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We consider rather broad classes of general economic equilibrium prob-
lems and oligopolistic equilibrium problems which can be formulated as
mixed variational inequality problems. Such problems involve a contin-
uous mapping and a convex, but not necessarily differentiable function.
We present existence and uniqueness results of solutions under weak-
ened P -type assumptions on the cost mapping. They enable us to estab-
lish new results for the economic equilibrium problems under consider-
ation.

1. Introduction

Variational inequalities (VIs) are known to be a very useful tool to for-
mulate and investigate various economic equilibrium problems. In par-
ticular, they allow one to obtain existence and uniqueness results and
construct iterative solution methods for finding equilibrium points; for
example, see [10, 18, 19] and the references therein. The most general
results were established for the case where the cost mapping of the cor-
responding VI is multivalued. At the same time, the single-valued for-
mulation enables one to simplify essential statements and derivation of
these results in comparison with those in the multivalued case. This is
also the case for constructing iterative solution methods. However, such
a formulation covers rather a narrow class of equilibrium problems in
economics.

The usual VI formulation admits various modifications and exten-
sions which also can be in principle applied to economic equilibrium
problems. Consider the mixed variational inequality problem (MVI) which
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is to find a point x∗ ∈K such that

〈
G
(
x∗),x−x∗〉+ f(x)− f(x∗) ≥ 0 ∀x ∈K, (1.1)

where K is a nonempty convex set in the real Euclidean space R
n,

G : V → R
n is a mapping, f : V → R is a convex, but not necessarily dif-

ferentiable function, and V is a nonempty subset of R
n such that K ⊆ V .

Problem (1.1) was originally considered by Lescarret [14] and Brow-
der [3] in connection with its numerous applications in mathematical
physics and afterwards studied by many authors; for example, see [2, 6].
It clearly reduces to the usual (single-valued) VI if f ≡ 0 and to the
usual convex nondifferentiable optimization problem if G ≡ 0, respec-
tively. Thus it can be considered as an intermediate problem between
single-valued and multivalued VIs. Note that most of works on MVIs are
traditionally devoted to the case whereG possesses certain strict (strong)
monotonicity properties, which enable one to present various existence
and uniqueness results for problem (1.1) and suggest various solution
methods, including descent methods with respect to a so-called merit
function; for example, see [22]. However, these properties seem too re-
strictive for economic applications, where order monotonicity type con-
ditions are used. For this reason, we will consider problem (1.1) under
other assumptions. Namely, we will suppose that the cost mapping G
possesses P -type properties, f is separable, andK is defined by box-type
constraints. In this paper, we first present two rather broad classes of per-
fectly and nonperfectly competitive economic equilibrium models which
are involved in this class of MVIs. It should be noted that such MVIs have
also a great number of other applications in mathematical physics, engi-
neering, and operations research; for example, see [13, 20, 21]. It suffices
to recall mesh schemes for obstacle and dam problems, Nash equilib-
rium problems in game theory, and equilibrium problems for network
flows. Nevertheless, theory and solution methods of such MVIs are de-
veloped mainly for several particular cases of MVI (1.1), which for in-
stance involve the case where either f ≡ 0 or G is an affine M-mapping
and K = R

n; for example, see [10, 13, 21]. However, this technique can-
not be extended directly to the general nonlinear and nondifferentiable
case. Next, in [12], several existence and uniqueness results were pre-
sented for the general MVI (1.1), but they were proved under additional
conditions on G which could be too restrictive for economic equilibrium
problems under consideration. In this paper, we give new existence and
uniqueness results for the general MVI (1.1) under weaker assumptions
on G which are suitable for its economic applications. In fact, we show
that these assumptions hold in the general economic equilibrium model
if the demand mapping satisfies rather natural conditions such as gross
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substitutability and homogeneity of degree zero. We also show that these
assumptions hold in the oligopolistic equilibrium problem. We thus ob-
tain various existence and uniqueness results for both classes of eco-
nomic equilibrium problems. Moreover, these results allow us to apply
the D-gap function approach, which was suggested and developed for
MVIs in [11, 12], to find equilibrium points. We recall that the D-gap
function approach consists in replacing the initial MVI, which contains
a nondifferentiable function f and the feasible set K, with the problem
of finding a stationary point of a differentiable merit function. In other
words, we thus can find equilibrium points with the help of the usual dif-
ferentiable optimization methods, such as the steepest descent and con-
jugate gradient methods. This approach to find equilibria seems more
effective and suitable than the usual simplicial based one; for example,
see [26, 27, 28].

In what follows, for a vector x ∈ R
n, x ≥ 0 (resp., x > 0) means xi ≥ 0

(resp., xi > 0) for all i = 1, . . . ,n; R
n
+ denotes the nonnegative orthant in

R
n, that is,

R
n
+ =
{
x ∈ R

n | x ≥ 0
}

; (1.2)

R
n
> denotes the interior of R

n
+, that is,

R
n
> =
{
x ∈ R

n | x > 0
}
. (1.3)

We denote by In the identity map in R
n, that is, the n×n unit matrix. For

a set E, Π(E) denotes the family of all subsets of E. Also, ∂f(x) denotes
the subdifferential of a function f at x, that is,

∂f(x) =
{
g ∈ R

n | f(y)− f(x) ≥ 〈g,y −x〉 ∀y ∈ R
n}. (1.4)

We also recall definitions of convexity properties for functions and
monotonicity properties for mappings.

Definition 1.1 (see [23]). Let U be a convex subset of R
n. A function

f : U→ R is said to be
(a) strongly convex with constant τ > 0, if for all u′,u′′ ∈ U and λ ∈

[0,1], we have

f
(
λu′ + (1−λ)u′′) ≤ λf(u′) + (1−λ)f(u′′)− 0.5τλ(1−λ)‖u′ −u′′‖2; (1.5)

(b) strictly convex, if for all u′,u′′ ∈U, u′ �= u′′ and λ ∈ (0,1), we have

f
(
λu′ + (1−λ)u′′) < λf(u′) + (1−λ)f(u′′); (1.6)
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(c) convex, if for all u′,u′′ ∈U and λ ∈ [0,1], we have

f
(
λu′ + (1−λ)u′′) ≤ λf(u′) + (1−λ)f(u′′). (1.7)

Also, the function f : U→ R is said to be concave (resp., strictly concave,
strongly concave with constant τ > 0) if the function −f is convex (resp.,
strictly convex, strongly convex with constant τ > 0).

Definition 1.2 (see [2, 10, 22]). LetU be a convex subset of R
n. A mapping

Q : U→Π(Rn) is said to be
(a) strongly monotone with constant τ > 0, if for all u′,u′′ ∈U and q′ ∈

Q(u′), q′′ ∈Q(u′′), we have

〈q′ − q′′,u′ −u′′〉 ≥ τ‖u′ −u′′‖2; (1.8)

(b) strictly monotone, if for all u′,u′′ ∈U, u′ �= u′′ and q′ ∈ Q(u′), q′′ ∈
Q(u′′), we have

〈q′ − q′′,u′ −u′′〉 > 0; (1.9)

(c) monotone, if for all u′,u′′ ∈U and q′ ∈Q(u′), q′′ ∈Q(u′′), we have

〈q′ − q′′,u′ −u′′〉 ≥ 0. (1.10)

It is well known that the subdifferential ∂f(x) of any convex function
f : R

n → R is nonempty at each point x ∈ R
n. We now recall the known

relationships between convexity properties of functions and monotonic-
ity properties of their subdifferentials.

Lemma 1.3 (see [23]). A function f : U→ R is
(a) convex if and only if ∂f is monotone;
(b) strictly convex if and only if ∂f is strictly monotone;
(c) strongly convex with constant τ > 0 if and only if ∂f is strongly mono-

tone with constant τ > 0.

2. Economic equilibrium models

In this section, we briefly outline two economic equilibrium models
which can be formulated as MVI of form (1.1). Note that both models
involve the possibility for producers to change the technology of pro-
duction.

Model 2.1 (Walrasian equilibrium). We consider a market structure with
perfect competition. The model deals in n commodities. Then, given a
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price vector p ∈ R
n
+, we can define the value E(p) of the excess demand

mapping E : R
n
+ →Π(Rn), which is multivalued in general. Traditionally

(see, e.g., [10, 18, 19]), a vector p∗ ∈ R
n is said to be an equilibrium price

vector if it solves the following complementarity problem:

p∗ ≥ 0, ∃q∗ ∈ E(p∗) : q∗ ≤ 0,
〈
p∗,q∗

〉
= 0, (2.1)

or equivalently, the following VI: find p∗ ≥ 0 such that

∃q∗ ∈ E(p∗), 〈− q∗,p− p∗〉 ≥ 0 ∀p ≥ 0. (2.2)

We now specialize our model from this very general one. First, we sup-
pose that each price of a commodity which is involved in the market
structure has a lower positive bound and may have an upper bound. It
follows that the feasible prices are assumed to be contained in the box-
constrained set

K =
n∏
i=1

Ki, Ki =
{
t ∈ R | 0 < τ ′i ≤ t ≤ τ ′′i ≤ +∞}, i = 1, . . . ,n. (2.3)

Next, as usual, the excess demand mapping is represented as follows:

E(p) =D(p)−S(p), (2.4)

where D and S are the demand and supply mappings, respectively. We
suppose that the demand mapping is single-valued and set G = −D.
Then, the problem of finding an equilibrium price can be formulated as
follows: find p∗ ∈K such that

∃s∗ ∈ S(p∗), 〈
G
(
p∗
)
,p− p∗〉+ 〈s∗,p− p∗〉 ≥ 0 ∀p ∈K. (2.5)

In addition, we impose the condition that each producer supplies a sin-
gle commodity. This condition does not seem too restrictive. Clearly,
it follows that there is no loss of generality to suppose that each jth
producer supplies the single jth commodity for each j = 1, . . . ,n. Then,
given a price vector p ∈ R

n
+, the supply mapping is of the form S(p) =∏n

i=1Si(pi). Next, it is rather natural to suppose that each Si is monotone,
but not necessarily single-valued, that is, Si : R+ →Π(R) for i = 1, . . . ,n.
In fact, these assumptions are rather standard even for general supply
mappings; for example, see [18, 20] and the references therein. Here
they mean that the individual supply is nondecreasing with respect to
the price and that there exist prices which imply more than one op-
timal value of production. For instance, these prices can be treated as
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switching points between different technologies of production. Under
the above assumptions, each supply mapping is nothing but the subd-
ifferential one, that is, Sj = ∂fj , where fj : R+ → R is a general convex
function for each j = 1, . . . ,n; for example, see [25]. Thus, our VI (2.5),
(2.3) can be then rewritten as follows: find p∗ ∈K such that

∃s∗i ∈ Si
(
p∗i
)
, i = 1, . . . ,n;

〈
G
(
p∗
)
,p− p∗〉+ n∑

i=1

s∗i
(
pi − p∗i

) ≥ 0 ∀p ∈K;

(2.6)

or equivalently (see Proposition 3.1),

〈
G
(
p∗
)
,p− p∗〉+ n∑

i=1

[
fi
(
pi
)− fi(p∗i )] ≥ 0 ∀p ∈K. (2.7)

However, this problem is nothing but MVI (1.1). Moreover, we can use
the same problem (2.7) in order to model the more general case where
the market structure involves additional consumers with nonincreasing
single commodity demand mappings. Then Si serves as a partial excess
supply mapping for the ith commodity.

Model 2.2 (oligopolistic equilibrium). Now consider an oligopolistic
market structure in which n firms supply a homogeneous product. Let
p(σ) denote the inverse demand function, that is, it is the price at which
consumers will purchase a quantity σ. If each ith firm supplies qi units
of the product, then the total supply in the market is defined by

σq =
n∑
i=1

qi. (2.8)

If we denote by fi(qi) the ith firm’s total cost of supplying qi units of the
product, then the ith firm’s profit is defined by

ϕi(q) = qip
(
σq
)− fi(qi). (2.9)

As usual, each output level is nonnegative, that is, qi ≥ 0 for i = 1, . . . ,n.
In addition, we suppose that it can be in principle bounded from above,
that is, there exist numbers βi ∈ (0,+∞] such that qi ≤ βi for i = 1, . . . ,n.
In order to define a solution in this market structure we use the Nash
equilibrium concept for noncooperative games.

Definition 2.3 (see [17]). A feasible vector of output levels q∗ = (q∗1,
q∗2, . . . ,q

∗
n) for firms 1, . . . ,n is said to constitute a Nash equilibrium solution
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for the oligopolistic market, provided q∗i maximizes the profit function
ϕi of the ith firm given that the other firms produce quantities q∗j , j �= i,
for each j = 1, . . . ,n.

That is, for q∗ = (q∗1,q
∗
2, . . . ,q

∗
n) to be a Nash equilibrium, q∗i must be an

optimal solution to the problem

max
0≤qi≤βi

−→ {qip(qi +σ∗
i

)− fi(qi)}, (2.10)

where σ∗
i =
∑n

j=1, j �=i q
∗
j for each i = 1, . . . ,n. This problem can be trans-

formed into an equivalent MVI of the form (1.1) if each ith profit func-
tion ϕi in (2.9) is concave in qi (see, e.g., [9, Chapter 5] and [17]). This
assumption conforms to the usually accepted economic behaviour and
implies that (2.10) is a concave maximization problem. In addition, we
assume that the price function p(σ) is continuously differentiable. At the
same time, the concavity of ϕi in qi implies usually the convexity of the
cost function fi but it need not be differentiable in general. For instance,
the cost function can be piecewise-smooth, and each smooth part then
corresponds to a single technological process, so that there exist quan-
tities which can be treated as switching points between different tech-
nologies of production. Under the assumptions above, we can define the
multivalued mapping F : R

n
+ →Π(Rn) by

F(q) =
(
∂q1

[−ϕ1(q)
]
, . . . ,∂qn

[−ϕn(q)]), (2.11)

where

Fi(q) = ∂qi
[−ϕi(q)] =Gi(q) + ∂fi

(
qi
)
, (2.12)

and Gi(q) = −p(σq)− qip′(σq) for i = 1, . . . ,n. Next, we set

K =
n∏
i=1

Ki, Ki =
{
t ∈ R | 0 ≤ t ≤ βi

}
, i = 1, . . . ,n. (2.13)

Then (see, e.g., [9, Chapter 5] and [17]), the problem of finding a Nash
equilibrium in the oligopolistic market can be rewritten as the following
VI: find q∗ ∈K such that

∃d∗
i ∈ ∂fi

(
q∗i
)
, i = 1, . . . ,n;

〈
G
(
q∗
)
,q − q∗〉+ n∑

i=1

d∗
i

(
qi − q∗i

) ≥ 0 ∀q ∈K;

(2.14)
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or equivalently (see Proposition 3.1),

〈
G
(
q∗
)
,q− q∗〉+ n∑

i=1

[
fi
(
qi
)− fi(q∗i )] ≥ 0 ∀q ∈K. (2.15)

Again, this problem is nothing but MVI of the form (1.1).
We intend to obtain existence and uniqueness results of solutions of

both models under certain additional assumptions which are rather nat-
ural for these models. Since the equilibrium problems in both cases are
rewritten as MVI of form (1.1), we first establish new existence and
uniqueness results for this general problem.

3. Technical preliminaries

In this section, we recall some definitions and give some properties
which will be used in our further considerations. We consider MVI (1.1)
under the following standing assumptions:

(A1) G : V → R
n is a continuous mapping and V is a convex subset of

R
n
+;

(A2) f is of the form f(x) =
∑n

i=1 fi(xi), where fi : R+ → R is a convex
continuous function for every i = 1, . . . ,n;

(A3) K is a box constrained set, that is,

K =
n∏
i=1

Ki, (3.1)

whereKi={t∈R | αi≤ t≤βi}, [αi,βi] ⊆ [0,+∞] for every i = 1, . . . ,n.

These assumptions have been discussed in Section 1 and problems
(2.7), (2.3) and (2.15), (2.13) clearly satisfy them. Also, note that K in
(A3) is obviously convex and closed. In the case where αi = 0 and βi = +∞
for all i = 1, . . . ,n, we obtain K = R

n
+, hence MVI (1.1) involves comple-

mentarity problems with the multivalued cost mapping G+ ∂f . First we
give an equivalence result for MVI (1.1).

Proposition 3.1 (see [12, Proposition 1]). The following assertions are
equivalent:

(i) x∗ is a solution to MVI (1.1);
(ii) x∗ ∈K and

Gi

(
x∗)(xi −x∗

i

)
+ fi
(
xi
)− fi(x∗

i

) ≥ 0 ∀xi ∈Ki, i = 1, . . . ,n; (3.2)
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(iii) x∗ ∈K and

∃g∗
i ∈ ∂fi

(
x∗
i

)
: Gi

(
x∗)(xi −x∗

i

)
+ g∗

i

(
xi −x∗

i

) ≥ 0 ∀xi ∈Ki, i = 1, . . . ,n;
(3.3)

Now we recall definitions of several properties of matrices.

Definition 3.2 (see [8, 21]). An n×n matrix A is said to be
(a) a P -matrix if it has positive principal minors;
(b) a P0-matrix if it has nonnegative principal minors;
(c) a Z-matrix if it has nonpositive off-diagonal entries;
(d) an M-matrix if it has nonpositive off-diagonal entries and its in-

verse A−1 exists and has nonnegative entries.

It is well known that an n × n matrix A is P if and only if, for every
vector x �= 0, there exists an index k such that xkyk > 0 where y = Ax.
Similarly, A is P0 if and only if, for every vector x, there exists an index
k such that xkyk ≥ 0, xk �= 0 where y =Ax. Also, it is well known that A
is M if and only if A ∈ P ∩Z; see [8, 21]. Hence, each M-matrix is P , but
the reverse assertion is not true in general.

Definition 3.3 (see [8, 21]). An n×n matrix A is said to be an M0-matrix
if it is both P0- and Z-matrix.

The following assertion gives a criterion for a matrix A to be an M- or
M0-matrix.

Proposition 3.4 (see [8]). Suppose A is a Z-matrix. If there exists a vector
x > 0 such that Ax > 0 (resp., Ax ≥ 0), then A is an M-matrix (resp., M0-
matrix).

Now we recall some extensions of these properties for mappings.

Definition 3.5. Let U be a convex subset of R
n. A mapping F : U→ R

n is
said to be

(a) a P -mapping [16], if max1≤i≤n(xi−yi)(Fi(x)−Fi(y))>0 for all x,y ∈
U, x �= y;

(b) a strict P -mapping [12], if there exists γ > 0 such that F − γIn is a
P -mapping;

(c) a uniform P -mapping (see, e.g., [16]), if there exists τ > 0 such that

max
1≤i≤n

(
xi −yi

)(
Fi(x)−Fi(y)

) ≥ τ‖x −y‖2 (3.4)

for all x,y ∈U;
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(d) a P0-mapping [16], if for all x,y ∈U, x �= y, there exists an index i
such that xi �= yi and (xi −yi)(Fi(x)−Fi(y)) ≥ 0.

In fact, if F is affine, that is, F(x) =Ax + b, then F is a P -mapping (P0-
mapping) if and only if its Jacobian ∇F(x) =A is a P -matrix (P0-matrix).
In the general nonlinear case, if the Jacobian ∇F(x) is a P -matrix, then
F is a P -mapping, but the reverse assertion is not true in general. At
the same time, F is a P0-mapping if and only if its Jacobian ∇F(x) is
a P0-matrix. Next, if F is a strict P -mapping, then its Jacobian is a P -
matrix; for example, see [7, 12, 16]. Moreover, if a single-valued mapping
F : U→ R

n is monotone (resp., strictly monotone, strongly monotone),
then, by definition, it is a P0-mapping (resp., P -mapping, uniform P -
mapping), but the reverse assertions are not true in general. Thus, P -
type properties are usually weaker than the corresponding monotonicity
properties.

We give an additional relationship between P0- and strict P -mappings.

Lemma 3.6. If F : U→ R
n is a P0-mapping, then, for any ε > 0, F + εIn is a

strict P -mapping.

Proof. First we show that F(ε) = F + εIn is a P -mapping for each ε > 0.
Choose x′,x′′ ∈ U, x′ �= x′′, set I = {i | x′

i �= x′′
i } and fix ε > 0. Since F is a

P0-mapping, there exists an index k ∈ I such that

[
Fk(x′)−Fk(x′′)

](
x′
k −x′′

k

)
= max

1≤i≤n
[
Fi(x′)−Fi(x′′)

](
x′
i −x′′

i

)
. (3.5)

Then, by definition,

[
Fk(x′)−Fk(x′′)

](
x′
k −x′′

k

) ≥ 0, x′
k �= x′′

k,

ε
(
x′
k −x′′

k

)(
x′
k −x′′

k

)
> 0.

(3.6)

Adding these inequalities yields

[
F
(ε)
k (x′)−F(ε)

k (x′′)
](
x′
k −x′′

k

)
> 0. (3.7)

Hence, F(ε) is a P -mapping. Since F(ε′′) = F(ε′) − (ε′ − ε′′)In = F + ε′′In is a
P -mapping, if 0<ε′′<ε′, we conclude that F(ε) is a strict P -mapping. �

Note that each uniform P -mapping is a strict P -mapping, but the
reverse assertion is not true in general. Thus, although most existence
and uniqueness results for VIs were established for uniform P -map-
pings (see, e.g., [10, 16, 21]), this concept is not convenient for vari-
ous Tikhonov regularization procedures which involve mappings of the
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form F + εIn; for example, see [5, 7, 24]. At the same time, such map-
pings are strict P , if F is P0 because of Lemma 3.6 and this fact can serve
as a motivation for developing the theory of VIs (MVIs) with strict P -
mappings. Also, this concept is very useful in investigation of MVIs aris-
ing from economic applications.

4. General existence and uniqueness results

In this section, we consider the general MVI (1.1) under assumptions
(A1), (A2), and (A3).

Proposition 4.1. (i) If G is a P -mapping, then MVI (1.1) has at most one
solution.

(ii) If G is a strict P -mapping, then MVI (1.1) has a unique solution.

The proofs of these assertions follow directly from Propositions 2 and
3 in [12], respectively.

However, the assumptions onG in Proposition 4.1 seem too restrictive
for economic equilibrium problems. For instance, the mappingG in (2.7)
and (2.15) need not be (strict) P in general. Now we present new exis-
tence and uniqueness results under weaker assumptions on G. The basic
idea consists in replacing the (strict) P property of G with (strong) strict
convexity of f . For the convenience of the reader, we give their proofs in
the appendix.

We begin our considerations from the simplest case where K is
bounded and G only satisfies (A1).

Proposition 4.2. Suppose that K is a bounded set. Then MVI (1.1) has a
solution.

Combining this result with Proposition 4.1(i) yields the following
result.

Corollary 4.3. Let G be a P -mapping and let K be a bounded set. Then MVI
(1.1) has a unique solution.

The following uniqueness result illustrates also the dependence be-
tween the properties of G and f if we compare it with Proposition 4.1(i).

Theorem 4.4. Let G be a P0-mapping and let fi be strictly convex for each
i = 1, . . . ,n. Then MVI (1.1) has at most one solution.

Again, combining Theorem 4.4 and Proposition 4.2 yields the follow-
ing result immediately.
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Corollary 4.5. In addition to the assumptions of Theorem 4.4, suppose that
K is a bounded set. Then MVI (1.1) has a unique solution.

We now present an existence and uniqueness result on unbounded
sets under the P0 condition. This result can be viewed as a counterpart
of that in Proposition 4.1(ii).

Theorem 4.6. Let G be a P0-mapping and let fi be a strongly convex function
for each i = 1, . . . ,n. Then MVI (1.1) has a unique solution.

Thus, it is possible to obtain existence and uniqueness results if we
replace (strict) P properties of the cost mapping G with strengthened
convexity properties of all the functions fi. However, if even a part of G
possesses such (strict) P properties, we can obtain similar results in the
case where the functions fi corresponding to the other part of G possess
the strengthened properties.

For the index set L = {1, . . . , l}, we will write xL = (xi)i∈L and Al(x) =
∇xLGL(x). Hence,An(x) =∇G(x). First we give an existence and unique-
ness result for unbounded sets.

Theorem 4.7. Let G be a differentiable P0-mapping. Suppose that, for every
x ∈K, ∇G(x) is a Z-matrix, and there exists ε > 0 such that Ak(x)− εIk is a
P -matrix for a fixed k. Suppose also that fi, i = k + 1, . . . ,n are strongly convex
functions. Then MVI (1.1) has a unique solution.

We now give a specialization of the previous result in the bounded
case.

Theorem 4.8. Let G be a differentiable P0-mapping. Suppose that, for every
x ∈K, ∇G(x) is aZ-matrix andAk(x) is a P -matrix for a fixed k. Suppose also
that fi, i = k + 1, . . . ,n, are strongly convex functions and that K is bounded.
Then MVI (1.1) has a unique solution.

It should be noted that the assertions of Theorems 4.7 and 4.8 remain
true if we replace the index set {1, . . . ,k} with an arbitrary subset of
{1, . . . ,n}. Moreover, Theorems 4.7 and 4.8 also justify the partial regu-
larization approach for MVI (1.1), whereas Proposition 4.1 also justifies
the full Tikhonov type regularization. For instance, we first consider MVI
(1.1) under assumptions (A1), (A2), and (A3) and in addition let G be a
P0-mapping. We then can replace G with the following mapping:

G̃(ε) =G+ εIn, (4.1)

where ε > 0 is an arbitrary sufficiently small number. On account of
Lemma 3.6, G̃(ε) is a strict P -mapping, hence, due to Proposition 4.1(ii),
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such a perturbed MVI with the cost mapping G̃(ε) will have a unique
solution which is close to that of the initial problem. Now suppose that
we have MVI (1.1) which satisfies (A1), (A2), and (A3), the Jacobian ∇G
is an M0-matrix and fi, i = k + 1, . . . ,n, are strongly convex for a fixed k.
Then we can replace G with G(ε) whose components are defined by

G
(ε)
i (x) =

{
Gi(x) + εxi, if i ≤ k;
Gi(x), if i > k,

(4.2)

where ε > 0 is an arbitrary sufficiently small parameter. On account of
Theorem 4.7, such a perturbed MVI with the cost mapping G(ε) will also
have a unique solution which is close to that of the initial problem. This
situation seems rather natural for economic applications, nevertheless,
we see that now the full regularization is not necessary.

5. Application to the Walrasian equilibrium model

We now specialize the results above for the models considered in Section
2. We first consider the general Walrasian equilibrium model from
Section 2 which can be reformulated as MVI (2.7), (2.3). For the sake
of convenience, we rewrite it here. Namely, the problem is to find p∗ ∈K
such that

〈
G
(
p∗
)
,p− p∗〉+ n∑

i=1

[
fi
(
pi
)− fi(p∗i )] ≥ 0 ∀p ∈K, (5.1)

where

K =
n∏
i=1

Ki, Ki =
{
t ∈ R | 0 < τ ′i ≤ t ≤ τ ′′i ≤ +∞}, i = 1, . . . ,n; (5.2)

τ ′i and τ ′′i are the lower and upper bounds for the price of the ith com-
modity.

We also recall that D = −G is the demand mapping, Si = ∂fi is the sup-
ply mapping of the ith producer which is supposed to be monotone,
hence fi is then convex, but not necessarily differentiable. In addition,
we set V = R

n
> and suppose that G : V → R

n is continuous. Clearly, fi,
i = 1, . . . ,n, are also continuous on V . Therefore, our problem then sat-
isfies all the assumptions (A1), (A2), and (A3). For this reason, we can
establish the first existence result directly from Proposition 4.2.

Proposition 5.1. If τ ′′i < +∞ for each i = 1, . . . ,n, then problem (5.1) has a
solution.



302 Variational inequalities

Of course, the assumption of this proposition implies the bounded-
ness of K and the result follows.

In order to apply the other results from Section 4 to problem (5.1) we
have to impose certain additional conditions on G and fi which should
conform to the usually accepted economic behaviour.

Definition 5.2 (see [19]). A mapping Q : V → R
n is said to

(a) satisfy the gross substitutability property, if ∂Qj/∂pi ≥ 0, j �= i;
(b) be positive homogeneous of degree m, if Q(αx) = αmQ(x) for every

α ≥ 0.

The gross substitutability of demand is one of the most popular con-
ditions on market structures; see, for example, [1, 19, 20] and the refer-
ences therein. It means that all the commodities in the market are sub-
stitutable in the sense that if the price of the ith commodity increases,
then the demand of other commodities does not decrease. Next, the pos-
itive homogeneity of degree 0 of demand is also rather a standard condi-
tion. It follows usually from insatiability of consumers; see, for example,
[1, 15, 19]. For this reason, throughout this section we will suppose that
the demand mapping D is continuously differentiable, positive homogeneous of
degree 0, and possesses the gross substitutability property.

From the gross substitutability of D it follows that

∂Gi(p)
∂pj

≤ 0, i �= j. (5.3)

Hence ∇G(p) is a Z-matrix. Next, since Gi(p) is homogeneous of degree
zero, it follows from the Euler theorem (see, e.g., [19, Lemma 18.4]) that

n∑
j=1

∂Gi(p)
∂pj

pj = 0 ∀i = 1, . . . ,n. (5.4)

Applying now Proposition 3.4, we conclude that ∇G(p) is anM0-matrix,
hence G is also a P0-mapping and we thus have obtained the following
assertions.

Lemma 5.3. The following statements are true:

(i) G is a P0-mapping;
(ii) ∇G(p) is an M0-matrix for each p ∈ V .

Note that (5.4) implies that G cannot be a (strict) P -mapping, hence
the results of Proposition 4.1 are not applicable in this case. At the same
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time, we do not suppose for the supply mapping to be homogeneous,
although this condition is rather usual for most known economic equi-
librium models. If this is the case, then, using the standard technique of
fixing the price of the nth commodity (numéraire), that is, setting p∗n = 1,
one can consider the reduced (normalized) mapping G̃ : R

n−1
+ → R

n−1,
defined by G̃(p) =G(p1, . . . ,pn−1,1), whose Jacobian is an M-matrix if the
nth column of ∇G(p) contains only negative entries. Thus, in this case
the price of the nth commodity, which is considered as money, can be
arbitrary in the initial model, that is, money is neutral in such a model. It
also means that both supply and demand do not depend on the level of
prices. Therefore, homogeneity of both supply and demand implies the
additional P -type properties of the cost mapping. We intend to investi-
gate our model under weaker assumptions with the help of the results
of Section 4, and money need not be neutral in our model.

Proposition 5.4. (i) Let K be a bounded set and let fi, i = 1, . . . ,n, be strictly
convex. Then problem (5.1) has a unique solution.

(ii) Let fi, i = 1, . . . ,n, be strongly convex. Then problem (5.1) has a unique
solution.

On account of Lemma 5.3, the proofs of assertions (i) and (ii) follow
now from Corollary 4.5 and Theorem 4.6, respectively.

We recall that, due to Lemma 1.3, strict (strong) convexity of fi is
equivalent to strict (strong) monotonicity of the ith supply mapping
Si = ∂fi. Although G need not be a (strict) P -mapping, its part can pos-
sess such properties. In this case, we can apply Theorems 4.7 and 4.8 to
our problem.

Proposition 5.5. Suppose that there exists ε > 0 such that for every p ∈K,
An−1(p)− εIn−1 is an M-matrix and that fn is strongly convex. Then problem
(5.1) has a unique solution.

The proof follows from Theorem 4.7. We can specialize the result
above for the bounded case.

Proposition 5.6. Suppose that K is bounded and that, for every p ∈ K,
An−1(p) is anM-matrix. Suppose also that fn is strongly convex. Then problem
(5.1) has a unique solution.

The proof follows from Theorem 4.8.
We now give additional examples of sufficient conditions for (5.1) to

have a unique solution.
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Theorem 5.7. Suppose that K is bounded and that for every p ∈K,

∂Gi(p)
∂pn

< 0 ∀i = 1, . . . ,n− 1. (5.5)

Suppose also that fn is strongly convex. Then problem (5.1) has a unique solu-
tion.

Proof. By (5.3), (5.4), and (5.5), we have

n−1∑
j=1

∂Gi(p)
∂pj

pj >
n∑
j=1

∂Gi(p)
∂pj

pj = 0 (5.6)

for each i = 1, . . . ,n− 1. Therefore, An−1(p) is an M-matrix. The result fol-
lows now from Proposition 5.6. �

Consider the case where the functions fi, i = 1, . . . ,n, are not strongly
convex but K is bounded and (5.5) holds. Then we can replace the cost
mapping G in (5.1) by G(ε), whose components are defined by

G
(ε)
i (p) =

{
Gi(p), if i < n;
Gi(p) + εpi, if i = n,

(5.7)

where ε > 0 is small enough. Then, following the proof of Theorem 5.7
and using the properties of M-matrices, we see that ∇G(ε) is M, hence
the perturbed problem will have a unique solution due to Proposition
4.1(i), this solution being close to that of the initial problem.

It should be noted that all the considerations above, in particular,
Propositions 5.5 and 5.6 and Theorem 5.7, remain valid if we replace n
with an arbitrary index from {1, . . . ,n}. Moreover, we can replace a sin-
gle index with an arbitrary subset of {1, . . . ,n}, thus extending the results
above.

Proposition 5.8. Suppose that K is bounded and that there exists an index k
such that for every p ∈K,

n∑
j=k+1

∂Gi(p)
∂pj

< 0 ∀i = 1, . . . ,k. (5.8)

Suppose also that fj , j = k + 1, . . . ,n, are strongly convex. Then problem (5.1)
has a unique solution.
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The proof is the same as that of Theorem 5.7, using Theorem 4.8. We
can state the similar result in the unbounded case.

Theorem 5.9. Suppose that there exist δ > 0 and an index k such that for every
p ∈K,

n∑
j=k+1

∂Gi(p)
∂pj

pj < −δpi ∀i = 1, . . . ,k. (5.9)

Suppose also that fj , j = k + 1, . . . ,n, are strongly convex. Then problem (5.1)
has a unique solution.

Proof. Fix γ ∈ (0,δ), then, by (5.3), (5.4), and (5.9), we have

k∑
j=1

∂Gi(p)
∂pj

pj − γpi >
n∑
j=1

∂Gi(p)
∂pj

pj = 0 (5.10)

for each i = 1, . . . ,k. Therefore, Ak(p)− γIk is an M-matrix. The result fol-
lows now from Theorem 4.7. �

Again, if all the functions fi, i = 1, . . . ,n, are not strongly convex, we
can use the partial regularization of G (see (5.7)). Note that the results
of Proposition 5.8 and Theorem 5.9 remain true if we replace the subset
{1, . . . ,k} with an arbitrary subset of {1, . . . ,n}.

6. Application to the oligopolistic equilibrium model

In this section, we consider the oligopolistic equilibrium model from
Section 2 which was shown to be equivalent to problem (2.15), (2.13).
For the sake of convenience, we also rewrite it here. Namely, the prob-
lem is to find q∗ ∈K such that

〈
G
(
q∗
)
,q− q∗〉+ n∑

i=1

[
fi
(
qi
)− fi(q∗i )] ≥ 0 ∀q ∈K, (6.1)

where

K =
n∏
i=1

Ki, Ki =
{
t ∈ R | 0 ≤ t ≤ βi

}
, i = 1, . . . ,n;

Gi(q) = −p(σq)− qip′(σq), i = 1, . . .n;

σq =
n∑
i=1

qi,

(6.2)
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where p is the price (inverse demand) function, which is supposed to
be continuously differentiable, and fi is the cost function of the ith firm,
which is supposed to be convex, but it is not necessarily differentiable. If
we set V = R

n
+, then we see that our problem coincides with (1.1) and that

assumptions (A1), (A2), and (A3) hold here. Therefore, we can deduce
the existence result for the bounded case from Proposition 4.2.

Proposition 6.1. If βi < +∞ for each i = 1, . . . ,n, then problem (6.1) has a
solution.

In order to establish additional existence and uniqueness results for
problem (6.1) we have to derive P -type properties for the cost mapping
G. To this end, throughout this section we suppose that the price func-
tion p(σ) is nonincreasing and that the industry revenue function µ(σ) =
σp(σ) is concave for σ ≥ 0. These assumptions conform to the usual eco-
nomic behaviour and provide the concavity in qi of the each ith profit
function qip(σ)− fi(qi) (see, e.g., [17]). It was indicated in Section 2 that
the oligopolistic equilibrium problem (2.10) and MVI (6.1) become
equivalent under these assumptions. We now give additional properties
of G which also follow from these assumptions.

Lemma 6.2. It holds that detAk(q) = [−(k − 1)p′(σq
)−µ′′(σq)](−p′(σq))k−1.

The proof of this technical result will be given in the appendix.

Proposition 6.3. The following statements are true:

(i) ∇G(q) is a P0-matrix for every q ∈ V ;
(ii) let p′(σ) < 0 and either µ′′(σ) < 0 or p′′(σ) ≤ 0 for all σ ≥ 0. Then

∇G(q) is a P -matrix for every q ∈ V .

Proof. Since p′(σ) ≤ 0 and µ′′(σ) ≤ 0, it follows from Lemma 6.2 that all
the principal minors of the matrix ∇G(q) are nonnegative. Hence, asser-
tion (i) is true. Next, by Lemma 6.2, all the principal minors of ∇G(q)
will be positive under the assumptions of (ii). It follows that ∇G(q) is a
P -matrix. �

Now we obtain new existence and uniqueness results for MVI (6.1)
with the help of those in Section 4.

Proposition 6.4. (i) Let βi < +∞ and let fi be strictly convex for each i =
1, . . . ,n. Then problem (6.1) has a unique solution.

(ii) Let fi be strongly convex for each i = 1, . . . ,n. Then problem (6.1) has a
unique solution.
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Proof. Due to Proposition 6.3(i), G is a P0-mapping. The assertions (i)
and (ii) follow directly from Corollary 4.5 and Theorem 4.6, respectively.

�

Proposition 6.5. Let p′(σ) < 0 and either µ′′(σ) < 0 or p′′(σ) ≤ 0 for all σ ≥
0. Then MVI (6.1) has at most one solution. If, in addition, βi < +∞ for all
i = 1, . . . ,n, then problem (6.1) has a unique solution.

Proof. Due to Proposition 6.3(ii), G is now a P -mapping. We conclude,
from Proposition 4.1(i), that the first assertion is true, whereas the sec-
ond assertion follows now from Proposition 6.1. �

We also present a similar result in the general unbounded case.

Proposition 6.6. Suppose that there exists δ > 0 such that −p′(σ) ≥ δ and
either −µ′′(σ) ≥ δ or p′′(σ) ≤ 0 for all σ ≥ 0. Then MVI (6.1) has a unique
solution.

The proof of this assertion will be given in the appendix. Thus, the
specialization of the general results for MVIs from Section 4 allowed us
to obtain new existence and uniqueness results for oligopolistic equilib-
rium problems in comparison with the known ones (see [4, 17, 18] and
the references therein).

7. Concluding remarks

In this paper, we have considered the class of mixed variational inequal-
ities (MVIs) which is intermediate between classes of VIs with single-
valued and multivalued cost mappings. We have established new exis-
tence and uniqueness results of solutions of MVIs under rather general
assumptions and presented perfectly and nonperfectly competitive eco-
nomic equilibrium models which satisfy these assumptions.

Taking this observation as a basis, we have obtained also new exis-
tence and uniqueness results for these economic equilibrium problems.
We emphasize that all the results are similar to those for single-valued
problems, but they have been in fact obtained for multivalued ones.

The results above also enable us to develop effective solution methods
for such economic equilibrium problems. For instance, we can convert
MVI into the problem of finding a stationary point of a continuously
differentiable function with the help of the D-gap function approach
(see [11, 12]). Hence, the usual differentiable optimization methods be-
come applicable to economic equilibrium problems containing multival-
ued mappings or nonsmooth functions. In addition, if the cost mapping
does not possess strengthened P -type properties, it is possible to apply
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the full or partial regularization approach (see (4.1), (4.2), and (5.7)) and
obtain an approximate solution with any prescribed accuracy.

Appendix

In this section, we give proofs of the assertions from Sections 4 and 6.

Proof of Proposition 4.2. Consider the function

ϕα(x) = max
y∈K

n∑
i=1

Φα
i

(
x,yi
)
=

n∑
i=1

max
yi∈Ki

Φα
i

(
x,yi
)
, (A.1)

where

Φα
i

(
x,yi
)
=Gi(x)

(
xi −yi

)− 0.5α
(
xi −yi

)2 + fi
(
xi
)− fi(yi) (A.2)

for i = 1, . . . ,n, and α > 0. The function Φα
i (x, ·) is strongly concave, hence,

there exists a unique solution to each inner problem in (A.1), that is,
there exist elements yαi (x) ∈Ki such that

max
yi∈Ki

Φα
i

(
x,yi
)
= Φα

i

(
x,yαi (x)

)
(A.3)

for i = 1, . . . ,n. Using the necessary and sufficient condition of optimality
for each problem, we see that yαi (x) can be redefined as follows:

∃gi ∈ ∂fi
(
yαi (x)

)
:
[
Gi(x) +α

(
yαi (x)−xi

)](
yi −yαi (x)

)
+ gi
(
yi −yαi (x)

) ≥ 0 ∀yi ∈Ki,
(A.4)

or equivalently (see Proposition 3.1),

[
Gi(x) +α

(
yαi (x)−xi

)](
yi −yαi (x)

)
+ fi
(
yi
)− fi(yαi (x)) ∀yi ∈Ki

(A.5)

for all i = 1, . . . ,n. Set yα(x) = (yα1 (x), . . . ,y
α
n(x)). It was shown in [12,

Lemma 2] that the mapping x �→ yα(x) is continuous. Applying now
Brouwer’s fixed point theorem, we conclude that there exists x∗ = yα(x∗).
Setting x = x∗ in (A.5), we deduce that x∗ is a solution to MVI (1.1). The
proof is complete. �

Proof of Theorem 4.4. Suppose for contradiction that there exist x′ and x′′,
x′ �= x′′, which are solutions to MVI (1.1). By Proposition 3.1, we have

∃g ′
i ∈ ∂fi

(
x′
i

)
: Gi(x′)

(
x′′
i −x′

i

)
+ g ′

i

(
x′′
i −x′

i

) ≥ 0,

∃g ′′
i ∈ ∂fi

(
x′′
i

)
: Gi(x′′)

(
x′
i −x′′

i

)
+ g ′′

i

(
x′
i −x′′

i

) ≥ 0
(A.6)
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for all i = 1, . . . ,n. Adding these inequalities yields

[
Gi(x′)−Gi(x′′)

](
x′′
i −x′

i

)
+
(
g ′
i − g ′′

i

)(
x′′
i −x′

i

) ≥ 0, (A.7)

for each i=1, . . . ,n. For brevity, set I={i | x′
i �=x′′

i }. SinceG is a P0-mapping,
there exists an index k ∈ I such that

[
Gk(x′)−Gk(x′′)

](
x′
k −x′′

k

)
= max

1≤i≤n
[
Gi(x′)−Gi(x′′)

](
x′
i −x′′

i

)
. (A.8)

Then, by definition, [Gk(x′)−Gk(x′′)](x′
k
−x′′

k
) ≥ 0. Due to (A.7) we now

obtain

(
g ′
k − g ′′

k

)(
x′′
k −x′

k

) ≥ 0, (A.9)

which is a contradiction, since fk is strictly convex, that is, ∂fk is strictly
monotone because of Lemma 1.3(b). The proof is complete. �

Proof of Theorem 4.6. By Proposition 3.1, the initial problem is equivalent
to the following VI: find x∗ ∈K such that

∃g∗
i ∈ ∂fi

(
x∗
i

)
:
(
Gi

(
x∗)+ εx∗

i

)(
xi −x∗

i

)
+
(
g∗
i − εx∗

i

)(
xi −x∗

i

) ≥ 0 ∀xi ∈Ki, i = 1, . . . ,n;
(A.10)

which can be rewritten equivalently as

∃t∗i ∈ ∂ψi
(
x∗
i

)
: F(ε)

i

(
x∗)(xi −x∗

i

)
+ t∗i
(
xi −x∗

i

) ≥ 0 ∀xi ∈Ki, i = 1, . . . ,n;
(A.11)

where F(ε)
i (x) =Gi(x) + εxi and ψi(σ) = fi(σ)− εσ2/2. Again, on account

of Proposition 3.1, problem (A.11) is equivalent to the MVI: find x∗ ∈K
such that

〈
F(ε)(x∗),x−x∗〉+ n∑

i=1

[
ψi
(
xi
)−ψi(x∗

i

)] ≥ 0 ∀x ∈K. (A.12)

From Lemma 3.6 it follows that F(ε) is a strict P -mapping for every ε > 0.
We will show that each ψi is a convex function for some ε > 0. Since fi is
strongly convex, we see that for all x′

i,x
′′
i and t′i ∈ ∂ψi(x′

i), t
′′
i ∈ ∂ψi(x′′

i ), we
have

(
t′i − t′′i

)(
x′
i −x′′

i

)
=
(
g ′
i − g ′′

i

)(
x′
i −x′′

i

)− ε(x′
i −x′′

i

)(
x′
i −x′′

i

)
(A.13)
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for some g ′
i ∈ ∂fi(x′

i), g
′′
i ∈ ∂fi(x′′

i ), hence

(
t′i − t′′i

)(
x′
i −x′′

i

) ≥ τ(x′
i −x′′

i

)2 − ε(x′
i −x′′

i

)2 ≥ 0 (A.14)

if ε < τ , where τ is the smallest constant of strong monotonicity of ∂fk
(strong convexity of fk). So, ψi is a convex function if 0 < ε < τ .

By Proposition 4.1(ii), problem (A.12) has a unique solution. How-
ever, problem (A.12) is equivalent to (A.11), that is, it is equivalent to
(A.10). This completes the proof. �

Proof of Theorem 4.7. First we note that

∇G(x) =
(
Ak(x) B′

k

B′′
k Ck

)
, (A.15)

where B′
k

is a rectangular matrix which has k rows and n − k columns,
B′′
k is a rectangular matrix which has n − k rows and k columns, and

Ck is an (n − k) × (n − k) matrix. By assumption, there exists ε′ > 0 such
that Ak(x)− ε′Ik is an M-matrix. Without loss of generality, we suppose
that ε′ ≤ τ , where τ is the smallest constant of strong monotonicity of ∂fi
(strong convexity of fi). Let us consider the mapping G̃ : V → R

n, whose
components are defined by

G̃i(x) =

{
Gi(x), if 1 ≤ i ≤ k;
Gi(x) + ε′′xi, if k < i ≤ n;

(A.16)

with 0 < ε′′ < ε′. Clearly, its Jacobian

∇G̃(x) =
(
Ak(x) B′

k

B′′
k Ck + ε′′In−k

)
(A.17)

is an M-matrix (see [8]). Moreover, ∇G̃(x)− γIn is an M-matrix for any
γ > 0 such that 0 < γ < ε′′. By definition, G̃ is a strict P -mapping. Next,
consider the functions

f̃i(xi) =



fi(xi), if 1 ≤ i ≤ k;

fi(xi)− ε′′
x2
i

2
, if k < i ≤ n.

(A.18)

Since fi(xi), i > k are strongly convex, for all x′
i,x

′′
i and g ′

i ∈ ∂fi(x′
i), g

′′
i ∈

∂fi(x′′
i ), we have

(
g ′
i − g ′′

i

)(
x′
i −x′′

i

)− ε′′(x′
i −x′′

i

)(
x′
i −x′′

i

) ≥ (τ − ε′′)(x′
i −x′′

i

)2 ≥ 0. (A.19)
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Hence, ∂fi − ε′′I1 is nonempty and monotone for each i > k, that is, f̃i is
convex for every i = 1, . . . ,n. Due to Proposition 4.1(ii), it follows that the
problem: find x∗ ∈K such that

〈
G̃(x∗),x−x∗〉+ f̃(x)− f̃(x∗) ≥ 0 ∀x ∈K (A.20)

has a unique solution. However, this problem is clearly equivalent to
MVI (1.1) and the result follows. �

Along the same lines, we obtain the result of Theorem 4.8 if we use
Corollary 4.3 instead of Proposition 4.1.

We now turn to the assertions of Section 6. By assumption, the Jaco-
bian of the cost mapping G in (6.1) can be rewritten as follows:

∇G(q) =



β+α1 α1 α1 · · · α1

α2 β+α2 α2 · · · α2
...

...
...

. . .
...

αn αn αn · · · β+αn


 , (A.21)

where β denotes −p′(σq) and αi denotes −p′(σq)− qip′′(σq). We recall that
p(σ) is nonincreasing and µ(σ) = σp(σ) is concave for all σ ≥ 0, hence
p′(σ) ≤ 0 and µ′′(σ) ≤ 0.

Proof of Lemma 6.2. By definition,

detAk(q) =

∣∣∣∣∣∣∣∣∣

β+α1 α1 α1 · · · α1

α2 β+α2 α2 · · · α2
...

...
...

. . .
...

αk αk αk . . . β+αk

∣∣∣∣∣∣∣∣∣
. (A.22)

Adding all the rows to the first one, and subtracting the first column
from others yields

detAk(q) =

∣∣∣∣∣∣∣∣∣∣∣∣

β+
k∑
i=1

αi 0 0 · · · 0

α2 β 0 · · · 0
...

...
...

. . .
...

αk 0 0 . . . β

∣∣∣∣∣∣∣∣∣∣∣∣
= βk−1

(
β+

k∑
i=1

αi

)
. (A.23)



312 Variational inequalities

Hence,

detAk(q) =
(− p′(σq))k−1[− (k + 1)p′

(
σq
)−σqp′′(σq)]

=
(− p′(σq))k−1[− (k − 1)p′

(
σq
)−µ′′(σq)]. (A.24)

�

Proof of Proposition 6.6. By assumption, −p′(σ) ≥ δ > 0 for all σ ≥ 0. Fix
ε ∈ (0,δ). Then,

det
(
Ak(q)− εIk

)
=

∣∣∣∣∣∣∣∣∣

βε +α1 α1 · · · α1

α2 βε +α2 · · · α2
...

...
. . .

...
αk αk · · · βε +αk

∣∣∣∣∣∣∣∣∣
=
(
βε
)k−1

[
βε +

k∑
i=1

αi

]
,

(A.25)

where βε = β− ε, that is,

det
(
Ak(q)− εIk

)
=
(− p′(σq)− ε)k−1[− (k − 1)p′

(
σq
)− ε−µ′′(σq)] > 0

(A.26)

if either −µ′′(σ) ≥ δ or p′′(σ) ≤ 0. Therefore, G is now a strict P -mapping.
Using now Proposition 4.1(ii), we conclude that problem (6.1) has a
unique solution, as desired. �
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