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TORIC IDEALS AND THEIR CIRCUITS
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Dedicated to Professor Jürgen Herzog on his 70th birthday

ABSTRACT. In this paper, we study toric ideals generated
by circuits. For toric ideals which have squarefree quadratic
initial ideals, a sufficient condition to be generated by circuits
is given. In particular, squarefree Veronese subrings, the
second Veronese subrings and configurations arising from root
systems satisfy the condition. In addition, we study toric
ideals of finite graphs and characterize the graphs whose toric
ideals are generated by circuits u−v such that either u or v is
squarefree. Several classes of graphs exist whose toric ideals
satisfy this condition and whose toric rings are not normal.

1. Introduction. Let Zd×n be the set of all d × n integer
matrices. A configuration of Rd is a matrix A ∈ Zd×n, for which
there exists a hyperplane H ⊂ Rd not passing the origin of Rd such
that each column vector of A lies on H. Throughout this paper, we
assume that the columns of A are pairwise distinct. Let K be a field
and K[T, T−1] = K[t1, t

−1
1 , . . . , td, t

−1
d ] the Laurent polynomial ring

in d variables over K. Each column vector a = (a1, . . . , ad)
� ∈

Zd (= Zd×1), where (a1, . . . , ad)
� is the transpose of (a1, . . . , ad),

yields the Laurent monomial T a = ta1
1 · · · tad

d . Let A ∈ Zd×n be a
configuration of Rd with a1, . . . , an its column vectors. The toric ring
of A is the subalgebra K[A] of K[T, T−1], which is generated by the
Laurent monomials T a1 , . . . , T an over K. Let K[X ] = K[x1, . . . , xn]
be the polynomial ring in n variables over K, and define the surjective
ring homomorphism π : K[X ] → K[A] by setting π(xi) = T ai for
i = 1, . . . , n. We say that the kernel IA ⊂ K[X ] of π is the toric
ideal of A. It is known that, if IA �= {0}, then IA is generated by
homogeneous binomials of degree ≥ 2. More precisely,

IA =
〈
Xu+ − Xu− ∈ K[X ]

∣∣∣u ∈ KerZ(A)
〉
,
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where KerZ(A) = {u ∈ Zn | Au = 0}. Here u+ ∈ Zn
≥0 (respectively,

u− ∈ Zn
≥0) is the positive part (respectively, negative part) of u ∈ Zn.

In particular, we have u = u+ − u−. See [13] for details.

The support of a monomial u ofK[X ] is supp (u) = {xi | xi divides u},
and the support of a binomial f = u−v is supp (f) = supp (u)∪supp (v).
We say that an irreducible binomial f ∈ IA is a circuit of IA if
there is no binomial g ∈ IA such that supp (g) ⊂ supp (f) and
supp (g) �= supp (f). Note that a binomial f ∈ IA is a circuit of IA
if and only if IA ∩K[{xi | xi ∈ supp (f)}] is generated by f . Let CA

be the set of circuits of IA, and define its subsets C sf
A and C sfsf

A by

C sf
A = {Xu −Xv ∈ CA | either Xu or Xv is squarefree},

C sfsf
A = {Xu −Xv ∈ CA | both Xu and Xv are squarefree }.

It is known [13, Proposition 4.11] that CA ⊂ UA where UA is the
union of all reduced Gröbner bases of IA. Since any Gröbner basis is
a set of generators, we have IA = 〈UA〉. Bogart, Jensen and Thomas
[1] characterized the configuration A such that IA = 〈CA〉 in terms
of polytopes. On the other hand, Martinez-Bernal and Villarreal [5]
introduced the notion of “unbalanced circuits” and characterized the
configuration A such that IA = 〈CA〉 in terms of unbalanced circuits
when K[A] is normal. Note that, if K[A] is normal, then any binomial
belonging to a minimal set of binomial generators of IA has a squarefree
monomial. (This fact appeared in many papers. See, e.g., [11, Lemma
6.1].)

One of the most important classes of toric ideals whose circuits are
well-studied is toric ideals arising from finite graphs. Let G be a finite
connected graph on the vertex set [d] = {1, 2, . . . , d} with the edge
set E(G) = {e1, . . . , en}. Let e1, . . . , ed stand for the canonical unit
coordinate vector of Rd. If e = {i, j} is an edge of G, then the column
vector ρ(e) ∈ Rd is defined by ρ(e) = ei + ej . Let AG ∈ Zd×n

denote the matrix with column vectors ρ(e1), . . . , ρ(en). Then AG

is a configuration of Rd which is the vertex-edge incidence matrix of
G. Circuits of IAG are completely characterized in terms of graphs
(Proposition 2.1). It is known that K[AG] is normal if and only if G
satisfies “the odd cycle condition” (Proposition 2.3). In [10, Section 3],
generators of IAG are studied when K[AG] is normal. It is essentially
shown in [10, Proof of Lemma 3.2] that, if K[AG] is normal, then we
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have IAG = 〈C sf
AG

〉. Martinez-Bernal and Villarreal [5, Theorem 3.2]
also proved this fact and claimed that the converse is true. However, as
they stated in [5, Note added in proof], the converse is false in general.
Several classes of counterexamples are given in Section 2.

The content of this paper is as follows. In Section 1, we study toric
ideals having squarefree quadratic initial ideals. For such configura-
tions, a sufficient condition to be generated by circuits is given. In
particular, squarefree Veronese subrings, the second Veronese subrings
and configurations arising from root systems satisfy the condition. In
Section 2, we study toric ideals of finite graphs. We characterize the
graphs G whose toric ideals are generated by C sf

AG
. A similar result is

given for C sfsf
AG

. By this characterization, we construct classes of graphs

G such that K[AG] is nonnormal and that IAG = 〈C sf
AG

〉 = 〈C sfsf
AG

〉.

1. Configurations with squarefree quadratic initial ideals.
In this section, we study several classes of toric ideals with squarefree
quadratic initial ideals. It is known [13, Proposition 13.15] that, if a
toric ideal IA has a squarefree initial ideal, then K[A] is normal. First,
we show a fundamental fact on quadratic binomials in toric ideals.
(Since we assume the columns of A are pairwise distinct, IA has no
binomials of degree 1.)

Proposition 1.1. Let A = (aij) ∈ Zd×n be a configuration.
Suppose that, for each 1 ≤ i ≤ d, there exists a zi ∈ Z such that
zi − 1 ≤ aij ≤ zi + 1 for all 1 ≤ j ≤ n. Then, any quadratic binomial
in IA belongs to C sf

A . Moreover, if, for each 1 ≤ i ≤ d, there exists a
zi ∈ Z such that zi ≤ aij ≤ zi+1 for all 1 ≤ j ≤ n, then any quadratic
binomial in IA belongs to C sfsf

A .

Proof. Suppose that, for each 1 ≤ i ≤ d, there exists a zi ∈ Z such
that zi−1 ≤ aij ≤ zi+1 for all 1 ≤ j ≤ n. It is known [13, Lemma 4.14]
that there exists a vectorw ∈ Rd such thatw·A = (1, 1, . . . , 1). Hence,
by elementary row operations, we may assume that A is a (0,±1)-
configuration. Let A = (a1, . . . , an) ∈ Zd×n, and let f ∈ IA be a
quadratic binomial. Since the columns of A are pairwise distinct, f is
either of the form x1x2 − x3x4 or x1x2 − x2

3. Note that |supp (h)| ≥ 3
for any binomial h ∈ IA. Hence, f is a circuit if f = x1x2 − x2

3.

Let f = x1x2−x3x4, and suppose that f /∈ CA. By [13, Lemma 4.10],
there exists a circuit g = Xu−Xv ∈ CA such that supp (Xu) ⊂ {x1, x2}
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and supp (Xv) ⊂ {x3, x4}. Since f is not a circuit, |supp (g)| < 4.
Hence, we have |supp (g)| = 3. Thus, we may assume that g = xa

1x
b
2−xc

3

where 1 ≤ a, b, c ∈ Z. Then, a · a1 + b · a2 = c · a3 and a + b = c. Let

ak = (a
(k)
1 , a

(k)
2 , . . . , a

(k)
d )� for k = 1, 2, 3. Since a1, a2, a3 are (0,±1)-

vectors, we have the following for each 1 ≤ j ≤ d:

• If a
(3)
j = 1, then a

(1)
j = a

(2)
j = 1.

• If a
(3)
j = −1, then a

(1)
j = a

(2)
j = −1.

Since a1 and a3 are distinct, there exists 1 ≤ k ≤ d such that a
(3)
k = 0

and a
(1)
k �= 0. Then a · a(1)k + b · a(2)k = 0, and hence a = b and

a
(2)
k = −a

(1)
k . Note that g = xa

1x
a
2 − x2a

3 should be irreducible. It then
follows that a = 1 and g = x1x2 −x2

3. Thus, f − g = x2
3 −x3x4 belongs

to IA, and hence a3 = a4, a contradiction. Therefore, f ∈ CA.

Suppose that, for each 1 ≤ i ≤ d, there exists a zi ∈ Z such that
zi ≤ aij ≤ zi + 1 for all 1 ≤ j ≤ n. By elementary row operations, we
may assume that A is a (0, 1)-configuration. Let f = x1x2 − x2

3 ∈ IA.
Then, a1 +a2 = 2 · a3. Since a1, a2, a3 are (0,1)-vectors, it follows that
a1 = a2 = a3, a contradiction.

By Proposition 1.1, we can prove that several classes of toric ideals
are generated by circuits.

1.1. Veronese and squarefree Veronese configurations. Let

2 ≤ d, r ∈ Z and V
(r)
d = (a1, . . . , an) ∈ Zd×n be the matrix where

{a1, . . . , an} =

{
(α1, . . . , αd)

� ∈ Zd
∣∣∣αi ≥ 0,

d∑
i=1

αi = r

}
.

Then, K[V
(r)
d ] is called the rth Veronese subring of K[t1, . . . , td]. On

the other hand, let SV
(r)
d = (a1, . . . , an) ∈ Zd×n be the matrix where

{a1, . . . , an} =

{
(α1, . . . , αd)

� ∈ {0, 1}d
∣∣∣ d∑

i=1

αi = r

}
.

Then, K[SV
(r)
d ] is called the rth squarefree Veronese subring of K[t1,

. . . , td]. It is known (see, e.g., [13, Chapter 14]) that
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Proposition 1.2. Toric ideals I
V

(r)

d

and I
SV

(r)

d

have squarefree quad-

ratic initial ideals, and hence K[V
(r)
d ] and K[SV

(r)
d ] are normal.

We characterize such toric ideals that are generated by circuits.

Theorem 1.3. Let 2 ≤ d, r ∈ Z. Then, we have the following:

(i) For A = SV
(r)
d , the toric ideal IA is generated by C sfsf

A .

(ii) For A = V
(r)
d , the toric ideal IA is generated by C sf

A if and only
if r = 2.

Proof. First, by Propositions 1.1 and 1.2, (i) and the “if” part of (ii)
hold.

Let r ≥ 3. Since K[V
(r)
2 ] is a combinatorial pure subring (see [6] for

details) of K[V
(r)
d ] for all d > 2, it is sufficient to show that I

V
(r)
2

is not generated by circuits. Recall that the configuration V
(r)
2 is(

r r−1 r−2 r−3 ··· 0
0 1 2 3 ··· r

)
. Then the binomial x1x4 − x2x3 ∈ I

V
(r)
2

is not a

circuit since x2
2 − x1x3 belongs to I

V
(r)
2

. Suppose that 0 �= x1x4 − xixj

belongs to I
V

(r)
2

. Then ai + aj = a1 + a4 = (2r− 3, 3)�. Since the last

coordinate of ai + aj is 3, it follows that {i, j} is either {1, 4} or {2, 3}.
Hence, x1x4 −xixj = x1x4 −x2x3. Thus, x1x4 −x2x3 is not generated
by other binomials in I

V
(r)
2

, as desired.

1.2. Configurations arising from root systems. For an integer
d ≥ 2, let Φ ⊂ Zd be one of the classical irreducible root systems Ad−1,
Bd, Cd and Dd ([4, pages 64 65]) and write Φ(+) for the set consisting
of the origin ofRd together with all positive roots of Φ. More explicitly,

A
(+)
d−1 = {0} ∪ {ei − ej | 1 ≤ i < j ≤ d}

B
(+)
d = A

(+)
d−1 ∪ {e1, . . . , ed} ∪ {ei + ej | 1 ≤ i < j ≤ d}

C
(+)
d = A

(+)
d−1 ∪ {ei + ej | 1 ≤ i ≤ j ≤ d}

D
(+)
d = A

(+)
d−1 ∪ {ei + ej | 1 ≤ i < j ≤ d},

where ei is the ith unit coordinate vector of Rd and 0 is the origin of
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Rd. For each Φ(+) ∈ {A(+)
d−1,B

(+)
d ,C

(+)
d ,D

(+)
d }, we identify Φ(+) with

the matrix whose columns are Φ(+) and associate the configuration

Φ̃(+) =

(
Φ(+)

1 · · · 1

)
.

Proposition 1.4 [2, 9]. Working with the same notation as above,
the toric ideal I

Φ̃(+) has a squarefree quadratic initial ideal, and hence

K[Φ̃(+)] is normal.

By Proposition 1.1, we have the following.

Corollary 1.5. If A ∈ {Ã(+)
d−1, B̃

(+)
d , C̃

(+)
d , D̃

(+)
d }, then IA is gener-

ated by quadratic binomials in C sf
A .

Proof. Since Ã
(+)
d−1, B̃

(+)
d and D̃

(+)
d are (0,±1) configurations, by

Propositions 1.1 and 1.4, IA is generated by quadratic binomials in

C sf
A if A ∈ {Ã(+)

d−1, B̃
(+)
d , D̃

(+)
d }.

Let A = C̃
(+)
d . By elementary row operations, one can transform the

matrix A as follows:

A −→
⎛
⎝ A

(+)
d−1 P

1 · · · 1 0 · · · 0

⎞
⎠

−→
⎛
⎝ A

(+)
d−1 + 1 P

1 · · · 1 0 · · · 0

⎞
⎠ = Q,

where 1 is the matrix with all entries equal to one and P is the matrix
whose columns are {ei + ej | 1 ≤ i ≤ j ≤ d}. Since Q is a (0, 1, 2)-
configuration, IQ = IA is generated by quadratic binomials in C sf

A by
Propositions 1.1 and 1.4.

2. Configurations arising from graphs. In this section, we
study toric ideals arising from graphs. First, we introduce some graph
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terminology. A walk of G of length q is a sequence Γ = (ei1 , ei2 , . . . , eiq )
of edges of G, where eik = {uk, vk} for k = 1, . . . , q, such that
vk = uk+1 for k = 1, . . . , q − 1. Then,

• A walk Γ is called a path if |{u1, . . . , uq, vq}| = q + 1.

• A walk Γ is called a closed walk if vq = u1.

• A walk Γ is called a cycle if vq = u1, q ≥ 3 and |{u1, . . . , uq}| = q.

For a cycle Γ = (ei1 , ei2 , . . . , eiq ), an edge e = {s, t} of G is called a
chord of Γ if s and t are vertices of Γ and if e /∈ {ei1 , ei2 , . . . , eiq}. A cy-
cle Γ is called minimal if Γ has no chord. If Γ = ({u1, v1}, {u2, v2}, . . . ,
{u2q, v2q}) is an even closed walk of G, then it is easy to see that the
binomial

fΓ =

q∏
�=1

xu2�−1v2�−1
−

q∏
�=1

xu2�v2�

belongs to IAG . Circuits of IAG are characterized in terms of graphs
(see, e.g., [13, Lemma 9.8]).

Proposition 2.1. Let G be a finite connected graph. Then, f ∈ CAG

if and only if f = fΓ for some even closed walk Γ which is one of the
following even closed walks:

(i) Γ is an even cycle of G;

(ii) Γ = (C1, C2), where C1 and C2 are odd cycles of G having exactly
one common vertex;

(iii) Γ = (C1, e1, . . . , er, C2, er, . . . , e1), where C1 and C2 are odd
cycles of G having no common vertex and where (e1, . . . , er) is a path
of G which combines a vertex of C1 and a vertex of C2.

In particular, f /∈ C sf
AG

if and only if Γ satisfies (iii) and r > 1.

Moreover, it is known [8, Lemma 3.2] that

Proposition 2.2. Let G be a finite connected graph. Then IAG is
generated by all fΓ where Γ is one of the following even closed walks:

(i) Γ is an even cycle of G;

(ii) Γ = (C1, C2), where C1 and C2 are odd cycles of G having exactly
one common vertex;
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(iii) Γ = (C1,Γ1, C2,Γ2), where C1 and C2 are odd cycles of G having
no common vertex and where Γ1 and Γ2 are walks of G both of which
combine a vertex v1 of C1 and a vertex v2 of C2.

See also [12] for a characterization of generators of IAG . The
normality of K[AG] is characterized in terms of graphs.

Proposition 2.3 [7]. Let G be a finite connected graph. Then K[AG]
is normal if and only if G satisfies the odd cycle condition, i.e., for an
arbitrary two odd cycles C1 and C2 in G without common vertex, there
exists an edge of G joining a vertex of C1 with a vertex of C2.

Let A = (a1, . . . , an) ∈ Zd×n be a configuration. Given binomial
f = u− v ∈ IA, we write Tf for the set of those variables ti such that
ti divides π(u)(= π(v)). Let K[Tf ] = K[{ti | ti ∈ Tf}], and let Af

be the matrix whose columns are {ai | T ai ∈ K[Tf ]}. The toric ideal
IAf

coincides with IA ∩K[{xi | π(xi) ∈ K[Tf ]}]. A binomial f ∈ IA
is called fundamental if IAf

is generated by f . A binomial f ∈ IA is
called indispensable if, for any system of binomial generators F of IA,
either f or −f belongs to F . A binomial f ∈ IA is called not redundant
if f belongs to a minimal system of binomial generators of IA. Given
binomial f ∈ IA, it is known [11] that

• f is fundamental ⇒ f is a circuit

• f is fundamental ⇒ f is indispensable ⇒ f is not redundant

hold in general.

We give a characterization of toric ideals of graphs generated by C sf
AG

.

Theorem 2.4. Let G be a finite connected graph. Then the following
conditions are equivalent:

(i) IAG = 〈C sf
AG

〉;
(ii) Any circuit in CAG \ C sf

AG
is redundant;

(iii) Any circuit in CAG \ C sf
AG

is not indispensable;

(iv) Any circuit in CAG \C sf
AG

is not fundamental;

(v) There exists no induced subgraph of G consisting of two odd
cycles C1, C2 having no common vertex and a path of length ≥ 2,
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which connects a vertex of C1 and a vertex of C2.

In particular, if G satisfies the odd cycle condition, then G satisfies (v).

In order to prove Theorem 2.4, we need the following lemma:

Lemma 2.5. Let G be a finite connected graph which satisfies
condition (v) in Theorem 2.4. Let C and C′ be two odd cycles of G
having no common vertex, and let Γ be a path of G which combines a
vertex v of C and a vertex v′ of C′. Then, at least one of the following
holds:

(a) There exists an edge of G joining a vertex of C with a vertex of
C′.

(b) There exists an edge of G joining a vertex p of C with a vertex q
of Γ where q �= v and {p, q} /∈ Γ.

(c) There exists an edge of G joining a vertex p of C′ with a vertex q
of Γ where q �= v′ and {p, q} /∈ Γ.

Proof. The proof is by induction on the sum of the length of C and
C′.

(Step 1) Suppose that C and C′ are cycles of length 3. Then, C and
C′ are minimal. If C, C′ and Γ satisfy none of (a), (b) nor (c), then, by
condition (v), it follows that Γ is not an induced subgraph of G. Then
there exists a path Γ′ which combines v and v′, whose vertex set is a
proper subset of the vertex set of Γ. By repeating the same argument,
we may assume that the path Γ′ is an induced subgraph of G. This
contradicts condition (v).

(Step 2) Let C and C′ be odd cycles of G having no common vertex,
and let Γ be a path of G which combines a vertex v of C and a vertex v′

of C′. If both C and C′ are minimal, then one of (a), (b) or (c) follows
from the same argument in Step 1. Suppose that C is not minimal, i.e.,
there exists a chord e of C. It is easy to see that there exists a unique
odd cycle Ce such that e ∈ E(Ce) ⊂ E(C) ∪ {e}. Note that the length
of Ce is less than the length of C.

If v is a vertex of Ce, then Ce, C
′ and Γ satisfy one of (a), (b) or (c)

by the hypothesis of induction. Thus, C, C′ and Γ satisfy the same
condition.
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Suppose that v is not a vertex of Ce for any chord e of C. Then Ce,
C′ and a path Γ′ = (ei1 , . . . , eis ,Γ) where (ei1 , . . . , eis) is a part of C
satisfy one of (a), (b) or (c) by the hypothesis of induction. We may
assume that s (≥ 1) is minimal. If C, C′ and Γ satisfy none of (a), (b)
nor (c), then Ce, C and Γ′ satisfy condition (b) where q is not a vertex
of Γ. This contradicts the minimality of s.

Proof of Theorem 2.4. In general, (i) ⇒ (iii) and (ii) ⇒ (iii) ⇒ (iv)
hold. Moreover, by Proposition 2.1, (iv) ⇒ (v) holds.

(v) ⇒ (i). Suppose that G satisfies condition (v). Let f =
fΓ /∈ C sf

AG
where Γ is an even closed walk satisfying condition (iii)

in Proposition 2.2, i.e., Γ = (C1,Γ1, C2,Γ2), where C1 and C2 are odd
cycles of G having no common vertex, and Γ1 and Γ2 are walks of G,
both of which combine a vertex v1 of C1 and a vertex v2 of C2. By
Propositions 2.1 and 2.2, it is sufficient to show that f is redundant.
Since f does not belong to C sf

AG
, at least one of Γi is of length > 1. We

may assume that, except for starting and ending vertices, each Γi does
not contain the vertices of two odd cycles. (Otherwise, Γ separates into
two even closed walks, and hence f is redundant.)

If there exists an edge of G joining a vertex of C1 with a vertex of
C2, then f is redundant by [10, Proof of Lemma 3.2]. Suppose that
no such edge exists. (Then, in particular, the length of Γi is greater
than 1 for i = 1, 2.) By Lemma 2.5, there exists an edge of G joining a
vertex p of C1 with a vertex q (�= v1) of Γ1 and {p, q} does not belong
to Γ. Let C1 = (V1, V2) and Γ1 = (W1,W2), where

• V1 and V2 are paths joining v1 and p;

• Wi is a walk joining vi and q for i = 1, 2.

Since the length of C1 is odd, we may assume that the length of
the walk (V1,W1) is odd. Note that both Γ3 = (V1,W1, {q, p}) and
Γ4 = (V2,Γ2, C2,W2, {q, p}) are even closed walks. It then follows that
f ∈ 〈fΓ3 , fΓ4〉 and deg (fΓ3), deg (fΓ4) < deg (f).

Thus, f is redundant, and hence G satisfies condition (i).

(v) ⇒ (ii). Suppose that G satisfies condition (v). Let f =
fΓ ∈ CAG \ C sf

AG
, where Γ = (C1, e1, . . . , er, C2, er, . . . , e1) (r > 1)

is an even closed walk satisfying condition (iii) in Proposition 2.1.
Then f is redundant by the same argument above. Thus, G satisfies
condition (ii).
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A similar theorem holds for C sfsf
AG

.

Theorem 2.6. Let G be a finite connected graph. Then the following
conditions are equivalent:

(i) IAG = 〈C sfsf
AG

〉;
(ii) Any circuit in CAG \ C sfsf

AG
is redundant;

(iii) Any circuit in CAG \ C sfsf
AG

is not indispensable;

(iv) Any circuit in CAG \C sfsf
AG

is not fundamental;

(v) No induced subgraph of G exists consisting of two odd cycles C1,
C2 having no common vertex and a path of length ≥ 1 which connects
a vertex of C1 and a vertex of C2.

Proof. As stated in the Proof of Theorem 2.4, it is sufficient to
show “(v) ⇒ (i)” and “(v) ⇒ (ii).” Suppose that G satisfies (v). By
Theorem 2.4, IAG = 〈C sf

AG
〉 and any circuit in CAG \C sf

AG
is redundant.

Thus, in order to prove (i) and (ii), it is sufficient to show that any
circuit in C sf

AG
\C sfsf

AG
is redundant. Let f be a binomial in C sf

AG
\C sfsf

AG
.

By Proposition 2.1, f = fΓ where Γ is an even closed walk which
consists of two odd cycles C1 and C2 having no common vertex and
an edge e0 of G which combines a vertex v of C1 and a vertex of C2.
Since G satisfies condition (v), Γ is not an induced subgraph of G. If
there exists an edge e′(�= e0) of G joining a vertex of C1 with a vertex
of C2, then f is redundant by [10, Proof of Lemma 3.2]. Suppose that
no such edge exists. Since Γ is not an induced subgraph of G, we may
assume that C1 is not minimal. Then there exist a chord e of C1 and
an odd cycle Ce such that e ∈ E(Ce) ⊂ E(C1) ∪ {e}. If v is a vertex
of Ce, then f is redundant by [10, Proof of Lemma 3.2]. Suppose that
v is not a vertex of Ce for any chord e of C. Note that Ce, C2 and
Γ′ = (ei1 , . . . , eis , e0) where (ei1 , . . . , eis) is a part of C1 satisfy one of
(a), (b) or (c) in Lemma 2.5. Suppose that s is minimal. Since no edge
e′(�= e0) of G exists joining a vertex of C1 with a vertex of C2, Ce, C2

and Γ′ satisfy condition (b). This contradicts the minimality of s.

Using Theorems 2.4 and 2.6, we give several classes of graphs G such
that IAG = 〈C sf

AG
〉 and K[AG] is nonnormal.
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Example 2.7. Let G be the graph whose vertex-edge incidence
matrix is

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 1 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, IAG is generated by the circuits x1x3−x2x4, x3x4x6x9−x2
5x7x8

([10, Example 3.5]). Since G does not satisfy the odd cycle condition,
K[AG] is not normal.

Example 2.8. Let G be the graph whose vertex-edge incidence
matrix is

AG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0
0 0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, IAG is generated by the circuits x5x7 − x6x8, x1x3 − x2x4,
x3x4x10 − x5x8x9. Since G does not satisfy the odd cycle condition,
K[AG] is not normal.

Example 2.8 is the most simple nonnormal example whose toric ideal
is generated by circuits u− v such that the two monomials u and v are
squarefree. In fact,

Proposition 2.9. If IA is generated by binomials f1 = Xu+ −Xu−
,

f2 = Xv+ −Xv−
such that Xu+

, Xu−
, Xv+

and Xv−
are squarefree,

then there exists a monomial order such that {f1, f2} is a Gröbner basis
of IA and hence K[A] is normal.

Proof. Suppose that xi ∈ supp (Xu+

) ∩ supp (Xv−
) and xj ∈

supp (Xu−
) ∩ supp (Xv+

). Let w = u + v ∈ KerZ(A) and g =



TORIC IDEALS AND THEIR CIRCUITS 321

Xw+ −Xw−
. Then g belongs to IA. Since xi belongs to supp (Xu+

)∩
supp (Xv−

), supp (g) does not contain xi. Similarly, since xj belongs

to supp (Xu−
)∩ supp (Xv+

), supp (g) does not contain xj . Hence, g is
not generated by f1 and f2. This contradicts that g ∈ IA. Thus, we
may assume that supp (Xu+

) ∩ supp (Xv−
) = ∅ and supp (Xu+

) ∩
supp (Xv+

) = ∅. Let < be a lexicographic order induced by the
ordering

supp (Xu+

) > supp (Xv+

) > other variables.

Then, in<(f1) = Xu+

and in<(f2) = Xv+

are relatively prime. Hence,
{f1, f2} is a Gröbner basis of IA. Since both in<(f1) and in<(f2) are
squarefree, K[A] is normal.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that V1 ∩ V2 is
a clique of both graphs. The new graph G = G1�G2 with the vertex
set V = V1 ∪ V2 and edge set E = E1 ∪ E2 is called the clique sum of
G1 and G2 along V1 ∩ V2. If the cardinality of V1 ∩ V2 is k + 1, this
operation is called a k-sum of the graphs.

Example 2.10. Let G be the 0-sum of two complete graphs having
at least 4 vertices. Then, G satisfies condition (v) in Theorem 2.6, and
hence IAG is generated by C sfsf

AG
. Since G does not satisfy the odd cycle

condition, K[AG] is not normal. On the other hand, by the criterion [3,
Theorem 2.1], it follows that K[AG] does not satisfy Serre’s condition
(R1).

Example 2.11. Let G be the 1-sum of two complete graphs having
at least 5 vertices. Then, G satisfies condition (v) in Theorem 2.6, and
hence IAG is generated by C sfsf

AG
. Since G does not satisfy the odd cycle

condition, K[AG] is not normal. On the other hand, by the criterion
[3, Theorem 2.1], it follows that K[AG] satisfies Serre’s condition (R1).
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