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Motivated by the recent work of Sjöberg and Ziegler, who obtained a complete
characterization of the pairs ( f0, f03) of flag numbers for 4-polytopes, in this
paper we give some new results about the possible flag vector pairs ( f1, f04) of
5-polytopes.

1. Introduction

Let P be a d-dimensional convex polytope. For each 0≤ i ≤ d−1, let fi (P) denote
the number of i-dimensional faces of P. One fundamental combinatorial invariant
of P is the f -vector

f (P)= ( f0(P), f1(P), . . . , fd−1(P)),

and characterizing all possible f -vectors of convex polytopes has been one of
the central problems in convex geometry. For simplicity, throughout the paper a
d-dimensional convex polytope will be called a d-polytope.

Let F d denote the set of all f -vectors of d-polytopes, and let 5i, j (F d) denote
the projection of F d onto the coordinates fi and f j . Steinitz [1906] completely
determined all possible f -vectors of 3-polytopes:

Theorem 1.1. The set 50,1(F 3) of all f -vectors ( f0, f1) of 3-polytopes is equal to{
(v, e)

∣∣ 3
2v ≤ e ≤ 3v− 6

}
.

In dimensions d ≥ 4, any d-polytope P satisfies

d
2

f0(P)≤ f1(P)≤
( f0(P)

2

)
. (1-1)

However, any complete determination of all possible f -vectors of d-polytopes for
d ≥ 4 is still elusive. As some partial results, for d = 4 the projections of the
f -vector onto two of the four coordinates have been determined by Grünbaum
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[1967], Barnette and Reay [1973], and Barnette [1974] (see [Sjöberg and Ziegler
2018, Section 2] for more details).

Kusunoki and Murai [2019] characterized the first two entries of the f -vectors
of 5-polytopes.

Theorem 1.2. Let L =
{(

v,
[ 5

2v+ 1
]) ∣∣ v ≥ 7

}
, and let

G = {(8, 20), (9, 25), (13, 35)}.

Then we have

50,1(F5)=
{
(v, e)

∣∣∣ 5
2
v ≤ e ≤

(
v

2

)}
\(L ∪G).

The same result has been independently proved by Pineda-Villavicencio, Ugon,
and Yost [2018] (see also [Pineda-Villavicencio, Ugon, and Yost 2019]).

For a subset S of {0, 1, 2, . . . , d − 1}, let fS(P) denote the number of chains

F1 ⊂ F2 ⊂ · · · ⊂ Fr

of faces Fi , 1≤ i ≤ r , of P such that

S = {dim F1, dim F2, . . . , dim Fr }.

The flag vector of P is defined to be

( fS(P))S⊂{0,1,2,...,d−1}.

For the sake of simplicity, from now on we use the notation fi1i2...ik (P) instead of
f{i1,i2,...,ik}(P) for any subset {i1, i2, . . . , ik} of {0, 1, 2, . . . , d − 1}.

In this paper, for any two subsets S1 and S2 of {0, 1, 2, . . . , d − 1} a pair
( fS1(P), fS2(P)), or simply ( fS1, fS2), of flag numbers of P will be called a flag
vector pair. More generally, for any k not necessarily mutually disjoint subsets
S1, S2, . . . , Sk of {0, 1, 2, . . . , d − 1}, a k-tuple

( fS1(P), fS2(P), . . . , fSk (P)),

or simply ( fS1, fS2, . . . , fSk ), of flag numbers of P will be called a flag vector
k-tuple.

We denote by 5S1,S2,...,Sk the projection of the flag vector ( fS(P))S⊂{0,1,2,...,d−1}

onto its coordinates fS1, fS2, . . . , fSk . We call ( fS1, fS2, . . . , fSk ) a polytopal flag
vector k-tuple if

( fS1, fS2, . . . , fSk )

belongs to the image of the set of all flag vectors of d-dimensional polytopes under
the projection map 5S1,S2,...,Sk , that is, if there is a d-polytope P such that

( fS1(P), fS2(P), . . . , fSk (P))= ( fS1, fS2, . . . , fSk ).

Recently, Sjöberg and Ziegler [2018] obtained a complete characterization of
the pairs ( f0, f03) of flag numbers for 4-polytopes:
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Theorem 1.3. Let

E =
{
(6, 24), (6, 25), (6, 28), (7, 28), (7, 30), (7, 31), (7, 33), (7, 34), (7, 37),

(7, 40), (8, 33), (8, 34), (8, 37), (8, 40), (9, 37), (9, 40), (10, 40), (10, 43)

}
.

Then the set of all flag vector pairs ( f0, f03) of 4-polytopes is equal to{
( f0, f03)

∣∣∣∣ 20≤ 4 f0 ≤ f03 ≤ 2 f0( f0− 3),

f03 6= 2 f0( f0− 3)− k, k ∈ {1, 2, 3, 5, 6, 9, 13}

}
\E .

For the proof of Theorem 1.3, the classification of all combinatorial types of
4-polytopes with up to eight vertices by Altshuler and Steinberg [1984; 1985]
played an important role.

Our primary aim of this paper is to provide some new results about the flag
vector pairs ( f1, f04) of 5-polytopes:

Theorem 1.4. Let P be a 5-polytope. Then the flag vector pairs ( f1, f04) of 5-
polytopes satisfy the following inequalities:

(1) For a given flag number f04(P), we have

5
4

(
7+

√
1+ 4

5 f04(P)
)
≤ f1(P) < 1

4 f04(P)( f04(P)− 3). (1-2)

(2) For a given flag number f1(P), we have

1
2

(
3+

√
9+ 16 f1(P)

)
< f04(P)≤ 4

5 f1(P)2
− 14 f1(P)+ 60. (1-3)

Remark 1.5. (1) The lower (resp. upper) bound of the flag vector pairs ( f1, f04)

given in Theorem 1.4(1) (resp. (2)) are very sharp, since there is an explicit example,
such as a 5-simplex with ( f1, f04)= (15, 30), which satisfies the equalities in (1-2)
and (1-3).

(2) The upper (resp. lower) bound of the flag vector pairs ( f1, f04) given in
Theorem 1.4(1) (resp. (2)) might be improved further by using much sharper
inequality instead of

∑k
i=1 x2

i <
(∑k

i=1 xi
)2 for any positive xi > 0 with 1≤ i ≤ k

or by any other means (see Lemma 2.1 for more details). In this paper, we do not
pursue this issue further, though.

(3) The question of whether or not all vector pairs ( f1, f04) satisfying the inequal-
ities (1-2) and (1-3) given in Theorem 1.4 are flag vector pairs of 5-polytopes is
unknown, and the technique of this paper is insufficient to answer such a question.

This paper is organized as follows. In Section 2, we give a proof of Theorem 1.4
by a series of lemmas. In Section 3, we provide some concrete examples of 5-
polytopes satisfying the inequalities given in Theorem 1.4 for the flag vector pairs
( f1, f04) of 5-polytopes. In order to construct such examples, we make use of the
well-known stacking and truncating operations.
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2. Proof of Theorem 1.4

We begin with the following lemmas.

Lemma 2.1. The flag vector pair ( f1(P), f04(P)) of a 5-polytope P satisfies

f1(P) < 1
4 f04(P)( f04(P)− 3).

Proof. Let F be any facet of the 5-polytope P. Then it follows from [Sjöberg and
Ziegler 2018, Theorem 2.1] that

f3(F)≤ 1
2 f0(F)( f0(F)− 3).

Thus it is easy to obtain∑
F⊂P

f3(F)≤
1
2

∑
F⊂P

f 2
0 (F)−

3
2

∑
F⊂P

f0(F). (2-1)

Since
k∑

i=1

x2
i <

( k∑
i=1

xi

)2

for any positive xi (1≤ i ≤ k), it follows from (2-1) that

f34(P)=
∑
F⊂P

f3(F) <
1
2

(∑
F⊂P

f0(F)

)2

−
3
2

∑
F⊂P

f0(F)

=
1
2 f04(P)2

−
3
2 f04(P). (2-2)

By considering the dual polytope P∗ of P, by (2-2) we can obtain

2 f1(P∗)= f01(P∗) < 1
2 f04(P∗)( f04(P∗)− 3).

Since P is an arbitrary polytope, so is its dual P∗. Therefore, we can obtain

f1(P) < 1
4 f04(P)( f04(P)− 3). �

Lemma 2.2. The flag vector pair ( f0(P), f04(P)) of a 5-polytope P satisfies

5 f0(P)≤ f04(P)≤ 5( f0(P)− 3)( f0(P)− 4).

Proof. Note first that every vertex of a d-polytope meets at least d facets. Thus we
have 5 f0(P)≤ f04(P), where equality holds if and only if P is a simple polytope.

On the other hand, it follows from [Sjöberg and Ziegler 2018, Lemma 2.6]
(or [Billera and Björner 1997, Theorem 18.5.9]) that for any d-polytope Q with
n vertices and for any subset S ⊂ {0, 1, 2, . . . , d − 1} we have

fS(Q)≤ fS(Cd(n)),
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where Cd(n) denotes the d-dimensional cyclic polytope with n = f0(Q) vertices.
Hence, we have

f04(P)≤ f04(C5(n))= 5 f4(C5(n)). (2-3)

Here, the second equality holds because C5(n) is simplicial, and the first inequality
becomes an equality if and only if P is neighborly.

On the other hand, by using the formula in [Buchstaber and Panov 2002,
Lemma 1.34] we can directly calculate

f4(C5(n))=

2∑
q=0

(q
0

)(n+q−6
q

)
+

2∑
p=0

(5− p
5− p

)(n+ p−6
p

)
= (n− 3)(n− 4).

Hence, it follows from (2-3) that

f04(P)≤ 5 f4(C5(n))= 5( f0(P)− 3)( f0(P)− 4). �

Lemma 2.3. The flag vector pair ( f1(P), f04(P)) of a 5-polytope P satisfies

f1(P)≥ 5
4

(
7+

√
1+ 4

5 f04(P)
)
.

Proof. By Lemma 2.2, we have

f0(P)2
− 7 f0(P)+ 12− 1

5 f04(P)≥ 0.

Thus, since f0(P)≥ 6, it is easy to obtain

f0(P)≥ 1
2

(
7+

√
1+ 4

5 f04(P)
)
. (2-4)

Recall now that f0(P)≤ 2
5 f1(P) by (1-1). Hence, it follows from (2-4) that

f1(P)≥ 5
4

(
7+

√
1+ 4

5 f04(P)
)
,

as desired. �

Theorem 1.4(1) is an immediate consequence of Lemmas 2.1 and 2.3.
Next, we want to prove Theorem 1.4(2). We begin with the generalized Dehn–

Sommerville equations, given in the following theorem (see [Sjöberg and Ziegler
2018, Theorem 2.4] and [Bayer and Billera 1985, Theorem 2.1] for more details).

Theorem 2.4. Let P be a d-polytope, and let S be a subset of {0, 1, 2, . . . , d − 1}.
If {i, k} is a subset of S∪{−1, d} such that i < k−1 and such that there is no j ∈ S
for which i < j < k, then

k−1∑
j=i+1

(−1) j−i−1 fS∪{ j}(P)= fS(P)(1− (−1)k−i−1).



1188 HYE BIN CHO AND JIN HONG KIM

Corollary 2.5. The flag vector 4-tuple ( f01(P), f02(P), f03(P), f04(P)) of a 5-
polytope P satisfies

f01(P)− f02(P)+ f03(P)− f04(P)= 0. (2-5)

Proof. Let S = {0}, i = 0, and k = 5. By applying Theorem 2.4 to these choices of
S, i , and k, it is immediate to obtain (2-5). �

Lemma 2.6. The flag vector 3-tuple ( f1(P), f02(P), f04(P)) of a 5-polytope P
satisfies

2 f1(P)− f02(P)+ f04(P)≤ 0.

Proof. As in the proof of Lemma 2.1, let F denote any facet of P. By [Sjöberg and
Ziegler 2018, Theorem 2.2], we have

f1(F)≥ 2 f0(F).

Thus, it is easy to obtain

f14(P)=
∑
F⊂P

f1(F)≥ 2
∑
F⊂P

f0(F)= 2 f04(P). (2-6)

By duality, it follows from (2-6) that

f03(P)≥ 2 f04(P). (2-7)

On the other hand, by Corollary 2.5 together with (2-6) we also have

f04(P)= f01(P)− f02(P)+ f03(P)

≥ f01(P)− f02(P)+ 2 f04(P).

Since 2 f1(P)= f01(P), finally we obtain

2 f1(P)− f02(P)+ f04(P)≤ 0,

as desired. �

Lemma 2.7. The flag vector pair ( f0(P), f02(P)) of a 5-polytope P satisfies

f02(P)≤ 6( f0(P)2
− 6 f0(P)+ 10).

Proof. As in the proof of Lemma 2.2, by applying the upper bound theorem stated
in [Sjöberg and Ziegler 2018, Lemma 2.6] (see also [Billera and Björner 1997,
Theorem 18.5.9]) we obtain

f02(P)≤ f02(C5(n))= 3 f2(C5(n)),

where f0(P)= n and the fact that C5(n) is a simplicial polytope was used in the
last equality.
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On the other hand, by using the formula of f2(C5(n)) given in [Buchstaber and
Panov 2002, Lemma 1.34] it is straightforward to compute

f2(C5(n))=

2∑
q=0

(q
2

)(n+q−6
q

)
+

2∑
p=0

(5− p
2

)(n+ p−6
p

)
=

(n−4
2

)
+

(5
2

)(n−6
0

)
+

(4
2

)(n−5
1

)
+

(3
2

)(n−4
2

)
= 2(n2

− 6n+ 10)= 2( f0(P)2
− 6 f0(P)+ 10). �

Lemma 2.8. The flag vector pair ( f1(P), f04(P)) of a 5-polytope P satisfies

f04(P)≤ 1
25(24 f1(P)2

− 410 f1(P)+ 1500).

Proof. By Lemma 2.6, it is easy to obtain

f04(P)≤−2 f1(P)+ f02(P)

≤−2 f1(P)+ 6( f0(P)2
− 6 f0(P)+ 10)

≤−2 f1(P)+ 6
( 4

25 f1(P)2
−

12
5 f1(P)+ 10

)
=

1
25(24 f1(P)2

− 410 f1(P)+ 1500),

where we used f0(P)≤ 2
5 f1(P) and f0(P)≥ 6 in the third inequality. �

In fact, it turns out that for any values of f1(P) > 15 the upper bound of f04(P)

given in Lemma 2.8 can be improved further by using (1-2).

Lemma 2.9. The flag vector pair ( f1(P), f04(P)) of a 5-polytope satisfies

f04(P)≤ 4
5 f1(P)2

− 14 f1(P)+ 60.

Proof. For the proof, note that by Lemma 2.3 we have

f1(P)≥ 5
4

(
7+

√
1+ 4

5 f04(P)
)
.

Thus, it is easy to obtain

f04(P)≤ 4
5 f1(P)2

− 14 f1(P)+ 60. �

For any 5-polytopes, f1(P)≥ 15. Thus it is straightforward to show that

4
5 f1(P)2

− 14 f1(P)+ 60≤ 1
25(24 f1(P)2

− 410 f1(P)+ 1500),

where equality holds if and only if f1(P)= 15.
Finally, we are in a position to give a proof of Theorem 1.4(2):

Theorem 2.10. Given a flag number f1(P) of a 5-polytope P, f04(P) satisfies

1
2(3+

√
9+ 16 f1(P)) < f04(P)≤ 4

5 f1(P)2
− 14 f1(P)+ 60.
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Proof. By Lemma 2.9, it suffices to prove the first inequality. Indeed, recall from
Lemma 2.1 that we have

4 f1(P) < f04(P)( f04(P)− 3), i.e., f04(P)2
− 3 f04(P)− 4 f1(P) > 0.

This immediately implies

f04(P) > 1
2(3+

√
9+ 16 f1(P)). �

3. Some examples

The aim of this section is to provide some examples of 5-polytopes whose flag
vector pairs ( f1, f04) satisfy the inequalities (1-2) and (1-3) given in Theorem 1.4.
In order to construct such examples, we use the well-known operations of stacking
and truncating. In many instances, these operations turn out to be essential in
finding new examples of polytopes for possible polytopal flag vector pairs.

To begin with, we have the following lemma.

Lemma 3.1. Let P be a 5-polytope with at least one simple facet F , and let v be a
point beyond F and beneath all other facets of P. Let Q be the 5-polytope obtained
by stacking the vertex v over P; i.e., let Q be the convex hull of v and P. Then we
have the identities

f0(Q)= f0(P)+ 1,

f1(Q)= f1(P)+ 5,

f04(Q)= f04(P)+ 20.

Proof. By the way of the construction of Q, it suffices to show the last identity. To
see it, note first that F is a 4-simplex with five vertices. If we apply the stacking
operation to P with such a vertex v over F , then it is easy to see that the flag
number f04 increases by 5

(5
4

)
and decreases by 5. Thus the net change of f04 is

equal to 20, and so we have

f04(Q)= f04(P)+ 20. �

Let P be a d-polytope with a vertex v, and let H be a hyperplane intersecting
the interior of P such that on one side of H the only vertex of P is v. Then we
can obtain a new polytope Q by cutting off the side of H that contains v. This
operation of obtaining a new polytope is called a truncating at a vertex.

The following lemma holds.

Lemma 3.2. Let P be a 5-polytope with at least one simple vertex v, and let R
be the 5-polytope obtained by truncating the vertex v from P. Then we have the
identities
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f0(R)= f0(P)+ 4,

f1(R)= f1(P)+ 10,

f04(R)= f04(P)+ 20.

Proof. By the way of the construction of R, once again it suffices to prove the last
equality. Note first that by the truncating operation we have five new vertices, all of
which are simple. Thus the flag number f04 increases by 5× 5 and decreases by 5
coming from the old vertex v. This implies f04(R)= f04(P)+ 20, as required. �

Note that the polytopes obtained through stacking over a simple vertex v and
truncating at v all have a simple vertex and a simplex facet. Thus we can repeatedly
stack vertices on simplex facets and truncate simple vertices.

With these understood, let P be a 5-polytope P with a 4-simplex facet and
a simple vertex. By truncating simple vertices l times and stacking vertices on
4-simplex facets k times inductively, we can obtain a new 5-polytope Q with the
flag vector pair

( f1(Q), f04(Q))= ( f1(P)+ 5k+ 10l, f04(P)+ 20k+ 20l), k, l ≥ 0. (3-1)

Let n = k+ l. Then it follows from (3-1) that

( f1(Q), f04(Q))= ( f1(P)+10n−5k, f04(P)+20n), n≥ 0, 0≤ k ≤ n. (3-2)

As a special case, let P be a 5-simplex. Then the flag vector pair ( f1(P), f04(P))

is equal to (15, 30). Thus, by (3-2) we can obtain the flag vector pair

( f1(Q), f04(Q))= (10n− 5k+ 15, 20n+ 30), n ≥ 0, 0≤ k ≤ n.

One may check directly that the flag vector pair ( f1(Q), f04(Q)) satisfies the
inequalities (1-2) and (1-3) given in Theorem 1.4.
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