixed degrees in three variables does have the predicted
Hilbert function. Theorems 5.9 and 5.10 provide new partial answers
(via Corollary 6.5) in the case of more variables.

Example 6.6. Let R = k[x1, x2, x3, x4]. Let L1, L2, L3, L4, L5

and � be general linear forms. Let S = R/〈L〉 ∼= k[x, y, z]. Let
I = 〈L3

1, L
3
2, L

3
3, L

3
4, L

3
5〉 (the smallest case in Example 5.3 above). The

Hilbert function of R/I is (1, 4, 10, 15, 15, 6). We have

[R/I]3
×�−→ [R/I]4 −→ [R/(I, �)]4 −→ 0.

We saw that WLP fails, and in fact

dim [R/(I, �)]4 = 1.

Notice that R/(I, �) ∼= S/J , where J is the ideal of cubes of five general
linear forms in k[x, y, z]. Thus, dim [S/J ]4 = 1.

On the other hand, let K be the ideal of five general cubics in S.
Fröberg predicts (and Anick proves) that dim [S/K]4 = 0. Thus, J
does not have the Hilbert function predicted by Fröberg.

In fact, whenever we prove that an ideal of n powers of general linear
forms fails the WLP (for specified exponents), then for some subset
of these powers of general linear forms, the same number and powers



350 JUAN MIGLIORE AND UWE NAGEL

of general linear forms in one fewer variable fails to have Fröberg’s
predicted Hilbert function.

7. Positive characteristics and enumerations. Considering
Theorem 1.1 again, we saw in Lemma 2.8 that the assumption on the
characteristic of the base field cannot be omitted.

Question 7.1. What happens in Theorem 1.1 if we allow the
characteristic to be positive?

Actually, investigating the dependence of the WLP on the character-
istic makes sense whenever the ideal can be defined over the integers.
This applies to all monomial ideals. In fact, in this case one has the
following result.

Proposition 7.2 [20, Lemma 2.6]. Let I ⊂ R be a monomial ideal. If
R/I has the WLP when char (k) = 0, then R/I has the WLP whenever
char (k) is sufficiently large.

The proof is based on two observations that have their origin in
[39]. For a monomial ideal, one can check the WLP by considering
the specific linear form � = x1 + · · · + xr . Thus, the maximal rank
property of the multiplications by � is governed by integer matrices.
Their determinants have only finitely many prime divisors if they do
not vanish.

It also follows that R/I fails the WLP in every positive characteristic
if it fails the WLP in characteristic zero.

Proposition 7.2 motivates the following problem.

Question 7.3. Let I ⊂ R be a monomial ideal such that R/I
has the WLP when char (k) = 0. What are the (finitely many) field
characteristics such that R/I fails the WLP?

This turns out to be a rather subtle problem. It was first considered
in [39] in the case of a certain almost complete intersection in three
variables. Recall that a monomial almost complete intersection in three
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variables is an ideal of the form

(7.1) I = Ia,b,c,α,β,γ = 〈xa, yb, zc, xαyβzγ〉.

If the syzygy bundle of I is not semi-stable or its first Chern class is
not divisible by three, then R/I has the WLP in characteristic zero
(see [11, 39]). However, if the syzygy bundle satisfies both conditions,
then deciding the WLP is more difficult and very subtle on the one
side. On the other side, the investigations in this case have brought to
light surprising connections to combinatorial problems.

In fact, if the syzygy bundle of I is semi-stable and its first Chern
class is divisible by three, then R/I has the WLP if and only if the
multiplication by � in a certain degree is an isomorphism or, equiva-
lently, a certain integer square matrix has a non-vanishing determinant.
This has first been observed in the special case, where R/I is level, in
[39] and then for arbitrary almost complete intersections in [20]. The
first connection to combinatorics was made by Cook and Nagel in [18,
Section 4]. There it was observed that the determinant deciding the
WLP for certain families of monomial almost complete intersections
is the number of lozenge tilings of some hexagon, which is given by a
formula of MacMahon. Lozenge tilings of a hexagon are in bijection
to other well-studied combinatorial objects such as, for example, plane
partitions and families of non-intersecting lattice paths.

Independently of [18], but subsequent to it, Li and Zanello studied
the WLP in the case of the complete intersections R/〈xa, yb, zc〉 in [35],
and they also related MacMahon’s numbers of plane partitions to the
failure of the WLP:

Theorem 7.4 [35]. For any given positive integers a, b, c, the number
of plane partitions contained inside an a × b × c box is divisible by a
prime p if and only if the algebra k[x, y, z]/〈xa+b, ya+c, zb+c〉 fails to
have the WLP when char (k) = p.

(This connection is already implicitly contained in [18], although it
was only made explicit in the proof of Corollary 6.5 in [20].) Next,
Chen, Guo, Jin and Liu [15], explained bijectively the result by Li
and Zanello for complete intersections. Both [18, 35] have been
substantially extended in [20]. Here the bijective approach of [15]
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was extended to almost complete intersections, and further relations
between the presence of the WLP and difficult counting problems in
combinatorics have been given. In the remainder of this section, we
give an overview of some of the results of [20] which illustrate this
fascinating connection.

We focus on the most difficult case, in which the presence of the
WLP is a priori not even known in characteristic zero, that is, we
assume that the syzygy bundle of the almost complete intersection
I = Ia,b,c,α,β,γ = 〈xa, yb, zc, xαyβzγ〉 is semi-stable in characteristic
zero and its first Chern class is divisible by three. By [20, Proposition
3.3], this is exactly true if and only if the following conditions are all
satisfied:

(i) s := (a+ b+ c+ α+ β + γ)/3− 2 is an integer,

(ii) 0 ≤ M ,

(iii) 0 ≤ A ≤ β + γ,

(iv) 0 ≤ B ≤ α+ γ, and

(v) 0 ≤ C ≤ α+ β,

where

A := s+ 2− a,

B := s+ 2− b,

C := s+ 2− c, and

M := s+ 2− (α+ β + γ).

The above conditions have a geometric meaning. In fact, due to The-
orem 4.1 in [20], they guarantee that I can be related to a hexagonal re-
gion with a hole, which is called the punctured hexagon H = Ha,b,c,α,β,γ

associated to I = Ia,b,c,α,β,γ (see Figure 1).

There are two square matrices that govern the WLP of the ideal I.

In fact, I has the WLP if and only if the multiplication [R/I]s
×�→

[R/I]s+1 is bijective or, equivalently, [R/(I, �)]s+1 = 0. The latter
condition means that a certain (C + M) × (C + M) matrix, N =
Na,b,c,α,β,γ, with binomial coefficients as entries is regular. The above
multiplication map can be described by a much larger zero-one square
matrix, Z = Za,b,c,α,β,γ. The above-mentioned equivalence implies that
the determinants of N and Z have the same prime divisors. However,
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FIGURE 1. Punctured hexagon Ha,b,c,α,β,γ (shadowed) associated to Ia,b,c,α,β,γ.

much more is true. Both determinants have the same absolute value,
which has combinatorial interpretations.

Theorem 7.5 [20, Theorems 4.4, 4.6 and 5.4]. Adopt the above
assumptions. Then the following conditions are equivalent:

(a) Ia,b,c,α,β,γ has the WLP if the characteristic of the base field k is
p ≥ 0.

(b) p does not divide the enumeration | detNa,b,c,α,β,γ| of signed
lozenge tilings of the associated punctured hexagon Ha,b,c,α,β,γ.

(c) p does not divide the enumeration |detZa,b,c,α,β,γ| of signed perfect
matchings of the bipartite graph associated to Ha,b,c,α,β,γ.

In particular, |detNa,b,c,α,β,γ| = |detZa,b,c,α,β,γ|.

A lozenge is a rhombus with unit side-lengths and angles of 60◦ and
120◦. Lozenges have also been called calissons and diamonds in the
literature. A perfect matching of a graph is a set of pairwise non-
adjacent edges such that each vertex of the graph is matched. We refer
to [20] for more details, in particular for assigning the signs, although
Figure 2 indicates an associated lozenge tiling and a perfect matching.

Theorem 7.5 has been used to establish the WLP of Ia,b,c,α,β,γ in
many new cases. The results also lend further evidence to a conjectured
characterization of the presence of the WLP of Ia,b,c,α,β,γ in case
Ia,b,c,α,β,γ is level that has been proposed in [39].
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Hexagon tiling by lozenges Perfect matching of edges

FIGURE 2. A lozenge tiling and its associated perfect matching.

The determinants occurring in Theorem 7.5 can be rather big.

Example 7.6. Consider the ideal

I = 〈x14, y21, z25, x2y9z13〉.

Then the absolute value of the corresponding determinants is (see [18,
Remark 4.8])

2 · 32 · 53 · 114 · 135 · 19 · 233 · 29 · 5011.

Hence, R/I fails the WLP if and only if the characteristic of k is any
of the nine listed prime divisors.

In the situation of Theorem 7.5, the presence of the WLP in charac-
teristic zero can also be read off from the splitting type of the syzygy
bundle. In fact, Ia,b,c,α,β,γ has the WLP if and only if its syzygy bundle
has splitting type (s+ 2, s+ 2, s+ 2) (see [20, Theorem 9.9]).

In [20], explicit formulae for the enumerations appearing in Theo-
rem 7.5 are derived in various cases. However, even then determining
the prime divisors of the enumerations can be challenging. In fact, this
problem is open even in the special case of monomial complete inter-
sections, though, recently, there has been progress in the case where
the generators all have the same degree. Brenner and Kaid [12] gave
an explicit description of when R/〈xd, yd, zd〉 has the WLP in terms of
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d and the characteristic p. In particular, they proved a conjecture of
[35] for the case p = 2. This latter result is stated very concisely:

Theorem 7.7 [12]. The algebra k[x, y, z]/〈xd, yd, zd〉 has the WLP
in char (k) = 2 if and only if d = 	(2n + 1)/3
 for some positive integer
n.

The approach of [12] was via a theorem of Han computing the syzygy
gap for an ideal of the form 〈xd, yd, (x+ y)d〉 in k[x, y]. The analogous
result in the case of more variables, that is, for I = 〈xd

1, . . . , x
d
n〉 (n ≥ 4),

has been obtained by Kustin and Vraciu in [34]. Independently, Cook
made progress in deciding the Lefschetz properties of more general
monomial complete intersections in positive characteristic (see [17]),
addressing Question 7.1 (see also [36, Lemma 5.2], for a result in two
variables).

In a different direction, Kustin, Rahmati and Vraciu [33] showed that
A = R/〈xd, yd, zd〉 has the WLP in characteristic p �= 2 if and only if
its residue field has finite projective dimension as an A-module.
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ENDNOTES

1. A simpler proof of this result has recently been given in [21].

Note added in proof. In the time since this paper was submitted,
several important advances have been made in the study of the WLP
which we have not been able to describe in this survey. Among these
we single out [7, 21, 22, 37].
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on infinitesimal neighborhoods of points in projective space, J. Algebra 286 (2005),
421 455.

14. , Examples and counterexamples on the conjectured Hilbert function
of multiple points, in: Algebra, geometry and their interactions, Contemp. Math.
448, American Mathematical Society, Providence, RI, 2007.

15. C. Chen, A. Guo, X. Jin and G. Liu, Trivariate monomial complete inter-
sections and plane partitions, J. Commut. Algebra 3 (2011), 459 489.

16. CoCoATeam, CoCoA: A system for doing computations in commutative
algebra, available at http://cocoa.dima.unige.it.

17. D. Cook II, The Lefschetz properties of monomial complete intersections in
positive characteristic, J. Algebra 369 (2012), 42 58.

18. D. Cook II and U. Nagel, The weak Lefschetz property, monomial ideals, and
lozenges, Illinois J. Math. 55 (2011).

19. , Hyperplane sections and the subtlety of the Lefschetz properties, J.
Pure Appl. Algebra 216 (2012), 108 114.

20. , Enumerations deciding the weak Lefschetz property, preprint, avail-
able at arXiv:1105.6062.

21. , Enumerations of lozenge tilings, lattice paths, and perfect matchings
and the weak Lefschetz property, available at arXiv:1305.1314.

22. R. Di Gennaro, G. Ilardi and J. Vallès, Singular hypersurfaces characterizing
the Lefschetz properties, J. Lond. Math. Soc., to appear.



SURVEY ARTICLE: LEFSCHETZ PROPERTIES 357

23. L. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projec-
tive varieties of arbitrary dimension, Invent. Math. 111 (1993), 51 67.

24. J. Emsalem and A. Iarrobino, Inverse system of a symbolic power I, J.
Algebra 174 (1995), 1080 1090.

25. D. Grayson and M. Stillman, Macaulay2, A software system for research in
algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.

26. B. Harbourne, H. Schenck and A. Seceleanu, Inverse systems, Gelfand-Tsetlin
patterns and the weak Lefschetz property, J. Lond. Math. Soc. 84 (2011), 712 730.

27. T. Harima, T. Maeno, H. Morita, Y. Numata, A. Wachi and J. Watanabe, The
Lefschetz properties, Lect. Notes Math. 2080, Springer-Verlag, New York, 2013.

28. T. Harima, J. Migliore, U. Nagel and J. Watanabe, The weak and strong
Lefschetz properties for artinian K-algebras, J. Algebra 262 (2003), 99 126.

29. T. Hausel, Quaternionic geometry of matroids, Cent. Europ. J. Math. 3
(2005), 26 38.

30. J. Herzog and D. Popescu, The strong Lefschetz property and simple exten-
sions, preprint, available on the arXiv at http://front.math.ucdavis.edu/0506.5537.

31. A. Iarrobino, Inverse system of a symbolic power III: Thin algebras and fat
points, Compos. Math. 108 (1997), 319 356.

32. H. Ikeda, Results on Dilworth and Rees numbers of artinian local rings,
Japan. J. Math. 22 (1996), 147 158.

33. A. Kustin, H. Rahmati and A. Vraciu, The resolution of the bracket powers of
the maximal ideal in a diagonal hypersurface ring, J. Algebra 369 (2012), 256 321.

34. A. Kustin and A. Vraciu, The weak Lefschetz property for monomial complete
intersections in positive characteristic, Trans. Amer. Math. Soc., to appear.

35. J. Li and F. Zanello, Monomial complete intersections, the weak Lefschetz
property and plane partitions, Discrete Math. 310 (2010), 3558 3570.

36. M. Lindsey, A class of Hilbert series and the strong Lefschetz property, Proc.
Amer. Math. Soc. 139 (2011), 79 92.
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