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The process underlying the generation of the EEG signals can be de-
scribed as a set of current sources within the brain. The potential dis-
tribution produced by these sources can be measured on the scalp and
inside the brain by means of an EEG recorder. There is a well-known
mathematical model that relates the electric potential in the head with
the intracerebral sources. In this paper, we study and prove some prop-
erties of the solutions of the model for known sources. In particular, we
study the error in the potential, introduced by considering an approxi-
mated shape of the head.

1. Introduction

The electric process underlying the generation of the EEG can be de-
scribed as a set of current sources within the brain. In the case of epilepsy,
there are epileptogenic zones that give major contribution in the genera-
tion of the electric field and, for several decades, neurologists have been
interested in solving the problem of determining the location and ori-
entation of these current sources from the measured potential on the
scalp. This problem is known as the inverse problem in EEG. A first
step towards its solution is to solve the forward problem (FP) in EEG
that consists in calculating the superficial potential for any possible con-
figuration of the sources. A typical mathematical model that describes
this process is a differential boundary value problem of second order,
based on the static approximation of the Maxwell equations (see [5]).
In order to calculate the solution, a simplified head model is adopted.
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The human head is a complicated anisotropic media with tissues of dif-
ferent conductivity values. Usually it is modeled as three isotropic and
homogeneous volumes representing brain, skull, and scalp. The choice
of the head model is important in order to guarantee accurate solutions.

Some authors have calculated the solution in the case of spherical do-
mains where it is possible to solve the differential boundary problem
exactly by a series of functions (see [1, 2, 8, 9]). Numerical solutions are
usually tested against it taking into account only the errors introduced
by the chosen numerical methods disregarding the fact that the domain
has been approximated.

Up to our knowledge, the lack of accuracy introduced by considering
the approximated domains instead of a real-shaped one has not been
studied. In this paper, we explore some theoretical properties of the so-
lution of the FP and establish theoretical bounds for the errors produced
by the approximation mentioned above.

The paper is organized as follows: in Section 2 we present the differ-
ential system of equations that model the FP. The existence and unique-
ness of solutions are stated in Section 3. Section 4 establishes a bound for
the error that is introduced when solving the system on a domain that
approximates the head. Finally, we present some conclusions.

2. The mathematical model

The electrical activity of the brain consists of currents generated by bio-
chemical sources at the cellular level. The electric and magnetic fields
that they produce can be estimated by means of Maxwell’s equations
(see [5, 6]). Based on the properties of the tissues involved (see [6]),
the velocity of propagation of the electromagnetic waves caused by po-
tential changes within the brain is such that the effect of the potential
changes may be detected simultaneously at any point in the brain or
in the surrounding tissues. In consequence, the use of a static approxi-
mation of Maxwell’s equations is justified. This approximation uncou-
ples the equations for the magnetic and electric fields. Consequently, the
second-order partial differential equation

∇ · (σ(x)∇u(x)
)
=∇ · Ji(x) (2.1)

relates the measured electric potential u and the impressed current Ji,
usually modeled as a dipole (associated with the microscopic currents).
The function σ(x) contains the value of the conductivity of the different
tissues.
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Air is an insulating material that does not support current flow, there-
fore, the normal derivative to the head at the boundary must be zero:

∂u(x)
∂ν

= 0, x ∈ ∂G, (2.2)

where G is the volume representing the head, ∂G is its external surface,
and ν represents the outward normal.

We assume that G can be described as three homogeneous sets, each
one surrounded by the next one, where the radii and conductivity val-
ues are given. We denote them from the inner one to the outer one: G1

the brain, G2 the skull, and G3 the scalp. The surface between them are
denoted by S1, S2, and S3, respectively. Note that S3 = ∂G.

The function σ(x) that contains the conductivity of the different tis-
sues at each point is positive, usually assumed to be discontinuous and
piecewise constant

σ(x) =




σ1, x ∈G1,

σ2, x ∈G2,

σ3, x ∈G3,

0, x /∈ G.

(2.3)

There are physical considerations that must be taken into account:

(i) the potential is continuous across the different regions;
(ii) the normal derivative of the potential is continuous across the

different regions;
(iii) the scalp potential u(x) is measured as a difference between the

potential value at each point x ∈ S3 and its value at a reference
point x0 ∈ S3.

If we denote by [·] the difference between the values of the functions
inside the brackets through the indicated surface, they can be written as

[u]|Si = 0, (2.4)[
σ(x)

∂u

∂n

]∣∣∣∣
Si

= 0, (2.5)

u
(
x0
)
= 0, (2.6)

respectively.
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Therefore, the resulting boundary value problem is

∇ · (σ(x)∇u(x)
)
=∇ · Ji(x), x ∈G, (2.7)

∂u(x)
∂ν

= 0, x ∈ ∂G (2.8)

subject to

[u]|Si = 0,
[
σ(x)

∂u

∂n

]∣∣∣∣
Si

= 0. (2.9)

3. Existence and uniqueness of solutions for the FP

In order to assure the existence of solutions of (2.7) with boundary con-
dition (2.8), we need to introduce some definitions and notations that
will lead us to the definition of weak solution of (2.7) with boundary con-
dition (2.8).

We denote by

〈f,g〉G =
∫
G

fg dx (3.1)

the inner product in G.
Let ‖ · ‖Ln(G) be the norm in Ln(G):

‖φ‖Ln(G) =
(∫

G

∣∣φ(x)∣∣ndx)1/n

(3.2)

and ‖ · ‖L∞(G) the norm in L∞(G):

‖φ‖L∞(G) = esssup
G

∣∣φ(x)∣∣. (3.3)

We say that f ∈ Ln(G) if ‖f‖Ln(G) <∞, that is, if f is essentially bounded.
We denote by µ(G) the Lebesgue measure of the set G.
Suppose that u is a solution of (2.1) and multiply this equation by a

function v. Assuming that both u and v are regular enough to apply the
integral theorems to the resulting equation, the solution u must verify
the following identity:

〈σ∇u,∇v〉G = −〈∇ · Ji,v
〉
G, (3.4)

or, equivalently, ∫
G

σ(x)∇u∇v = −
∫
G

∇ · Jiv. (3.5)
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A weak solution of (2.7) with boundary condition (2.8) is a function u that
verifies (3.5) for all functions v with weak derivative of first order, that
is, v ∈H1, where

H1(G) =
{
v ∈ L2(G) | ∃w ∈ L2(G) with

∫
G

vDφdx = −
∫
G

φwdx

}
.

(3.6)

In this case, we say that w is the first-order weak derivative of v.

Remark 3.1. Note that if σ is piecewise constant and (2.5) is verified, then
(3.5) is equivalent to

∫
G1

σ1(x)∇u∇v +
∫
G2

σ2(x)∇u∇v +
∫
G3

σ3(x)∇u∇v = −
∫
G

∇ · Jiv. (3.7)

From now on, we work with weak solutions since any classical solu-
tion to the problem is also a weak solution.

Proposition 3.2 (existence and uniqueness of weak solutions). There
exists a unique solution to the boundary value problem (2.7), (2.8), and (2.9)
that describes the FP in EEG, where G = ∪3

i=1Gi, as described in Section 2, and
σ(x) is the piecewise constant function described in (2.3).

Proof. It can be proved (see [3, 7]) that if σ(x) is positive and piecewise
C1, there exist weak solutions, identical up to a constant, of the second-
order equation (2.7) subject to

∫
G

∇ · Ji = 0, (3.8)

or, equivalently,

∫
∂G

Ji = 0, (3.9)

that is automatically fulfilled because Ji has finite support inside G1

(dipole). The uniqueness of solution of FP is justified since the poten-
tial verifies u(x0) = 0 at the reference point x0 on the scalp. �

Remark 3.3. The result of Proposition 3.2 remains valid if G is composed
by any number of sets Gi and if σ(x) ∈ C1(G).
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4. Solutions on different domains

In this section, we consider that the domain where we solve (2.7) is com-
posed by only one set. The conductivity function σ(x) need not be con-
stant in the domain, actually σ(x) ∈ C1 and is positive if required.

Let G and H be two sets representing the head (see Figure 4.1).
We consider that

(i) uG is a weak solution of (2.1) on G:

∇(
σG(x)∇uG(x)

)
=∇ · Ji(x); (4.1)

(ii) uH is a weak solution of (2.1) on H:

∇ · (σH(x)∇uH(x)
)
=∇ · Ji(x), (4.2)

where σG(x) and σH(x) are the conductivity functions in G and H, and
suppJi ⊂ G ∩H. We prove that if the difference between the sets G and
H is small, so it is the L2-norm of the difference between the solutions uG

and uH . To do so, we calculate a bound for the L2-norm of the difference
of the solutions for the two different domains G and H. We consider that
the conductivity functions σG and σH are positive, coincide on G ∩H,
and verify

σG(x) =

{
σ(x), x ∈G,

0, x /∈ G,
σH(x) =

{
σ(x), x ∈H,

0, x /∈ H.
(4.3)

We denote by G�H the symmetric difference between the domains G
and H, that is, G�H = (G −H) ∪ (H −G). We consider that G, H are
bounded subsets of R3, ∂G ∈ C1, ∂H ∈ C1.

We assume that ∇uG and ∇uH are bounded in G and H, respectively.
In the case of the solutions of the FP in EEG, this assumption is reason-
able since uG and uH represent the electric potential on the head, and
consequently, ∇uG and ∇uH are the electric fields.

In order to establish a bound for ‖uG − uH‖L2(G∩H), we need some
lemmas.

Lemma 4.1. Let uG and uH be solutions of (4.1) and (4.2), respectively. Then,
for every open and bounded subset of V ⊂ R3, G∪H ⊂ V , there exists an exten-
sion u of uG −uH to R3 such that

(1) ‖u‖L2(G∪H) ≤ C‖∇u‖L2(V ) for a constant C that does not depend on u;
(2) if, in addition, ‖∇uG‖L∞(G) and ‖∇uH‖L∞(H) are finite, then u ∈

L∞(V ).
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G

H

Figure 4.1

Proof. Let G∪H ⊂ V , uG, and uH be the extensions of uG and uH , respec-
tively, to R3 that verify (see [4])

uG

∣∣
G = uG

∣∣
G, uG

∣∣
R3−V = 0,

uH

∣∣
H = uH

∣∣
H, uH

∣∣
R3−V = 0.

(4.4)

If we define u = uG −uH , it has compact support and u|R3−V = 0. From the
Poincaré inequality (see [4]), we have

‖u‖L2(V ) ≤ C‖∇u‖L2(V ). (4.5)

In addition, ‖u‖L2(G∪H) ≤ ‖u‖L2(V ). Combining these inequalities, the first
statement of the lemma follows.

Since we assume that ‖∇uG‖L∞(G) and ‖∇uH‖L∞(H) are finite, then
∇uG,∇uH ∈ L∞(V ), and ∇u ∈ L∞(V ), hence the lemma follows. �

Lemma 4.2. Under the hypothesis of Lemma 4.1, we can choose V such that

‖∇u‖L2(V ) ≤Kµ(G�H)1/2 (4.6)

for some constant K.
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Proof. Choose V such that G ∪H ⊂ V and µ(V − (G ∪H)) ≤ µ(G�H),
then

‖∇u‖2
L2(V ) = ‖∇u‖2

L2(V−(G∪H)) + ‖∇u‖2
L2(G�H) + ‖∇u‖2

L2(G∩H). (4.7)

Since supp(∇ · Ji) ⊂ (G∪H) and uG,uH are weak solutions of (2.7) in G
and H, respectively, from (3.5) we obtain

∫
G

σG(x)∇uG∇v =
∫
H

σH(x)∇uH∇v, ∀v ∈H1(V ). (4.8)

Let σ(x) = σG(x)−σH(x). Choosing v = u yields

∫
G∩H

σ(x)∇(
uG −uH

)∇u =
∫
H−G

σH(x)∇uH∇u−
∫
G−H

σG(x)∇uG∇u.

(4.9)

Let σM = max{σ(x), x ∈ G∪H} and σm = min{σ(x), x ∈ G∪H} and let
SG, SH , and S be bounds for ‖∇uG‖, ‖∇uH‖, and ‖∇u‖, respectively.
From (4.9), it follows that

σm

∥∥∇(
uG −uH

)∥∥2
L2(G∩H) ≤ σMSHSµ(H −G) +σMSGSµ(G−H),

(4.10)

and consequently, there exists a constant C such that

∥∥∇(
uG −uH

)∥∥2
L2(G∩H) ≤ Cµ(G�H). (4.11)

Finally, combining equations (4.7) and (4.11), we obtain

‖∇u‖2
L2(V ) ≤ S2(µ(V − (G∪H)

)
+µ(G�H)

)
+Cµ(G�H). (4.12)

Now, for the chosen V , the thesis follows. �

The following result is a consequence of Lemmas 4.1 and 4.2.

Lemma 4.3. For u and V defined above, there is a constant M not depending
on u such that

‖u‖L2(G∪H) ≤Mµ(G�H)1/2. (4.13)

Proof. From Lemma 4.1, ‖u‖L2(G∪H) ≤ C‖∇u‖L2(V ) and from Lemma 4.2,
‖∇u‖L2(V ) ≤Kµ(G�H)1/2. Setting M = CK, (4.13) is verified. �
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Now we apply the result of Lemma 4.3 to the case of the EEG signals.
The following proposition shows that the difference of two solutions

of the FP calculated on different domains approaches zero when the
measure of the symmetric difference of their domains tends to zero.

Proposition 4.4. Let G and H be two different domains in R3 that models
the head. Let uG and uH be the solutions of the FP in EEG described by (4.1)
and (4.2), respectively, and uG and uH the extensions of these solutions to R3

presented in Lemma 4.1. Then

∥∥uG −uH

∥∥2
L2(G∪H) −→ 0 when µ(G�H) −→ 0. (4.14)

Proof. The solutions uG and uH represent the electric potentials in the
domains G and H, respectively, thus ∇uG = EG and ∇uH = EH are the
electric fields on G and H that are bounded on R3. Since all the hypoth-
esis of the previous lemmas hold, there exist a constant M such that

∥∥uG −uH

∥∥2
L2(G∪H) ≤Mµ(G�H)1/2. (4.15)

Consequently, ‖uG −uH‖2
L2(G∪H) → 0 when µ(G�H)→ 0. �

Inequality (4.15) means that the error produced by considering weak
solutions of (2.7) in two different domains, with conductivity function
verifying (4.3), is proportional to the Lebesgue measure of the symmetric
difference of those domains.

Remark 4.5. The result of Proposition 4.4 can be extended to the case
where G is a multicompartment set and σ(x) is a C1 piecewise positive
function that verifies (2.5).

5. Conclusions

In this paper, we state and prove some theoretical properties of the weak
solution of the equations that model the FP in EEG.

Proposition 4.4 states that if (2.7) is solved in two different domains G
and H, the L2-norm of the difference between the solutions tends to zero
when µ(G�H) tends to zero. This result is concerned with a real situ-
ation: the dimensions and shape of the head are approximated. It is im-
portant from a theoretical and qualitative point of view since it gives us
some confidence on the solutions obtained in the case of approximated
shape and dimensions of the head.
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