\bullet

 involve

 involve}

a journal of mathematics

The number of fixed points of AND-OR networks
with chain topology
Alan Veliz-Cuba and Lauren Geiser

The number of fixed points of AND-OR networks with chain topology

Alan Veliz-Cuba and Lauren Geiser
(Communicated by Kenneth S. Berenhaut)

AND-OR networks are Boolean networks where each coordinate function is either the AND or OR logical operator. We study the number of fixed points of these Boolean networks in the case that they have a wiring diagram with chain topology. We find closed formulas for subclasses of these networks and recursive formulas in the general case. Our results allow for an effective computation of the number of fixed points in the case that the topology of the Boolean network is an open chain (finite or infinite) or a closed chain. We further explore how our approach could be used in "fractal" chains.

1. Introduction

Boolean networks, $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, have been used to study problems arising from areas such as mathematics, computer science, and biology [Akutsu et al. 1998; Albert and Othmer 2003; Mendoza and Xenarios 2006; Jarrah et al. 2010; Wang et al. 2017]. A particular problem of interest is counting the number of fixed points (x such that $f(x)=x$). To simplify this problem one can restrict the class of Boolean functions or the topology of the network [Agur et al. 1988; Aracena et al. 2004; Jarrah et al. 2007; 2010; Aracena 2008; Murrugarra and Laubenbacher 2011; Bollman et al. 2010; Veliz-Cuba et al. 2014a; 2014b; Dimitrova et al. 2015; Weiss and Margaliot 2017], which in some cases allows one to find effective algorithms or formulas in closed form.

In this manuscript we focus on the number of fixed points of AND-OR networks (each Boolean function is either the AND or the OR operator) that have open or closed chain topology. The networks we study in this manuscript also arise by restricting min-max networks to a Boolean set of values $\{0,1\}$ [Goles et al. 2000]. Although one typically specifies the update order to analyze the dynamics, this is

[^0]

Figure 1. Wiring diagram with open chain topology.
not necessary here as the fixed points would not change [Hansson et al. 2005]. We first consider the case of finite open chain topology and find a recursive formula (Theorem 2.4) and sharp lower and upper bounds. We then consider the case of infinite and closed chain topology and show how they can be reduced to the case of finite open chain topology (Theorems 3.1 and 3.2).

2. Open chain

Let $f=\left(f_{1}, \ldots, f_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ with $n \geq 2$ be an AND-OR network such that its wiring diagram is a chain; see Figure 1. That is, we consider Boolean networks of the form
$f_{1}=x_{2}, \quad f_{2}=x_{1} \diamond_{2} x_{3}, \quad f_{3}=x_{2} \diamond_{3} x_{4}, \quad \ldots, \quad f_{n-1}=x_{n-2} \diamond_{n-1} x_{n}, \quad f_{n}=x_{n-1}$,
where \diamond_{i} is the AND (\wedge) or the OR (\vee) operator.
Because this family of Boolean networks is completely determined by the sequence of logical operators $\diamond_{2}, \diamond_{3}, \ldots, \diamond_{n-1}$, we can use this sequence to represent the network. Furthermore, consecutive occurrences of the same logical operator can be denoted as \wedge^{k} or \vee^{k}.

We are interested in the number of fixed points of such Boolean networks. For simplicity we denote the elements of $\{0,1\}^{n}$ as binary strings (omitting parentheses). Also, we will use the notation $\mathbf{0}=00 \cdots 0$ and $\mathbf{1}=11 \cdots 1$, where the length of the strings will be clear from the context. Note that $\mathbf{0}$ and $\mathbf{1}$ are fixed points of all AND-OR networks with chain topology.

Example 2.1. Our running example will be the AND-OR network

$$
\begin{array}{llll}
f_{1}=x_{2}, & f_{4}=x_{3} \vee x_{5}, & f_{7}=x_{6} \vee x_{8}, & f_{10}=x_{9} \wedge x_{11}, \\
f_{2}=x_{1} \wedge x_{3}, & f_{5}=x_{4} \wedge x_{6}, & f_{8}=x_{7} \vee x_{9}, & f_{11}=x_{10} \vee x_{12}, \\
f_{3}=x_{2} \wedge x_{4}, & f_{6}=x_{5} \vee x_{7}, & f_{9}=x_{8} \wedge x_{10}, & f_{12}=x_{11} .
\end{array}
$$

This network can be represented by the sequence of operators $\wedge \wedge \vee \wedge \vee \vee \vee \wedge \wedge \vee$. We can further simplify this representation to $\wedge^{2} \vee \wedge \vee^{3} \wedge^{2} \vee$. This AND-OR network has 13 fixed points listed in Table 1 (first column).

The next lemma states that the number of fixed points depends only on the powers of the operators. Since we do not know which operator is last (\wedge or \vee), we will simply use ellipses without explicitly writing the last operator.

Lemma 2.2. The AND-OR networks $f=\wedge^{k_{1}} \vee^{k_{2}} \wedge^{k_{3}} \cdots$ and $g=\vee^{k_{1}} \wedge^{k_{2}} \vee^{k_{3}} \ldots$ have the same number of fixed points.
Proof. Consider $\phi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ given by $\phi\left(x_{1}, \ldots, x_{n}\right)=\left(\neg x_{1}, \ldots, \neg x_{n}\right)$, where \neg is the logical operator NOT. Using the fact that $\neg(p \wedge q)=\neg p \vee \neg q$ and $\neg(p \vee q)=\neg p \wedge \neg q$, it follows that $f(\phi(x))=\phi(g(x))$. Then, x will be a fixed point of g if and only if $\phi(x)$ is a fixed point of f. So, ϕ is a bijection between the fixed points of g and f.

Because we are interested in the number of fixed points, we will simply use $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$ to refer to a network. For instance, the AND-OR network seen in Example 2.1 can be represented simply by ($2,1,1,3,2,1$). We denote the number of fixed points by $\mathcal{F}\left(k_{1}, k_{2}, \ldots, k_{m}\right)$. A similar approach was used by [Alcolei et al. 2016] to study nonmonotonic Boolean networks.

The following lemma states that consecutive variables that have the same logical operator must be equal.

Lemma 2.3. Consider an AND-OR network f represented by $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$. Denote an element of the domain of f by $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}\right)$, where $\boldsymbol{x}^{1} \in\{0,1\}^{k_{1}+1}$, $\boldsymbol{x}^{m} \in\{0,1\}^{k_{m}+1}$, and $\boldsymbol{x}^{i} \in\{0,1\}^{k_{i}}$ for $i=2, \ldots, m-1$. If \boldsymbol{x} is a fixed point of f, then $\boldsymbol{x}^{i}=\mathbf{0}$ or $\boldsymbol{x}^{i}=\mathbf{1}$ for $i=1, \ldots, m$.
Proof. Let \boldsymbol{x} be a fixed point of f. We use $\left(\boldsymbol{x}^{i}\right)_{j}$ to denote the j-th coordinate of \boldsymbol{x}^{i}. Note that $\left(\boldsymbol{x}^{1}\right)_{1}=\left(\boldsymbol{x}^{1}\right)_{2}$ and $\left(\boldsymbol{x}^{m}\right)_{k_{m}}=\left(\boldsymbol{x}^{m}\right)_{k_{m}+1}$ by the definition of f (the first and last coordinate functions of f depend on single variables).

Now, the rest of the proof follows from the fact that if $q=p \wedge r$ and $r=q \wedge s$ or if $q=p \vee r$ and $r=q \vee s$, then $q=r$. This implies that consecutive variables, $\left(\boldsymbol{x}^{i}\right)_{j}$ and $\left(\boldsymbol{x}^{i}\right)_{j+1}$, that have the same logical operators must be the same.

The next proposition states that the numbers k_{i} in $\mathcal{F}\left(k_{1}, \ldots, k_{m}\right)$ can be assumed to be at most 2 for $2 \leq i \leq m-1$, and 1 for k_{1} and k_{m}. For example, this will imply that $\mathcal{F}(2,1,1,3,2,1)=\mathcal{F}(1,1,1,2,2,1)$ and $\mathcal{F}(2,5,3,1,4,3)=\mathcal{F}(1,2,2,1,2,1)$.
Example 2.1 (cont.). We highlight the structure of the fixed points of $\wedge^{2} \vee \wedge \vee^{3} \wedge^{2} \vee$ in Table 1 (second column).
Proposition 2.3.1. We have

$$
\mathcal{F}\left(k_{1}, k_{2}, \ldots, k_{m-1}, k_{m}\right)=\mathcal{F}\left(1, \min \left\{k_{2}, 2\right\}, \ldots, \min \left\{k_{m-1}, 2\right\}, 1\right)
$$

for all positive integers k_{i}.
Proof. We will use the notation of Lemma 2.3.
We first show that $f=\wedge^{k_{1}} \vee^{k_{2}} \wedge^{k_{3}} \cdots$ and $g=\wedge \vee^{k_{2}} \wedge^{k_{3}} \cdots$ have the same number of fixed points. Let $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right)$ be a fixed point of f. Then, by Lemma 2.3 we have $\boldsymbol{x}^{1}=\mathbf{0}$ or $\boldsymbol{x}^{1}=\mathbf{1}$. Consider $\boldsymbol{y}=\left(\boldsymbol{z}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}\right)$, where

fixed points	structure from Lemma 2.3	"reduced" system (Proposition 2.3 .1)
000000000000	000000000000	0000000000
000000000011	000000000011	0000000011
000001110000	000001110000	0000110000
000001111111	000001111111	0000111111
000001110011	000001110011	0000110011
000111110000	000111110000	0011110000
000111110011	000111110011	0011110011
000111111111	000111111111	0011111111
111100000000	111100000000	1110000000
111100000011	111100000011	1110000011
111111110000	111111110000	1111110000
111111110011	111111110011	1111110011
111111111111	111111111111	1111111111

Table 1. Fixed points of the AND-OR network $\wedge^{2} \vee \wedge \vee^{3} \wedge^{2} \vee$. First column: fixed points. Second column: fixed points with the structure given by Lemma 2.3 highlighted. Third column: fixed points of reduced network, $\wedge^{2} \vee \wedge \vee^{2} \wedge^{2} \vee$, with the structure given by Lemma 2.3 highlighted. For this example, the fixed points can be found using software [Elmeligy Abdelhamid et al. 2015]. We performed computations using resources from the Ohio Supercomputer Center [OSCC 1987].
$z=\left(\left(\boldsymbol{x}^{1}\right)_{1},\left(\boldsymbol{x}^{1}\right)_{2}\right)$. It can be checked that \boldsymbol{y} is a fixed point of g. Now, if $\boldsymbol{y}=$ $\left(\boldsymbol{z}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}\right)$ is a fixed point of g, Lemma 2.3 implies that $\boldsymbol{z}=\mathbf{0}$ or $\boldsymbol{z}=\mathbf{1}$. We define $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{m}\right)$ in the domain of f, where $\boldsymbol{x}^{1}=\mathbf{0}$ if $\boldsymbol{z}=\mathbf{0}$ and $\boldsymbol{x}^{1}=\mathbf{1}$ if $z=\mathbf{1}$. Then, it can be checked that \boldsymbol{x} is a fixed point of f. This shows that $\mathcal{F}\left(k_{1}, k_{2}, \ldots, k_{m-1}, k_{m}\right)=\mathcal{F}\left(1, k_{2}, \ldots, k_{m-1}, k_{m}\right)$, and similarly it can be shown that $\mathcal{F}\left(1, k_{2}, \ldots, k_{m-1}, k_{m}\right)=\mathcal{F}\left(1, k_{2}, \ldots, k_{m-1}, 1\right)$.

We now show that for $k_{2} \geq 2, f=\wedge^{k_{1}} \vee^{k_{2}} \wedge^{k_{3}} \cdots$ and $g=\wedge^{k_{1}} \vee^{2} \wedge^{k_{3}} \cdots$ have the same number of fixed points. The general case is analogous. Let $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}\right)$ be a fixed point of f. Then, by Lemma 2.3 we have $\boldsymbol{x}^{2}=\mathbf{0}$ or $\boldsymbol{x}^{2}=\mathbf{1}$. Consider $\boldsymbol{y}=\left(\boldsymbol{x}^{1}, \boldsymbol{z}, \boldsymbol{x}^{3}, \ldots, \boldsymbol{x}^{m}\right)$, where $\boldsymbol{z}=\left(\left(\boldsymbol{x}^{2}\right)_{1},\left(\boldsymbol{x}^{2}\right)_{2}\right)$. It can be checked that \boldsymbol{y} is a fixed point of g. Now, if $\boldsymbol{y}=\left(\boldsymbol{x}^{1}, \boldsymbol{z}, \boldsymbol{x}^{3}, \ldots, \boldsymbol{x}^{m}\right)$ is a fixed point of g, Lemma 2.3 implies that $\boldsymbol{z}=\mathbf{0}$ or $\boldsymbol{z}=\mathbf{1}$. We define $\boldsymbol{x}=\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}\right)$ in the domain of f, where $\boldsymbol{x}^{1}=\mathbf{0}$ if $\boldsymbol{z}=\mathbf{0}$ and $\boldsymbol{x}^{1}=\mathbf{1}$ if $\boldsymbol{z}=\mathbf{1}$. Then, it can be checked that \boldsymbol{x} is a fixed point of f. This shows that

$$
\mathcal{F}\left(k_{1}, k_{2}, \ldots, k_{m-1}, k_{m}\right)=\mathcal{F}\left(k_{1}, 2, k_{3}, \ldots, k_{m-1}, k_{m}\right) \quad \text { for } k_{2} \geq 2 .
$$

Figure 2. Idea behind the proof of Proposition 2.3.2 (logical operators are included for clarity). Considering the cases $x_{1}=0$ and $x_{1}=1$ yields systems of equations that correspond to smaller AND-OR networks.

Example 2.1 (cont.). Proposition 2.3.1 guarantees that $\wedge^{2} \vee \wedge \vee^{3} \wedge^{2} \vee$ and $\wedge \vee \wedge \vee^{2} \wedge^{2} \vee$ have the same number of fixed points. We can consider the second AND-OR network as a "reduced" version of the original AND-OR network [Veliz-Cuba 2011; Matache and Matache 2016]. This is illustrated in Table 1 (third column).

Proposition 2.3.2. Let $r_{1}, \ldots, r_{m} \in\{1,2\}$, and $m \geq 2$. Then, we have $\mathcal{F}\left(1, r_{1}, \ldots, r_{m}, 1\right)$

$$
= \begin{cases}\mathcal{F}\left(1, r_{3}, \ldots, r_{m}, 1\right)+\mathcal{F}\left(r_{3}, \ldots, r_{m}, 1\right) & \text { for } r_{1}=1, r_{2}=1, \tag{1}\\ \mathcal{F}\left(2, r_{3}, \ldots, r_{m}, 1\right)+\mathcal{F}\left(1, r_{3}, \ldots, r_{m}, 1\right) & \text { for } r_{1}=1, r_{2}=2, \\ \mathcal{F}\left(1,1, r_{3}, \ldots, r_{m}, 1\right)+\mathcal{F}\left(r_{3}, \ldots, r_{m}, 1\right) & \text { for } r_{1}=2, r_{2}=1, \\ \mathcal{F}\left(1,2, r_{3}, \ldots, r_{m}, 1\right)+\mathcal{F}\left(1, r_{3}, \ldots, r_{m}, 1\right) & \text { for } r_{1}=2, r_{2}=2\end{cases}
$$

Proof. We will use the notation of Lemma 2.3.
If $r_{1}=1, r_{2}=1$, then we claim that any fixed point of $f=\wedge \vee \wedge \vee^{r_{3}} \wedge^{r_{4}} \ldots$ is of the form $\boldsymbol{x}=\left(\boldsymbol{x}^{0}, \boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}, \boldsymbol{x}^{m+1}\right)$, where either $\boldsymbol{x}^{0}=\mathbf{0}$ and $\boldsymbol{z}=$ $\left(\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}, \boldsymbol{x}^{m+1}\right)$ is a fixed point of $g=\wedge \vee^{r_{3}} \wedge^{r_{4}} \cdots$ or $\boldsymbol{x}^{0}=\boldsymbol{x}^{1}=\mathbf{1}$ and $z=\left(\boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{m}, \boldsymbol{x}^{m+1}\right)$ is a fixed point of $h=\vee^{r_{3}} \wedge^{r_{4}} \ldots$. Indeed, the system of Boolean equations for fixed points is
$x_{1}=x_{2}, \quad x_{2}=x_{1} \wedge x_{3}, \quad x_{3}=x_{2} \vee x_{4}, \quad x_{4}=x_{3} \wedge x_{5}, \quad x_{5}=x_{4} \vee x_{6}, \ldots, \quad x_{n}=x_{n-1}$.
We divide this system of equations into the cases $x_{1}=0$ and $x_{1}=1$. Then, using the fact that $1=m \wedge n$ implies $m=n=1$ and that $0=m \vee n$ implies $m=n=0$, it follows that we obtain the two systems

$$
x_{3}=x_{4}, \quad x_{4}=x_{3} \wedge x_{5}, \quad x_{5}=x_{4} \vee x_{6}, \ldots, \quad x_{n}=x_{n-1}
$$

and

$$
x_{4}=x_{5}, \quad x_{5}=x_{4} \vee x_{6}, \ldots, \quad x_{n}=x_{n-1},
$$

corresponding to the cases $x_{1}=0$ and $x_{1}=1$, respectively (see Figure 2). This means that the number of fixed points of f is equal to the number of solutions
of these two systems. Since the solutions of the first system are the fixed points of $g=\wedge \vee^{r_{3}} \wedge^{r_{4}} \cdots$ and the solutions of the second system are the fixed points of $h=\vee^{r_{3}} \wedge^{r_{4}} \cdots$, we obtain

$$
\mathcal{F}\left(1,1,1, r_{3}, \ldots, r_{m}, 1\right)=\mathcal{F}\left(1, r_{3}, \ldots, r_{m}, 1\right)+\mathcal{F}\left(r_{3}, \ldots, r_{m}, 1\right) .
$$

The proof for the other three cases is similar.
We use the convention

$$
\mathcal{F}\left(0, k_{1}, \ldots, k_{m}, 0\right)=\mathcal{F}\left(k_{1}, \ldots, k_{m}, 0\right)=\mathcal{F}\left(0, k_{1}, \ldots, k_{m}\right)=\mathcal{F}\left(k_{1}, \ldots, k_{m}\right),
$$

which will simplify the formulation of upcoming results.
Theorem 2.4. With the convention above, we have that for $m \geq 3$ and $k_{i} \geq 1$

$$
\mathcal{F}\left(k_{1}, \ldots, k_{m}\right)=\mathcal{F}\left(k_{2}-1, k_{3}, \ldots, k_{m}\right)+\mathcal{F}\left(k_{3}-1, k_{4}, \ldots, k_{m}\right)
$$

and

$$
\mathcal{F}\left(k_{1}, \ldots, k_{m}\right)=\mathcal{F}\left(k_{1}, \ldots, k_{m-2}, k_{m-1}-1\right)+\mathcal{F}\left(k_{1}, \ldots, k_{m-3}, k_{m-2}-1\right) .
$$

Also,

$$
\mathcal{F}\left(k_{1}, k_{2}\right)=3, \quad \mathcal{F}(k)=2 \quad \text { for } k \geq 0 .
$$

Proof. For $m \geq 4$ the result follows directly from Propositions 2.3.1 and 2.3.2. For $m=3$ the result follows from

$$
\mathcal{F}(1,2,1)=5, \quad \mathcal{F}(1,1,1)=4, \quad \mathcal{F}(1,1)=3, \quad \mathcal{F}(1)=2, \quad \text { and } \quad \mathcal{F}(0)=2,
$$

which can be easily checked by complete enumeration.
Example 2.1 (cont.). We now use Theorem 2.4 to find the number of fixed points of $\wedge^{2} \vee \wedge \vee^{3} \wedge^{2} \vee$:

$$
\begin{aligned}
\mathcal{F}(2,1,1,3,2,1) & =\mathcal{F}(1,1,1,2,2,1) \\
& =\mathcal{F}(1-1,1,2,2,1)+\mathcal{F}(1-1,2,2,1) \\
& =\mathcal{F}(1,2,2,1)+\mathcal{F}(2,2,1) \\
& =\mathcal{F}(2-1,2,1)+\mathcal{F}(2-1,1)+\mathcal{F}(2-1,1)+\mathcal{F}(1-1) \\
& =\mathcal{F}(1,2,1)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(0) \\
& =\mathcal{F}(2-1,1)+\mathcal{F}(1-1)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(0) \\
& =\mathcal{F}(1,1)+\mathcal{F}(0)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(0) \\
& =3+2+3+3+2 \\
& =13
\end{aligned}
$$

or

$$
\begin{aligned}
\mathcal{F}(2,1,1,3,2,1) & =\mathcal{F}(1,1,1,2,2,1) \\
& =\mathcal{F}(1,1,1,2,2-1)+\mathcal{F}(1,1,1,2-1) \\
& =\mathcal{F}(1,1,1,2,1)+\mathcal{F}(1,1,1,1) \\
& =\mathcal{F}(1,1,1,2-1)+\mathcal{F}(1,1,1-1)+\mathcal{F}(1,1,1-1)+\mathcal{F}(1,1-1) \\
& =\mathcal{F}(1,1,1,1)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(1) \\
& =\mathcal{F}(1,1,1-1)+\mathcal{F}(1,1-1)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(1) \\
& =\mathcal{F}(1,1)+\mathcal{F}(1)+\mathcal{F}(1,1)+\mathcal{F}(1,1)+\mathcal{F}(1) \\
& =3+2+3+3+2 \\
& =13
\end{aligned}
$$

In this way, Theorem 2.4 provides a recursive formula to compute the number of fixed points of AND-OR networks with chain topology without the need of exhaustive enumeration. We now study the two special cases of $\mathcal{F}(1,1, \ldots, 1,1)$ and $\mathcal{F}(2,2, \ldots, 2,2)$.

Define

$$
A_{n}=(1, \underbrace{1,1, \ldots, 1,1}_{n \text { times }}, 1) \quad \text { and } \quad B_{n}=(2, \underbrace{2,2, \ldots, 2,2}_{n \text { times }}, 2) .
$$

Also define the sequences $a_{0}=1, a_{1}=1, a_{2}=1$, and $a_{n}=a_{n-2}+a_{n-3}$ for $n \geq 3$ and $b_{0}=1, b_{1}=1$, and $b_{n}=b_{n-1}+b_{n-2}$ for $n \geq 2$. Note that $\left(a_{n}\right)$ is the Padovan sequence and $\left(b_{n}\right)$ is the Fibonacci sequence.

Corollary 2.4.1. With the definitions above we have $\mathcal{F}\left(A_{n}\right)=a_{n+5}$ and $\mathcal{F}\left(B_{n}\right)=$ b_{n+3} for $n \geq 0$, and the sharp bounds $\mathcal{F}\left(A_{n}\right) \leq \mathcal{F}\left(1, r_{1}, r_{2}, \ldots, r_{n}, 1\right) \leq \mathcal{F}\left(B_{n}\right)$ for all $r_{i} \geq 1$.

Proof. It follows from Theorem 2.4 or Proposition 2.3.2 using induction.

3. Infinite and closed chain

In this section we study the cases of AND-OR networks with infinitely many variables and when the topology is a closed chain.

When the AND-OR network has infinitely many variables we have a infinite collection of Boolean functions $f=\left(\ldots, f_{-2}, f_{-1}, f_{0}, f_{1}, f_{2}, \ldots\right)$ such that $f_{i}=$ $x_{i-1} \wedge x_{i+1}$ or $f_{i}=x_{i-1} \vee x_{i+1}$. We can use the notation of Section 2 and denote consecutive logical operators as \wedge^{k} or \vee^{k}, where k could also be ∞. Also, we can simply use the exponents to represent the AND-OR network. For example, $(\infty, 1,2, \infty)$ and $\wedge^{\infty} \vee \wedge^{2} \vee{ }^{\infty}$ represent the AND-OR network $\cdots \wedge \wedge \wedge \vee \wedge \wedge \vee \vee \vee \cdots$.

Similarly, $(\ldots, 1,1,2,1,1,2,1,1,2, \ldots)$ and $\cdots \wedge \vee \wedge^{2} \vee \wedge \vee^{2} \wedge \vee \wedge^{2} \cdots$ represent the AND-OR network $\cdots \wedge \vee \wedge \wedge \vee \wedge \vee \vee \wedge \vee \wedge \wedge \cdots$.

The following theorem allows us to use the results from Section 2 to study AND-OR networks with infinitely many variables.

Theorem 3.1. With the notation above and $k_{i} \geq 1$ we have

$$
\begin{aligned}
\mathcal{F}(\infty) & =2, \\
\mathcal{F}\left(\infty, k_{1}, k_{2}, \ldots, k_{m-1}, k_{m}, \infty\right) & =\mathcal{F}\left(1, k_{1}, k_{2}, \ldots, k_{m-1}, k_{m}, 1\right), \\
\mathcal{F}\left(\infty, k_{1}, k_{2}, k_{3}, \ldots\right) & =\infty, \\
\mathcal{F}\left(\ldots, k_{-3}, k_{-2}, k_{-1}, \infty\right) & =\infty, \\
\mathcal{F}\left(\ldots, k_{-3}, k_{-2}, k_{-1}, k_{0}, k_{1}, k_{2}, k_{3}, \ldots\right) & =\infty .
\end{aligned}
$$

Proof. To prove the first equality we consider the AND-OR network where all logical operators are \wedge. If one of the variables is 0 , it follows that all the other variables are also 0 . Similarly, if one of the variables is 1 , all the other variables are also 1 . Thus, the only fixed points of this AND-OR network are $\mathbf{0}$ and $\mathbf{1}$.

The second equality follows the same approach seen in Proposition 2.3.1.
To prove the third equality we first observe that $\mathcal{F}\left(\infty, k_{1}, k_{2}, k_{3}, \ldots\right)=$ $\mathcal{F}\left(1, k_{1}, k_{2}, k_{3}, \ldots\right)$. Now, we will show that any fixed point of the ANDOR network $\mathcal{F}\left(1, k_{1}, k_{2}, k_{3}, \ldots, k_{r}\right)$ defines a fixed point of $\mathcal{F}\left(1, k_{1}, k_{2}, k_{3}, \ldots\right)$. Indeed, using the notation of Lemma 2.3, a fixed point of the AND-OR network $\mathcal{F}\left(1, k_{1}, \ldots, k_{r}\right)$ has the form $\boldsymbol{x}=\left(\boldsymbol{x}^{0}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{r}\right)$. Then, denoting $z=(1,1, \ldots)$ if $\boldsymbol{x}^{r}=\mathbf{1}$ and $\boldsymbol{z}=(0,0, \ldots)$ if $\boldsymbol{x}^{r}=\mathbf{0}$, it follows that $\left(\boldsymbol{x}^{0}, \boldsymbol{x}^{1}, \ldots, \boldsymbol{x}^{r}, \boldsymbol{z}\right)$ is a fixed point of $\mathcal{F}\left(1, k_{1}, k_{2}, k_{3}, \ldots\right)$. Since r is arbitrary, $\mathcal{F}\left(1, k_{1}, \ldots, k_{r}\right)$ is not bounded (see Corollary 2.4.1) and the number of fixed points of $\mathcal{F}\left(1, k_{1}, \ldots\right)$ is ∞. The last two equalities are similar.

When the topology of the network is a closed chain, we have the network

$$
\begin{aligned}
f_{1} & =x_{n} \diamond_{1} x_{2}, & f_{n-2} & =x_{n-3} \diamond_{n-2} x_{n-1}, \\
f_{2} & =x_{1} \diamond_{2} x_{3}, & f_{n-1} & =x_{n-2} \diamond_{n-1} x_{n}, \\
& \vdots & f_{n} & =x_{n-1} \diamond_{n} x_{1} .
\end{aligned}
$$

We denote this network as $\left[k_{1}, k_{2}, \ldots, k_{r}\right]$ or any cyclic permutation that groups consecutive logical operators. Thus, the AND-OR network

$$
\begin{aligned}
& f_{1}=x_{n} \wedge x_{2}, \quad f_{3}=x_{2} \wedge x_{4}, \quad f_{5}=x_{4} \vee x_{6}, \\
& f_{2}=x_{1} \vee x_{3}, \quad f_{4}=x_{3} \vee x_{5}, \quad f_{6}=x_{5} \wedge x_{1},
\end{aligned}
$$

will not be denoted by $[1,1,1,2,1]$ ("splitting" the first and last \wedge 's), but by $[1,1,2,2],[1,2,2,1],[2,2,1,1]$, or $[2,1,1,2]$ (combining the first and last $\wedge ’ s$).

This means that r in $\left[k_{1}, k_{2}, \ldots, k_{r}\right]$ will always be an even number or equal to 1 . The number of fixed points will be denoted by $\mathcal{F}\left[k_{1}, k_{2}, \ldots, k_{r}\right]$. The following propositions and theorem allow us to use the results from Section 2 to study ANDOR networks with closed chain topology.

Proposition 3.1.1. With the notation above, we have that for $k_{i} \geq 1$

$$
\mathcal{F}\left[k_{1}, k_{2}, \ldots, k_{r}\right]=\mathcal{F}\left[\min \left\{2, k_{1}\right\}, \min \left\{2, k_{2}\right\}, \ldots, \min \left\{2, k_{r}\right\}\right] .
$$

Proof. It is analogous to the proof of Proposition 2.3.1.
Proposition 3.1.2. Consider $k_{i} \geq 1, m \geq 6$, and $l \geq 8$. Then,

$$
\begin{aligned}
\mathcal{F}\left[2, k_{2}, \ldots, k_{m}\right]= & \mathcal{F}\left(k_{2}-1, k_{3}, \ldots, k_{m-1}, k_{m}-1\right)+\mathcal{F}\left(k_{3}-1, k_{4}, \ldots, k_{m-2}, k_{m-1}-1\right) \\
\mathcal{F}\left[1, k_{2}, \ldots, k_{l}\right]= & \mathcal{F}\left(k_{3}-1, k_{4}, \ldots, k_{l-1}-1\right)+\mathcal{F}\left(k_{4}-1, k_{5}, \ldots, k_{l-1}, k_{l}-1\right) \\
& +\mathcal{F}\left(k_{2}-1, k_{3}, \ldots, k_{l-3}, k_{l-2}-1\right)-\mathcal{F}\left(k_{4}-1, k_{5}, \ldots, k_{l-3}, k_{l-2}-1\right) .
\end{aligned}
$$

Proof. The first equality is analogous to Proposition 2.3.2. To prove the second equality we use the notation of Lemma 2.3.

We have several cases to consider for $k_{l-2}, k_{l-1}, k_{l}, k_{2}, k_{3}$, and k_{4}. We focus on the case $k_{l-2}=k_{l-1}=k_{l}=k_{2}=k_{3}=k_{4}=1$ since the other cases are analogous. Note that we want to prove

$$
\begin{aligned}
\mathcal{F}\left[1,1,1,1, k_{5}, \ldots, k_{l-3}, 1,1,1\right]= & \mathcal{F}\left(1, k_{5}, \ldots, k_{l-3}, 1\right)+\mathcal{F}\left(k_{5}, \ldots, k_{l-3}, 1,1\right) \\
& +\mathcal{F}\left(1,1, k_{5}, \ldots, k_{l-3}\right)-\mathcal{F}\left(k_{5}, \ldots, k_{l-3}\right)
\end{aligned}
$$

The fixed points of the AND-OR network are the solutions of

$$
\begin{aligned}
x_{1} & =x_{n} \wedge x_{2}, & x_{n-3} & =x_{n-4} \wedge x_{n-2} \\
x_{2} & =x_{1} \vee x_{3}, & x_{n-2} & =x_{n-3} \vee x_{n-1} \\
x_{3} & =x_{2} \wedge x_{4}, & x_{n-1} & =x_{n-2} \wedge x_{n} \\
& \vdots & x_{n} & =x_{n-1} \vee x_{1} .
\end{aligned}
$$

We now consider the cases $x_{1}=1$ and $x_{1}=0$ (see Figure 3). The case $x_{1}=1$ yields the system of equations

$$
\begin{array}{rlrl}
x_{3} & =x_{4}, & x_{n-4}=x_{n-5} \vee x_{n-3}, \\
x_{4} & =x_{3} \vee x_{5}, & & x_{n-3}=x_{n-4} \wedge x_{n-2}, \\
x_{5} & =x_{4} \wedge x_{6}, & x_{n-2}=x_{n-3} \vee x_{n-1}, \\
& \vdots & x_{n-1}=x_{n-2},
\end{array}
$$

which has $\mathcal{F}\left(1, k_{5}, \ldots, k_{l-3}, 1\right)$ solutions. On the other hand, when we consider $x_{1}=0$ the first equation becomes $x_{n} \wedge x_{2}=0$. We now have two subcases: $x_{n}=0$

Figure 3. Idea behind the proof of Proposition 3.1.2 (logical operators are included for clarity). Considering the case $x_{1}=1$ yields a system of equations that corresponds to a smaller ANDOR network. Considering the case $x_{1}=0$ yields a system of equations that does not correspond to an AND-OR network (due to the equation $x_{n} \wedge x_{2}=0$). However, the subcases $x_{n}=0$ and $x_{2}=0$ yield systems of equations that do correspond to smaller AND-OR networks. These two systems have overlapping solutions, so we must also take into consideration the common case $x_{n}=x_{2}=0$ when counting the number of fixed points.
and $x_{2}=0$. The subcase $x_{n}=0$ yields

$$
\begin{array}{rlrl}
x_{2}=x_{3}, & & x_{n-4}=x_{n-5} \vee x_{n-3}, \\
x_{3} & =x_{2} \wedge x_{4}, & & x_{n-3}=x_{n-4} \wedge x_{n-2}, \\
\quad \vdots & & x_{n-2}=x_{n-3},
\end{array}
$$

which has $\mathcal{F}\left(1,1, k_{5}, \ldots, k_{l-3}\right)$ solutions. The subcase $x_{2}=0$ yields

$$
\begin{aligned}
x_{4} & =x_{5}, & x_{n-2} & =x_{n-3} \vee x_{n-1}, \\
x_{5} & =x_{4} \wedge x_{6}, & x_{n-1} & =x_{n-2} \wedge x_{n}, \\
& \vdots & x_{n} & =x_{n-1},
\end{aligned}
$$

which has $\mathcal{F}\left(k_{5}, \ldots, k_{l-3}, 1,1\right)$ solutions. Thus, adding up these three numbers we obtain $\mathcal{F}\left(1, k_{5}, \ldots, k_{l-3}, 1\right)+\mathcal{F}\left(k_{5}, \ldots, k_{l-3}, 1,1\right)+\mathcal{F}\left(1,1, k_{5}, \ldots, k_{l-3}\right)$. However, this is not $\mathcal{F}\left[1,1,1,1, k_{5}, \ldots, k_{l-3}, 1,1,1\right]$, since the subcases $x_{n}=0$ and
$x_{2}=0$ overlap. We need to subtract the number of solutions of the system

$$
\begin{array}{ll}
x_{4}=x_{5}, & x_{n-4}=x_{n-5} \vee x_{n-3} \\
x_{5}=x_{4} \wedge x_{6}, & x_{n-3}=x_{n-4} \wedge x_{n-2} \\
\quad \vdots & x_{n-2}=x_{n-3}
\end{array}
$$

which has $\mathcal{F}\left(k_{5}, \ldots, k_{l-3}\right)$ solutions. Then, the result follows.
We now declare some conventions to write Proposition 3.1.2 more compactly. We define $\mathcal{F}(-1)=1,\left(k_{s}-1, \ldots, k_{s}-1\right)=\left(k_{s}-2\right)$, and $\left(k_{s}-1, \ldots, k_{t}-1\right)=(-1)$ for $s>t$.

Theorem 3.2. With the conventions above, we have that for $m \geq 4$ and $k_{i} \geq 1$

$$
\begin{aligned}
& \mathcal{F}\left[2, k_{2}, \ldots, k_{r}\right]=\mathcal{F}\left(k_{2}-1, k_{3}, \ldots, k_{r-1}, k_{r}-1\right)+\mathcal{F}\left(k_{3}-1, k_{4}, \ldots, k_{r-2}, k_{r-1}-1\right), \\
& \mathcal{F}\left[1, k_{2}, \ldots, k_{r}\right]=\mathcal{F}\left(k_{3}-1, k_{4}, \ldots, k_{r-1}-1\right)+\mathcal{F}\left(k_{4}-1, k_{5}, \ldots, k_{r-1}, k_{r}-1\right)
\end{aligned}
$$

$$
+\mathcal{F}\left(k_{2}-1, k_{3}, \ldots, k_{r-3}, k_{r-2}-1\right)-\mathcal{F}\left(k_{4}-1, k_{5}, \ldots, k_{r-3}, k_{r-2}-1\right)
$$

Also,

$$
\begin{gathered}
\mathcal{F}[k]=2 \quad \text { for } k \geq 3, \\
\mathcal{F}[k, 1]=2 \quad \text { for } k \geq 2, \\
\mathcal{F}\left[k_{1}, k_{2}\right]=3
\end{gathered} \text { for } k_{1}, k_{2} \geq 2, ~ \$
$$

Proof. The first two equalities follow directly from Propositions 3.1.1 and 3.1.2 using the convention declared above. The last three equalities follow from Proposition 3.1.1 and $\mathcal{F}[3]=\mathcal{F}[2,1]=2$ and $\mathcal{F}[2,2]=3$, which can be verified by complete enumeration.

As in Section 2, we now consider the cases

$$
A_{n}=(1, \underbrace{1,1, \ldots, 1,1}_{n \text { times }}, 1) \text { and } B_{n}=(2, \underbrace{2,2, \ldots, 2,2}_{n \text { times }}, 2) .
$$

We denote the number of fixed points of the corresponding AND-OR networks with closed chain topology by $\mathcal{F}\left[A_{n}\right]$ and $\mathcal{F}\left[B_{n}\right]$, respectively.

Corollary 3.2.1. With the notation above we have $\mathcal{F}\left[A_{n}\right]=3 a_{n}-a_{n-2}$ and $\mathcal{F}\left[B_{n}\right]=b_{n+2}+b_{n}$ for $n \geq 2$, and the sharp bounds

$$
\mathcal{F}\left[A_{n}\right] \leq \mathcal{F}\left[k_{0}, k_{1}, \ldots, k_{n}, k_{n+1}\right] \leq \mathcal{F}\left[B_{n}\right]
$$

for all $r_{i} \geq 1$
Proof. The proof follows from first using Theorem 3.2 and then Corollary 2.4.1.

Example 3.3. We consider

$$
\begin{aligned}
& f_{1}=x_{12} \wedge x_{2}, \quad f_{4}=x_{3} \vee x_{5}, \quad f_{7}=x_{6} \vee x_{8}, \quad f_{10}=x_{9} \wedge x_{11}, \\
& f_{2}=x_{1} \wedge x_{3}, \quad f_{5}=x_{4} \wedge x_{6}, \quad f_{8}=x_{7} \vee x_{9}, \quad f_{11}=x_{10} \vee x_{12}, \\
& f_{3}=x_{2} \wedge x_{4}, \quad f_{6}=x_{5} \vee x_{7}, \quad f_{9}=x_{8} \wedge x_{10}, \quad f_{12}=x_{11} \vee x_{1} .
\end{aligned}
$$

We will use Theorems 2.4 and 3.2 for the representations [3, 1, 1, 3, 2, 2] and [$1,3,2,2,3,1]$ of f.

$$
\begin{aligned}
\mathcal{F}[3,1,1,3,2,2] & =\mathcal{F}[2,1,1,2,2,2] \\
& =\mathcal{F}(1-1,1,2,2,2-1)+\mathcal{F}(1-1,2,2-1) \\
& =\mathcal{F}(1,2,2,1)+\mathcal{F}(2,1) \\
& =\mathcal{F}(2-1,2,1)+\mathcal{F}(2-1,1)+\mathcal{F}(2,1) \\
& =\mathcal{F}(1,2,1)+\mathcal{F}(1,1)+\mathcal{F}(2,1) \\
& =\mathcal{F}(2-1,1)+\mathcal{F}(1-1)+\mathcal{F}(1,1)+\mathcal{F}(2,1) \\
& =\mathcal{F}(1,1)+\mathcal{F}(0)+\mathcal{F}(1,1)+\mathcal{F}(2,1) \\
& =3+2+3+3=11,
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}[1,3,2,2,3,1] & =\mathcal{F}[1,2,2,2,2,1] \\
& =\mathcal{F}(2-1,2,2-1)+\mathcal{F}(2-1,2,1-1)+\mathcal{F}(2-1,2,2-1)-\mathcal{F}(2-2) \\
& =\mathcal{F}(1,2,1)+\mathcal{F}(1,2)+\mathcal{F}(1,2,1)-\mathcal{F}(0) \\
& =\mathcal{F}(1,1)+\mathcal{F}(0)+\mathcal{F}(1,2)+\mathcal{F}(1,1)+\mathcal{F}(0)-\mathcal{F}(0) \\
& =3+2+3+3+2-2=11 .
\end{aligned}
$$

4. Final remarks: coupled chains

Although the results in this manuscript are for chain topology, we now show how our techniques could also be used for coupled chains. These couplings could be considered as "fractal" versions of the 1 -dimensional chains that we covered in previous sections. However, due to the complex couplings that could be attained and the different cases that appear (e.g., the proof of Proposition 3.1.1 has 2^{6} subcases per case), a single proposition that covers all cases would be unfeasible. Thus, we will consider two examples featuring different couplings of chains: a coupling of three open chains, and a coupling of an open and a closed chain.

First, we will prove two lemmas that will allow us to handle intersections of chains. To make the notation simpler, a pair of edges between two vertices will be simply denoted by a single undirected edge (Figure 4). When it is not required to label vertices, we will use an even simpler representation of the wiring diagram (top

Figure 4. Coupling chains. (a) Wiring diagram of an AND-OR network consisting of the coupling of three open chains. Each undirected edge represents two edges as shown in Figure 1. For example, $f_{1}=x_{2}, f_{2}=x_{1} \wedge x_{3}$, and $f_{8}=x_{7} \wedge x_{9} \wedge x_{10}$. Vertex x_{1} could also be assigned the AND or OR operator. (b) Wiring diagram of an AND-OR network consisting of the coupling of a closed and open chain. In both panels, the insets show the simplified representation of the wiring diagram where the labels of variables are omitted. Open circles indicate the AND operator, whereas filled circles indicate the OR operator. The vertex corresponding to x_{1} is left blank, but could also be assigned a filled or open circle. The insets also show an undirected graph highlighting the coupling motif of the AND-OR network. In previous sections the coupling motif would simply be a (finite or infinite) line or a circle.
insets in Figure 4). Also, we will use $\mathcal{F}[f]$ to denote the number of fixed points of an AND-OR network f.

Consider an AND-OR network, $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, and $S \subseteq\{1,2, \ldots, n\}$. We define a new network $g:\{0,1\}^{n-|S|} \rightarrow\{0,1\}^{n-|S|}$ in the variables $\left\{x_{i}: i \notin S\right\}$, denoted by $g=f \backslash S$, as follows:
(1) Remove the vertices in $\left\{x_{i}: i \in S\right\}$ from the wiring diagram of f. Note that this also means that we remove the edges of the forms $x_{i} \rightarrow x_{j}$ and $x_{k} \rightarrow x_{i}$, where $i \in S$.
(2) For each variable x_{k} in the new wiring diagram, g_{k} will be the same logical operator as in the wiring diagram of f, but may possibly depend on less variables. Note that the operators \vee and \wedge on a single variable are simply the identity function.

Figure 5. Example of $f \backslash S$. (a) Wiring diagram of the AND-OR network $f \backslash S$, where f is given in Figure 4(a) and $S=\{7,8\}$. (b) Simplified representation of the wiring diagram with labels omitted. (c) Undirected graph highlighting the coupling motif of $f \backslash S$. Note that this graph now has three connected components, all of them being open chains.

Example 4.1. Consider the AND-OR network with wiring diagram given by Figure 4(a) and let $S=\{7,8\}$. The new network $g=f \backslash S$ has wiring diagram shown in Figure 5(a). Note that g depends on 20 variables and variables x_{6}, x_{9}, and x_{10} each depend on a single variable only (e.g., the Boolean function corresponding to x_{6} is $g_{6}=x_{5}$).

We now state and prove the lemmas.
Lemma 4.2. Consider an AND-OR network f consisting of coupled chains such that x_{n} depends on two or more variables as shown in Figure 6(a). Denote with $R=\{1,2, \ldots, r\}$. Then, the number of steady states of f is equal to

$$
\mathcal{F}[f]=\mathcal{F}\left[f \backslash\left(\{n\} \cup\left\{i_{s}: s \in R\right\}\right)\right]
$$

$$
+\sum_{\varnothing \neq S \subseteq R}(-1)^{|S|+1} \mathcal{F}\left[f \backslash\left(\{n\} \cup\left\{i_{s}: s \in S\right\} \cup\left\{j_{s}: s \in S\right\}\right)\right] .
$$

Proof. We proceed by cases as in the proof of Proposition 3.1.2.
If $x_{n}=1$, then any fixed point of f will satisfy $x_{i_{s}}=x_{j_{s}} \vee 1=1$ and $x_{j_{s}}=x_{k_{s}} \wedge x_{i_{s}}=$ $x_{k_{s}} \wedge 1=x_{k_{s}}$. Thus, x is a fixed point of f if and only if $y=\left(x_{s}\right)_{s \in\{1, \ldots, n\} \backslash\left\{n, i_{1}, \ldots, i_{r}\right\}}$ is a fixed point of the AND-OR network with wiring diagram given in Figure 6(b). This smaller network is precisely $f \backslash\left(\{n\} \cup\left\{i_{s}: s \in R\right\}\right)$.

If $x_{n}=0$, then any fixed point of f will satisfy $x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}=0$ (Figure 6(c)). This does not correspond to a system of equations of an AND-OR network, so we consider the subcases $x_{i_{s}}=0$ for each $s \in R=\{1,2, \ldots, r\}$.

Figure 6. Idea of the proof in Lemma 4.2. (a) Wiring diagram of AND-OR network f that has a vertex that depends on two or more variables. The three dots represent other variables in the r chains that could potentially intersect as in Figure 4(b). We consider two cases, $x_{n}=1$ and $x_{n}=0$ in the system of equations $f(x)=x$. (b) In the case $x_{n}=1$, we obtain a smaller system of equations that corresponds to a smaller wiring diagram of an AND-OR network. (c) In the case $x_{n}=0$, the system of equations does not correspond to an AND-OR network due to the condition $\bigwedge_{s=1}^{r} x_{i_{s}}=0$. (d) To obtain AND-OR networks we consider the subcases $x_{i_{1}}=0, x_{i_{2}}=0, \ldots$, and $x_{i_{r}}=0$. However, there is overlap of fixed points between the different subcases, so we use the inclusion-exclusion principle.

If $x_{i_{s}}=0$, then $x_{i_{1}} \wedge \cdots \wedge x_{i_{r}}=0$ is satisfied. Also, $x_{j_{s}}=x_{k_{s}} \wedge 0=0$ and then $x_{k_{s}}$ will depend on a single variable only (see Figure 6(d) for the cases $s=1$ and $s=r$). The resulting AND-OR network is $f \backslash\left(\left\{n, i_{s}, j_{s}\right\}\right)$. Note that these subcases overlap, so we use the inclusion-exclusion principle to properly account for this. For the case $x_{n}=0$, the inclusion exclusion principle implies that the number of fixed points is |\{fixed points of the form $\left.x_{n}=0\right\}$ |

$$
=\sum_{\varnothing \neq S \subseteq R}(-1)^{|S|+1} \mid\left\{\text { fixed points of the form } x_{i_{s}}=0 \text { for } s \in S\right\} \mid .
$$

We now claim that
$\mid\left\{\right.$ fixed points of the form $x_{i_{s}}=0$ for $\left.s \in S\right\} \mid=\mathcal{F}\left[f \backslash\left(\{n\} \cup\left\{i_{s}: s \in S\right\} \cup\left\{j_{s}: s \in S\right\}\right)\right]$.
Indeed, if $x_{i_{s}}=0$ for $s \in S$, it follows that $x_{j_{s}}=0$ and that $x_{k_{s}}$ depends on a single variable only for $s \in S$. The AND-OR network corresponding to this is precisely $f \backslash\left(\{n\} \cup\left\{i_{s}: s \in S\right\} \cup\left\{j_{s}: s \in S\right\}\right)$.

$$
\begin{aligned}
& -\mathcal{F}[\mathrm{l}]-\mathcal{F}[\mathrm{d}-\mathcal{F}[\mathrm{l}+\mathcal{F}[\mathrm{d}] \\
& \mathcal{F}[]=\mathcal{F}[1] \times \mathcal{F}[/] \times \mathcal{F}\left[\cdot=(\mathcal{F}[1])^{3}\right. \\
& \mathcal{F}[\mathcal{A}]=\mathcal{F}[]_{\times}(\mathcal{F}[!])^{2} \\
& \mathcal{F}[]=\mathcal{F}[t] \times(\mathcal{F}[\})^{2} \\
& \mathcal{F}[]=\left(\mathcal{F}[f)^{3}\right.
\end{aligned}
$$

Figure 7. Using our results to find the number of fixed points of a coupling of three open chains.

The proof then follows by adding the total number of fixed points from the cases $x_{n}=1$ and $x_{n}=0$.
Lemma 4.3. Suppose a Boolean network f is the Cartesian product of h and g; that is, up to a relabeling of variables, $f(x, y)=(g(x), h(y))$ (also denoted by $f=g \times h)$. Then,

$$
\mathcal{F}[f]=\mathcal{F}[g] \mathcal{F}[h] .
$$

Proof. This follows from the fact that (x, y) is a steady state of f if and only if x is a steady state of g and y is a steady state of h.

With these lemmas we can now find the number of fixed points of the AND-OR networks given in Figure 4. For notational purposes, we apply the lemmas using the unlabeled representation of the wiring diagrams.
Example 4.4. Consider the AND-OR network with wiring diagram given by Figure 4(a). We use Lemma 4.2 to split the wiring diagram at x_{8}. The process is shown in Figure 7. Using this lemma, we find that the number of fixed points can be written as a sum/difference of the number of fixed points of disjoint chains. Then, we use Lemma 4.3 to express the number of fixed points as an algebraic combination of the number of fixed points of single chains. Once we have single chains, we can use the results from previous sections. Thus, the number of fixed points is

$$
\begin{aligned}
\mathcal{F}[f]= & (\mathcal{F}(1,1,1,1))^{3}+3 \mathcal{F}(1,1,1)(\mathcal{F}(1,1,1,1,1))^{2} \\
& -3 \mathcal{F}(1,1,1,1,1)(\mathcal{F}(1,1,1))^{2}+(\mathcal{F}(1,1,1))^{3} \\
= & (5)^{3}+3(4)(7)^{2}-3(7)(4)^{2}+(4)^{3}=441 .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}[] & =\mathcal{F}[]+\mathcal{F}[\}+\mathcal{F}[]+\mathcal{F}[\}] \\
& -\mathcal{F}[]-\mathcal{F}[]-\mathcal{F}[1]+\mathcal{F}[\}]
\end{aligned}
$$

Figure 8. Using our results to find the number of fixed points of a coupling of an open chain and a closed chain.

Example 4.5. Consider the AND-OR network with wiring diagram given by Figure 4(b). We use Lemma 4.2 to split the wiring diagram at x_{8} and then we use Lemma 4.3. The process is shown in Figure 8. Analogous to the previous example, we obtain

$$
\begin{aligned}
\mathcal{F}[f]= & \mathcal{F}(1,1,1,1) \mathcal{F}(1,1,1,1,1)+\mathcal{F}(1,1,1) \mathcal{F}(1,1,1,1,1,1,1) \\
& +2(\mathcal{F}(1,1,1,1,1))^{2}-3 \mathcal{F}(1,1,1) \mathcal{F}(1,1,1,1,1)+(\mathcal{F}(1,1,1))^{2} \\
= & (5)(7)+(4)(12)+2(7)^{2}-3(4)(7)+(4)^{2}=113 .
\end{aligned}
$$

5. Conclusion

Our results provide recursive formulas and sharp bounds for the number of fixed points of AND-OR networks with chain topology. Other work regarding the number of fixed points has focused on bounds with respect to the number of nodes [Aracena et al. 2004]. Our results, on the other hand, focus on formulas and bounds with respect to the pattern of logical operators. Thus, our findings complement previous results. Our approach can potentially be extended to cases where an AND-OR network has a topology that can be seen as the "combination" of open chains. Then, the number of fixed points of the original AND-OR network will be given by the inclusion-exclusion principle in terms of the number of fixed points of the AND-OR networks with open chain topology. Indeed, Section 4 shows how our approach can be used in such cases.

References

[Agur et al. 1988] Z. Agur, A. S. Fraenkel, and S. T. Klein, "The number of fixed points of the majority rule", Discrete Math. 70:3 (1988), 295-302. MR Zbl
[Akutsu et al. 1998] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, "A system for identifying genetic networks from gene expression patterns produced by gene disruptions and overexpressions", Genome Inform. 9 (1998), 151-160.
[Albert and Othmer 2003] R. Albert and H. G. Othmer, "The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster", J. Theoret. Biol. 223:1 (2003), 1-18. MR
[Alcolei et al. 2016] A. Alcolei, K. Perrot, and S. Sené, "On the flora of asynchronous locally non-monotonic Boolean automata networks", Electr. Notes Theor. Comp. Sci. 326 (2016), 3-25. Zbl
[Aracena 2008] J. Aracena, "Maximum number of fixed points in regulatory Boolean networks", Bull. Math. Biol. 70:5 (2008), 1398-1409. MR Zbl
[Aracena et al. 2004] J. Aracena, J. Demongeot, and E. Goles, "Fixed points and maximal independent sets in AND-OR networks", Discrete Appl. Math. 138:3 (2004), 277-288. MR Zbl
[Bollman et al. 2010] D. Bollman, O. Colón-Reyes, V. A. Ocasio, and E. Orozco, "A control theory for Boolean monomial dynamical systems", Discrete Event Dyn. Syst. 20:1 (2010), 19-35. MR Zbl
[Dimitrova et al. 2015] E. S. Dimitrova, O. I. Yordanov, and M. T. Matache, "Difference equation for tracking perturbations in systems of Boolean nested canalyzing functions", Phys. Rev. E (3) 91:6 (2015), art. id. 062812. MR
[Elmeligy Abdelhamid et al. 2015] S. H. Elmeligy Abdelhamid, C. J. Kuhlman, M. V. Marathe, H. S. Mortveit, and S. S. Ravi, "GDSCalc: a web-based application for evaluating discrete graph dynamical systems", PLOS One 10:8 (2015), art. id. e0133660.
[Goles et al. 2000] E. Goles, M. Matamala, and P. A. Estévez, "Dynamical properties of min-max networks", Int. J. Neural Syst. 10:6 (2000), 467-473.
[Hansson et al. 2005] A. Å. Hansson, H. S. Mortveit, and C. M. Reidys, "On asynchronous cellular automata", Adv. Complex Syst. 8:4 (2005), 521-538. MR Zbl
[Jarrah et al. 2007] A. S. Jarrah, B. Raposa, and R. Laubenbacher, "Nested canalyzing, unate cascade, and polynomial functions", Phys. D 233:2 (2007), 167-174. MR Zbl
[Jarrah et al. 2010] A. S. Jarrah, R. Laubenbacher, and A. Veliz-Cuba, "The dynamics of conjunctive and disjunctive Boolean network models", Bull. Math. Biol. 72:6 (2010), 1425-1447. MR Zbl
[Matache and Matache 2016] M. T. Matache and V. Matache, "Logical reduction of biological networks to their most determinative components", Bull. Math. Biol. 78:7 (2016), 1520-1545. MR Zbl
[Mendoza and Xenarios 2006] L. Mendoza and I. Xenarios, "A method for the generation of standardized qualitative dynamical systems of regulatory networks", Theor. Bio. Medical Model. 3:1 (2006), art. id. 13.
[Murrugarra and Laubenbacher 2011] D. Murrugarra and R. Laubenbacher, "Regulatory patterns in molecular interaction networks", J. Theoret. Biol. 288 (2011), 66-72. MR Zbl
[OSCC 1987] Ohio Supercomputer Center, "Ohio Supercomputer Center", homepage, 1987, available at https://tinyurl.com/osuosc.
[Veliz-Cuba 2011] A. Veliz-Cuba, "Reduction of Boolean network models", J. Theoret. Biol. 289 (2011), 167-172. MR Zbl
[Veliz-Cuba et al. 2014a] A. Veliz-Cuba, A. Kumar, and K. Josić, "Piecewise linear and Boolean models of chemical reaction networks", Bull. Math. Biol. 76:12 (2014), 2945-2984. MR Zbl
[Veliz-Cuba et al. 2014b] A. Veliz-Cuba, D. Murrugarra, and R. Laubenbacher, "Structure and dynamics of acyclic networks", Discrete Event Dyn. Syst. 24:4 (2014), 647-658. MR Zbl
[Wang et al. 2017] Y. Wang, B. Omidiran, F. Kigwe, and K. Chilakamarri, "Relations between the conditions of admitting cycles in Boolean and ODE network systems", Involve 10:5 (2017), 813-831. MR Zbl
[Weiss and Margaliot 2017] E. Weiss and M. Margaliot, "A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks", preprint, 2017. arXiv

Received: 2019-01-03 Accepted: 2019-04-21
avelizcuba1@udayton.edu
geiserl1@udayton.edu

Department of Mathematics, University of Dayton, Dayton, OH, United States

University of Dayton, Dayton, OH, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology, US	SA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia M	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 6

Occurrence graphs of patterns in permutations 901
Bjarni Jens Kristinsson and Henning Ulfarsson
Truncated path algebras and Betti numbers of polynomial growth 919
Ryan Coopergard and Marju Purin
Orbit spaces of linear circle actions 941SuZanne Craig, Naiche Downey, Lucas Goad,Michael J. Mahoney and Jordan Watts
On a theorem of Besicovitch and a problem in ergodic theory 961Ethan Gwaltney, Paul Hagelstein, Daniel Herdenand Brian King
Algorithms for classifying points in a 2-adic Mandelbrot set 969
Brandon Bate, Kyle Craft and Jonathon Yuly
Sidon sets and 2-caps in \mathbb{F}_{3}^{n} 995Yixuan Huang, Michael Tait and Robert Won
Covering numbers of upper triangular matrix rings over finite fields 1005
Merrick Cai and Nicholas J. Werner
Nonstandard existence proofs for reaction diffusion equations 1015
Connor Olson, Marshall Mueller and Sigurd B.AngenentImproving multilabel classification via heterogeneous ensemble1035methods
Yujue Wu and Qing Wang
The number of fixed points of AND-OR networks with chain topology 1051
Alan Veliz-Cuba and Lauren Geiser
Positive solutions to singular second-order boundary value problems 1069for dynamic equations

[^0]: MSC2010: 94C10, 06E30, 05C99.
 Keywords: Boolean networks, steady states, fixed points, discrete-time systems, AND-OR networks.

