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We consider a kinetic-theory treatment of the cylindrical unsteady heat
transfer. A model kinetic equation of the BGK (Bhatnager-Gross-Krook)
type is solved using the method of moments with a two-sided distribu-
tion function. We study the relations between the different macroscopic
properties of the gas as the temperature, density, and heat flux with both
the radial distance r and the time t. Also we study the problem from
the viewpoint of irreversible thermodynamics and estimate the entropy,
entropy production, entropy flux, thermodynamic forces, kinetic coeffi-
cients, the change in internal energy, and verify Onsager’s relation for
nonequilibrium thermodynamic properties of the system.

1. Introduction

The Couette problem with heat transfer is one of the important situa-
tions in gas dynamics, which involve the nature of a rarefied gas near a
solid surface. From the kinetic viewpoint, the rarefied cylindrical Cou-
ette flow has been analyzed by many authors. One of the main methods
of constructing the transfer theory at arbitrary Knudsen number con-
sists of the use of moments obtained from Boltzmann equation. The idea
behind the method of moments consists of transforming the boundary
value problems from the microscopic form to the form of equations of
the continuum in which the principle variables that define the state of
the system are certain moments of the distribution function. The mo-
tion of a rarefied gas between two coaxial cylinders: one is fixed and the
other rotates with constant angular velocity, was studied in [2], using
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the moments method for obtaining a suitable solution for any Knudsen
number. The flow of a gas between two coaxial cylinders, the inside
cylinder being at rest with temperature Ti, while the outside cylinder
rotates at a constant angular velocity with temperature T ∗, was studied
in [12]. A numerical solution to the problem of a cylinder rotating in
a rarefied gas and a comparison with the approximate analytical solu-
tion are given in [9]. The problem of flow over a right circular cylinder
within the framework of the kinetic theory of gases is studied in [1]. The
heat transfer of a cylindrical Couette flow of a rarefied gas with porous
surfaces was investigated in [5] in the framework of the kinetic theory
of gases. In [3], the cylindrical Couette flow problem of rarefied gases
was numerically analyzed. This estimate is based upon the characteris-
tic equations, which are equivalent to the BGK (Bhatnager-Gross-Krook)
model of Boltzmann equation. Over a wide range of Knudsen numbers,
it was found that the BGK solutions show good agreement with the other
numerical solutions and with the existing experimental data of density
profiles and drag coefficients for light gases such as argon and air. The
free cylindrical Couette flow of a rarefied gas with heat transfer, porous
surfaces, and arbitrary reflection coefficient was discussed in [7], solving
the moment equations with convenient boundary conditions concern-
ing heat transfer, porosity, and reflection at the surfaces using the small
parameters method. The behavior of the velocity, density, and temper-
ature was predicted by Mahmoud [8], he studied steady motion of a
rarefied gas between two coaxial cylinders: one is fixed and the other
is rotating with angular velocity Ω. The free unsteady expansion of an
ideal gas into a vacuum was discussed by Kraiko [6], starting with one-
dimensional isentropic unsteady gas flow, he derived an asymptotic ex-
pansion for the density, and considering only the first term. It was con-
cluded that the density decreases as a negative power of the time. In
[11], a problem of a steady radial gas flow between two infinitely long
coaxial cylinders, with boundary conditions of evaporation (emission)
and condensation (absorption) which is formulated for a nonlinear ki-
netic equation with a model operator of collisions was studied. This
problem is solved by the finite difference method. Considerable atten-
tion is paid to the flow from the inner evaporation cylinder to the ab-
solutely absorbent outer one. Sone et al. [13, 14] studied the steady be-
haviour of the gas between two rotating cylinders in the basis of the
kinetic theory from the continuum to the Knudsen limit. In this paper,
we study the unsteady heat transfer of a gas using the moments and
perturbation methods, and we study the problem from the standpoint of
irreversible thermodynamics to estimate the macroparameters and ver-
ify Onsager’s relations applied to the system.
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2. The physical problem and mathematical formulation

Consider an axially symmetric problem of an unsteady heat transfer of
a rarefied gas between two coaxial cylinders of infinite length and circu-
lar cross-section with the radii r = r1 and r = r2, where r1 < r2, under the
conditions of evaporation from the surface of the inner cylinder and ab-
sorption on the surface of the outer cylinder. The gas is evaporated from
the cylindrical surface r = r1 with the parameters of saturated vapor. The
axially symmetric state of a rarefied gas at the distance r from the sym-
metry axis OZ of the Cartesian coordinate system, is determined by a
distribution function f(r,cz,cr ,cθ, t) of molecules over velocities, where
cz, cr , and cθ are the components of the molecular velocity in the axial,
radial, and azimuthal directions, respectively. In the space of molecular
velocities, we also use the cylindrical coordinates (cz,cn,ψ) related to the
orthogonal coordinates (cz,cr ,cθ) by the formulas

cz = cz,

cr = cn sinψ,

cθ = cn cosψ.

(2.1)

Here, cn is the component of molecular velocity that lies in the plane
perpendicular to the symmetry axis so that c2

n = c
2
r + c

2
θ

and ψ is the angle
between the vectors cn and r, where r is the radius vector of a point of the
physical space in the cylindrical coordinate system (z,r,θ). Assuming
that the distribution function satisfies the kinetic equation with the BGK
approximate collision operator, we will solve the problem in a simplified
statement. The kinetic equation can be written as follows:

Df =
1
τ

(
f0 − f

)
, D =

∂

∂t
+ →
c · ∂

∂
→
r
, (2.2)

where f0 is the local Maxwellian distribution function and τ is the relax-
ation time. Hence, we obtain the transfer equation in cylindrical coordi-
nates in the form

r
∂

∂t

∫
Qif d

→
c +

∂

∂r

(
r

∫
Qicrf d

→
c

)
−
∫
c2
θf
∂Qi

∂cr
d

→
c +
∫
crcθf

∂Qi

∂cθ
d

→
c

=
r

τ

∫ (
f0 − f

)
Qid

→
c,

(2.3)

whereQi is a function of the velocity. The momentQiofQi(
→
c) is given by
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Qi =
∫
Qi

(→
c
)
f d

→
c =
∫π−α
α

∫∞

0

∫∞

−∞
Qif1cn dcz dcn dψ

+
∫2π+α

π−α

∫∞

0

∫∞

−∞
Qif2cn dcz dcn dψ,

(2.4)

where cosα = r1/r. Since the particles between the two cylinders are col-
liding with each other via binary collisions, the cone of influence will be
generated [12]. Let n1, T1 be the density and temperature in region one
of the cone and n2, T2 be the density and temperature in region two. It
is assumed from the beginning that the gas flows in a coordinate system
moving with the mean gas velocity, furthermore, the distribution func-
tion is divided as follows:

f
(→
c,r, t

)
=



f1 =

n1(
2πRT1

)3/2
exp
(
− c2

2RT1

)
if α ≤ ψ ≤ π −α,

f2 =
n2(

2πRT2
)3/2

exp
(
− c2

2RT2

)
if π −α ≤ ψ ≤ 2π +α,

(2.5)

and the local Maxwillian distribution function f0 is

f0 =
n

(2πRT)3/2
exp
(
− c2

2RT

)
. (2.6)

All necessary macroparameters of the gas, such as the number density,
temperature, pressure, and radial heat flux are expressed in terms of the
distribution function in the usual way:

n =
∫
f dc =

(π − 2α)n1 + (π + 2α)n2

2π
,

T =
1

3Rn

∫
c2f dc =

(π − 2α)n1T1 + (π + 2α)n2T2

(π − 2α)n1 + (π + 2α)n2
,

prr =
prr
R

=
∫
c2
r f d

→
c (2.7)

=
1

2π
(
(π − 2α+ sin2α)n1T1 + (π + 2α− sin2α)n2T2

)
,

qr =
qr

mR3/2
=
m

2

∫
crc

2f d
→
c = 2

√
2
(
n1T

3/2
1 −n2T

3/2
2

)
cosα.

On the surface of each cylinder, we specify the flow of particles from
the cylinder or, analogously, the distribution function for molecular ve-
locities directed into the domain of integration. On the outer cylinder
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r = r2, we assume that this function is the Maxwellian distribution with
the known macroparameters ns and Ts. If we then take Q = cr , c2, crc2, 1
and substitute in (2.3), using the normalized quantities

ni = n′ins, Ti = T ′
iTs, q =

r1

r2
, t = t′τ, r = r ′r2, i = 1,2, (2.8)

we get the following equations in nondimensional form

∂

∂t′
(
n′1T

′1/2
1 −n′2T ′1/2

2

)
+

γ

2πq2

∂

∂r ′
(
r ′
{
(π − 2α+ sin2α)n′1T

′
1 + (π + 2α− sin2α)n′2T

′
2

})

− γ

2πq2

({
(π − 2α+ sin2α)n′1T

′
1 + (π + 2α− sin2α)n′2T

′
2

})
= 0,

(2.9)

∂

∂t′
(
(π − 2α)n′1T

′
1 + (π + 2α)n′2T

′
2

)
+

4γ
r ′

∂

∂r ′
(
n′1T

′3/2
1 −n′2T ′3/2

2

)
= 0, (2.10)

∂

∂t′
(
n′1T

′3/2
1 −n′2T ′3/2

2

)
+

5γ
8πq2

∂

∂r ′
(
r ′
{
(π − 2α+ sin2α)n′1T

′2
1 + (π + 2α− sin2α)n′2T

′2
2

})

− 5γ
8πq2

({
(π − 2α+ sin2α)n′1T

′2
1 + (π + 2α− sin2α)n′2T

′2
2

})
= −(n′1T ′3/2

1 −n′2T ′3/2
2

)
,

(2.11)

∂

∂t′
(
(π − 2α)n′1 + (π + 2α)n′2

)
+

4γ
r ′

∂

∂r ′
(
n′1T

′1/2
1 −n′2T ′1/2

2

)
= 0. (2.12)

The boundary conditions can be taken as follows:

n2
(
r2, t
)
= ns, T ′

2

(
r2, t
)
= Ts, T ′

1

(
r1, t
)
= (1+ γ)Ts, (2.13)

where

γ = qKn � 1, Kn =
λs
r2
, λs = τ

√
2πRTs, (2.14)

here Kn is the Knudsen number and λs is the mean free path at the outer
cylinder.
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The initial and boundary conditions can be taken as

n′2(1,0) = 1, T ′
2(1,0) = 1, T ′

1(q,0) = 1+ γ. (2.15)

Equations (2.9), (2.10), (2.11), and (2.12) are nonlinear. Since γ is
small, we consider the two perturbing quantities (after dropping the
primes)

ni = 1+ γn(1)i , Ti = 1+ γT (1)
i . (2.16)

Substituting from expression (2.16) into (2.9), (2.10), (2.11), and
(2.12), we get the following equations taking into consideration terms
of equal powers of γ and then integrating.

For free terms of γ

n
(1)
1 +

1
2
T
(1)
1 −n(1)2 − 1

2
T
(1)
2 = 0, (2.17)

(π − 2α)
(
n
(1)
1 + T (1)

1

)
+ (π + 2α)

(
n
(1)
2 + T (1)

2

)
=G(r), (2.18)

n
(1)
1 +

3
2
T
(1)
1 −n(1)2 − 3

2
T
(1)
2 = F(r)exp(−t). (2.19)

For the first power of γ

∂

∂t

(
(π − 2α)n(1)1 T

(1)
1 + (π + 2α)n(1)2 T

(1)
2

)
+

4
r

∂

∂r

(
n
(1)
1 +

3
2
T
(1)
1 −n(1)2 − 3

2
T
(1)
2

)
= 0,

(2.20)

∂

∂t

(
n
(1)
1 T

(1)
1 −n(1)2 T

(1)
2

)
+

r

πq2

∂

∂r

{
(π − 2α+ sin2α)

(
n
(1)
1 + T (1)

1

)
+ (π + 2α− sin2α)

(
n
(1)
2 + T (1)

2

)}
= 0.
(2.21)

For the second power of γ

∂

∂r

(
(π − 2α+ sin2α)n(1)1 T

(1)
1 + (π + 2α− sin2α)n(1)2 T

(1)
2

)
+

2sin2α
r

(
n
(1)
1 T

(1)
1 −n(1)2 T

(1)
2

)
= 0,

(2.22)

n
(1)
1 T

(1)
1 −n(1)2 T

(1)
2 =H(t). (2.23)
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Substituting from (2.23) into (2.22), we obtain

π
∂

∂r

(
n
(1)
1 T

(1)
1 +n(1)2 T

(1)
2

)− 2H(t)
∂α

∂r
+H(t)

∂(sin2α)
∂r

+
2sin2α

r
H(t) = 0,

(2.24)
using (2.23) again we find that

n
(1)
1 T

(1)
1 +n(1)2 T

(1)
2 =H(t) + 2n(1)2 T

(1)
2 . (2.25)

Hence, introducing (2.25) into (2.24), we get

2π
∂y

∂r
−

4r1H(t)
√
r2 − r2

1

r3
(1− r) = 0, (2.26)

where y = n(1)2 T
(1)
2 . Now integrating (2.26), we get

y =
2r1H(t)

π

(
1

2r1

(
α− sin2α

2

)
− ln(secα+ tanα) + sinα

)
+D(t). (2.27)

We let D(t) = 0 for simplicity. By using (2.20) and (2.27), we obtain

exp(t)
dH(t)
dt

+
4

L(r)
dF(r)
dr

= 0, (2.28)

where

L(r) = r
(
(π − 2α) + 2

(
α− sin2α

2

)
− 4r1 ln(secα+ tanα) + 4r1 sinα

)
.

(2.29)
Solving (2.28) by separation of variables, we get

H(t) = a
∫

exp(−t)dt = −aexp(−t) + c1, (2.30)

F(r) =
a

4

∫
L(r)dr

= −aπ
8
r2 +

ar2
1

2
(tanα−α) + ar

2
1

2
(

tan2α
)

ln(secα+ tanα)

− 5ar3
1

4

(
ln(secα+ tanα) +

3
5

secα tanα
)
+ c2, (2.31)
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where a is the separation constant and c1, c2 are the constants of integra-
tion. From (2.18), (2.21), and (2.23) we obtain

dH(t)
dt

+
r

πq2

dG

dr
+

2r1r

πq2
U


 2r2

1 − r2

r3
√
r2 − r2

1


+

2r1

√
r2 − r2

1

πq2r

∂y

∂r
= 0, (2.32)

where

U = n(1)1 + T (1)
1 −n(1)2 − T (1)

2 . (2.33)

From (2.17) and (2.19), we obtain

U =
1
2
F(r)exp(−t). (2.34)

Solving (2.32) using (2.34), we obtain

G(r) = −abπr
2
1

4

(
α+

1
2

tanα
)
+
abr3

1

2
sin2α

+
5abr3

1

4
secα+

abr1

4
β(r) ln(secα+ tanα)

+πabq2 lnr +
br1

6
η(r)cosα

− abr
2
1

2
((

1+ r1
)

cosα− lncosα+αsinα
)− (bc2

)
α

+
πabr1

4
sinα+

abr3
1

4
(
6r2

1 − 7
)
Ω+ c3,

(2.35)

where

Ω =
∫α

0
αsecαdα,

η(r) =
((

12c2 − 3a
)
+ar1 cosα

(
r1 cosα− 3

))
,

β(r) = 7r2
1α− 2r2

1

(
sin2α+ tanα− 3r2

1α
)

− 2r1
(

ln(secα+ tanα) + 2sinα
)−π.

(2.36)

Hence we get the following four algebraic equations:
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n
(1)
1 +

3
2
T
(1)
1 −n(1)2 − 3

2
T
(1)
2 = F(r)exp(−t),

n
(1)
1 +

1
2
T
(1)
1 −n(1)2 − 1

2
T
(1)
2 = 0,

n
(1)
1 T

(1)
1 −n(1)2 T

(1)
2 =H(t),

(π − 2α)
(
n
(1)
1 + T (1)

1

)− (π + 2α)
(
n
(1)
2 + T (1)

2

)
=G(r).

(2.37)

Solving these equations simultaneously, we obtain

n
(1)
1 =

2H(t)
3F(r)

exp(t) +
1

6π
G(r) +

2α− 3π
12π

F(r)exp(−t),

n
(1)
2 =

2H(t)
3F(r)

exp(t) +
1

6π
G(r) +

2α+ 3π
12π

F(r)exp(−t),

T
(1)
1 = −2H(t)

3F(r)
exp(t) +

1
3π

G(r) +
2α+ 3π

6π
F(r)exp(−t),

T
(1)
2 = −2H(t)

3F(r)
exp(t) +

1
3π

G(r) +
2α− 3π

6π
F(r)exp(−t).

(2.38)

Under the initial and boundary conditions

n
(1)
1 (q,0) = 1, n

(1)
2 (1,0) = 0,

T
(1)
1 (q,0) = 1, T

(1)
2 (1,0) = 0,

(2.39)

we obtain the values of the constants a and b as follows:

a = − 1
πF∗(q)

, b = −2(arccosr1) + 3π
2G∗(1)

F∗(1), (2.40)

where

F∗(1) = −π
8
−
r1

√
1− r2

1

4
− r

2
1 arccosr1

2

+
1
2


ln


1+

√
1− r2

1

r1




(1− r2

1 −
5r2

1

2
+
c2

a

)
,

(2.41)
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F∗(q) = −πq
2

8
−
r1q
√

1− r2
2(1− 3q/2)

2
− r

2
1 arccosr2

2

+
r1

2


ln


1+

√
1− r2

2

r1




(q2 − 7r2

1

2
+
c2

a

)
,

(2.42)

G∗(1) = −πr
2
1

4

(
arccosr1 +

1
2

tan
(

arccosr1
))

+
r3

1

2
sin2 (arccosr1

)

+
r2

1

2
lnr1 −

r2
1

2
arccosr1 sin

(
arccosr1

)− r3
1

2
− r

4
1

2
− (bc2

)
α

+ ζ ln
(

secarccosr1 + tanarccosr1
)− 7r3

1

8
(

arccosr1
)2 − r

2
1

2

− 7r3
1

32
(

arccosr1
)4 − r

3
1

2
(

tanarccosr1
)
+

5r3
1

4
sec
(

arccosr1
)

+
r6

1

6
+

3r5
1

4
arccos2 r1 +

3r5
1

16
arccos4 r1 −

(
2r2

1c2
)− r4

1

2
+ c3

+
πr1

4
sin
(

arccosr1
)− r2

1

(
sin
(

arccosr1
))
,

(2.43)

where

ζ =
7
4
r3

1 arccosr1 − 1
2
r3

1 sin
(
2arccosr1

)
− 1

2
r3

1 tan
(

arccosr1
)− 3

2
r5

1 arccosr1 − π4 r1

+
1
2
r2

1 ln
(

secarccosr1 + tanarccosr1
)− r2

1 sin
(

arccosr1
)
.

(2.44)

Also we evaluate the constants c1, c2, and c3

c1 = a, c2 = −πar
2
1

8
,

c3 = −abr2
1 +

11abr3
1

12
+
πabr3

1

4
−abr1.

(2.45)

3. The nonequilibrium thermodynamic predictions
of the problem

In order to study the irreversible thermodynamic properties of the sys-
tem, we begin with the evaluation of the entropy per unit mass s̄. It is
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written in nondimensional form as

s̄ = −
∫
f lnf d→

c = −
(∫

f1 lnf1d
→
c +
∫
f2 lnf2d

→
c

)

=
3

4π
n− 1

2π




(π − 2α)n1 ln

(
n1(

2πRT1
)3/2

)

+(π + 2α)n2 ln

(
n2(

2πRT2
)3/2

)

 ,

(3.1)

also we get the entropy flux in the radial direction

Jr = −
∫
crf lnf d→

c = −
(∫

crf1 lnf1d
→
c +
∫
crf2 lnf2d

→
c

)

=
r1

r

√
1

2π

(
n2T

1/2
2 ln

(
n2(

2πRT2
)3/2

)
−n1T

1/2
1 ln

(
n1(

2πRT1
)3/2

))
.

(3.2)

The law of increase of entropy is written in the local form [4] as

∂s̄

∂t
+
∂Jr
∂r

= σ, (3.3)

where σ is the entropy production, hence

σ =
γ

4π

(
4π
F(r)

c1 exp(t)− α

π
F(r)exp(−t)

)

− 1
2π

(
2γc1

3F(r)
exp(t)(2π +A)− γ

12π
F(r)exp(−t)(4α+B)

)

+ r1

√
1

2π

(
1
r

(
T1/2

2

nsT
1/2
s

∂n2

∂r
ln

(
n2T

3/2
s

ns
(
2πRT2

)3/2

)
+C

)
− 1
r2
D

)
,

(3.4)

where

A =
3
2

(
(π − 2α)n1T2 + (π + 2α)n2T1

T1T2

)
Ts
ns

+ (π − 2α) ln

(
n1T

3/2
s(

2πRT1
)3/2

)
+ (π + 2α) ln

(
n2T

3/2
s(

2πRT2
)3/2

ns

)
,

(3.5)
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B = 3
(
(2α+ 3π)n1T2 + (2α− 3π)n2T1

T1T2

)
Ts
ns

+ (2α− 3π) ln

(
n1T

3/2
s(

2πRT1
)3/2

ns

)
+ (2α+ 3π) ln

(
n2T

3/2
s(

2πRT2
)3/2

ns

)
,

(3.6)

C =
n2

2nsT2

∂T2

∂r
ln

(
n2T

3/2
s(

2πRT2
)3/2

ns

)

−
(

T1/2
1

nsT
1/2
s

∂n1

∂r
+
n1Ts
2T1ns

)
ln

(
n1T

3/2
s(

2πRT1
)3/2

ns

)
,

(3.7)

D =
n2T

1/2
2

nsT
1/2
s

ln

(
n2T

3/2
s(

2πRT2
)3/2

ns

)
− n1T

1/2
1

nsT
1/2
s

ln

(
n1T

3/2
s(

2πRT1
)3/2

ns

)
. (3.8)

Following the general theory of irreversible thermodynamics [10], we
could estimate the thermodynamic forces corresponding to the parame-
ters ns and Ts at the boundary:

X1 =
∂s̄

∂ns
= − n

4πn2
s

+
1

2πn2
s




(π − 2α)n1 ln

(
n1T

3/2
s

ns
(
2πRT1

)3/2

)

+(π + 2α)n2 ln

(
n2T

3/2
s

ns
(
2πRT2

)3/2

)

 , (3.9)

X2 =
∂s̄

∂Ts
=

3n
√
Ts

4πns
. (3.10)

According to Onsager theorem there are kinetic coefficients that relate
the entropy production to the thermodynamic forces via the relationship

σ =
2∑

i,j=1

LijXiXj = L11X
2
1 +L12X1X2 +L21X2X1 +L22X

2
2 , (3.11)

hence, we get

L11 =
1
2

(
∂2σ

∂X2
1

)
X2

=
(

4πn4
s

n
(
1+ns − lnns

))2 ∂2σ

∂n2
s

+ 2E, (3.12)

where

E =

(
4πn4

s

n
(
1+ns − lnns

)
)(

∂σ

∂ns

)(4πn3
s

(
5+ 3ns − 4lnns

)
n
(
1+ns − lnns

)2

)
. (3.13)
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Similarly, we obtain

L22 =
1
2

(
∂2σ

∂X2
2

)
X1

=
∂2σ

∂T2
s

(
8πT1/2

s

3n

)2

+
64π2

9n2

∂σ

∂Ts
. (3.14)

Also we get the nondiagonal coefficients from the relations

L12 =
∂2σ

∂X1∂X2
, L21 =

∂2σ

∂X2∂X1
. (3.15)

These kinetic coefficients must satisfy Onsager relation such that the di-
agonal coefficients must be positive and the following inequality must
hold true:

LiiLjj ≥ 1
4
(
Lij +Lji

)2
. (3.16)

The temperature gradient between the two cylinders causes a work
done on the gas, which gains energy from the surroundings. According
to the first and second laws of thermodynamics

dU = dQ+dW = Tds− pdV, (3.17)

where

ds =
(
∂s

∂r

)
δr +

(
∂s

∂t

)
δt, dV = −dn

n2
,

dn =
(
∂n

∂r

)
δr +

(
∂n

∂t

)
δt, δr = 1, δt = 2.

(3.18)

4. Discussion

This paper deals theoretically with a problem of actual interest in the
field of evaporation and condensation processes. In all calculations and
figures we take the ratio q = 0.25 and the parameter γ=0.15. Due to the
monotone increase with time and monotone decrease with radial dis-
tance of the temperature (Figure 4.1), the gas is evaporated from
the inner cylinder and in the course of time and radial distance tends
to condensate at the outer cylinder, this behaviour agrees with the nu-
merical results in [14, Figure 9-a] and [13, Figure 11-a], also at a constant
Knudsen number ~0.6 the temperature behaves in the same manner with
radial distance [13, Figure 12]. The reverse process appears clearly in
Figure 4.2 for the number density, which in the course of time reaches
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Figure 4.1. Variation of the temperature with radial distance and time.

Figure 4.2. Variation of the density with radial distance and time.

its maximum and minimum values at the outer and inner walls, respec-
tively, this agrees with the numerical results made by [11] in the same
range of Knudsen number. As the temperature decreases from the inner
to the outer cylinder, the radial heat flux vector q̄r behaves similarly. In
spite of the fact that q̄r increases nonlinearly with time in a nonmonetary
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Figure 4.3. Variation of the heat flux with radial distance and time.

Figure 4.4. Variation of the heat conductivity with radial distance
and time.

manner (see Figure 4.3), the heat conductivity κ which is derived from
(Fourier law) q̄r = −κ(∂T/∂r) is always a positive quantity. In the be-
ginning of the process it takes maximum values along the radial dis-
tance and suddenly decreases with time, then it takes nearly constant
values between the two cylinders (see Figure 4.4). The pressure behaves
similarly like the temperature which is in agreement with the numeri-
cal study of [13, Figure 11-a] (see Figure 4.5). We studied the state of
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Figure 4.5. Variation of the pressure with radial distance and time.

Figure 4.6. Variation of the entropy with radial distance and time.

the system from the viewpoint of thermodynamics for irreversible pro-
cesses. As the system is adiabatic, the temporal rate of the entropy will
be positive (see Figure 4.6), consequently there is a source of entropy or
entropy production σ which is always a positive value with respect to
the radial distance r and time t, but it is an increasing function of time
and a decreasing function of radial distance (see Figure 4.7). By Onsager
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Figure 4.7. Variation of the entropy production with radial distance
and time.

X1

Figure 4.8. Variation of the thermodynamic force X1 with radial
distance and time.

relations we determined the thermodynamic forces X1 and X2 as func-
tions of r and t, they are opposite to each other, the first one behaves
similar to the temperature (see Figure 4.8), and the second behaves sim-
ilar to the number density (see Figure 4.9). The diagonal coefficients are
shown in Figures 4.10 and 4.11, they are positive quantities with respect
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X 2

Figure 4.9. Variation of the thermodynamic force X2 with radial
distance and time.

L1111

Figure 4.10. Variation of the kinetic coefficient L11 with radial dis-
tance and time.

to r and t. Figure 4.12 shows the validity of inequality (3.16) which is in
good agreement with the general rules of irreversible thermodynamics.
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L 2222

Figure 4.11. Variation of the kinetic coefficient L22 with radial dis-
tance and time.

Figure 4.12. Variation of the kinetic relation L11L22 − (1/4)(L12 +
L21)2 with radial distance and time.

For the monatomic gas, the total energy is conserved. At the inner
cylinder, where the temperature is maximum, the atoms gain their
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Figure 4.13. Variation of the internal energy dU with radial dis-
tance and time.

maximum kinetic energy and minimum internal energy. Their potential
energy increases to a maximum till they reach the outer cylinder, where
the temperature is minimum, see Figure 4.13.
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