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The independent solutions of the one-dimensional Schrödinger equation
are approximated by means of the explicit summation of the leading con-
stituent WKB series. The continuous matching of the particular solutions
gives the uniformly valid analytical approximation to the wave func-
tions. A detailed numerical verification of the proposed approximation
is performed for some exactly solvable problems arising from different
kinds of potentials.

1. Introduction

Perturbation theory, the variational method and the WKB approxima-
tion are very extensively used in quantum mechanics. If we deal with
perturbation theory or with the variational method then similar ques-
tions arise. How to find the unperturbed Hamiltonian or how to find
the trial function for an arbitrarily given potential? Universal answers
are absent. In this sense both mentioned methods are incomplete. In
contrast, the WKB approximation is directly determined by a given po-
tential. However the conventional WKB approximation has unphysical
singularities. An old problem in semiclassical analysis is the develop-
ment of global uniform approximations to the wave functions. In previ-
ous works [6, 7], an essential improvement of the WKB approach was
introduced for the logarithmic derivatives of the wave functions. In the
present paper, we construct the second-order continuous approximation
to the wave functions. The quality of the approximate wave functions is
verified by means of a comparison with the exact solutions for different
kinds of potentials.
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We consider the linear one-dimensional Schrödinger equation

d2Ψ(q,ħ)
dq2

=
Q(q)
ħ2

Ψ(q,ħ), (1.1)

where Q(q) = 2m(V (q)−E) for an arbitrary potential V (q). The logarith-
mic derivative

Y (q,ħ) =
d lnΨ(q,ħ)

dq
(1.2)

of a wave function Ψ(q,ħ) satisfies the nonlinear Riccati equation

dY (q,ħ)
dq

+
(
Y (q,ħ)

)2 =
Q(q)
ħ2

. (1.3)

The WKB approach deals just with functions Y (q,ħ). In this approach,
two independent solutions Y±(q,ħ) of the Riccati equation are repre-
sented by their asymptotic expansions

Y±
as(q,ħ) = ħ−1

(
±Q1/2 +

∞∑
n=1

ħnY±
n (q)

)
(1.4)

in powers of Plank’s constant ħ. The usual WKB approximation con-
tains a finite number of leading terms Y±

n (q) from the complete expan-
sions Y±

as(q,ħ). This approximation is not valid at turning points where
Q(q) = 0.

As it is well known, the WKB series is divergent. Numerous refer-
ences regarding asymptotic expansions may be found in [4]. The direct
summation of a divergent series does not exist. By summing one means
finding a function to which this series is the asymptotic expansion [3].
In recent years many studies have been devoted to extracting some use-
ful information about the exact eigenfunctions from the divergent WKB
series (see, e.g., [5] and the references therein). There are several investi-
gations on the properties of the WKB terms [2, 11]. Unlike entirely exact
but very complicated methods for some classes of potentials (see, e.g.,
[12]) our new way of using the WKB series gives an approximate but
very simple and universal method of solving the Schrödinger equation.

2. Explicit summation of the constituent WKB series

Since [7] is likely to be inaccessible for the large majority of readers we
reproduce previous results. First of all, the analysis of the well-known
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recursion relations [3, 2]

Y±
n+1 = −(2Y±

0

)−1

(
n∑
j=1

Y±
j Y

±
n+1−j +

dY±
n

dq

)
, Y±

0 = ±Q1/2 (2.1)

shows that the WKB terms are of the form

Y±
n (q) =Q(1−3n)/2

n∑
j=1

A±
n,j

(
Q′(q),Q′′(q), . . . ,Q(j)(q)

)
Qj−1, (2.2)

where Q′(q)=dQ(q)/dq, Q′′(q) = d2Q(q)/dq2, and Q(j)(q) = djQ(q)/dqj .
Second, the substitution of (2.2) into (1.4) allows us to reconstruct the
asymptotic WKB series as an infinite sum

Y±
as(q,ħ) = ±ħ−1Q1/2 +

∞∑
j=1

Z±
as,j(q,ħ) (2.3)

of new constituent (partial) asymptotic series

Z±
as,j(q,ħ) =

(
ħ2/3)j−2

∞∑
n=j

(
Q

ħ2/3

)j−(3n+1)/2

A±
n,j

(
Q′(q),Q′′(q), . . . ,Q(j)(q)

)
(2.4)

in powers of the ratio Q/ħ2/3. With the help of the recursion relations
(2.1) we derive simple expressions

A±
n,1 =

(
Q′)nB±

n,1, A±
n,2 =Q′′(Q′)n−2

B±
n,2 (2.5)

for two leading sequences of coefficients A±
n,j . Here the numbers B±

n,1 are
determined by the following recursion relations:

B±
n+1,1 = ∓

(
1
2

n∑
k=1

B±
k,1B

±
n+1−k,1 +

1− 3n
4

B±
n,1

)
, n ≥ 1, B±

1,1 = −1
4
, (2.6)

and B±
n,2 is connected with B±

n,1 as follows:

B±
n,2 = −2

5
nB±

n,1, n ≥ 2. (2.7)

The complete series Y±
as(q,ħ) are approximated by a finite number

of leading constituent series Z±
as,j(q,ħ) in contrast to the use of a finite

number of leading terms Y±
n (q) in the conventional WKB approach. If
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we can find functions Z±
j (q,ħ) which are represented by asymptotic ex-

pansions Z±
as,j(q,ħ), then we obtain new approximations to the solutions

of the Riccati equation. The number of used constituent series corre-
sponds to the order of a proposed approximation. For instance the ex-
pressions ±ħ−1Q1/2 +Z±

1 (q,ħ) are interpreted as the first-order approx-
imations. In this paper, we consider only the second-order approxima-
tions ±ħ−1Q1/2 +Z±

1 (q,ħ) +Z±
2 (q,ħ).

Introducing the dimensionless variable

a(q,ħ) =
1

ħ2/3

Q(q)∣∣Q′(q)
∣∣2/3

, (2.8)

we are able to rewrite the leading constituent expansions in the form

±ħ−1Q1/2 +Z±
as,1(q,ħ) +Z±

as,2(q,ħ) =
1

ħ2/3

Q′

|Q′|2/3
y±

as,1(a) +
Q′′

Q′ y
±
as,2(a),

(2.9)

where we separate the asymptotic series in a

y±
as,1(a) = ±a1/2 +

∞∑
n=1

B±
n,1a

1−(3n+1)/2,

y±
as,2(a) =

∞∑
n=2

B±
n,2a

2−(3n+1)/2.

(2.10)

The leading terms

±a1/2 − 1
4
a−1, (2.11)

±1
8
a−3/2 +

9
32

a−3, (2.12)

of these series may be deduced by using (2.6) and (2.7).
Our aim is to sum constituent series (2.10). In other words, we must

find functions y±
j (a) which are represented by these expansions. In order

to perform the identification we substitute the approximate function

Y±
ap(q,ħ) =

1
ħ2/3

Q′

|Q′|2/3
y±

1 (a) +
Q′′

Q′ y
±
2 (a) (2.13)
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into the Riccati equation (1.3). As a result we get the following equations:

dy±
1

da
+
(
y±

1

)2 = a, (2.14)

dy±
2

da
+ 2y±

1y
±
2 =

1
3

(
2a

dy±
1

da
−y±

1

)
, (2.15)

for the functions y±
j (a). Direct verification shows that the asymptotic ex-

pansions (2.10) satisfy these equations.
Equation (2.14) is the Riccati equation for the logarithmic derivatives

of linear combinations of the well-studied Airy functions Ai(a) and Bi(a)
[1]. We select particular solutions by means of the known asymptotics
(2.11). In the classically allowed region where Q(q) < 0 (a < 0) we derive
the explicit expressions

y±
1 (a) =

d

da
ln
(
Bi(a)∓ iAi(a)

)
(2.16)

and in the classically forbidden region where Q(q) > 0 (a > 0) we get the
other solutions

ỹ−
1 (a) =

d

da
lnAi(a), ỹ+

1 (a) =
d

da
lnBi(a). (2.17)

Finally, we can obtain the solutions of the linear equation (2.15) with
asymptotics (2.12) in the closed form

y±
2 (a) =

1
30
[− 8a2(y±

1 (a)
)2 − 4ay±

1 (a) + 8a3 − 3
]
,

ỹ±
2 (a) =

1
30
[− 8a2(ỹ±

1 (a)
)2 − 4aỹ±

1 (a) + 8a3 − 3
]
.

(2.18)

Although the functions (2.16), (2.17), and (2.18) have the asymptotic
expansions (2.10) if |a| is large it should be stressed that the obtained
functions possess different expansions if |a| is small. Replacing y±

j by ỹ±
j

in expression (2.13) we get the second pair

Ỹ±
ap(q,ħ) =

1
ħ2/3

Q′

|Q′|2/3
ỹ±

1 (a) +
Q′′

Q′ ỹ
±
2 (a) (2.19)

of approximate solutions.
It is not surprising that the asymptotics of our approximation coin-

cide with the WKB asymptotics far away from the turning points. At the
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same time our approximation reproduces the known [3] satisfactory ap-
proximation near the turning points. Naturally, our approximation gives
the exact result for the linear potential V (q) = kq of a uniform field. Note
that this potential represents an example of the explicit summation of
the WKB series for the logarithmic derivative of a wave function.

3. Approximate wave functions for the two-turning-point problem

With the aid of the uniformly valid approximation to solutions of the Ric-
cati equation derived in the preceding section, we can now construct ap-
proximate wave functions. We consider the problem with two real turn-
ing points q− and q+ (q+ > q−). The potential has its minimum at point qm.
The first and second derivatives of the smooth potential are continuous
at point qm.

Two pairs of independent solutions of the Schrödinger equation are
approximated by functions

Ψ±
ap(q) = exp

(∫q

Y±
ap(q

′)dq′
)
,

Ψ̃±
ap(q) = exp

(∫q

Ỹ±
ap(q

′)dq′
)
.

(3.1)

In accordance with the requirements of quantum mechanics, we must
retain only the decreasing solutions Ψ̃−

ap(q) in the classically forbidden
regions (q < q− and q > q+). In the classically allowed region (q− < q <
q+), we retain a linear combination of two oscillatory solutions Ψ+

ap(q)
and Ψ−

ap(q). By matching particular solutions at the turning points q−
and q+, we obtain the continuous approximate wave function which is
represented by the following formulas:

Ψ1(q) = Ccos
π

3
exp

(
−
∫q−

q

Ỹ−
ap(q

′)dq′
)

(3.2)

if q < q−,

Ψ2(q) = Cexp

(∫q

q−

Y+
ap(q

′) +Y−
ap(q

′)

2
dq′
)

× cos

(∫q

q−

Q′

|Q′|
Y+

ap(q
′)−Y−

ap(q
′)

2i
dq′ − π

3

) (3.3)
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if q− < q < q+, and

Ψ3(q) = C(−1)n cos
π

3
exp

(∫q

q+

Ỹ−
ap(q

′)dq′
)

× exp

(∫q+

q−

Y+
ap(q

′) +Y−
ap(q

′)

2
dq′
) (3.4)

if q > q+.
Here we have the new quantization condition

∫q+

q−

Q′

|Q′|
Y+

ap(q,E)−Y−
ap(q,E)

2i
dq = π

(
n+

2
3

)
, n = 0,1,2, . . . (3.5)

which determines the spectral value Esp(n) of energy implicitly. We de-
note the wave functions with E = Esp(n) as Ψap(q,n). Then we may
choose the value of an arbitrary constant C in order to ensure the usual
normalization 〈Ψap(n)|Ψap(n)〉 = 1 where |Ψap(n)〉 is the vector in
Hilbert space which corresponds to the function Ψap(q,n). The proposed
approximation is an alternative to the well-known [3, 10] Langer ap-
proximation [9] which employs an ħ-expansion different from the WKB
series.

Thus the approximate eigenfunctions are determined completely.
However a question arises regarding the optimal approximate eigenval-
ues, because the value Esp(n) is not a unique choice.

Since explicit expressions for wave functions have already been ob-
tained, we are able to calculate the expectation values

Ē(n) =
〈
Ψap(n)

∣∣Ĥ∣∣Ψap(n)
〉

(3.6)

of the Hamiltonian

Ĥ = − ħ2

2m
d2

dq2
+V (q). (3.7)

In accordance with the eigenvalue problem

Ĥ|Ψ〉 −E|Ψ〉 = 0 (3.8)

we construct the discrepancy vector
∣∣D(e,n)

〉
= Ĥ
∣∣Ψap(n)

〉− e
∣∣Ψap(n)

〉
, (3.9)

where e is an arbitrary parameter while Ĥ and |Ψap(n)〉 are given. It
is natural to require that the discrepancy vector should not contain a
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component proportional to the approximate eigenvector. In other words,
we consider the orthogonality condition

〈
Ψap(n)|D(e,n)

〉
= Ē(n)− e = 0 (3.10)

as a criterion for the selection of the optimal approximate eigenvalue. As
a result we just get Ē(n) while Esp(n) does not fulfil the above require-
ment. It should also be noted that the scalar product 〈D(e,n)|D(e,n)〉 is
minimized at e = Ē(n).

4. Verification of the proposed approximation

Now we must verify our approximation numerically for exactly solv-
able problems. We compare the normalized approximate wave functions
Ψap(q,n) with the normalized exact wave functions Ψex(q,n).

In order to estimate the closeness of two functions f1(q) and f2(q), we
consider two corresponding vectors |f1〉 and |f2〉 in Hilbert space. Then
we construct a deviation vector |∆f〉 = |f1〉 − |f2〉 and a scalar product

〈
∆f |∆f

〉
=
〈
f1|f1

〉
+
〈
f2|f2

〉− 〈f1|f2
〉− 〈f2|f1

〉
. (4.1)

Now we can define the relative deviation

δf = 1−
〈
f1|f2

〉
+
〈
f2|f1

〉
〈
f1|f1

〉
+
〈
f2|f2

〉 (4.2)

as a numerical estimate of the closeness of two functions. Note that δf =
0 if f1(q) = f2(q).

Thus, we get the following estimate:

δΨ(n) = 1− 〈Ψex(n)|Ψap(n)
〉

(4.3)

in the case of the normalized real functions Ψex(q,n) and Ψap(q,n). The
same numerical comparison may be performed

δΨ′(n) = 1−
2
〈
Ψ′

ex(n)|Ψ′
ap(n)

〉
〈
Ψ′

ex(n)|Ψ′
ex(n)

〉
+
〈
Ψ′

ap(n)|Ψ′
ap(n)

〉 (4.4)

for the first derivatives Ψ′(q) = dΨ(q)/dq. Naturally, we can define anal-
ogous estimates for higher derivatives.
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Moreover, we estimate the closeness of functions ĤΨap(q,n) and
ĤΨex(q,n) with the help of the following quantity:

δĤΨ(n) =

〈
Ψap(n)

∣∣Ĥ2
∣∣Ψap(n)

〉
+Eex(n)2(1− 2

〈
Ψex(n)|Ψap(n)

〉)
〈
Ψap(n)

∣∣Ĥ2
∣∣Ψap(n)

〉
+Eex(n)2

, (4.5)

where Eex(n) is the exact energy value.
In addition, we compare two functions ĤΨap(q,n) and Ē(n)Ψap(q,n).

This comparison may be performed when we do not know the exact
solutions. As a result we get the relative discrepancy

d(n) =

〈
Ψap(n)

∣∣Ĥ2
∣∣Ψap(n)

〉− Ē(n)2〈
Ψap(n)

∣∣Ĥ2
∣∣Ψap(n)

〉
+ Ē(n)2

(4.6)

which is directly connected with the Schrödinger equation under con-
sideration.

Finally, we characterize our approximation by the usual relative en-
ergy error

�E(n) =
Ē(n)
Eex(n)

− 1. (4.7)

The verification is performed for three potentials with different as-
ymptotics. They are the harmonic oscillator potential

V (q) = kq2, (4.8)

the Morse potential

V (q) =
γ2ħ2α2

2m
(
e−2αq − 2e−αq

)
, (4.9)

and the modified Pöschl-Teller potential

V (q) =
λ(λ− 1)ħ2α2

2mcosh2(αq)
. (4.10)

The exact solutions of the Schrödinger equation for these potentials may
be found in [8].

Table 4.1 shows that our approximation gives fairly accurate results
for all considered potentials and for all considered quantities. Hence,
the performed reconstruction of the WKB series and subsequent explicit
summation of the leading constituent (partial) series yield the satisfac-
tory (qualitative and quantitative) description of wave functions.
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Table 4.1. Numerical verification of the proposed approximation.

n δΨ(n) δΨ′(n) δĤΨ(n) d(n) �E(n)

The harmonic oscillator potential

0 2.16 · 10−4 4.60 · 10−3 5.79 · 10−2 5.32 · 10−2 4.52 · 10−3

1 1.59 · 10−5 7.12 · 10−5 1.33 · 10−4 6.09 · 10−5 5.64 · 10−5

2 3.86 · 10−6 1.05 · 10−5 1.48 · 10−5 3.78 · 10−6 7.15 · 10−6

3 1.50 · 10−6 3.10 · 10−6 4.12 · 10−6 7.31 · 10−7 1.89 · 10−6

The Morse potential (γ = 4.5)

0 2.76 · 10−4 5.98 · 10−3 4.59 · 10−3 5.77 · 10−3 −1.45 · 10−3

1 4.95 · 10−5 2.34 · 10−4 2.45 · 10−4 3.56 · 10−4 −1.60 · 10−4

2 2.26 · 10−5 8.22 · 10−5 3.72 · 10−4 4.51 · 10−4 −1.01 · 10−4

3 1.77 · 10−5 6.43 · 10−5 2.35 · 10−3 2.49 · 10−3 −1.59 · 10−4

The modified Pöschl-Teller potential (γ = 5)

0 2.31 · 10−4 6.60 · 10−3 4.49 · 10−3 5.70 · 10−3 −1.44 · 10−3

1 2.91 · 10−5 2.10 · 10−4 1.65 · 10−4 2.97 · 10−4 −1.62 · 10−4

2 1.98 · 10−5 6.17 · 10−5 2.36 · 10−4 3.18 · 10−4 −1.01 · 10−4

3 5.22 · 10−5 4.90 · 10−5 1.95 · 10−3 2.05 · 10−3 −1.48 · 10−4
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