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The Dickey-Fuller unit root test is known to suffer severe oversizing in
the presence of innovation variance breaks. In this paper, forward and
reverse Dickey-Fuller regressions are proposed as a means of correcting
this size distortion. The results of Monte Carlo experimentation show
such an approach to result in both satisfactory size properties and in-
creased power relative to previously suggested solutions.

1. Introduction

The Dickey-Fuller (DF) test [4] is routinely employed in applied econo-
metric analysis to examine the order of integration of economic time se-
ries. Recently, Kim et al. [9] have considered the properties of the DF test
when applied to a unit root process, which experiences a break in inno-
vation variance. This analysis is a welcome development, as in contrast
to the huge literature on the behaviour of unit root tests in the presence
of structural breaks in the level or trend of a time series (see, inter alia,
Bai et al. [1]; Bai and Perron [2]; Banerjee et al. [3]; Perron [12, 13]), the
impact of structural changes in variance has rarely been addressed, es-
pecially for integrated processes. (Wichern, Miller, and Hsu [14], Hsu
[7], and Inclan [8] are cited by Kim et al. [9] as examples of the few in-
stances where variance breaks have been considered in general circum-
stances. The only case cited where the impact of variance breaks has been
considered in the context of integrated processes is Hamori and Tokihisa
[6].) The evidence presented by Kim et al. [9] shows that when the break
in variance takes the form of a large decrease early in the sample period,
the DF can suffer severe size distortion. With a DF testing equation as
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in (1.1), the DF τµ test is calculated as the t-statistic for null hypothesis
H0 : ρ = 1,

yt = µ+ ρyt−1 + ξt, V
(
ξt
)
= σ2. (1.1)

Given (1.1), the τµ test is subject to severe size distortion when there
is a break in σ2 early in the sample period. This spurious rejection of
the unit hypothesis is in sharp contrast to the literature associated with
Perron [12] where structural breaks are shown to cause I(0) processes
to appear I(1). In response to this, Kim et al. [9] develop an alternative
Perron-style [12, 13] unit root test statistic based upon feasible modified
generalised least squares, denoted by tF . Having improved size proper-
ties in the presence of variance breaks, this test suffers however from low
power in comparison to the τµ test as the authors note.

In this paper, the properties of the DFmax test of Leybourne [10] are ex-
amined in the presence of innovation variance breaks. Considering (1.1)
above, the DFmax test results from joint application of the τµ test to both
{yt} and {zt}, where zt = yT−t+1 for t = 1, . . . ,T , with the larger value ob-
tained are denoted by DFmax. With early decreases in innovation vari-
ance for the forward regression becoming late increases in innovation
variance for the reverse regression, the DFmax test has an intuitive ap-
peal, as neither late nor increasing breaks result in size distortion.

Using Monte Carlo simulation, the properties of the τµ, DFmax, and tF
tests are examined in the presence of innovation variance breaks. Cru-
cially, it is found that in the majority of the cases considered, the DFmax

has a clear power advantage over the tF test, while exhibiting similar
size.

2. Monte Carlo simulation

2.1. Experimental design

To allow a direct comparison with the results of Kim et al. [9] for the tF
test, the following data generation process (DGP) was employed:

yt = ρyt−1 + εt, t = 1, . . . ,T,

εt = σtηt,

ηt ∼ i.i.d. N(0,1),

σt =

{
σ1 for t � τ∗T,
σ2 for t > τ∗T,

(2.1)
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where τ∗ represents the break fraction determining the point at which
there is an abrupt change in the error variance. (The error series {ηt} was
generated using pseudo i.i.d. N(0,1) random numbers from the RNDNS
procedure in the Gauss programming language version 3.2.13, with the
initial value (y0) set equal to zero. All experiments were performed over
40,000 replications with the first 100 observations created discarded to
remove the influence of initial conditions.)

Kim et al. [9] show size distortion of the τµ test to depend upon the
size of the decrease in variance and the time at which it occurs. Denot-
ing the break size (σ2/σ1) as δ, the values δ ∈ {0.25,0.4,0.6,0.8,1.0} are
considered, with δ = 1 denoting no break in variance. Following Kim et
al. [9], the values τ∗ ∈ {0.2,0.4,0.6,0.8} are chosen for the break fractions.
Similarly, two sample sizes are considered with T ∈ {100,200}. For each
of the experimental designs, the τµ and DFmax tests are estimated, with
the results obtained compared to those of Kim et al. [9] for the tF test.
To consider the sizes of the unit root tests in the presence of variance
breaks, the value ρ = 1 was imposed in the DGP. To assess the power of
the tests, near integrated processes are considered. The values chosen for
ρ in these cases are ρ = 0.9 for T = 100, and ρ = 0.95 for T = 200. (Alterna-
tive values of ρ, and unit root tests containing both intercept and trend
terms were also considered. As the results obtained for these additional
experiments were similar to those presented here, they have been omit-
ted in the interests of brevity. However, the results are available from
the author upon request.) Empirical rejection frequencies in all cases are
calculated at the 5% nominal level of significance (α = 0.05), with the τµ
and DFmax tests employing critical values from Fuller [5] and Leybourne
[10], respectively.

2.2. Results

The results of the size experiments are presented in Table 2.1. The re-
sults show that the τµ test can suffer severe size distortion across a range
of values of δ and τ∗, with an empirical size of 39.3% observed for
{δ,τ∗,T} = {0.25,0.2,100}. Although the DFmax test can also experience
oversizing for large breaks early in the sample, for more moderate breaks
or later breaks, it has better size properties than the tF test. This is il-
lustrated in Figure 2.1 where results for the rival tests are presented for
{δ,T} = {0.6,100}. It should also be recognised that the values of δ con-
sidered relate to the standard deviations of the innovations, not their
variances. Therefore, δ = 0.6 relates to a change in variance by a fac-
tor of approximately 3, with the extreme value δ = 0.25 indicating the
case where σ2

1 = 16σ2
2 . It can therefore be questioned how much weight

should be attached to the extreme cases where δ takes such small val-
ues. (The change in variance can be considered in terms of the vari-
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Figure 2.1. Empirical size for α = 0.05 and T = 100.
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Figure 2.2. Power for α = 0.05, T = 100, and ρ = 0.9.

ance ratio test. For the relatively large degrees of freedom considered
here, the variance ratio test would easily reject the null of constant vari-
ances given a calculated value of 3. This indicates that a relatively large
shift is being considered. A value of 16 would be viewed as extremely
high.)

Considering the power results contained in Table 2.2, it can be seen
that the tF test has the lowest power of the tests in the vast majority
of experiments, the exceptions being when the largest possible break
occurs at the earliest possible point. When more moderate, plausible
breaks in variance are considered, the DFmax test has a clear power ad-
vantage over the tF test. Figure 2.2 illustrates this, displaying results for
(T,δ,ρ) = (100,0.6,0.9), where the DFmax test has 61% more power than
the tF test.



Steven Cook 237

Table 2.1. Empirical size (α = 0.05).

τ∗ δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.25

τµ 0.050 0.073 0.123 0.234 0.393

0.2 DFmax 0.050 0.051 0.058 0.080 0.132

tF 0.053 0.062 0.064 0.065 0.066

τµ . . . 0.068 0.101 0.165 0.239

0.4 DFmax . . . 0.051 0.058 0.077 0.105

tF . . . 0.054 0.055 0.058 0.059

τµ . . . 0.062 0.080 0.105 0.131

0.6 DFmax . . . 0.051 0.055 0.066 0.076

tF . . . 0.047 0.048 0.056 0.057

τµ . . . 0.056 0.062 0.070 0.074

0.8 DFmax . . . 0.051 0.052 0.054 0.055

tF . . . 0.046

(a) T = 100.

τ∗ δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.25

τµ 0.049 0.072 0.120 0.229 0.390

0.2 DFmax 0.050 0.051 0.058 0.082 0.138

tF 0.052 0.055 0.055 0.057 0.058

τµ . . . 0.066 0.099 0.162 0.237

0.4 DFmax . . . 0.051 0.059 0.081 0.110

tF . . . 0.053 0.052 0.052 0.050

τµ . . . 0.059 0.077 0.105 0.129

0.6 DFmax . . . 0.051 0.057 0.068 0.078

tF . . . 0.048 0.050 0.051 0.053

τµ . . . 0.053 0.060 0.068 0.074

0.8 DFmax . . . 0.050 0.051 0.054 0.055

tF . . . 0.048 0.049 0.052 0.053

(b) T = 200.
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Table 2.2. Power (α = 0.05).

τ∗ δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.25

τµ 0.339 0.354 0.389 0.452 0.508

0.2 DFmax 0.512 0.487 0.455 0.428 0.408

tF 0.250 0.260 0.283 0.347 0.472

τµ . . . 0.352 0.381 0.422 0.448

0.4 DFmax . . . 0.496 0.480 0.467 0.457

tF . . . 0.243 0.240 0.287 0.395

τµ . . . 0.351 0.373 0.395 0.408

0.6 DFmax . . . 0.504 0.496 0.491 0.488

tF . . . 0.244 0.231 0.262 0.338

τµ . . . 0.349 0.362 0.375 0.382

0.8 DFmax . . . 0.510 0.509 0.508 0.505

tF . . . 0.241 0.251 0.280 0.323

(a) ρ = 0.9, T = 100.

τ∗ δ = 1.0 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.25

τµ 0.330 0.346 0.380 0.447 0.508

0.2 DFmax 0.509 0.483 0.450 0.425 0.409

tF 0.260 0.272 0.300 0.370 0.489

τµ . . . 0.346 0.376 0.417 0.445

0.4 DFmax . . . 0.493 0.479 0.467 0.457

tF . . . 0.247 0.252 0.289 0.415

τµ . . . 0.343 0.364 0.388 0.401

0.6 DFmax . . . 0.501 0.495 0.490 0.485

tF . . . 0.247 0.246 0.284 0.370

τµ . . . 0.340 0.353 0.369 0.378

0.8 DFmax . . . 0.507 0.507 0.506 0.505

tF . . . 0.260 0.273 0.292 0.333

(b) ρ = 0.95, T = 200.
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3. Conclusion

In this paper, recent research on the testing of unit roots in the presence of
breaks in innovation variance has been extended. The results presented
show that although the tF test of Kim et al. [9] removes size distortion in
the presence of extreme variance breaks, for less extreme cases the DFmax

test of Leybourne [10] has similar, and sometimes better, size properties.
It has also been seen that the low power of the tF test is not shared by
the DFmax test, which has high power against near integrated alterna-
tives over a range of plausible variance breaks. The size and power anal-
yses therefore suggest that the DFmax test is of practical importance in
presence of innovation variance breaks, a finding which contrasts with
the suggestion of Leybourne et al. [11] for the case of breaks in level or
drift.
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