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We study singular second-order boundary value problems with mixed boundary
conditions on an infinitely discrete time scale. We prove the existence of a positive
solution by means of a lower and upper solutions method and the Brouwer fixed-
point theorem, in conjunction with perturbation methods used to approximate
regular problems.

1. Introduction

This paper continues the work done previously by Kunkel [2008], where he studied
a singular second-order boundary value problem in purely discrete time scales of
nonuniform step size. Although similar throughout most of the time scale, this result
is different in the fact that the time scale itself has a limit point at the right-side
boundary condition, forcing a nearly continuous behavior at that end. If this limiting
condition were not present, the result would be trivial using [Kunkel 2008], but as
it stands, this result continues to expand the work of that paper to another type of
time scale.

More specifically, [Kunkel 2008] dealt with the discrete boundary value problem

u11(ti−1)+ f (ti , u(ti ), u1(ti−1))= 0, t ∈ T◦,

u1(t0)= u(tn+1)= 0,

where T◦ is the discrete interval of nonuniform step size [t1, tn] := {t1, t2, . . . , tn}
and f (t, x, y) is singular in x . This work was an extension of a previous result
by Rachůnková and Rachůnek [2006], where they studied a singular second-order
boundary value problem for the discrete p-Laplacian, φp(x) = |x |p−2x , p > 1.

MSC2010: 34B16, 34B18, 34B40, 39A10.
Keywords: singular boundary value problems, time scales, mixed conditions, lower and upper

solutions, Brouwer fixed-point theorem, approximate regular problems.

1069

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-6
http://dx.doi.org/10.2140/involve.2019.12.1069


1070 CURTIS KUNKEL AND ALEX LANCASTER

In particular, Rachůnková and Rachůnek dealt with the discrete boundary value
problem

1(φp(1u(t − 1)))+ f (t, u(t),1u(t − 1))= 0, t ∈ [1, T + 1],

1u(0)= u(T + 2)= 0,

in which f (t, x, y) was singular in x .
Combine these works with [Kunkel 2006], which deals with the continuous

boundary value problem

u′′(t)+ f (t, u(t))= 0, t ∈ (0, 1),

u′(0)= u(1)= 0,

where f (t, x) is singular in x , and you have a similar boundary value problem
scenario across time scales ranging from being entirely continuous to varying
degrees of discrete. This result fits between these two ends of the time scale
continuum being a discrete interval with a continuous point, the ultimate goal of
which would be to create a unifying theorem for this type of problem across all
types of time scales (forthcoming).

The methods in this paper rely heavily on lower and upper solution methods
in conjunction with an application of the Brouwer fixed-point theorem [Zeidler
1986]. We consider only the singular second-order boundary value problem, while
letting our function range over an infinitely discrete interval of nonuniform step size,
included in which is the limit point. We will provide definitions of appropriate lower
and upper solutions. The lower and upper solutions will be applied to nonsingular
perturbations of our nonlinear problem, ultimately giving rise to our boundary value
problem by passing to the limit.

Lower and upper solutions have been used extensively in establishing solutions
of boundary value problems for finite difference equations. Representative works
include [Bao et al. 2012; Henderson and Kunkel 2006; Precup 2016].

Singular boundary value problems have also received a good deal of atten-
tion. Representative works include [Agarwal and O’Regan 1999; Precup 2016;
Rachůnková and Rachůnek 2009].

2. Preliminaries

We now state some definitions used throughout the remainder of the paper, many of
which can be found in [Bohner and Peterson 2001; Kelley and Peterson 1991]. Some
definitions are required prior to the introduction of the problem we intend to solve.

Definition 2.1. For i = 1, 2, 3, . . . , let ti = 1− 1/ i . Define the time scale

T = {ti }∞i=1 ∪ {1}.
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We conveniently make note of the standard notation for both forward and back-
ward jump operators on time scales of this nature.

Definition 2.2. The forward step operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The backward step operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

Definition 2.3. For the function u : T→ R, define the delta derivative u1 : T→ R

by

u1(t) :=
u(σ (t))− u(t)

µ(t)
,

where µ(t) := σ(t)− t . Note that µ is the graininess function.

Having introduced these definitions, we can now consider the following second-
order dynamic equation, which will be our focus throughout this paper:

u11(ti−1)+ f (ti , u(ti ), u1(ti−1))= 0, ti−1 ∈ T, (1)

satisfying the mixed boundary conditions,

u1(0)= u(1)= 0. (2)

Our goal is to prove the existence of a positive solution to this problem (1), (2),
where f has a specific type of singularity as explained below.

Definition 2.4. Define a solution to problem (1), (2) to mean a function u : T→ R

such that u satisfies (1) on T and also satisfies the boundary conditions (2). If
u(t) > 0 for t ∈ T, except possibly at the boundary conditions, we call u a positive
solution to problem (1), (2).

Definition 2.5. Let D ⊆ R2. We say f is continuous on T× D if f ( · , x, y) is
defined on T for each (x, y) ∈ D and if f (t, · , · ) is continuous on D for each t ∈T.

Definition 2.6. Let D ⊆ R2. Let f : T× D→ R. If D = R2, then we call (1), (2)
a regular problem. If D ( R2 and f has singularities on the boundary of D, then
we call (1), (2) a singular problem.

We assume the following throughout this paper:

(A) D = [0,∞)×R.

(B) f is continuous on T× D.

(C) f (t, x, y) has a singularity at x = 0; i.e., lim supx→0+ | f (t, x, y)| = ∞ for
t ∈ T and y ∈ R.
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3. Lower and upper solutions method

For the purpose of establishing a lower and upper solutions method to be used in
solving our pre-existing singular problem, we first consider the following regular
problem:

u11(ti−1)+ h(ti , u(ti ), u1(ti−1))= 0, ti−1 ∈ T, (3)

where h is continuous on T×R2 and the same boundary conditions (2) are satisfied.
Now, (3), (2) is clearly a regular problem and it is our current goal to establish a
lower and upper solutions method as a means to establish an existence result. To
this end, we first must define what is meant by a lower and an upper solution.

Definition 3.1. Let α : T→ R. We call α a lower solution of problem (3), (2) if

α11(ti−1)+ h(ti , α(ti ), α1(ti−1))≥ 0, ti−1 ∈ T, (4)

satisfying
α1(0)≥ 0, α(1)≤ 0. (5)

Definition 3.2. Let β : T→ R. We call β an upper solution of problem (3), (2) if

β11(ti−1)+ h(ti , β(ti ), β1(ti−1))≤ 0, ti−1 ∈ T, (6)

satisfying
β1(0)≤ 0, β(1)≥ 0. (7)

Theorem 3.3 (lower and upper solutions method). Let α and β be lower and upper
solutions of the regular problem (3), (2), respectively, where α ≤ β on T. Let
h(t, x, y) be continuous on T × R2 and nonincreasing in its y-variable. Then
(3), (2) has a solution u satisfying

α(t)≤ u(t)≤ β(t), t ∈ T.

Proof. We proceed with this proof through a sequence of steps involving modifica-
tions of the function h.

Step 1: For ti−1 ∈ T and (x, y) ∈ R2, define

h̃
(

ti , x, x−y
µ(ti−1)

)

=



h
(

ti , β(ti ),
β(ti )−S(ti−1, y)

µ(ti−1)

)
−

x−β(ti )
x−β(ti )+1

, x > β(ti ),

h
(

ti , x, x−S(ti−1, y)
µ(ti−1)

)
, α(ti )≤ x ≤ β(ti ),

h
(

ti , α(ti ),
α(ti )−S(ti−1, y)

µ(ti−1)

)
+

α(ti )−x
α(ti )−x+1

, x < α(ti ),

(8)
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where,

S(ti−1, y)=


β(ti−1), y > β(ti−1),

y, α(ti−1)≤ y ≤ β(ti−1),

α(ti−1), y < α(ti−1).

Given this construction, h̃ is continuous on T×R2 and there exists M > 0 so that

|h̃(t, x, y)| ≤ M

for all t ∈ T and (x, y) ∈ R2.
We now study the auxiliary equation

u11(ti−1)+ h̃(ti , u(ti ), u1(ti−1))= 0, ti−1 ∈ T, (9)

satisfying boundary conditions (2). Our immediate goal is to prove the existence
of a solution to problem (9), (2).

Step 2: For this existence result, we lay the foundation to use the Brouwer fixed-
point theorem. To this end, define

E = {u : T→ R : u1(0)= u(1)= 0}.

Also, define
‖u‖ =max{|u(t)| : t ∈ T}.

Given E and ‖ · ‖, we say E is a Banach space. Further, we define an operator
T : E→ E by

(T u)(tk)=
∞∑

j=k

µ(tj )

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1)). (10)

T is a continuous operator. Moreover, from the bounds placed on h̃ in Step 1
and from (10), if r > M , then T (B(r))⊆ B(r), where B(r) := {u ∈ E : ‖u‖< r}.
Hence, by the Brouwer fixed-point theorem [Zeidler 1986], there exists u ∈ B(r)
such that u = T u.

Step 3: We now show that u is a fixed point of T if and only if u is a solution to
the problem (9), (2).

To this end, let us first assume that u solves the problem (9), (2). Then, since
the boundary conditions (2) are satisfied, u ∈ E .

It is convenient for the first part of this subproof to consider a relabeling of the
points in T as follows: let τ∞= limi→∞ τi := t1= 0, let τ0 := 1, and, for each i > 0,
let there exist some j > 0 so that ti = τj , ti+1 = τj−1, etc. Using this notation, we
then consider

u1(τ1)=
u(τ0)− u(τ1)

µ(τ1)
=
−u(τ1)

µ(τ1)
,
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and we have
u(τ1)=−µ(τ1)u1(τ1).

Also,

u1(τ2)=
u(τ1)− u(τ2)

µ(τ2)
=
−µ(τ1)u1(τ1)− u(τ2)

µ(τ2)
,

and we have
u(τ2)=−µ(τ1)u1(τ1)−µ(τ2)u1(τ2).

Continuing in this manner, we have, for m > 0,

u(τm)=−

m∑
i=1

µ(τi )u1(τi ). (11)

And, given our relabeling between the τ ’s and the t’s, we can conclude that for
each m > 0 there exists some k > 0 such that

u(τm)= u(tk)=−
∞∑

i=k

µ(τi )u1(τi ).

We also have

u11(t1)=
u1(t2)− u1(t1)

µ(t1)
=

u1(t2)− u1(0)
µ(t1)

=
u1(t2)
µ(t1)

,

and from (9) we have u11(t1)=−h̃(t2, u(t2), u1(t1)), which yields

u1(t2)=−µ(t1)h̃(t2, u(t2), u1(t1)).

Similarly, we have

u11(t2)=
u1(t3)− u1(t2)

µ(t2)
=−h̃(t3, u(t3), u1(t2)),

and via substitution of u1(t2) and simply solving for u1(t3), we have

u1(t3)=−µ(t1)h̃(t2, u(t2), u1(t1))−µ(t2)h̃(t3, u(t3), u1(t2)).

Continuing in this manner, we conclude that

u1(tj )=−

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1)). (12)

By substituting (12) into (11), we see that for k > 0

u(tk)=−
∞∑

j=k

µ(tj )

(
−

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))

)

=

∞∑
j=k

µ(tj )

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))= (T u)(tk).
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We now assume that u is a fixed point of T , i.e., u = T u. Then,

u(tk)= (T u)(tk)=
∞∑

j=k

µ(tj )

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1)).

Also,

u1(tk−1)=
u(tk)− u(tk−1)

µ(tk−1)

=

(∑
∞

j=k µ(tj )
∑ j

i=2 µ(ti−1)h̃(ti , u(ti ), u1(ti−1))
)

µ(tk−1)

−

(∑
∞

j=k−1 µ(tj )
∑ j

i=2 µ(ti−1)h̃(ti , u(ti ), u1(ti−1))
)

µ(tk−1)

=−
µ(tk−1)

∑k−1
i=2 µ(ti−1)h̃(ti , u(ti ), u1(ti−1))

µ(tk−1)

=−

k−1∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1)),

and

u11(tk−1)

=
u1(tk)−u1(tk−1)

µ(tk−1)

=

(
−
∑k

i=2µ(ti−1)h̃(ti ,u(ti ),u1(ti−1))
)

µ(tk−1)
−

(
−
∑k−1

i=2 µ(ti−1)h̃(ti ,u(ti ),u1(ti−1))
)

µ(tk−1)

=−
µ(tk−1)h̃(tk,u(tk),u1(tk−1))

µ(tk−1)

=−h̃(tk,u(tk),u1(tk−1)).

Thus, u solves (9).
We need now only consider the boundary conditions (2) in order to complete

Step 3 of this proof. To this end, we recall the construction of the time scale T and
notice the following based on what was just derived as the formula for u1:

u1(0)= u1(t1)=−
1∑

i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))= 0.

We now turn our attention over to t = 1 and recall from the construction of T that
t∞ = 1. Also note that standard convention when discussing time scales of this
sort is σ(t) = t if T has a maximum t , or for our purposes µ(t) = 0 if T has a
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maximum t . As such,

u(1)= u(t∞)=
∞∑

j=∞

µ(tj )

j∑
i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))

= µ(t∞)
∞∑

i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))

= µ(1)
∞∑

i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))

= 0 ·
∞∑

i=2

µ(ti−1)h̃(ti , u(ti ), u1(ti−1))= 0.

Therefore, we get that u solves (9), (2) and Step 3 is complete.

Step 4: The remaining piece we need to show is that solutions of (9), (2) satisfy

α(t)≤ u(t)≤ β(t), t ∈ T.

To this end, without loss of generality consider the case of obtaining u(t)≤ β(t),
and let v(t)= u(t)−β(t). For the purpose of establishing a contradiction, assume
that max{v(t) : t ∈ T} := v(l) > 0. From (2) and (7), we see that l must be an
interior point in T; i.e., l := tj ∈ T \ {0, 1}. With tj necessarily being an interior
point, tj−1 and tj+1 are well-defined, and we have

v(tj−1)≤ v(tj ) and v(tj+1)≤ v(tj ).

Consequently,
v1(tj−1)≥ 0 and v1(tj )≤ 0.

Further, we now know also that

v11(tj−1)=
v1(tj )− v

1(tj−1)

µ(tj−1)
≤ 0.

Therefore,
u11(tj−1)−β

11(tj−1)≤ 0. (13)

On the other hand, since h is nonincreasing in its third variable, we have from
(9) and (8) that

u11(tj−1)−β
11(tj−1)=−h̃(tj ,u(tj ),u1(tj−1))−β

11(tj−1)

=−

(
h̃(tj ,β(tj ),β

1(tj−1))−
u(tj )−β(tj )

u(tj )−β(tj )+1

)
−β11(tj−1)

=−h̃(tj ,β(tj ),β
1(tj−1))+

v(tj )

v(tj )+1
−β11(tj−1)

≥β11(tj−1)+
v(l)
v(l)+1

−β11(tj−1)=
v(l)
v(l)+1

> 0.
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Hence we have a contradiction to (13) and we conclude that max{v(t) : t ∈ T} ≤ 0.
Thus, v(t)≤ 0 for all t ∈ T, or rather

u(t)≤ β(t) for all t ∈ T.

A similar argument shows that α(t)≤ u(t) for all t ∈ T.
Thus, our conclusion holds and the proof is complete. �

4. Main result

In this section, we make use of Theorem 3.3 to obtain positive solutions to the
singular problem (1), (2). In particular, in applying Theorem 3.3, we deal with
a sequence of regular perturbations of (1), (2). Ultimately, we obtain a desired
solution by passing to the limit on a sequence of solutions for the perturbations.

Theorem 4.1. Assume conditions (A), (B), and (C) hold, along with the following:

(D) There exists c ∈ (0,∞) so that f (t, c, y)≤ 0 for all t ∈ T and y ∈ R.

(E) f (t, x, y) is nonincreasing in its y-variable for all t ∈ T and x ∈ (0, c).

(F) limx→0+ f (t, x, y)=∞ for t ∈ T and y ∈ (−c, c).

Then, (1), (2) has a solution u satisfying

0< u(t)≤ c, t ∈ T \ {1}.

Proof. We proceed through this proof via a sequence of steps.

Step 1: For k > 0, t ∈ T, and y ∈ R, define

fk(t, x, y)=
{

f (t, |x |, y) if |x | ≥ 1/k,
f (t, 1/k, y) if |x |< 1/k.

Then, fk is continuous on T×R2.
Assumption (F) implies that there exists k0 such that, for all k ≥ k0,

fk(t, 0, y)= f
(

t, 1
k
, y
)
> 0 for all t ∈ T, y ∈ R.

We now consider

u11(ti−1)+ fk(ti , u(ti ), u1(ti−1))= 0, t ∈ T. (14)

Now, let α(t)= 0 and β(t)= c. Then, for each k ≥ k0, α and β are lower and
upper solutions of (14), (2), respectively. Also, α(t) ≤ β(t) for t ∈ T. Thus, by
Theorem 3.3, for each k ≥ k0, there exists a solution uk to each problem (14), (2)
that satisfies 0≤ uk(t)≤ c for t ∈ T.

Consequently, for all ti ∈ T,

|u1(ti )| ≤ c ·µ(ti−1). (15)
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Step 2: For k ≥ k0, let δ ∈ (0, 1) and consider the time scale T1 := T∩[0, δ]. Since
uk solves (14), we get from work similar to that in the proof of Theorem 3.3 that

u1k (tj )=−

j∑
i=2

µ(ti−1) fk(ti , u(ti ), u1(ti−1)). (16)

We use this version of u1k as follows:
By assumption (F), there exists ε1 ∈ (0, 1/k0) such that for all k ≥ 1/ε1

fk(t2, x, y) > c, x ∈ (0, ε1), y ∈ (−c, c). (17)

For the sake of establishing a contradiction, assume that for k ≥ 1/ε1 we have
uk(t2) < ε1. Then, by (16) and (17),

u1k (t2)=−
2∑

i=2

µ(ti−1) fk(ti , u(ti ), u1(ti−1))

=−µ(t1) fk(t2, u(t2), u1(t1)) <−µ(t1) · c.

However, this contradicts (15). Thus, uk(t2)≥ ε1 for all k ≥ 1/ε1.
Continuing, also by assumption (F), there now exists ε2 ∈ (0, ε1) such that for

all k ≥ 1/ε2

fk(t3, x, y) > c+m1, x ∈ (0, ε2), y ∈ (−c, c), (18)

where m1=max{| fk(t2, x, y)| : x ∈[ε1, c], y∈ (−c, c)}. For the sake of establishing
a contradiction, assume that for k≥1/ε2 we have uk(t3)<ε2. Then, by (16) and (18),

u1k (t3)=−
3∑

i=2

µ(ti−1) fk(ti , u(ti ), u1(ti−1))

=−µ(t1) fk(t2, u(t2), u1(t1))−µ(t2) fk(t3, u(t3), u1(t2))

≤ µ(t1) ·m1−µ(t2)(c+m1) < µ(t2) · c.

However, this contradicts (15). Thus, uk(t3)≥ ε2 for all k ≥ 1/ε2.
We continue in this manner, proceeding across the interval T1 for j = 3, 4, 5,

. . . , l − 1 and we create a nested sequence of epsilons, 0< εl−1 < · · ·< ε2 < ε1,
where uk(tj )≥ εj−1 when k ≥ 1/εj−1.

Continuing, by assumption (F), there exists εl ∈ (0, εl−1) such that for all k≥ 1/εl

fk(tl+1, x, y) > c+
l−1∑
i=1

mi , x ∈ [εi , c], y ∈ (−c, c), (19)

where mi = max{| fk(ti+1, x, y)| : x ∈ [εi , c], y ∈ (−c, c)}. For the sake of estab-
lishing a contradiction, assume that for k ≥ 1/εl we have uk(tl+1) < εl . Then, by
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(16) and (19),

u1k (tl+1)=−

l+1∑
i=2

µ(ti−1) fk(ti , u(ti ), u1(ti−1))

=−µ(t1) fk(t2, u(t2), u1(t1))−µ(t2) fk(t3, u(t3), u1(t2))

− · · ·−µ(tl) fk(tl+1, u(tl+1), u1(tl))

≤ µ(t1)m1− · · ·−µ(tl−1)ml−1−µ(tl)
(

c+
l−1∑
i=1

mi

)
< µ(tl) · c.

However, this contradicts (15). Thus, uk(tl+1)≥ εl for all k ≥ 1/εl .
Now, recall that we are on the interval T1, which just so happens to be an

interval with a finite number of points included in its time scale. Call the largest of
these points tM , and based on the previous argument, there exists εm−1 > 0 so that
uk(tM)≥ εm−1 for k ≥ 1/εm−1. Choose ε = εm−1/2 and note that

0< ε ≤ uk(t)≤ c for all t ∈ T1, k ≥ 1
ε
.

We now need only discuss what happens when

t ∈ T2 := T \T1 = T∩ [δ, 1].

Note that for each δ as δ→ 1, via previous arguments, we have for sufficiently
large k that uk(t) > 0, t ∈ T2. Also note that for sufficiently large k, as δ→ 1, we
have uk(t)≥ 0. This leads to the fact that for sufficiently large k, we get uk(t) > 0
for t ∈ T \ {1} and, as our boundary condition states, uk(1)= 0.

We now choose a subsequence {ukn (t)} ⊆ {uk(t)} so that

lim
n→∞

ukn (t)= u(t), t ∈ T,

and note that u(t) ∈ E , where E is defined as in the proof of Theorem 3.3.
Moreover, (16) yields, for sufficiently large n,

u1kn
(tj )=−

j∑
i=2

µ(ti−1) f (ti , ukn (ti ), u1kn
(ti−1)),

and so letting n→∞ and from the continuity of f we get

u1(tj )=−

j∑
i=2

µ(ti−1) f (ti , u(ti ), u1(ti−1)).

Consequently,
u11(ti−1)=− f (ti , u(ti ), u1(ti−1)). �
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5. Example

Let T be as given in Definition 2.1. Let α ∈ [0,∞), c, β ∈ (0,∞), and a : T→ R.
Then, by Theorem 4.1, the problem

u11(ti−1)+
(
a(ti )+(u(ti ))α+(u(ti ))−β

)
(c−u(ti ))−(u1(ti−1))

3
= 0, ti−1 ∈T,

along with the boundary conditions (2), has a solution u satisfying the desired
inequality.
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