\bullet
 involve

 a journal of mathematicsOn some obstructions of
flag vector pairs (f_{1}, f_{04}) of 5-polytopes
Hye Bin Cho and Jin Hong Kim

On some obstructions of flag vector pairs $\left(f_{1}, f_{04}\right)$ of 5-polytopes

Hye Bin Cho and Jin Hong Kim

(Communicated by Joshua Cooper)

Motivated by the recent work of Sjöberg and Ziegler, who obtained a complete characterization of the pairs $\left(f_{0}, f_{03}\right)$ of flag numbers for 4-polytopes, in this paper we give some new results about the possible flag vector pairs $\left(f_{1}, f_{04}\right)$ of 5-polytopes.

1. Introduction

Let P be a d-dimensional convex polytope. For each $0 \leq i \leq d-1$, let $f_{i}(P)$ denote the number of i-dimensional faces of P. One fundamental combinatorial invariant of P is the f-vector

$$
f(P)=\left(f_{0}(P), f_{1}(P), \ldots, f_{d-1}(P)\right),
$$

and characterizing all possible f-vectors of convex polytopes has been one of the central problems in convex geometry. For simplicity, throughout the paper a d-dimensional convex polytope will be called a d-polytope.

Let \mathcal{F}^{d} denote the set of all f-vectors of d-polytopes, and let $\Pi_{i, j}\left(\mathcal{F}^{d}\right)$ denote the projection of \mathcal{F}^{d} onto the coordinates f_{i} and f_{j}. Steinitz [1906] completely determined all possible f-vectors of 3-polytopes:
Theorem 1.1. The set $\Pi_{0,1}\left(\mathcal{F}^{3}\right)$ of all f-vectors $\left(f_{0}, f_{1}\right)$ of 3 -polytopes is equal to

$$
\left\{(v, e) \left\lvert\, \frac{3}{2} v \leq e \leq 3 v-6\right.\right\} .
$$

In dimensions $d \geq 4$, any d-polytope P satisfies

$$
\begin{equation*}
\frac{d}{2} f_{0}(P) \leq f_{1}(P) \leq\binom{ f_{0}(P)}{2} . \tag{1-1}
\end{equation*}
$$

However, any complete determination of all possible f-vectors of d-polytopes for $d \geq 4$ is still elusive. As some partial results, for $d=4$ the projections of the f-vector onto two of the four coordinates have been determined by Grünbaum

[^0]Keywords: polytopes, f-vectors, flag vectors, flag vector pairs, stacking, truncating.
[1967], Barnette and Reay [1973], and Barnette [1974] (see [Sjöberg and Ziegler 2018, Section 2] for more details).

Kusunoki and Murai [2019] characterized the first two entries of the f-vectors of 5-polytopes.
Theorem 1.2. Let $L=\left\{\left.\left(v,\left[\frac{5}{2} v+1\right]\right) \right\rvert\, v \geq 7\right\}$, and let

$$
G=\{(8,20),(9,25),(13,35)\} .
$$

Then we have

$$
\Pi_{0,1}\left(\mathcal{F}^{5}\right)=\left\{(v, e) \left\lvert\, \frac{5}{2} v \leq e \leq\binom{ v}{2}\right.\right\} \backslash(L \cup G) .
$$

The same result has been independently proved by Pineda-Villavicencio, Ugon, and Yost [2018] (see also [Pineda-Villavicencio, Ugon, and Yost 2019]).

For a subset S of $\{0,1,2, \ldots, d-1\}$, let $f_{S}(P)$ denote the number of chains

$$
F_{1} \subset F_{2} \subset \cdots \subset F_{r}
$$

of faces $F_{i}, 1 \leq i \leq r$, of P such that

$$
S=\left\{\operatorname{dim} F_{1}, \operatorname{dim} F_{2}, \ldots, \operatorname{dim} F_{r}\right\} .
$$

The flag vector of P is defined to be

$$
\left(f_{S}(P)\right)_{S \subset\{0,1,2, \ldots, d-1\}} .
$$

For the sake of simplicity, from now on we use the notation $f_{i_{1} i_{2} \ldots i_{k}}(P)$ instead of $f_{\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}}(P)$ for any subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{0,1,2, \ldots, d-1\}$.

In this paper, for any two subsets S_{1} and S_{2} of $\{0,1,2, \ldots, d-1\}$ a pair ($f_{S_{1}}(P), f_{S_{2}}(P)$), or simply ($f_{S_{1}}, f_{S_{2}}$), of flag numbers of P will be called a flag vector pair. More generally, for any k not necessarily mutually disjoint subsets $S_{1}, S_{2}, \ldots, S_{k}$ of $\{0,1,2, \ldots, d-1\}$, a k-tuple

$$
\left(f_{S_{1}}(P), f_{S_{2}}(P), \ldots, f_{S_{k}}(P)\right),
$$

or simply ($f_{S_{1}}, f_{S_{2}}, \ldots, f_{S_{k}}$), of flag numbers of P will be called a flag vector k-tuple.

We denote by $\Pi_{S_{1}, S_{2}, \ldots, S_{k}}$ the projection of the flag vector $\left(f_{S}(P)\right)_{S \subset\{0,1,2, \ldots, d-1\}}$ onto its coordinates $f_{S_{1}}, f_{S_{2}}, \ldots, f_{S_{k}}$. We call $\left(f_{S_{1}}, f_{S_{2}}, \ldots, f_{S_{k}}\right)$ a polytopal flag vector k-tuple if

$$
\left(f_{S_{1}}, f_{S_{2}}, \ldots, f_{S_{k}}\right)
$$

belongs to the image of the set of all flag vectors of d-dimensional polytopes under the projection map $\Pi_{S_{1}, S_{2}, \ldots, S_{k}}$, that is, if there is a d-polytope P such that

$$
\left(f_{S_{1}}(P), f_{S_{2}}(P), \ldots, f_{S_{k}}(P)\right)=\left(f_{S_{1}}, f_{S_{2}}, \ldots, f_{S_{k}}\right) .
$$

Recently, Sjöberg and Ziegler [2018] obtained a complete characterization of the pairs (f_{0}, f_{03}) of flag numbers for 4-polytopes:

Theorem 1.3. Let

$$
E=\left\{\begin{array}{l}
(6,24),(6,25),(6,28),(7,28),(7,30),(7,31),(7,33),(7,34),(7,37), \\
(7,40),(8,33),(8,34),(8,37),(8,40),(9,37),(9,40),(10,40),(10,43)
\end{array}\right\} .
$$

Then the set of all flag vector pairs $\left(f_{0}, f_{03}\right)$ of 4 -polytopes is equal to

$$
\left\{\begin{array}{l|l}
\left(f_{0}, f_{03}\right) & \begin{array}{l}
20 \leq 4 f_{0} \leq f_{03} \leq 2 f_{0}\left(f_{0}-3\right) \\
f_{03} \neq 2 f_{0}\left(f_{0}-3\right)-k, k \in\{1,2,3,5,6,9,13\}
\end{array}
\end{array}\right\} \backslash E .
$$

For the proof of Theorem 1.3, the classification of all combinatorial types of 4-polytopes with up to eight vertices by Altshuler and Steinberg [1984; 1985] played an important role.

Our primary aim of this paper is to provide some new results about the flag vector pairs $\left(f_{1}, f_{04}\right)$ of 5 -polytopes:

Theorem 1.4. Let P be a 5-polytope. Then the flag vector pairs $\left(f_{1}, f_{04}\right)$ of 5polytopes satisfy the following inequalities:
(1) For a given flag number $f_{04}(P)$, we have

$$
\begin{equation*}
\frac{5}{4}\left(7+\sqrt{1+\frac{4}{5} f_{04}(P)}\right) \leq f_{1}(P)<\frac{1}{4} f_{04}(P)\left(f_{04}(P)-3\right) \tag{1-2}
\end{equation*}
$$

(2) For a given flag number $f_{1}(P)$, we have

$$
\begin{equation*}
\frac{1}{2}\left(3+\sqrt{9+16 f_{1}(P)}\right)<f_{04}(P) \leq \frac{4}{5} f_{1}(P)^{2}-14 f_{1}(P)+60 . \tag{1-3}
\end{equation*}
$$

Remark 1.5. (1) The lower (resp. upper) bound of the flag vector pairs (f_{1}, f_{04}) given in Theorem 1.4(1) (resp. (2)) are very sharp, since there is an explicit example, such as a 5 -simplex with $\left(f_{1}, f_{04}\right)=(15,30)$, which satisfies the equalities in (1-2) and (1-3).
(2) The upper (resp. lower) bound of the flag vector pairs $\left(f_{1}, f_{04}\right)$ given in Theorem 1.4(1) (resp. (2)) might be improved further by using much sharper inequality instead of $\sum_{i=1}^{k} x_{i}^{2}<\left(\sum_{i=1}^{k} x_{i}\right)^{2}$ for any positive $x_{i}>0$ with $1 \leq i \leq k$ or by any other means (see Lemma 2.1 for more details). In this paper, we do not pursue this issue further, though.
(3) The question of whether or not all vector pairs $\left(f_{1}, f_{04}\right)$ satisfying the inequalities (1-2) and (1-3) given in Theorem 1.4 are flag vector pairs of 5-polytopes is unknown, and the technique of this paper is insufficient to answer such a question.

This paper is organized as follows. In Section 2, we give a proof of Theorem 1.4 by a series of lemmas. In Section 3, we provide some concrete examples of 5polytopes satisfying the inequalities given in Theorem 1.4 for the flag vector pairs (f_{1}, f_{04}) of 5-polytopes. In order to construct such examples, we make use of the well-known stacking and truncating operations.

2. Proof of Theorem 1.4

We begin with the following lemmas.
Lemma 2.1. The flag vector pair $\left(f_{1}(P), f_{04}(P)\right)$ of a 5-polytope P satisfies

$$
f_{1}(P)<\frac{1}{4} f_{04}(P)\left(f_{04}(P)-3\right)
$$

Proof. Let F be any facet of the 5-polytope P. Then it follows from [Sjöberg and Ziegler 2018, Theorem 2.1] that

$$
f_{3}(F) \leq \frac{1}{2} f_{0}(F)\left(f_{0}(F)-3\right)
$$

Thus it is easy to obtain

$$
\begin{equation*}
\sum_{F \subset P} f_{3}(F) \leq \frac{1}{2} \sum_{F \subset P} f_{0}^{2}(F)-\frac{3}{2} \sum_{F \subset P} f_{0}(F) \tag{2-1}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{k} x_{i}^{2}<\left(\sum_{i=1}^{k} x_{i}\right)^{2}
$$

for any positive $x_{i}(1 \leq i \leq k)$, it follows from (2-1) that

$$
\begin{align*}
f_{34}(P) & =\sum_{F \subset P} f_{3}(F)<\frac{1}{2}\left(\sum_{F \subset P} f_{0}(F)\right)^{2}-\frac{3}{2} \sum_{F \subset P} f_{0}(F) \\
& =\frac{1}{2} f_{04}(P)^{2}-\frac{3}{2} f_{04}(P) \tag{2-2}
\end{align*}
$$

By considering the dual polytope P^{*} of P, by (2-2) we can obtain

$$
2 f_{1}\left(P^{*}\right)=f_{01}\left(P^{*}\right)<\frac{1}{2} f_{04}\left(P^{*}\right)\left(f_{04}\left(P^{*}\right)-3\right)
$$

Since P is an arbitrary polytope, so is its dual P^{*}. Therefore, we can obtain

$$
f_{1}(P)<\frac{1}{4} f_{04}(P)\left(f_{04}(P)-3\right)
$$

Lemma 2.2. The flag vector pair $\left(f_{0}(P), f_{04}(P)\right)$ of a 5-polytope P satisfies

$$
5 f_{0}(P) \leq f_{04}(P) \leq 5\left(f_{0}(P)-3\right)\left(f_{0}(P)-4\right)
$$

Proof. Note first that every vertex of a d-polytope meets at least d facets. Thus we have $5 f_{0}(P) \leq f_{04}(P)$, where equality holds if and only if P is a simple polytope.

On the other hand, it follows from [Sjöberg and Ziegler 2018, Lemma 2.6] (or [Billera and Björner 1997, Theorem 18.5.9]) that for any d-polytope Q with n vertices and for any subset $S \subset\{0,1,2, \ldots, d-1\}$ we have

$$
f_{S}(Q) \leq f_{S}\left(C_{d}(n)\right)
$$

where $C_{d}(n)$ denotes the d-dimensional cyclic polytope with $n=f_{0}(Q)$ vertices. Hence, we have

$$
\begin{equation*}
f_{04}(P) \leq f_{04}\left(C_{5}(n)\right)=5 f_{4}\left(C_{5}(n)\right) . \tag{2-3}
\end{equation*}
$$

Here, the second equality holds because $C_{5}(n)$ is simplicial, and the first inequality becomes an equality if and only if P is neighborly.

On the other hand, by using the formula in [Buchstaber and Panov 2002, Lemma 1.34] we can directly calculate

$$
\begin{aligned}
f_{4}\left(C_{5}(n)\right) & =\sum_{q=0}^{2}\binom{q}{0}\binom{n+q-6}{q}+\sum_{p=0}^{2}\binom{5-p}{5-p}\binom{n+p-6}{p} \\
& =(n-3)(n-4) .
\end{aligned}
$$

Hence, it follows from (2-3) that

$$
f_{04}(P) \leq 5 f_{4}\left(C_{5}(n)\right)=5\left(f_{0}(P)-3\right)\left(f_{0}(P)-4\right) .
$$

Lemma 2.3. The flag vector pair $\left(f_{1}(P), f_{04}(P)\right)$ of a 5-polytope P satisfies

$$
f_{1}(P) \geq \frac{5}{4}\left(7+\sqrt{1+\frac{4}{5} f_{04}(P)}\right) .
$$

Proof. By Lemma 2.2, we have

$$
f_{0}(P)^{2}-7 f_{0}(P)+12-\frac{1}{5} f_{04}(P) \geq 0
$$

Thus, since $f_{0}(P) \geq 6$, it is easy to obtain

$$
\begin{equation*}
f_{0}(P) \geq \frac{1}{2}\left(7+\sqrt{1+\frac{4}{5} f_{04}(P)}\right) . \tag{2-4}
\end{equation*}
$$

Recall now that $f_{0}(P) \leq \frac{2}{5} f_{1}(P)$ by (1-1). Hence, it follows from (2-4) that

$$
f_{1}(P) \geq \frac{5}{4}\left(7+\sqrt{1+\frac{4}{5} f_{04}(P)}\right)
$$

as desired.
Theorem 1.4(1) is an immediate consequence of Lemmas 2.1 and 2.3.
Next, we want to prove Theorem 1.4(2). We begin with the generalized DehnSommerville equations, given in the following theorem (see [Sjöberg and Ziegler 2018, Theorem 2.4] and [Bayer and Billera 1985, Theorem 2.1] for more details).

Theorem 2.4. Let P be a d-polytope, and let S be a subset of $\{0,1,2, \ldots, d-1\}$. If $\{i, k\}$ is a subset of $S \cup\{-1, d\}$ such that $i<k-1$ and such that there is no $j \in S$ for which $i<j<k$, then

$$
\sum_{j=i+1}^{k-1}(-1)^{j-i-1} f_{S \cup\{j\}}(P)=f_{S}(P)\left(1-(-1)^{k-i-1}\right)
$$

Corollary 2.5. The flag vector 4-tuple $\left(f_{01}(P), f_{02}(P), f_{03}(P), f_{04}(P)\right)$ of a 5polytope P satisfies

$$
\begin{equation*}
f_{01}(P)-f_{02}(P)+f_{03}(P)-f_{04}(P)=0 \tag{2-5}
\end{equation*}
$$

Proof. Let $S=\{0\}, i=0$, and $k=5$. By applying Theorem 2.4 to these choices of S, i, and k, it is immediate to obtain (2-5).

Lemma 2.6. The flag vector 3-tuple $\left(f_{1}(P), f_{02}(P), f_{04}(P)\right)$ of a 5-polytope P satisfies

$$
2 f_{1}(P)-f_{02}(P)+f_{04}(P) \leq 0
$$

Proof. As in the proof of Lemma 2.1, let F denote any facet of P. By [Sjöberg and Ziegler 2018, Theorem 2.2], we have

$$
f_{1}(F) \geq 2 f_{0}(F)
$$

Thus, it is easy to obtain

$$
\begin{equation*}
f_{14}(P)=\sum_{F \subset P} f_{1}(F) \geq 2 \sum_{F \subset P} f_{0}(F)=2 f_{04}(P) \tag{2-6}
\end{equation*}
$$

By duality, it follows from (2-6) that

$$
\begin{equation*}
f_{03}(P) \geq 2 f_{04}(P) \tag{2-7}
\end{equation*}
$$

On the other hand, by Corollary 2.5 together with (2-6) we also have

$$
\begin{aligned}
f_{04}(P) & =f_{01}(P)-f_{02}(P)+f_{03}(P) \\
& \geq f_{01}(P)-f_{02}(P)+2 f_{04}(P)
\end{aligned}
$$

Since $2 f_{1}(P)=f_{01}(P)$, finally we obtain

$$
2 f_{1}(P)-f_{02}(P)+f_{04}(P) \leq 0
$$

as desired.
Lemma 2.7. The flag vector pair $\left(f_{0}(P), f_{02}(P)\right)$ of a 5-polytope P satisfies

$$
f_{02}(P) \leq 6\left(f_{0}(P)^{2}-6 f_{0}(P)+10\right)
$$

Proof. As in the proof of Lemma 2.2, by applying the upper bound theorem stated in [Sjöberg and Ziegler 2018, Lemma 2.6] (see also [Billera and Björner 1997, Theorem 18.5.9]) we obtain

$$
f_{02}(P) \leq f_{02}\left(C_{5}(n)\right)=3 f_{2}\left(C_{5}(n)\right),
$$

where $f_{0}(P)=n$ and the fact that $C_{5}(n)$ is a simplicial polytope was used in the last equality.

On the other hand, by using the formula of $f_{2}\left(C_{5}(n)\right)$ given in [Buchstaber and Panov 2002, Lemma 1.34] it is straightforward to compute

$$
\begin{aligned}
f_{2}\left(C_{5}(n)\right) & =\sum_{q=0}^{2}\binom{q}{2}\binom{n+q-6}{q}+\sum_{p=0}^{2}\binom{5-p}{2}\binom{n+p-6}{p} \\
& =\binom{n-4}{2}+\binom{5}{2}\binom{n-6}{0}+\binom{4}{2}\binom{n-5}{1}+\binom{3}{2}\binom{n-4}{2} \\
& =2\left(n^{2}-6 n+10\right)=2\left(f_{0}(P)^{2}-6 f_{0}(P)+10\right) .
\end{aligned}
$$

Lemma 2.8. The flag vector pair $\left(f_{1}(P), f_{04}(P)\right)$ of a 5-polytope P satisfies

$$
f_{04}(P) \leq \frac{1}{25}\left(24 f_{1}(P)^{2}-410 f_{1}(P)+1500\right) .
$$

Proof. By Lemma 2.6, it is easy to obtain

$$
\begin{aligned}
f_{04}(P) & \leq-2 f_{1}(P)+f_{02}(P) \\
& \leq-2 f_{1}(P)+6\left(f_{0}(P)^{2}-6 f_{0}(P)+10\right) \\
& \leq-2 f_{1}(P)+6\left(\frac{4}{25} f_{1}(P)^{2}-\frac{12}{5} f_{1}(P)+10\right) \\
& =\frac{1}{25}\left(24 f_{1}(P)^{2}-410 f_{1}(P)+1500\right),
\end{aligned}
$$

where we used $f_{0}(P) \leq \frac{2}{5} f_{1}(P)$ and $f_{0}(P) \geq 6$ in the third inequality.
In fact, it turns out that for any values of $f_{1}(P)>15$ the upper bound of $f_{04}(P)$ given in Lemma 2.8 can be improved further by using (1-2).

Lemma 2.9. The flag vector pair $\left(f_{1}(P), f_{04}(P)\right)$ of a 5 -polytope satisfies

$$
f_{04}(P) \leq \frac{4}{5} f_{1}(P)^{2}-14 f_{1}(P)+60
$$

Proof. For the proof, note that by Lemma 2.3 we have

$$
f_{1}(P) \geq \frac{5}{4}\left(7+\sqrt{1+\frac{4}{5} f_{04}(P)}\right) .
$$

Thus, it is easy to obtain

$$
f_{04}(P) \leq \frac{4}{5} f_{1}(P)^{2}-14 f_{1}(P)+60
$$

For any 5 -polytopes, $f_{1}(P) \geq 15$. Thus it is straightforward to show that

$$
\frac{4}{5} f_{1}(P)^{2}-14 f_{1}(P)+60 \leq \frac{1}{25}\left(24 f_{1}(P)^{2}-410 f_{1}(P)+1500\right),
$$

where equality holds if and only if $f_{1}(P)=15$.
Finally, we are in a position to give a proof of Theorem 1.4(2):
Theorem 2.10. Given a flag number $f_{1}(P)$ of a 5-polytope $P, f_{04}(P)$ satisfies

$$
\frac{1}{2}\left(3+\sqrt{9+16 f_{1}(P)}\right)<f_{04}(P) \leq \frac{4}{5} f_{1}(P)^{2}-14 f_{1}(P)+60 .
$$

Proof. By Lemma 2.9, it suffices to prove the first inequality. Indeed, recall from Lemma 2.1 that we have

$$
4 f_{1}(P)<f_{04}(P)\left(f_{04}(P)-3\right), \quad \text { i.e., } f_{04}(P)^{2}-3 f_{04}(P)-4 f_{1}(P)>0 \text {. }
$$

This immediately implies

$$
f_{04}(P)>\frac{1}{2}\left(3+\sqrt{9+16 f_{1}(P)}\right) .
$$

3. Some examples

The aim of this section is to provide some examples of 5-polytopes whose flag vector pairs $\left(f_{1}, f_{04}\right)$ satisfy the inequalities (1-2) and (1-3) given in Theorem 1.4. In order to construct such examples, we use the well-known operations of stacking and truncating. In many instances, these operations turn out to be essential in finding new examples of polytopes for possible polytopal flag vector pairs.

To begin with, we have the following lemma.
Lemma 3.1. Let P be a 5-polytope with at least one simple facet F, and let v be a point beyond F and beneath all other facets of P. Let Q be the 5-polytope obtained by stacking the vertex v over P; i.e., let Q be the convex hull of v and P. Then we have the identities

$$
\begin{aligned}
f_{0}(Q) & =f_{0}(P)+1, \\
f_{1}(Q) & =f_{1}(P)+5 \\
f_{04}(Q) & =f_{04}(P)+20 .
\end{aligned}
$$

Proof. By the way of the construction of Q, it suffices to show the last identity. To see it, note first that F is a 4 -simplex with five vertices. If we apply the stacking operation to P with such a vertex v over F, then it is easy to see that the flag number f_{04} increases by $5\binom{5}{4}$ and decreases by 5 . Thus the net change of f_{04} is equal to 20 , and so we have

$$
f_{04}(Q)=f_{04}(P)+20 .
$$

Let P be a d-polytope with a vertex v, and let H be a hyperplane intersecting the interior of P such that on one side of H the only vertex of P is v. Then we can obtain a new polytope Q by cutting off the side of H that contains v. This operation of obtaining a new polytope is called a truncating at a vertex.

The following lemma holds.
Lemma 3.2. Let P be a 5-polytope with at least one simple vertex v, and let R be the 5-polytope obtained by truncating the vertex v from P. Then we have the identities

$$
\begin{aligned}
f_{0}(R) & =f_{0}(P)+4, \\
f_{1}(R) & =f_{1}(P)+10, \\
f_{04}(R) & =f_{04}(P)+20 .
\end{aligned}
$$

Proof. By the way of the construction of R, once again it suffices to prove the last equality. Note first that by the truncating operation we have five new vertices, all of which are simple. Thus the flag number f_{04} increases by 5×5 and decreases by 5 coming from the old vertex v. This implies $f_{04}(R)=f_{04}(P)+20$, as required. \square

Note that the polytopes obtained through stacking over a simple vertex v and truncating at v all have a simple vertex and a simplex facet. Thus we can repeatedly stack vertices on simplex facets and truncate simple vertices.

With these understood, let P be a 5-polytope P with a 4 -simplex facet and a simple vertex. By truncating simple vertices l times and stacking vertices on 4 -simplex facets k times inductively, we can obtain a new 5 -polytope Q with the flag vector pair

$$
\begin{equation*}
\left(f_{1}(Q), f_{04}(Q)\right)=\left(f_{1}(P)+5 k+10 l, f_{04}(P)+20 k+20 l\right), \quad k, l \geq 0 . \tag{3-1}
\end{equation*}
$$

Let $n=k+l$. Then it follows from (3-1) that

$$
\begin{equation*}
\left(f_{1}(Q), f_{04}(Q)\right)=\left(f_{1}(P)+10 n-5 k, f_{04}(P)+20 n\right), \quad n \geq 0,0 \leq k \leq n \tag{3-2}
\end{equation*}
$$

As a special case, let P be a 5 -simplex. Then the flag vector pair $\left(f_{1}(P), f_{04}(P)\right)$ is equal to $(15,30)$. Thus, by (3-2) we can obtain the flag vector pair

$$
\left(f_{1}(Q), f_{04}(Q)\right)=(10 n-5 k+15,20 n+30), \quad n \geq 0,0 \leq k \leq n .
$$

One may check directly that the flag vector pair $\left(f_{1}(Q), f_{04}(Q)\right)$ satisfies the inequalities (1-2) and (1-3) given in Theorem 1.4.

Acknowledgements

The authors are very grateful to the anonymous referee for valuable comments on this paper. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930639).

References

[Altshuler and Steinberg 1984] A. Altshuler and L. Steinberg, "Enumeration of the quasisimplicial 3-spheres and 4-polytopes with eight vertices", Pacific J. Math. 113:2 (1984), 269-288. MR Zbl
[Altshuler and Steinberg 1985] A. Altshuler and L. Steinberg, "The complete enumeration of the 4-polytopes and 3-spheres with eight vertices", Pacific J. Math. 117:1 (1985), 1-16. MR Zbl
[Barnette 1974] D. Barnette, "The projection of the f-vectors of 4-polytopes onto the (E, S)-plane", Discrete Math. 10 (1974), 201-216. MR Zbl
[Barnette and Reay 1973] D. Barnette and J. R. Reay, "Projections of f-vectors of four-polytopes", J. Combinatorial Theory Ser. A 15 (1973), 200-209. MR Zbl
[Bayer and Billera 1985] M. M. Bayer and L. J. Billera, "Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets", Invent. Math. 79:1 (1985), 143-157. MR Zbl
[Billera and Björner 1997] L. J. Billera and A. Björner, "Face numbers of polytopes and complexes", pp. 291-310 in Handbook of discrete and computational geometry, edited by J. E. Goodman and J. O'Rourke, CRC, Boca Raton, FL, 1997. MR Zbl
[Buchstaber and Panov 2002] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Series 24, Amer. Math. Soc., Providence, RI, 2002. MR Zbl
[Grünbaum 1967] B. Grünbaum, Convex polytopes, Pure Appl. Math. 16, Interscience, New York, 1967. MR Zbl
[Kusunoki and Murai 2019] T. Kusunoki and S. Murai, "The numbers of edges of 5-polytopes with a given number of vertices", Ann. Comb. 23:1 (2019), 89-101. MR Zbl
[Pineda-Villavicencio, Ugon, and Yost 2018] G. Pineda-Villavicencio, J. Ugon, and D. Yost, "The excess degree of a polytope", SIAM J. Discrete Math. 32:3 (2018), 2011-2046. MR Zbl
[Pineda-Villavicencio, Ugon, and Yost 2019] G. Pineda-Villavicencio, J. Ugon, and D. Yost, "Lower bound theorems for general polytopes", European J. Combin. 79 (2019), 27-45. MR Zbl
[Sjöberg and Ziegler 2018] H. Sjöberg and G. M. Ziegler, "Characterizing face and flag vector pairs for polytopes", Discrete Comput. Geom. (online publication November 2018).
[Steinitz 1906] E. Steinitz, "Über die Eulerschen Polyederrelationen", Arch. Math. Phys. 11 (1906), 86-88. Zbl

Received: 2018-12-19 Revised: 2019-06-18 Accepted: 2019-06-22
jinhkim11@gmail.com Department of Mathematics Education, Chosun University, Gwangju, South Korea
gpqls010@daum.net Department of Mathematics Education, Chosun University, Gwangju, South Korea

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Robert B. Lund	Clemson University, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Gaven J. Martin	Massey University, New Zealand
Martin Bohner	Missouri U of Science and Technology, US	SA Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia M	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$195/year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 7

Asymptotic expansion of Warlimont functions on Wright semigroups 1081
Marco Aldi and Hanqiu Tan
A systematic development of Jeans' criterion with rotation for 1099
gravitational instabilitiesKohl Gill, David J. Wollkind and Bonni J. Dichone
The linking-unlinking game 1109
Adam Giambrone and Jake Murphy
On generalizing happy numbers to fractional-base number systems 1143
Enrique Treviño and Mikita Zhylinski
On the Hadwiger number of Kneser graphs and their random subgraphs 1153
Arran Hamm and Kristen Melton
A binary unrelated-question RRT model accounting for untruthful 1163
responding
Amber Young, Sat Gupta and Ryan Parks
Toward a Nordhaus-Gaddum inequality for the number of dominating sets 1175
Lauren Keough and David Shane
On some obstructions of flag vector pairs (f_{1}, f_{04}) of 5-polytopes 1183Hye Bin Cho and Jin Hong Kim
Benford's law beyond independence: tracking Benford behavior in copula 1193modelsRebecca F. Durst and Steven J. MillerClosed geodesics on doubled polygons1219Ian M. Adelstein and Adam Y. W. FongSign pattern matrices that allow inertia \mathbb{S}_{n}1229Adam H. Berliner, Derek DeBlieck and Deepak ShahSome combinatorics from Zeckendorf representations1241Tyler Ball, Rachel Chaiser, Dean Dustin, Tom Edgarand Paul Lagarde

[^0]: MSC2010: 52B05, 52B11.

