
JOURNAL OF COMMUTATIVE ALGEBRA
Volume 5, Number 1, Spring 2013

GENERIC CIRCUITS SETS AND GENERAL INITIAL
IDEALS WITH RESPECT TO WEIGHTS

GIULIO CAVIGLIA AND ENRICO SBARRA

We would like to dedicate this paper to Jürgen Herzog, teacher and collaborator, to

his ability for sharing his passion for Commutative Algebra with so many students

all over the world.

ABSTRACT. We study the set of circuits of a homogeneous
ideal and that of its truncations, and introduce the notion of
generic circuits set. We show how this is a well-defined in-
variant that can be used, in the case of initial ideals with
respect to weights as a counterpart of the (usual) generic ini-
tial ideal with respect to monomial orders. As an applica-
tion we recover the existence of the generic fan introduced
by Römer and Schmitz for studying generic tropical varieties.
We also consider general initial ideals with respect to weights
and show, in analogy to the fact that generic initial ideals are
Borel-fixed, that these are fixed under the action of certain
Borel subgroups of the general linear group.

0. Introduction. In the study of homogeneous ideals in a polyno-
mial ring it is a standard technique to pass to initial ideals. Also, in
order to work with a monomial ideal more closely related to a given
homogeneous ideal I, i.e., with a monomial ideal which shares with I
important numerical invariants other than the Hilbert function, one can
choose to work in generic coordinates or, in other words, to consider a
generic initial ideal of I with respect to some monomial order. Even
though some of the ideas underlying the notion of generic initial ideal
were already present in the works of Hartshorne [12] and Grauert [10], a
proper definition as well as the study of some of its main properties is to
be found only later in the work of Galligo [9], where characteristic zero
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is assumed and the subsequent paper of Bayer and Stillman [3], where
the assumption on the characteristic is dropped. It is also shown there
that generic initial ideals are invariant under the action of the Borel
subgroup of the general linear group of coordinates changes GLn(K);
thus, they are endowed with interesting combinatorial properties which
depend on the characteristic, but are well understood (see for instance
[16], also for the study of other group actions). More can be said if one
considers generic initial ideals with respect to some special monomial
orders such as the lexicographic and the reverse-lexicographic orders.
The generic initial ideal of I with respect to the revlex order has the
same depth as I; therefore, it has the same projective dimension as
I and its quotient ring is Cohen-Macaulay exactly when that of I is
Cohen-Macaulay; furthermore, it shares with I the same Castelnuovo-
Mumford regularity and, in general, the same positions and values of
extremal Betti numbers, cf., [2, 3]. On the other hand, when one
considers the lex order, the generic initial ideal of I captures other geo-
metric invariants of the projective variety defined by I, see for instance
[11, Section 6], [1, 6]. The interested reader is referred to the standard
references [7, 11] and will also find the dedicated parts of Herzog and
Hibi’s book [13] useful to understand the connection with extremal
Betti numbers and with shifting operations.

The main question we address in this paper is the following: How
can one define the generic initial ideal with respect to a weight? The
initial ideal with respect to a weight ω of gI is not necessarily constant
on a non-empty Zariski open subset of GLn(K) as, for instance, if
ω = (1, . . . , 1) then inω(gI) = gI for all coordinates changes g. We
provide an answer to the above question by introducing some new
invariants of I.

This paper is organized as follows. The first section is dedicated to
introducing some notation and recalling some well-known properties of
monomial orders, initial ideals with respect to weights, reduced and uni-
versal Gröbner bases. In the second section, Definitions 2.1 and 2.4, we
introduce the notion of circuits set and generic circuits set, we explain
their basic properties, cf. Lemma 2.2 and Theorem 2.9, and we relate
the circuits set and the generic circuits set of a homogeneous ideal I to
its reduced Gröbner bases and Gröbner fan, cf. Lemma 2.11, Corollar-
ies 2.12 and 2.14. As an application, we recover in Corollary 2.15 one of
the main results of [18, Corollary 3.2], where the generic Gröbner fan
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is introduced. In the third and last section we explain why what would
be the natural definition of generic initial ideal with respect to weights
does not return an invariant of a homogeneous ideal, and we suggest
what provides, in our opinion, valid alternatives to generic initial ide-
als when working with weights: generic and general circuits set, their
truncations, their initial circuits set and general initial ideals. Finally,
in analogy with what is known in the case of monomial orders, we show
that general initial ideals with respect to weights are stable under the
action of certain subgroups of the general linear group.

1. Notation and preliminaries. Let A = K[X1, . . . , Xn] be a
polynomial ring over a field K. Given a non-zero polynomial f ∈ A,
we write it uniquely as a sum of monomials with non-zero coefficients,
and we call the set of all such monomials, denoted by supp (f), the
(monomial) support of f . When S ⊆ A is a set, supp (S) will be the
set of all monomial supports of the polynomials in S. When I is a
homogeneous ideal of A and d an integer, by Id and I≤d we denote the
degree d part of I and the truncation ⊕j≤dIj of I at (and below) d,
respectively.

1.1. Monomial orders. We recall that a monomial order on A is
a total order ≺ on the monomials of A which is also compatible with
multiplication, i.e., for all Xa,Xb,Xc monomials of A with Xc �= 1
and Xa ≺ Xb one has Xa ≺ XaXc ≺ XbXc. Given a monomial order
≺, we denote by in≺(f) the greatest with respect to ≺ monomial in
supp (f); we call it the initial monomial (or leading monomial) of f .
Accordingly, given a homogeneous ideal I, we call initial ideal of I with
respect to ≺ and denote it by in≺(I), the ideal generated by all the
initial monomials of elements of I. A finite set G = {f1, . . . , fr} of
elements of I such that {in≺(f1), . . . , in≺(fr)} is a set of generators for
in≺(I) is called a Gröbner basis of I (with respect to ≺). Furthermore,
if f1, . . . , fr are monic (with respect to ≺) and in≺(fi) does not divide
any monomial in supp (fj) for i �= j, then we call G the reduced Gröbner
basis of I (with respect to ≺). It is not difficult to see that such a basis
always exists, and it is uniquely determined by ≺ and I; moreover, if
≺ and ≺′ are two monomial orders such that in≺(I) = in≺′(I), then
the reduced Gröbner bases of I with respect to ≺ and to ≺′ are the
same. It is well known that a given homogeneous ideal has only a
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finite number of initial ideals; therefore, it has finitely many reduced
Gröbner bases. A subset G of A is called a universal Gröbner basis
of I if G is a Gröbner basis of I with respect to all monomial orders
simultaneously. Such a basis can be obtained, for instance, as the union
of all the reduced Gröbner bases of I (cf. [19, Corollary 1.3) in which
case we call it the canonical universal Gröbner basis of I.

1.2. Initial ideals with respect to weights. We now consider the
general case of initial ideals defined by using weights and summarize
some of the basic properties and constructions; our main references are,
as before, the books of Eisenbud [7] and Sturmfels [19]. We shall call a
vector of Rn a weight vector or, simply, a weight. Given a polynomial
f =

∑
i αiX

ai , one lets the initial form of f with respect to ω be the
sum of all terms αjX

aj of f which have maximal weight, i.e., such that
the scalar product ω ·aj is maximal. Accordingly, one defines the initial
ideal with respect to ω of a given ideal I as the ideal inω(I) generated by
all the initial forms of polynomials in I. This ideal will not be monomial
in general. Similarly, one defines inω(W ) for a K-vector subspace W
of A.

Let now ≺ be a monomial order; it is natural to define a new
monomial order ≺ω by refining ω by means of ≺, so that for all f ∈ A
one has in≺ω(f) = in≺(inω(f)) and, similarly, for all ideals I ⊆ A
one has in≺ω (I) = in≺(inω(I)), which also yields that I and inω(I)
share the same Hilbert function. Furthermore, if G = {f1, . . . , fr} is
a (reduced, universal) Gröbner basis of I with respect to ≺ω, then
{inω(fi) : i = 1, . . . , r} is a (reduced, universal) Gröbner basis of
inω(I) with respect to ≺. The use of weights generalizes monomial
orders also in the following sense: for any monomial order ≺ and any
homogeneous ideal I, there exists a non-negative integral weight ω such
that in≺(I) = inω(I), by [19, Proposition 1.11] (see also [17]). We also
observe that, if I ⊆ A is a homogeneous ideal, ≺ is a monomial order
and ω, ω′ ∈ Rn are such that inω(·) and inω′(·) coincide on all elements
of a reduced Gröbner basis of I with respect to ≺ω, then the initial
ideal of I with respect to ω and ω′ coincide, since both have the same
Hilbert function as I.

1.3. A flat family argument. We would like to conclude this
section with a technical observation we shall need later when we use a
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classical flat family argument, as of [7, Theorem 15.17]. Let ω ∈ Zn, I
a given ideal of A and A[t] a polynomial ring over A. Let ei denote the
ith element of the standard basis of Zn; for all f =

∑
i αiX

ai ∈ I, we
denote the homogenization tmaxi{ω·ai}f(t−ω·e1X1, . . . , t

−ω·enXn) of f

with respect to ω by f̃ ; also, Ĩ will denote the ideal of A[t] generated by

all f̃ with f ∈ I. The ideal Ĩ is the homogenization of I with respect
to ω. One can thus build a family {Ia : a ∈ K} of ideals of A, where

Ia = Ĩt=a is the ideal Ĩ evaluated at t = a. It is important to notice
that I1 = I, I0 = inω(I), and that for all a �= 0 the ideal Ia is the image
of I under the diagonal change of coordinates Da which maps Xi to
a−ω·eiXi. This family is flat because the Hilbert function is constant
on its elements, see also Definition 1.17 and Theorem 1.18 in [11].

2. Generic circuits set. In this section we define the notions of
circuits set and generic circuits set of homogeneous ideals and show
how to use these definitions to compute reduced and universal Gröbner
bases, and Gröbner fans.

Definition 2.1. Let I be a subset of A. We define the circuits set
of I, denoted by cs (I), to be the set of all minimal (with respect to
inclusion) elements of supp (I). We say that a set T is a circuits set if
T = cs (I) for some subset I of A. In particular, T is a collection of
finite sets of monomials of A.

The name we chose in the above definition comes from Matroid
Theory, see [15] or any other standard reference: a circuit in a matroid
is a minimal dependent subset, i.e., a dependent set whose proper
subsets are all independent. When I is a K-vector subspace of A, as it
is for instance when I is a homogeneous ideal, one can define a matroid
by considering the set S of all monomials of A and declaring a subset of
S independent (respectively dependent) if its image in A/I consists of
linearly independent (respectively dependent) elements. The support
of a polynomial f ∈ I is minimal among all the supports of elements
of I if and only if it is a circuit in the above matroid. It is immediately
seen that, if I is finite, then so is cs (I). Moreover, if I is a homogeneous
ideal of A, then cs (I) = �dcs (Id) and cs (I≤d) = �h≤dcs (Ih). Also,
we notice that, if I is a monomial ideal, then cs (I) is just the set of
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all monomials in I. Clearly, when I and J are monomial ideals, then
cs (I) = cs (J) if and only if I = J , a fact which is false in general, e.g.,
in A = K[X1, X2], where char (K) �= 2, the ideals (X1+X2)+(X1, X2)

2,
(X1 −X2) + (X1, X2)

2 are distinct and have same circuits sets.

It is useful to point out that, if {f1, . . . , fr} is a Gröbner basis
with respect to a monomial order ≺, then supp (fi) is not necessarily
an element of cs (I), take for instance A = K[X1, X2] and I =
(X1 + X2, X2). In fact, if {f1, . . . , fr} is a reduced Gröbner basis,
then supp (fi) ∈ cs (I) for all i = 1, . . . , r: If supp (fh) /∈ cs (I) for
some h, then there would exist a g ∈ I with supp (g) � supp (fh); it
is easily seen that this would contradict the fact that {f1, . . . , fr} is
reduced, whether in≺(g) = in≺(fh) or not. We have thus proven the
following lemma.

Lemma 2.2. Let I be a homogeneous ideal, ≺ a fixed monomial
order and G the reduced Gröbner basis of I with respect to ≺. Then,
supp (G) ⊆ cs (I).

Let now y = (yij)i,j=1,... ,n be a matrix of indeterminates and K(y)
an extension field of K. In the following we shall denote by γ the
K-algebra homomorphism

(2.3)

γ : K(y)[X1, . . . , Xn] −→ K(y)[X1, . . . , Xn],

γXi 	−→
n∑

j=1

yijXj for all i = 1, . . . , n.

Definition 2.4. Let I be a homogeneous ideal of A. We define the
generic circuits set of I as cs (γI), and we denote it by gcs (I). Given
a non-negative integer d, we let the generic circuits set of I truncated
at d, denoted by gcs (I≤d), be the circuits set cs (γI≤d).

It is easy to see that gcs (I≤d) = cs ((γI)≤d) = cs (γI)≤d = gcs (I)≤d.

Remark 2.5. The generic circuits set of a homogeneous ideal I
is invariant under coordinates changes, i.e., for all h ∈ GLn(K),
one has gcs (hI) = gcs (I). To this end, observe that, if z is the
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matrix associated with γh, then K(y) and K(z) are the same field;
in particular, the entries of z are algebraically independent over K.
Moreover, γhI is the image of I under the map K(z)[X1, . . . , Xn] →
K(z)[X1, . . . , Xn], with Xi 	→

∑n
j=1 zijXj for all i = 1, . . . , n. Hence,

supp (γf) = supp (γhf) for all f ∈ A.

Notation 2.6. Let S be a finite set of monomials of A and W a
K-vector subspace of A. We set

rankSW := dimK(W + 〈S〉)/W, rankSW := dimK(W + 〈S〉)/〈S〉.
Evidently, rankSW = rankS(W ) + dimKW − dimK〈S〉.

Remark 2.7. It is an easy observation completing the discussion before
Lemma 2.2 that the circuits set of a homogeneous vector space can be
determined using ranks: Given a K-vector space W ⊆ Ad, a set S is an
element of cs (W ) if and only if rankSW < |S| and rankS′(W ) = |S′|
for all ∅ �= S′ � S.

Let W be a K-vector subspace of Ad with basis B. Consider an
ordered monomial basis of Ad, and let MW be the dimKW × dimKAd

matrix whose (i, j)th entry is the coefficient of the jth-monomial in the
ith basis element of W . Clearly, a minor of MW is an element of K.

Now we consider γW together with its basis γB, where γ is as in
(2.3). The minors of the matrix MγW are polynomials in K[y] which
specialize to the minors of MW when all of the yij are evaluated at 1
if i = j and at 0 otherwise.

When S is a set of monomials in Ad, we may thus conclude that
rankSW ≤ rankSγW ; if K is infinite, then there exists a non-empty
Zariski open set U ⊆ GLn(K) ⊂ Kn2

such that if g ∈ U , then

(2.8) rankSgW = rankSγW = max{rankShW : h ∈ GLn(K)},
for all S ⊆ Ad.

Theorem 2.9. Let K be an infinite field, d a positive integer and
I ⊆ A a homogeneous ideal. Then, there exists a non-empty Zariski
open set U ⊆ GLn(K) ⊂ Kn2

such that gcs (I≤d) = cs (gI≤d) for all
g ∈ U .
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Proof. For any integer i, a set S belongs to cs (γIi) if and only if the
condition on ranks of Remark 2.7 holds for the K-vector space γIi or
for gIi, where g belongs to a non-empty Zariski open set, say Ui, for
which (2.8) holds. The desired open set U can be taken simply as the
intersection of all Ui, i = 0, . . . , d.

We do not know at the present time whether there exists a non-empty
Zariski open set U such that gcs (I) = cs (gI) for all g ∈ U , or whether
there exists any such g at all.

Let I be a homogeneous ideal of A and consider now the following
equivalence relation on Rn: two weights ω and ω′ are said to be equiv-
alent if and only if inω(I) = inω′(I). The closures with respect to the
Euclidean topology of such equivalence classes are convex polyhedral
cones, and the collection of all such cones form a fan, which is called
the Gröbner fan of I, see [14, 19].

Notation 2.10. Let S be a finite set of monomials of A and ω a
weight. We denote by inω(S) the set of all elements of S with maximal
weight. Similarly, for a collection T of finite sets of monomials, we
denote by inω(T ) the set of all inω(S) for S in T . When I is a subset
of A we will refer to inω(cs (I)) as the initial circuits set of I with
respect to ω. It is not hard to see that, when I is a homogeneous ideal
inω(cs (I)) = cs (inω(I)), and also that inω(cs (I≤d)) = cs ((inω(I))≤d).

The following technical result will be useful in the remaining part of
the section. See also [19, Proposition 2.3] and [8, Proposition 2.6].

Lemma 2.11. Let I be a homogeneous ideal of A, ω, ω′ ∈ Rn two
weights and ≺ a given monomial order. If {f1, . . . , fr} is a reduced
Gröbner basis of I with respect to ≺ω, then

inω(I) = inω′(I)

if and only if

inω(supp (fi)) = inω′(supp (fi)) for i = 1, . . . , r.

Proof. We first assume that inω(I) = inω′(I). Since in≺(inω(I)) =
in≺ω (I), we immediately have that in≺ω (I)=in≺ω′ (I), hence in≺ω′ (fi)∈
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in≺ω (I). Since in≺ω′ (fi) is a monomial of fi and {f1, . . . , fr} is a re-
duced Gröbner basis with respect to ≺ω, this implies that in≺ω (fi) =
in≺ω′ (fi) for i = 1, . . . , r. Now, we assume by contradiction that
inω(supp (fi)) �= inω′(supp (fi)) for some i, and accordingly inω(fi) −
inω′(fi) is a non-zero element of inω(I) which does not contain in≺ω(fi)
in its support. Thus, in≺(inω(fi)− inω′(fi)) ∈ in≺ω (I) contradicts the
fact that {f1, . . . , fr} is a reduced Gröbner basis of I with respect to
≺ω.

Vice versa, when inω(supp (fi)) = inω′(supp (fi)), then inω(I) =
(inω(fi) : i = 1, . . . , r) = (inω′(fi) : i = 1, . . . , r) ⊆ inω′(I), and
equality is forced by the Hilbert function.

From the previous result it follows as a corollary that the set of
all supports of all reduced Gröbner bases of a homogeneous ideal I
determines the equivalence relation on weights that defines the Gröbner
fan of I.

Corollary 2.12. Let I and J be homogeneous ideals of A with canon-
ical universal Gröbner bases G1 and G2, respectively. If supp (G1) =
supp (G2), then Gf(I) = Gf(J).

Proposition 2.13. Let I and J be homogeneous ideals with the same
Hilbert function, ≺ a fixed monomial order, G1 and G2 the reduced
Gröbner bases (with respect to ≺) of I and J , respectively. If d is an
integer greater than or equal to the largest degree of an element of G1

and cs (I≤d) = cs (J≤d), then supp (G1) = supp (G2).

Proof. Let G1 = {f1, . . . , fr}. We know that G1 ⊆ I≤d, and by
Lemma 2.2, supp (G1) ⊆ cs (I≤d) = cs (J≤d). Thus, there exists a
subset H2 = {h1, . . . , hr} of J with supp (hi) = supp (fi) for i =
1, . . . , r, and we may assume that the initial monomials of h1, . . . , hr

with respect to ≺ have coefficients equal to 1. Now, (in≺(hi) :
i = 1, . . . , r) has the same Hilbert function as I and, thus, as J ;
consequently, H2 is a Gröbner basis of J , and it is clearly reduced.
Since such a basis is unique, H2 = G2 and we are done.

Corollary 2.14. Let I and J be homogeneous ideals with the same
Hilbert function, and let d be the largest degree of a minimal generator
of the lex-segment ideal with same Hilbert function as I and J . If
cs (I≤d) = cs (J≤d), then Gf(I) = Gf(J).
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As a special case of the above corollary, we now recover one of the
main results of [18], namely Corollary 3.2, where the existence of
generic Gröbner fans is proven.

Corollary 2.15. Let I be a homogeneous ideal of A. Then,
there exists a non-empty Zariski open set U ⊆ GLn(K) such that
Gf(gI) = Gf(hI) for all g, h ∈ U .

Proof. It is a direct consequence of the previous corollary and
Theorem 2.9.

3. General initial ideals with respect to weights. As we
have explained in the introduction, the generic initial ideal of I with
respect to a given monomial order ≺ is an important invariant of I,
and one would like to have a similar invariant when using weights.
There are two naive definitions of what a generic initial ideal with
respect to a given weight could be. One might set ginω(I) to be
inω(γI) ⊆ K(y)[X1, . . . , Xn], where γ is as in (2.3) and Definition 2.4.
The disadvantage here is that, to define ginω(I) in this way would
not provide a coordinate-independent invariant, as the following easy
example shows. If we take I = (X1) ⊆ K[X1, X2], a coordinates change
such that X1 	→ X1 + X2 and ω = (1, 1) then we have inω(X) =
(y11X1+ y12X2) �= ((y11+ y21)X1 +(y12+ y22)X2) = inω(γ(X1+X2)).
Moreover, with this definition, the resulting generic initial ideal could
not be viewed as an ideal of K[X1, . . . , Xn]. Alternatively, when K is
infinite, one might be tempted to let ginω(I) be inω(gI) for a general
g ∈ GLn(K), but this is in some sense meaningless because it relies
on the existence of a non-empty Zariski open set U where inω(hI) is
constant for all h ∈ U . In the above example, clearly such an open
set does not exist. Therefore, we would like to emphasize that the
expression a general initial ideal with respect to ω should be used in the
same way as a general linear form or a general hyperplane section is
used: always in combination with a specific and well-defined property P
of inω(gI) which is constant on a Zariski open set of GLn(K). Keeping
this in mind, it is correct to phrase Theorem 3.2 in the following way:
a general initial ideal with respect to ω is fixed under the action of the
group Bω.

We have seen in the previous section how the generic circuits set
of an ideal I can be used as an invariant of I. Also, rather than
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defining the generic initial ideal of I with respect to a weight, one
can consider the generic initial circuits set gcs (inω(I)) = inω(gcs (I))
and its truncations gcs (inω(I)≤d) at some d ∈ N, see Notation 2.10.
Remark 2.5 yields that any such gcs (inω(I)≤d) is an invariant of I.
Moreover, whenK is infinite, a truncated generic circuits set of I can be
defined using general changes of coordinates: One can let gcs (inω(I≤d))
be inω(cs (gI≤d)) for a general change of coordinates g, and this makes
sense because of Theorem 2.9.

3.1. The subgroup Bω of the Borel group. In the usual setting,
generic initial ideals in any characteristic have the property of being
fixed under the action of the Borel subgroup B of GLn(K) consisting of
invertible n× n upper-triangular matrices. Let ω = (ω1, . . . , ωn) ∈ Zn

be a fixed weight. By relabeling the variables, if necessary, we will
further assume that ω1 ≥ · · · ≥ ωn. We define a subset of B by taking
all n×nmatricesM = (mij) in B such thatmii = 1 for i = 1, . . . , n and
mij = 0 if ωi = ωj, and denote it by Bω. Obviously, the identity matrix
belongs to Bω. If M,N ∈ Bω and ωi = ωj for i �= j, then the (i, j)th
entry of MN is zero; it is also easy to verify that every M ∈ Bω has
an inverse in Bω by computing the row-echelon form of M augmented
with the identity. We have thus verified that Bω is a subgroup of B.
The main result we want to prove next, and we do in Theorem 3.2, is
that general initial ideals with respect to a non-negative weight ω are
fixed under the action of Bω.

We now let d be a positive integer and, as before, let Ad be the
degree d part of the polynomial ring A. The largest weight of a
monomial in Ad is ω1d. For all 0 ≤ a ≤ ω1d + 1, we let Sa be the
set of all monomials of Ad of weight strictly less then a.

Given a vector subspace W of Ad, we let αω(W ) denote the vector

αω(W ) := (rankSω1dW, rankSω1d−1W, . . . , rankS1W ).

Clearly, when V,W are K-vector subspaces of Ad and cs (V ) = cs (W ),
then αω(V ) = αω(W ), by Remark 2.7. Next, we write αω(V ) ≥ αω(W )
when the inequality holds pointwise; when, in addition, αω(V ) �=
αω(W ), we write αω(V ) > αω(W ).

Recall that aK-vector subspaceW ofAd is homogeneous with respect
to ω if it is spanned by polynomials which are homogeneous with respect
to ω.
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Proposition 3.1. Let W be a K-vector subspace of Ad and ω =
(ω1, . . . , ωn) a weight with ω1 ≥ · · · ≥ ωn ≥ 0. Then, for every
integer 0 ≤ a ≤ ω1d, the dimension of the homogeneous component
of inω(W ) of weight a is rankSaW − rankSa+1W . Furthermore, if W is
homogeneous with respect to ω and b ∈ B is an upper-triangular change
of coordinates, then αω(bW ) ≥ αω(W ).

Proof. Let ≺ be a monomial order. We consider, as we did to
prove (2.8), the matrix MW associated with W after having ordered a
monomial basis of Ad by means of ≺ω. The first part of the statement
can be verified by computing the row-echelon form of MW . The desired
inequality follows from the definition of αω, since the image under b of
a monomial is the sum of that monomial and a linear combination of
other monomials of equal or greater weight.

Theorem 3.2. Let I be a homogeneous ideal of A = K[X1, . . . , Xn],
with |K| = ∞. Let also ω = (ω1, . . . , ωn) be a weight with ω1 ≥
· · · ≥ ωn. Then, a general initial ideal of I with respect to ω is
Bω-fixed, i.e., there exists a non-empty Zariski open set U such that
b(inω(g(I))) = inω(g(I)), for all g ∈ U and all b ∈ Bω.

Proof. Observe that, if f is a homogeneous polynomial, ω a weight
and we let ω′ := ω + (1, 1, . . . , 1), then inω(f) = inω′(f); therefore we
may assume that ω ∈ Rn

≥0. Now notice that there exists an upper
bound D for the generating degrees of all the ideals with the same
Hilbert function as I. Thus, if ω and ω′ induce the same partial order on
all monomials of degree less than or equal to D, then inω(J) = inω′(J)
for every homogeneous ideal J with such Hilbert function. Hence, we
may further assume that ω ∈ Zn, with ω1 ≥ · · · ≥ ωn ≥ 0.

By Theorem 2.9, we let U be a non-empty Zariski open set such that
gcs (I≤D) = cs (gI≤D) for all g ∈ U . Clearly, it is enough to prove
the equality degree by degree up to degree D. Let W be the degree d
component of inω(gI) with 0 ≤ d ≤ D. First, we decompose Ad as a
direct sum of vector spaces Vp ⊕ Vp−1 ⊕ · · · ⊕ V0, where Vi is generated
by all polynomials in Ad which are homogeneous with respect to ω
and of weight i. Accordingly, p = dω1, Vp = K[X1, . . . , Xj]d with
j = max{i : ωi = ω1}, and b acts as the identity on Vp. Now, if
we decompose W in an analogous manner as ⊕0

i=pWi, we immediately
have that Wp ⊆ Vp and Wp is fixed under the action of b. We may thus
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assume by induction that b(⊕i<jWp−i) = ⊕i<jWp−i, and we need to
prove that b(⊕i≤jWp−i) is equal to ⊕i≤jWp−i. In order to see this, it is
enough to prove a containment. Assume Wj �= 0, otherwise the result
follows from the inductive hypothesis. When 0 �= f ∈ Wj , we can write
b(f) as f+q, where q is a sum of polynomials of weight larger than j, i.e.,
q ∈ Vp⊕· · ·⊕Vj+1, and it is left to show that q ∈ Wp⊕· · ·⊕Wj+1. If this
would not be the case, then inω(f) = inω(q) �∈ Wp ⊕ · · · ⊕Wj+1. Thus,

by Proposition 3.1, we would have rankSj+1(b(W )) > rankSj+1(W ) and,
in particular, αω(bW ) > αω(W ).

On the other hand, by definition of W and subsection 1.3, we have
that

αω(bW ) = αω(b(inω(gI)d)) = αω

(
b((̃gI)t=0)d

)
,

where g̃I denotes the homogenization of the ideal gI with respect to
ω. By arguing as before (2.8) we see that this quantity is determined
by the ranks of the non-zero minors of the matrix M

b((̃gI)t=0)d
, each

such minor corresponding to a non-zero minor of the matrix M
b((̃gI))d

,

which has entries in K[t]. In particular, we can find an a ∈ K
such that all the non-zero minors of M

b((̃gI))d
do not vanish after

applying the substitution t = a. Hence, αω(bW ) ≤ αω(b(((̃gI)t=a)d) =
αω(b(Da(gI))d). Accordingly,

αω(bW ) ≤ max{αω(hId) : h ∈ GLn(K)} = αω(gId),

where the last equality follows from the choice of g ∈ U and (2.8).
Proposition 3.1 implies that αω(gId) = αω(inω((gId)), which is by
definition αω(W ). We have thus obtained that αω(bW ) ≤ αω(W ) and
the desired contradiction.

If we consider a homogeneous ideal I of A and take, for instance,
ω to be the weight (1, 1, . . . , 1, 0), then by the previous theorem a
general initial ideal of I with respect to ω is fixed under any coordinates
change which is the identity on X1, . . . , Xn−1; this fact can be useful
in applications, see for instance [4, Section 4] and [5, Proposition 1.6].
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14. T. Mora and L. Robbiano, The Gröbner fan of an ideal, J. Symbolic Comp.
6 (1988), 183 208.

15. J. Oxley, Matroid theory, Oxford University Press, Oxford, 2011.

16. K. Pardue, Deformation classes of graded modules and maximal Betti num-
bers, Illinois J. Math. 40 (1996), 564 585.

17. L. Robbiano, Term orderings on the polynomial ring, Proc. EUROCAL 85,
Lect. Notes Comp. Sci. 204, Springer, Berlin, 1985.
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