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BLOW-UPS OF P" 2 AT n POINTS
AND SPINOR VARIETIES

BERND STURMFELS AND MAURICIO VELASCO

ABSTRACT. The work of Dolgachev and Castravet-Tevelev
establishes a bijection between the 2”1 weights of the half-
spin representations of soz, and the generators of the Cox
ring of the variety X, which is obtained by blowing up P™—3
at n points. We derive a geometric explanation for this bi-
jection, by embedding Cox (Xp) into the even spinor variety
(the homogeneous space of the even half-spin representation).
The Cox ring of the blow-up X, is recovered geometrically by
intersecting torus translates of the even spinor variety. These
are higher-dimensional generalizations of results by Derenthal
and Serganova-Skorobogatov on del Pezzo surfaces.

1. Introduction. In the early 1990’s Batyrev observed that the
well-known equality between the number of exceptional curves on Del
Pezzo surfaces of degree 2 < § < 5 and the dimension of certain
minuscule representations of the semi-simple groups of type A4, D5, Eg
and E7 has a geometric explanation. He conjectured that the universal
torsor over any Del Pezzo surface admits an embedding into the
homogeneous space defined by the orbit of the highest weight vector of
the representation. Batyrev’s conjecture was proved independently by
Derenthal [3] and by Serganova and Skorobogatov [13].

For del Pezzo surfaces of degree five, the universal torsor and the
corresponding homogeneous space (the Grassmannian Gr(2,5)) coin-
cide. This coincidence suggests that it should be possible to recover
the universal torsor from the corresponding homogeneous space. How-
ever, there is an obvious difficulty: Del Pezzo surfaces of degree § form
a family of dimension 10 — 24§, while the homogeneous space is unique.
A key insight of Serganova and Skorobogatov [14] is that the universal
torsor is recovered by intersecting several torus translates of the cor-
responding homogeneous space. The chosen elements in the torus are
determined by the moduli of the surface.
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In this paper we extend these constructions from del Pezzo surfaces
to the higher-dimensional varieties X,, obtained by blowing up P?3
at n > b general points. Work of Dolgachev [5] and Castravet-Tevelev
[2] ensures that there is bijection between the 2"~! generators of the
Cox ring of X,, and the 2"~ ! weights of the half-spin representations
of s02,. We here offer a geometric explanation for this bijection:

Theorem 1.1. The spectrum of the Cox ring of X,, can be embedded
into the spinor variety ST in \°" W, where W ~ k™. If Ix denotes
the homogeneous prime ideal in the polynomial ring k[\°" W] that
presents Cox ring of X, then we have

(1) Ix 2 Z a(c) * Ispin.
)

CGQ(P

Here Iy, is the ideal defining the spinor variety S+, the vector a(c)
has 2"~! nonzero components which are explicit rational functions on
a certain moduli space of point configurations, and a(c) * Ispin denotes
the ideal obtained from Ispn by scaling each variable in k[A°"" W]
by the corresponding entry in a(c). We refer to Section 7 for precise
definitions. We conjecture that equality holds in (1) for generic X,,,
and that only two summands will suffice on the right-hand side. This
conjecture has been verified for n < 8 using computational algebra
methods (see Theorem 7.4).

All the ideals in (1) are generated by quadrics. Quadratic generation
of the Cox ideal Ix follows from the sagbi degenerations of Sturmfels-
Xu [17], which relate the Cox rings of X, to the toric varieties studied
by Buczyniska and Wisniewski [1]. These toric degenerations represent
statistical models for phylogenetic trees. The spinor ideal Iy, is the
prime ideal of all algebraic relations among the 2"~! subpfaffians of a
skew-symmetric n X n-matrix. The quadratic generation of Iy is a
classical result from the literature on algebras with straightening laws
(cf. De Concini-Procesi [3]), and we shall present the corresponding
quadratic Grébner basis in Section 6.

A main new idea in this paper is the construction (in Section 4) of
skew-symmetric matrices whose subpfaffians generate the Cox ring of
X,,. These matrices enable us to extend the representation-theoretic
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approach of Serganova and Skorobogatov [13, 14] from del Pezzo sur-
faces to higher dimensions. An important element in the proof of The-
orem 1.1 is a remarkable identity among Pfaffians and determinants
discovered by Okada [12] in connection with rectangular representa-
tions of the general linear group. We shall review Okada’s identity in
Section 3. This furnishes the link between our Pfaffian generators for
Cox (X,,) and the determinantal generators given in [2].

In Section 2 we start out with basic facts about the geometry of the
blow-up varieties X,, and their Cox rings, and we fix the notation and
conventions used throughout this paper. In Section 5 we present a re-
sult in combinatorial commutative algebra that may be of independent
interest: each phylogenetic tree specifies a degeneration of the Cox ring
of X,, to an algebra generated by Pliicker monomials. This refines the
results on sagbi bases in [17, Section 7], and it opens up the possibility
of relating our Cox ring to the subalgebras studied by Howard et al. [8]
and Manon [10]. An important player in this connection should be the
moduli space of rank two stable quasiparabolic bundles on P! with n
points (cf. [17, Theorem 7.2]).

Another promising direction of inquiry would be to clarify the re-
lationship between the remaining spaces X, . studied by Castravet
and Tevelev in [2] and the homogeneous spaces of the fundamental
representations of semi-simple groups of type 15 p.c.

2. Geometry of blow-ups of P"2 at n points. In this section
we collect some facts about the geometry and representation theory
relevant for blow-ups of P" 2 at n points and their Cox rings. We
also establish notation which will be used throughout the paper. Let
k be an algebraically closed field. For n > 5, let X,,(Q) be the variety
obtained by blowing up P"~3 at n general points Q1, ... ,Qn, and let
7 X,(Q) — P"3 be the canonical projection. The variety X,,(Q)
depends on the points Q1,...,Q, up to projective equivalence. It
follows that the moduli space of the varieties X,,(Q) has dimension n—3.

Let ¢ ¢ P" 3 be a hyperplane. The Picard classes H, E, ... , E, with
H := [r*(¢)] and E; = [r~1(Q;)] are a basis for Pic (X, (Q)) = Z"*!.
The canonical class is K := —(n — 2)H + (n —4)(E1 +--- + E,,). We
endow Pic (X, (Q)) with a symmetric bilinear form via H? = n — 4,
E,E; = —6;; and HE; = 0. The set of classes in Pic (X,(Q)) which
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are orthogonal to K and have square —2 form a root system of type

D,,. A set of simple roots for this root system is given by {as,...,a,},
where . )
_ EifEH_l 1fl§z§nfl,
YT\H-E - —E,_, ifi=n.

The action of the Weyl group of this root system on the orthogonal com-
plement of the canonical divisor K extends to an action on Pic (X, (Q))
by fixing K.

As shown in [5, Theorem 2|, the orbit of E, under the action of
the Weyl group consists of 2"~ ! classes of effective divisors which are
exceptional on some small modification of X,,(Q). The elements of this
orbit are the (—1)-divisors on X,(Q). The exceptional divisor F,, is
dual to the root a,—1 in the sense that E,a; = J;,—1. As such, up
to addition of a multiple of K, it coincides with the highest weight of
a fundamental representation of the even orthogonal Lie algebra soz,.
As a consequence, the action of the Weyl group determines a bijection
between the (—1)-divisors and the elements of the orbit of the highest
weight of this representation.

We now describe this bijection more explicitly. Fix a 2n-dimensional
vector space V with coordinates x1,...,%n, y1,...,Yn. Recall that
509, consists of the endomorphisms A of V' which respect the quadratic
form Q(z,y) = Y., ®;iy;, meaning that Q(Av,w) + Q(v, Aw) = 0.
Let h C so3, denote the subalgebra consisting of all diagonal matrices

D = diag (d4, ... ,dn,—d1,... ,—dy,). We define a basis Ly,..., L, of
h* by the property L;(D) = d;, and we set L; - L; = —d;;, for all
1<4,j<n.

A system of simple roots of the Lie algebra sog, is given by
{B1,-..,Bn}, where
Li_Li+1 1fz§n—2,
Bi={ Ly 1+L, ifi=n—1,
L, 1—L, ifi=n.
The element w,—1 = —(>_1; L;)/2 is dual to 8,—1. This is the highest
weight of the even spin representation S* (see [7, Lecture 20| for a
construction of this representation). The underlying vector space of
St is A" (W) where W = span(f1,..., fn) and its weight vectors are
the vectors fp = Ajep f; with weight W(B) == (3_,c5 Li— > i¢p Li)/2
parametrized by the even subsets B C [n] (see [7, Lemma 20.15]).
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Next, we define a linear map 7" : h* — K+ C Pic (X, (Q)) by setting
T(B;) = a;. We use it to define a bijection between the weights of
the even half-spin representation and the (—1)-divisors on X,. Note
that T is an isometry so the identification below is compatible with the
actions of the Weyl group of D,, on h* and on Pic (X,,(Q)).

Lemma 2.1. If B C [n]| with |B| = 2s, then T(W(B)) = D(B) +
(K /4), where
s(H -, Ei) + > beuing Eo ifn ¢ B,
D(B) = ) .
(s = 1) (H =X Ei) + Xyepgny Bo ifn € B.

Proof. Let A:=H — " | E;, and note that T'(L,) = —E, — (A/2)
and that T(L;) = E; + (A/2) for 1 < i < n — 1. To show the above
equality we study two cases depending on whether or not the set B
contains the index n. If n € B, then T(W(B)) equals

(Z (m038)- T (ae12))

beB\{n} beBcU{n}

_%<¥A+ o B Y Eb)-

beB\{n} beBeu{n}
Subtracting D(B) from this expression, we obtain

1/(ds—n—2—4(s—1 K
§<( 5 (s=D)p Yo B- ) Eb>_z.

beB\{n} beBeU{n}

Similarly, if n ¢ B, then T(W(B)) equals

(2 (5e3a)- 2 (meia)

beBU{n} beBe\{n}
:%<4s_;+u+ S B Y Eb).
beBU{n} beBe\{n}

If we subtract D(B) from this expression, then we obtain K/4 as
claimed. O
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We next review the definition of the Cox ring. Let X be any smooth
projective variety with Pic (X) = Z"*! and Dy, ..., D, a collection of
divisors whose classes form a basis for Pic (X). Then the Cox ring of
X is the Pic (X)-graded algebra

(2) Cox(X)= & HY(X,0x(meD1i+--+muDy)).

(moy... ymyp)

For X = X,,(Q) we fix divisors h, ey, ... , e, in the classes H, F1, ..., E,.
The Cox ring of X,,(Q) is realized as the subalgebra of k[z1,... ,Z, 2]
[ts,... ,tF] given by

P C(moH +miEy + -+ mpEy)) -ty - e,

(mo,mu1,...,mn)€Z"+1

Here zi,...,T,_o are coordinates on P*"~% and I'(mgH — mE; —
---—m,E,) is the vector space consisting of homogeneous polynomials
of total degree mg in the x; that vanish with multiplicity at least
m; at the point Q;. For an (n + 1)-tuple ¢t = (¢o,t1,...,t,) and
D =moH +m1Ey + -+ + my, E,, we define t0 := g0t - ¢mn,

Castravet and Tevelev [2] showed that the Cox ring of X,,(Q) is gen-
erated as a k-algebra by any 2"~! nonzero global sections supported
on the (—1)-divisors. Any choice of such sections determines a presen-
tation of the Cox ring as a quotient of a polynomial ring by an ideal
of relations. As shown by Stillman, Testa and Velasco for Del Pezzo
surfaces [16], and by Sturmfels and Xu [17] in general, these ideals of
relations admit quadratic Grébner bases and in particular are generated
by quadrics.

3. An identity involving Pfaffians and determinants. In this
section we present a combinatorial identity discovered by Okada [12]
which plays a central role in our approach. We work in the polynomial
ring over k with variables X;,Y;, P;, x;,y;,p; for 1 <i < n. For i, j € [n]
let p;; := Pip; — Pjp;, and define x;; and y;; similarly. For an even
index set B = {b1 < b2 < -+ < bas} C [n], let Vg(z, X,p, P), or
Vg(z,p) for brevity, be the 2s x 2s matrix whose m-th row is

s—1 s—2 s—1 s—1
(wbmpbm 7mbmpbm I%ma"'axbmfﬁm 7)(hnpbm )
s—2 s—1
Xbmpbm Pbm,... ’Xmebm ),
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and let ¥5(X,z, P,p) (or ¥p(x,p)) denote its determinant. Note that
\I,Z(map) =1

Let A(z,y,p) denote the skew-symmetric n X n matrix with off-
diagonal entries

X; X; -t

ZI; Z;

TijYij _

A(l‘a yap)ij = Pii

Y
Yi Yy

‘ P, P
Dbi Py

We write Ap(z,y,p) for the submatrix of A(z, y,p) obtained by choos-
ing the rows and columns indexed by the elements of B. The matrix
Ap(z,y,p) is a 2s x 2s skew-symmetric matrix, and we denote its Pfaf-
fian by Fp(z,y,p). The following identity, due to Okada [12], relates
the Pfaffians and the determinants defined above.

Theorem 3.1. For any even subset B = {b; < --- < bas} of [n], we
have
Yp(z,p)¥5(y,p)

(3) Fg(z,y,p) =
Hi<j€B bij

In particular, if 1 denotes the vector (1,...,1) of length n, then this
specializes to

(4) pfaff <(X”" — Xo,) (Y, — YM) _ Us(X,1,P1)Us(Y,1,P,1)
(Pbi - ij) Hbi<bj (Pbl — ij) .

Proof. Equation (4) is the special case n = m of Theorem 4.7 in [12].
We can derive (3) from (4) by a homogenization argument as follows.
Let Tp denote the skew-symmetric 2s x 2s matrix whose off-diagonal
entries are given by

Xb, ij Y, ij by, ij -
(Tp)ij = { — - N ) =)
Ty, T, Yo, Ub, Py, Do,
Let D be the diagonal matrix with D; = xy, ybipb_il. Then Ag(z,y,p) =

D'TgD, and the left-hand side of (3) equals det(D) - pfaff (7). Using
the identity (4) we obtain

— . det VB ((P/p),1,(X/),1)-det V5 ((P/p),1,(Y/y),1)
FB(x,y,P) = det(D) Hi<j((Pbi/pbi)_(ij/pbj)) .



230 BERND STURMFELS AND MAURICIO VELASCO

In the left factor of the numerator we now substitute the expression

2s
X P s—1
det VB <;7 17 57 1) = \IIB(xap) ' (jl:[lwbjpbj >a

and similarly for the right factor. After some cancelations, identity (3)
emerges. O

Remark 3.2. An irreducible representation of GL(n, C) is rectangular
if the corresponding partition has parts of equal size. Okada found
the above identity in connection with tensor products of rectangular
representations. When n = 2m and the rectangular partition has
exactly m parts of length s, the character of the representation is
the Schur function (¥(X,1,X*t™ 1))/A where A is a Vandermonde
determinant. The identity (4) expresses the character of the tensor
product of two such rectangular representations as a Pfaffian. The
minor summation formula then can be used to find the decomposition
of this tensor product into irreducibles [12, Theorem 2.4].

4. Pfaffian generators for the Cox ring. The points Q1,...,Q,
are assumed to be in linearly general position in P"~3. We can
thus choose coordinates z, s, ... ,Z,_2 so that Qq,...,Q,_o are the
canonical basis vectors, Qp—1 =[1:1:---:1],and Q, = [p1:p2:---:
Dn—2] for some p; € k.

We now show that, in the chosen coordinates, the 2" ~! hypersurfaces
whose strict transforms yield the (—1)-divisors are defined by the
subpfaffians of an n x n skew-symmetric matrix. These defining
equations are unique only up to scalar multiplication. To specify the
scalars we use an additional parameter y € AZ_Z not lying in any of
the hypersurfaces. Let M denote the skew-symmetric n X n matrix

M =
o (z2-z))(wa-w1) (zz—e)lwz—wy) . @En—2=e)Wn_2-v1) =3y
(p2—p1) (p3—pP1) (Ppn—2—pP1) P1
0 (zg=w2)(wg—wa) ., (Fn—2-22)(Wn—2-v2) _zays
(p3—p2) (Pn—2—p2) P2
0 (&n_2-23)(Un—2-¥3) _=z3yz
(Pp—2—P3) P3

-1 -1 -1 -1 -1 0
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For B C [n], let Mp be the square submatrix with rows and columns
indexed by B.

Lemma 4.1. Let B C [n] be an even subset. The Pfaffian pfaff (Mp)
is a nonzero element of the space of sections I'(D) where D is the (—1)-
divisor corresponding to B as in Lemma 2.1.

Proof. Suppose |B| =2s. For 1 <i < j < n we have

M. € {F((H - 27;11 Ep) + E; —i—E]-) if j #mn,
“ I'(E;) if j =n.

The Pfaffian of the 2s x 2s-submatrix Mp has the expansion

pfaff (M) = sign(o(p)) [ Mas

(a,b)ep

where p runs over all matchings of B. All terms on the right-hand side
belong to I'((s — dp)(H — Zl":_f E) + X ven\(n} E}) where 6p = 1 if
n € B and dp = 0 otherwise.

We now show that the Pfaffian of Mp vanishes to order at least s — 1
at the point @,,. When s = 0 the statement is trivial. For s > 0 we
show that, for any (vy,...,v,_2), the Pfaffian evaluated at z; = p; +ev;
is divisible by ¢*~!. Consider the nxn matrix

0 Y2 — Y1 o Yn—2 — Y1 —Y1 1
Y1 — Y2 0 Y3 — Y2 Tt Yp—2 — Y2 —Yy2 1
y1 — Y3 y2 — Y3 0 ©tt Yn—2 — Y3 —y3 1
a =
YL —Yn—2 Y2 —Yn—2 Y3 —Yn—_2 --° 0 —Yn—2 1
y1 y2 Y3 Yn—2 0 1
-1 -1 —1 —1 -1 0

We regard « as an exterior tensor of step 2. Then its mth exterior
power a(™) is zero for m > 2 because the coordinates aj; of o are the
2 x 2 minors of the matrix

1 1 --- 1 1 0
Yyi Y2 0 Yn—2 0 1)°



232 BERND STURMFELS AND MAURICIO VELASCO

We also consider the following skew-symmetric matrix 3, as an exterior
tensor of step 2:

o 2-vDwz—v1) (vz—vwsz-w1) . n-2-vD)n-2-v1) _wmy
(p2—p1) (p3—p1) (Pp—2—P1) P1
0 (vz—vo)(wa—wa) ., (n—2-v2)Wn-2-¥2) _woys
(p3—p2) (Pn—2—p2) P2
. (vn_—2—v3)(yn_2-93) vy,
0 . Wn-27v3)Wn_27Y3) _wvsuz
(Pp_2—p3) P3
0 0 0 0 0 0

In this notation, the evaluation of pfaff (Mpg) at x; = p;+ev; equals (a+
€¢B)(*) /s!. This expression expands to a linear combination of exterior
monomials of the form €5~ ¢(3(5~%) A a(¥)). All of these monomials are
divisible by €~ since a¥) =0 for t > 2.

It remains to show that pfaff (Mpg) is nonzero. Using the notation
from Section 3, we specialize (fll f:) to (wll znl,z (1) 10 ) and we
define Y; and P; similarly. The specialization of the matrix M is the
matrix A(z,y,p) from Section 3. Hence,

Up(z,p)¥5(y,p)
Hi<j€B Pij

pfaﬁ(MB) = FB(xayap) =

)

where the second equality follows from Theorem 3.1. Since y is generic,
it suffices to show that the function  — ¥ (z, p) is not identically zero.
Setting x; = p; we recognize this as a Vandermonde determinant. It is
nonzero as the p; are distinct. ]

Via Gale duality (see [6] for a detailed treatment) there is a corre-
spondence between n-tuples of general points in P"~2 up to the action
of PGL,, 5, and n-tuples of general points in P! up to the action of
PGL,. We represent the PGLy, 1 orbit of an n-tuple of points in P as
a (b+ 1) x n matrix whose columns are the homogeneous coordinates
of the points. In this language, Gale duality maps the orbit of the
(n — 2) X n matrix with columns Q, ... ,Q, to the orbit of its kernel,
represented by a 2 X n matrix. Via this correspondence we can also
think of n points in P"~3 as specifying a point p in the Grassmannian
Gr(2,n), up to the action of the n-dimensional diagonal torus.
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Fix a point p = (p;;) in Gr (2, n) that is Gale dual to the given n-tuple
Q1,...,Qn in P73 and let y = (y;;) be a general point of Gr(2,n).
As in Section 3 let A(z,y,p) denote the skew-symmetric n X n matrix
whose off-diagonal entries are

-1

vy | Xo X;| v v |BoP
Awp)y = T80 = J0 Ll
Dij Z; Ty Yi Y bi Dy

For any even subset B C [n], let Fg(z,y,p) € k[z1,... ,Zn, X1,... , X4]

be the Pfaffian of the submatrix of A(z,y,p) with rows and columns
indexed by B.

Theorem 4.2. The Coz ring of X,(Q) is isomorphic to the subal-
gebra of k[z;;][T*] generated by the elements T~B1/2) Fg(z,y,p) as
B runs over the even subsets of [n].

Proof. Let m = tot7'---t;',. We consider the subalgebra of the

n—1°

Laurent) polynomial ring k[zq,... ,zn,g,ti,ti, . ,ti7 generated
0-41 n—1
by the 2 X 2 minors of the matrix
- 1 t2 e tn 2 tn—1 O
C(Z’ t) - <mt1z1 mt222 e mtn_lzn_l 0 1 ’

This algebra is isomorphic to the homogeneous coordinate ring of the
Grassmannian Gr (2,n) since it is generated by 2 x 2 minors and
has the correct dimension 2n — 3. In particular, we can assume
that the given point p € Gr(2,n) is specified by a matrix C(p,t®))

where p = (p1,...,Pn_3) and t®) = (¢5,...,t* ) have entries in
k. It represents the standard coordinate points Qq,...,Q,_1 and
Qn=1[p1:.-.:Dn-2]

Let NV denote the skew-symmetric n X n-matrix whose off-diagonal
entries are

Ni' = - )
’ Cz](pat(p))

where t() is a vector of new variables. It follows from our reparametriza-
tion of Gr (2, n) that the algebra generated by the Pfaffians 7'(1~(181/2))x
pfaff (Np) is isomorphic to the algebra in Theorem 4.2, which is gen-
erated by the elements TU—(BI/2) Fy(z,y, 2).
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Furthermore, the subpfaffians of the matrix N agree, up to mul-
tiplication by a nonzero constant, with the even subpfaffians of the
skewsymmetric matrix M

0 th2(@y—ai)(y2—y1) B (mz—w)(ys—y1) . tEr2(eno—@1)(yno2—y1) _ tmolagy t
(az—a1) (az—a1) (an—2—a1) ax 1
0 128 @y —wo) (ua=pe) . PP 2(@aca—wa)(aa—wa)  _ tnluags
az—as (an—2—az az 2
0 : :

: t93n 2 (2n_3—23)(Yn—2—y3) _t™3n—lagy, t
: ) ) (an_2—as) as 3
—t1 —t2 —t3 e —tn_2 —tn_1 0

where we abbreviate t%i = mt;t; for ¢ < j < n. In particular, the 2n—1
subpfaffians of M and the 27! subpfaffians of N define isomorphic
Z" 1 _graded k-algebras.

By Lemma 4.1, the rational function t%l_(lB‘/z))pfaffB(M) is a
nonzero element of the graded component I'(D(B))tP(®) of Cox (X,.(Q)).
Here D(B) denotes the class of the (—1)-divisor determined by the sub-
set B as in Lemma 2.1. Since these sections generate the Cox ring of
X, (Q), by Castravet-Tevelev [2], the result follows. o

5. Even determinantal generators and phylogenetic trees. In
this section we express the Cox ring of X, (Q) as the subalgebra gener-
ated by the determinants ¥ g(z, p) from Section 3. These determinantal
generators are a sagbi basis, and this yields a degeneration to certain
algebras associated to trivalent (phylogenetic) trees. Let p = (p;;) be
the Gale dual to the n-tuple of points Q1, ... , Q.

Lemma 5.1. The Coz ring of X,,(Q) is isomorphic to the subalgebra
of klzi;][T*] generated by the expressions TA—UBI/2DWp(z,p) as B
ranges over even subsets of [n].

Proof. Let (y;;) be a generic point in Gr(2,n). By Theorem 3.1 we
have the identity

T(1=(1B]/2)) . Fg(z,y,p) = T(1=(1B/2)) . ‘IlB(xap)\I’B(yvp)‘

i<jeB Pij

Since (¥5(y,p))/(I1i<jepPij) is a nonzero scalar in k, the algebra
generated by the above determinants is isomorphic to the algebra
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generated by the Pfaffians 70"~ (B1/2) Fp(x,y, p). The latter algebra is
isomorphic to Cox (X,,(Q)), as was shown in Theorem 4.2. u]

Remark 5.2. Our determinants ¥ g (z, p) can be thought of as the even
counterparts to the odd-sized determinantal generators of Castravet-
Tevelev in [2, Theorem 1.1].

We now let the point p = (p;;) range over a Zariski-open subset U
of Gr(2,n), and we consider the family of algebras over U defined by
the above even determinants. The fiber at p € U is isomorphic to
the Cox ring of X, (Q), where @ and p are related by Gale duality.
In particular, the isomorphism type of the algebra is constant on the
orbits of the n-dimensional torus on Gr(2,n). An important role in
the degenerations we shall construct from this family is played by the
following bi-Pliicker expansions.

Lemma 5.3. Let B = {by < -+ < bes} C [n]. For any sequence
i1,--- ,1s of distinct elements of B, the following identify holds. Here
the sum is over the s! permutations o of B that satisfy o(by,) = i, for
1 <m <s, and we abbreviate ju, := 0(bsym):

(5) ¥p(z,p) = ;Sgn (o) ﬁ (xim H Pmm)-

r=1 m#r
Proof. To simplify notation we assume B = [2s] and i1,... ,i5 =
1,...,s. We prove the statement by suitably specializing the identity

(3) from Theorem 3.1. Let Y,, = 1for1 < m < sand Y,, = 0
otherwise, and let y,, = 1 for 1 < m < 2s. Then we have

‘I’(y,p)Z( II pij> ( 11 pij).

i<j<s s<1<]j

The specialized 2x2-minors are y;; = 1 when 1 <i < sand s +1 <
j < 2s and y;; = 0 otherwise. In particular, if x4 is any matching of B,
then H(i,j)eu ¥ij = 0 unless every edge of u connects an index ¢ < s
with an index j > s+ 1.
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Clearing denominators and expanding the Pfaffian in the identity (3),
we obtain

U(z,p)¥(y:p) = ;sgn (U)ﬁléﬁim I1 pnm)( 11 pi]>< II pq)-

r= m#r 1<j<s s<i<j

The product of the last two terms in the parentheses equals ¥(y, p),
and this can be canceled on both sides of the equation. This yields the
desired identity (5). o

Our aim now is to select one of the terms in (5) as the leading
term of Up(z,p). This is done by applying to p a valuation of the
field k(Gr (2,7n)) which is trivial on k. According to Speyer-Sturmfels
[15], all such valuations are classified by the points on the tropical
Grassmannian TG(2,n). One way to construct valuations is to fix
a field homomorphism w : k(Gr(2,n)) — k(t) and then compose it
with the usual valuation val on rational functions. The corresponding
point on the tropical Grassmannian TG(2,n) has tropical Pliicker
coordinates w;; = val (w(p;;)). After subtracting a large constant, and
after replacing each w;; by its negative —w;;, these tropical Pliicker
coordinates are precisely the distances in a tree metric on [n]. This was
shown in [15, Section 4]. In the following statement, we assume that
the reader is familiar with the usage of phylogenetic trees as in [1] and
tree metrics as in [17, Section 7].

Theorem 5.4. For any trivalent phylogenetic tree T with leaves
labeled by [n], there exists a point w € TG(2,n) such that the leading
form of Wg(xz,p) for the weights w;; equals ;, j, xi,j, - - - Ti,j, where
{i1,71tU{i2, j2}U- - -U{is, js} is the unique partition of B into disjoint
paths on the tree T. The algebra generators Tl_(‘B‘/z)\I/B(x,p) form
a sagbi basis for Cox (X, (Q)) with respect to these weights and weight
zero on T'.

Proof. Fix any tree metric (—w;;) compatible with the phylogenetic
tree T, and consider an even subset B C [n] of size 2s. There exists
a unique matching pu = {(i1,b1),..., (is,bs)} of the taxa B whose
connecting paths on 7 are pairwise disjoint. Note that this is the
matching on B whose paths have the shortest total length. It is referred
to in [1, Section 3.1] as the network of paths with sockets in B.
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Expanding ¥p along the set i1,... ,7s we obtain, by Lemma 5.3, the
equality
Up(z,p) =Y sgn(o) ][] (a?zb 11 Pirbm>
o r=1 m#Tr
where the sum runs over all matchings {(i1,b1),... , (is,bs)} of B. The

coeflicient of the Pliicker monomial x;,p, Z;,p, - - - Zi,p, in this expansion

equals
S

H ﬁ Dirj, = I, Snfn:1 pirbm'

’I‘Zlm#’l‘ Hr:l pir\b'y\

The weight of this scalar is the weight of the numerator (which indepen-
dent of the matching) plus the negated weight of the denominator. But
— > _,wi,p, is the total length of the matching, which is minimized
at the special matching p above.

To show that the generators T~ (IBlI/2)W 5 (z, p) form a sagbi basis for
the weights w, we degenerate them further using the diagonal monomial
order on the unknowns z1,...,2,, X1,...,X,. Namely, we replace the
Pliicker coordinate z;; by z;X; — x;X;, and we declare x; X; to be the
leading term. Now, the leading forms are all monomials. It can be
checked that the toric algebra generated by these initial monomials is
precisely the binary Jukes-Cantor model on the tree 7 as studied in [1].
By [17, Section 7], this toric algebra has the same multigraded Hilbert
function as the Cox ring. This shows that the two-step degeneration
described above is flat. O

Remark 5.5. The previous result is an even counterpart of the tree
degenerations of the odd Castravet-Tevelev generators obtained by
Sturmfels and Xu in [17, Theorem 7.10]. These degenerations imply
that the Cox ring of X, (Q) is a Koszul algebra.

6. Spinor varieties and their Grobner bases. In this section
we review what is known about the other main players in Theorem 1.1,
namely, the spinor variety S* and its defining ideal Is,i,. In partic-
ular, we present an explicit quadratic Grobner basis of Iy, due to
DeConcini-Procesi [3].

Let V be a 2n-dimensional vector space. Fix a basis fi,..., fn,
91s---,9n for V and let W = (f1,...,fn). We endow V with the
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quadratic form Q(f,g) = Y., figi. An m-dimensional subspace
U C V is called isotropic if the restriction of Q(z,y) to U is zero.
The orthogonal Grassmannians are the varieties which parametrize
isotropic subspaces of V. When m = n, there are two connected
components of maximal isotropic subspaces. These are parametrized by
the (isomorphic) spinor varieties ST and S~. The varieties S™ and S~
are naturally embedded in the even and odd half-spin representations
of 502, whose underlying vector spaces are A°"* W and A°** W. They
can be realized as the orbit of the highest weight vectors of these
representations under the action of the simple Lie group of type D,,.

In particular, with the conventions of Section 2, the spinor variety
ST is the orbit of the highest weight vector fz. The spinor ideal Ispin
defining ST is the ideal generated by all homogeneous polynomials in
the kernel of the k-algebra homomorphism

even

k[ /\(W)] ::k[fB:B - [n],#aeven}k[zij 1<i<j Sn} = klz]

that takes the variable fp to the Pfaffian of the skew-symmetric matrix
(zij) whose rows and columns are indexed by B. The spinor variety
has dimension n(n — 1)/2.

The following quadratic Grassmann-Pliicker relation is an element of
the ideal Igpiy:

t
(6) Z(_]‘)ZfTiUlUZ"'Urle"'Ti—lTi+1"'Ts

i=1

S
+Z(71)Jle---Uj,10j+1--'Urfa'jTsz---Ts'
=1

Here o and 7 are any subsets of [n] whose cardinalities s and ¢ are
odd. This quadratic identity among Pfaffians is known to physicists
as Wick’s theorem. See [11, Proposition 7.3.4] and [3, Lemma 6.1] for
combinatorial and algebraic perspectives.

For example, if o = {1, 3,4, 5,6} and 7 = {2}, then the above quadric
equals

(7) f3456 f12+f1456 f23 _f1356 f24+f1346 f25 _f1345 f26 _f123456 f@-
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We partially order the variables f, in k[A\°"™" W] by setting f, = f,
whenever #o0 > #7 and 0; < 7; for i = 1,... ,#7. This poset is the
restriction of Young’s lattice to the even subsets of [n]. We consider any
linear extension of Young’s lattice, and we fix the reverse lexicographic
term order = on k[A°"*" W] which is induced by the chosen total
ordering of the variables. For instance, for n = 6,

f123a56 = f123a = fro3s = -+ = faase = fi2 = fiz = - = fs6 = fo.

The leading term for this reverse lexicographic order is underlined in

(7).

Theorem 6.1 [4, Section 6]. The initial ideal of Iy, with respect to
> 1is generated by the monomials f, - f, corresponding to incomparable
pairs in Young’s lattice.

To prove Theorem 6.1, an explicit minimal Grobner basis for Ispin
is derived from the Grassmann-Pliicker relations (6). That minimal
Grobner basis is not reduced. It consists of the straightening relations
in [4, Lemma 6.2]. For example, the quadric (7) is a straightening
relation, so it is in the minimal Grobner basis. But it is not in the
reduced Grobner basis since the second term is also in the monomial
ideal in (Zspin). The spinor ideal Iy, is homogeneous with respect to
the Z"t1-grading

deg(fo‘) = €o +Zej-

j€o

Example 6.2. We here present the reduced Grébner basis promised
by Theorem 6.1 for n = 6. It consists of 66 = 154 30 + 15 + 6
homogeneous polynomials. They lie in 61 different degrees, but up to
Se-symmetry there are only four classes:

f1af23 — f13f2a + f12f34 — f123afz in degree (2,0,0,1,1,1,1)
f1345f12 — f1245f13 + f1235f14 — f1234f15 in degree (2,0,1,1,1,1,2)

f1236f1245 — f1235f1246 + f1234f1256 — f123456 f12 in degree (2,1,1,1,1,2,2).
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The central degree (2,1,1,1,1,1,1) has six reduced Grobner basis
elements:

f23a5f16 — f1345f26 + f1245 f36 — f1235fa6 + f1234f56 — fi2s456 fo

f23a6f15 — f1346f25 + f1246f35 — f1236 fas — f1234f56 + f123456 [

foss6.f14 — f1356.f24 + fi2s6f34 + fi236 fa5 — fi235 fas — fi23456 o

foas6 f13— f1356 foa+ 1346 fo5 — 1345 f26 + f1236 fa5 — f1235 fa6+ f1234 f56
— f123456 for,

f3a56.f12— f1256 f3a+f1246 f35 — f1245 f36 — 1236 fa5+ f1235 fa6 — 123456
+f123456 for

f1as6 f23 — f1356 f24 + f1346 fa5 — f1345 fas + f1256f34 — fi246 f3s+

f12a5f36 + f1236f45 — f1235f46 + f1234f56 — 2 f123456 for-

The take-home message is that the ideal Ispin of the spinor variety S +is
a well-understood object. It comes equipped with an explicit quadratic
Grobner basis that can be generated by combinatorial methods, even
for considerably larger values of n.

7. The Cox ring inside the spinor variety. In this section we
prove Theorem 1.1. We fix general points Q,...,Q, € P" 2, along
with their Gale dual p = (p;;) € Gr(2,n), and this specifies the open
subset

G(p) := {c € Gr(2,n) : Yp(c,p) # 0 for all even B C [n]}.

We further fix one auxiliary point y € G(p). By Theorem 4.2, the
homomorphism

even

(8) k[ N W] — Cox (X,(Q)),

mapping fp +— T'~UB/2Fg(x,y,p) for even subsets B C [n], is
surjective.

We define the Cox ideal Ix of X,(Q) to be the kernel of this
homomorphism. While the isomorphism type of Cox (X, (Q)) depends
only on the points ), the ideal Ix depends on @ and on the choice
of the auxiliary parameter y. Our first result is a higher-dimensional
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analogue of an embedding for universal torsors on del Pezzo surfaces
in [4, 13].

Proposition 7.1. The ring epimorphism (8) determines an embed-
ding of the spectrum of the Cox ring of X, (Q) into the spinor variety
St inside N W ~ k2"

Proof. Since the polynomials Fp(z,y,p) are the subpfaffians of a
skew-symmetric matrix, they satisfy the Grassmann-Pliicker relations
(6). Moreover, the scaling of coordinates fz — T'~(BI/2) f5 multiplies
each quadric (6) by a power of T'. i

Proposition 7.1 establishes the inclusion Iy O Iy, and hence the
first part of Theorem 1.1. The explicit quadratic Grobner basis of
Theorem 6.1 furnishes many relations that hold in the Cox ring. Our
next goal is to derive the much stronger relationship between Ix and
Ipin expressed in the second part of Theorem 1.1. The idea is that the
Cox ideal I'x should be determined by the spinor ideal Iy if we allow
for additional parameters which account for the moduli of the varieties
X, (Q). To describe this more precisely we introduce some notation.
For ¢ € G(p), let a(c) be the point of the diagonal torus in A“" W
with a(c)p = ¥p(c,p)- ¥p(y,p) "1, and let x be the action of this torus
by componentwise multiplication.

Proposition 7.2. We have the following inclusion of ideals in
k[/\even W]:

o) 52 Y ale)* Loin

ceG(P)

Proof. For any ¢ € G(p) and B C [n] even, we have

Yp(c,p) Yu(z,p)¥s(y,p) _ ¥s(z,p)Vs(c,p)
Up(y,p) Hi<j€B Pij Hi<jeB Pij

= FB (LE, cap)a

a(c)pFp(z,y,p) =

where the first and last equality follow from Theorem 3.1. Since the
Fg(z,c,p) are the subpfaffians of a skew-symmetric matrix, it follows
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that a(c) * Ispin € Ix. Since ¢ € G(p) was arbitrary, we conclude that
Zceg(P) a(c) * Ispin is contained in Ix. o

We expect the above inclusion to be, in general, an equality. We now
show that this is the case in several special cases. By [17, Section 7] the
ring Cox (X,,(Q)) is a Koszul algebra so Ix is generated by quadrics
and thus proving the equality reduces to showing that both ideals have
the same number of linearly independent quadrics.

The ideals Ix and Y a(c) * Ispin are homogeneous with respect to the
following (isomorphic) multigradings of k[A°*“" W], which refine the
grading by total degree:

deg (fB) = go + Zgb for a basis go,...,gn of Z™"T1,
beB

deg (fB) € Pic(X,(Q)) asin Lemma 2.1.

Hence, to verify the equality in (9), it suffices to show that both
ideals have the same number of linearly independent quadrics in each
quadratic multidegree.

Lemma 7.3. Up to the action of the Weyl group D, there are
precisely |n/2] + 1 quadratic multidegrees in k[\V*"W]. A system of
distinct representatives is given by the degrees N, = deg (fo fi1,.. 25})
for 0 < 2s < n. For s > 0, the graded component of the Coz ring of
X, in multidegree N, is a k-vector space of dimension 257 1.

Proof. Let fafp be a monomial in some quadratic multidegree. By
transitivity of the action of the Weyl group on (—1)-divisors we can
assume that A = @. Moreover, a transposition (¢j) of two indices in
[n] is an element of the Weyl group. It corresponds to the action of
a Cremona transformation of P"~2 centered at the points labeled by
[n]\{ij}. It follows that we can assume B = {1,...,2s} for some even
s, and the multidegrees Ng, N1, ..., N|, 2|41 represent all orbits. The
last statement is the content of [17, Corollary 7.4]. It also shows
that the Ny lie in distinct D,,-orbits. O
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Theorem 7.4. Suppose n < 8. For a generic X,(Q) there exists a
¢ € G(p) such that
Ix = Ispin + a(c) *Ispin-

Proof. It suffices to show that in all quadratic multidegrees the di-
mension of the quotient of k[\““" W] modulo the ideal Ipin+a(c)* Lspin
is at most the one specified in Lemma 7.3. Since this is an open condi-
tion, it suffices to verify this claim for one choice of point p = (p;;) €
Gr (2,n). We verify this by direct computation using the computer
program Macaulay2 of Grayson and Stillman [9]. The code and its
output are posted at our website http://www.math.berkeley.edu/~
bernd/StVe.html. O
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