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For each natural number d, we introduce the concept of a d-cap in Fn
3 . A set of

points in Fn
3 is called a d-cap if, for each k = 1, 2, . . . , d, no k+ 2 of the points

lie on a k-dimensional flat. This generalizes the notion of a cap in Fn
3 . We prove

that the 2-caps in Fn
3 are exactly the Sidon sets in Fn

3 and study the problem of
determining the size of the largest 2-cap in Fn

3 .

1. Introduction

Throughout, let Fq denote the field with q elements and let Fn
q denote n-dimensional

affine space over Fq . A cap in Fn
3 is a collection of points such that no three are

collinear. Although this definition is geometric, there is an equivalent definition that
is arithmetic: a set of points C is a cap in Fn

3 if and only if C contains no three-term
arithmetic progressions.

Here, we consider natural generalizations of caps in Fn
3 . For d ∈ N, we call a

set of points a d-cap if, for each k = 1, 2, . . . , d, no k + 2 of the points lie on a
k-dimensional flat. With this definition, a 1-cap corresponds to the usual definition
of a cap. We also remark that if C is a set of points in Fn

3 , then the points of C are
in general linear position if and only if C is an (n−1)-cap.

Let r(1, Fn
3) denote the maximal size of a 1-cap in Fn

3 . In general, it is a difficult
problem to determine r(1, Fn

3) — in fact, the exact answer is known only when
n ≤ 6. Table 1 lists the best known upper and lower bounds on r(1, Fn

3) for n ≤ 10
[Versluis 2017]. It is also known that in dimension n ≤ 6, maximal 1-caps are
equivalent up to affine transformation [Edel et al. 2002; Pellegrino 1970; Potechin
2008].

The asymptotic bounds on r(1, Fn
3) are well-studied. Edel [2004] showed that

lim sup
n→∞

log3(r(1, Fn
3))

n
≥ 0.724851
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dimension 1 2 3 4 5 6 7 8 9 10

lower bound 2 4 9 20 45 112 236 496 1064 2240
upper bound 2 4 9 20 45 112 291 771 2070 5619

Table 1. The best known bounds for the size of a maximal 1-cap in Fn
3 .

dimension 1 2 3 4 5 6 7 8 n even n odd

lower bound 2 3 5 9 13 27 33 81 3n/2 3(n−1)/2
+ 1

upper bound 2 3 5 9 13 27 47 81 3n/2
d3n/2
e

Table 2. Bounds for the size of a maximal 2-cap in Fn
3 .

and consequently that r(1, Fn
3) is �(2.2174n) (using Hardy and Littlewood’s �

notation). In more recent breakthrough work Ellenberg and Gijswijt [2017] (adapting
a method of Croot, Lev, and Pach in [Croot et al. 2017]) proved that r(1, Fn

3)

is o(2.756n).
In this paper, we focus on the study of 2-caps in Fn

3 . We show that there is
an equivalent arithmetic formulation of the definition of a 2-cap. In particular,
the 2-caps in Fn

3 are exactly the Sidon sets in Fn
3 , which are important objects in

combinatorial number theory (we refer the interested reader to the survey [O’Bryant
2004]). Using this definition, we are able to compute the exact maximal size of a
2-cap in Fn

3 when n is even. We also examine 2-caps in low dimension when n is
odd, in particular considering dimensions n = 3, 5, and 7.

Table 2 lists the bounds we obtain for the size of a maximal 2-cap in Fn
3 . The values

in dimension 3, 5, and 7 are given by Theorems 3.9 and 3.10, and Proposition 3.12,
respectively. The bounds for even dimension follow from Theorem 3.4. The
upper bound in odd dimension n follows from Proposition 3.3 and the lower
bound is given by adding one affinely independent point to the construction in
dimension n − 1. Knowing the exact value in even dimension also allows us to
conclude that asymptotically, the maximal size of a 2-cap in Fn

3 is 2(3n/2).

2. Preliminaries

In this section, we establish basic notation, definitions, and background. The set
of natural numbers is denoted by N = {1, 2, 3, . . . }. Throughout, d and n will
always denote natural numbers. An element a ∈ Fn

3 will be written as a row vector
a = (a1, a2, . . . , an), with each ai ∈ {0, 1, 2}. We will sometimes order the vectors
of Fn

3 lexicographically — i.e., by regarding them as ternary strings. We use the
notation e1, e2, . . . , en to denote the n standard basis vectors in an n-dimensional
vector space.
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A k-dimensional affine subspace of a vector space is called a k-dimensional flat.
In particular, a 1-dimensional flat is also called a line. In the affine space Fn

3 , every
line consists of the points {a, a+b, a+2b} for some a, b∈ Fn

3 , where b 6= 0. Hence,
the lines in Fn

3 correspond to three-term arithmetic progressions. It is easy to see
that three distinct points in Fn

3 are collinear if and only if they sum to 0. Likewise,
a 2-dimensional flat is called a plane. Any three noncollinear points determine a
unique plane. For a= (a1, a2, . . . , ak) ∈ Fk

3 with k < n, the subset of Fn
3 whose first

k entries are a1, a2, . . . , ak is an (n−k)-dimensional flat which we call the a-affine
subspace of Fn

3 .
Two subsets C and D of a vector space are called affinely equivalent if there

exists an invertible affine transformation T such that T (C) = D. It is clear that
affine equivalence determines an equivalence relation on the power set of a vector
space. Given a set of points X in a vector space, its affine span is given by the set
of all affine combinations of points of X. A set X is called affinely independent if
no proper subset of X has the same affine span as X. Equivalently, {x0, x1, . . . , xn}

is affinely independent if and only if {x1 − x0, x2 − x0, . . . , xn − x0} is linearly
independent.

Definition 2.1. A subset C of Fn
3 is called a d-cap if, for each k = 1, 2, . . . , d, no

k+ 2 points of C lie on a k-dimensional flat. Equivalently, C is a d-cap if and only
if any subset of C of size at most d + 2 is affinely independent. A d-cap is called
complete if it is not a proper subset of another d-cap and is called maximal if it is
of the largest possible cardinality.

As mentioned in the Introduction, a 1-cap is a classical cap. We will denote
the size of a maximal d-cap in Fn

3 by r(d, Fn
3). We remark that since invertible

affine transformations preserve affine independence, the image of a d-cap under an
invertible affine transformation is again a d-cap. As a warm-up, we prove some
basic facts about maximal d-caps in Fn

3 .

Lemma 2.2. We have that r(d, Fn
3)≥ n+ 1 with equality if n ≤ d.

Proof. The set {0, e1, . . . , en} is an affinely independent subset of Fn
3 of size n+ 1

and hence is a d-cap for any d ∈ N. Therefore, r(d, Fn
3)≥ n+ 1.

Now suppose n ≤ d. Since, by definition, a d-cap must be an n-cap, we have
that r(d, Fn

3)≤ r(n, Fn
3). A maximal affinely independent set in Fn

3 has size n+ 1
so r(n, Fn

3)≤ n+ 1, and so r(d, Fn
3)= n+ 1. �

Corollary 2.3. When n ≤ d, all maximal d-caps in Fn
3 are affinely equivalent.

Proof. By Lemma 2.2, when n ≤ d, a maximal d-cap in Fn
3 is a maximal affinely

independent set, i.e., an affine basis of Fn
3 . All affine bases in an affine space are

equivalent up to affine transformation. �
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Lemma 2.4. For fixed d , r(d, Fn
3) is a nondecreasing function of n and for fixed n,

r(d, Fn
3) is a nonincreasing function of d.

Proof. Since Fn−1
3 is an affine subspace of Fn

3 , a d-cap in Fn−1
3 naturally embeds

as a d-cap in Fn
3 . Hence r(d, Fn−1

3 )≤ r(d, Fn
3) so the first statement follows. The

second statement follows since, by definition, a d-cap in Fn
3 must be a (d−1)-cap.

Hence, r(d − 1, Fn
3)≥ r(d, Fn

3). �

3. 2-caps in Fn
3

We now restrict our attention to the study of 2-caps in Fn
3 . Our first observation is

that in Fn
3 , the definition of a 2-cap is equivalent to the definition of a Sidon set.

Definition 3.1. Let G be an abelian group. A subset A⊆ G is called a Sidon set if,
whenever a+ b = c+ d with a, b, c, d ∈ A, the pair (a, b) is a permutation of the
pair (c, d).

Theorem 3.2. A subset C of Fn
3 is a 2-cap if and only if it is a Sidon set.

Proof. First suppose that C is not a 2-cap. Then C contains three points which are
collinear or C contains four points which are coplanar. If C contains three distinct
collinear points a, b, c then a+ b+ c= 0 and hence a+ b= c+ c so C is not a
Sidon set.

Suppose therefore that no three points in C are collinear. Then C contains four
coplanar points, say {a, b, c, d}. Every set of three distinct noncollinear points
in Fn

3 lies on a unique 2-dimensional flat. In particular, the 2-dimensional flat F
containing a, b, and c is given by

F =

a b −a− b

c −a+ b+ c a− b+ c

−a− c a+ b− c −b− c

and since we assumed that no three points in C are collinear, we must have that
d =−a+ b+ c, d = a− b+ c or d = a+ b− c. In the first case, a+ d = b+ c,
in the second case, b+ d = a+ c, and in the third case c+ d+ a+ b. In any case,
C is not a Sidon set.

Conversely, suppose that C is not a Sidon set. Then either C contains three
distinct points a, b, c such that a+ a = b+ c, or C contains four distinct points
a, b, c, d such that a+ b= c+ d. In the first case, a+ b+ c= 0 so C contains a
line. In the second case, d = a+ b− c, so d lies in the plane determined by a, b,
and c, and hence the four points are coplanar. In either case, C is not a 2-cap. �
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Since, in Fn
3 , 2-caps correspond to Sidon sets, we will use the terms interchange-

ably throughout. We obtain an upper bound on r(2, Fn
3) by an easy counting

argument; see [Cilleruelo et al. 2010, Corollary 2.2].

Proposition 3.3. For any n ∈ N,

r(2, Fn
3) · (r(2, Fn

3)− 1)≤ 3n
− 1.

Proof. Suppose C ⊂ Fn
3 is a 2-cap and hence, by Theorem 3.2, a Sidon set. For

a, b, c, d ∈ C , if a− b= c− d then {a, d} = {c, b} and so we have either a = b,
or else a = c and b = d. Therefore, the set {a − b : a, b ∈ C, a 6= b} has size
|C |(|C | − 1). Since these differences are nonzero, we have

|C |(|C | − 1)≤ 3n
− 1. �

Even dimension.

Theorem 3.4. If n is even, then r(2, Fn
3)= 3n/2.

Proof. First we will show the lower bound, r(2, Fn
3)≥ 3n/2. Since Fn

3 is additively
isomorphic to F

n/2
3 ×F

n/2
3 , it suffices to construct a Sidon set of size 3n/2 in F

n/2
3 ×F

n/2
3 .

As vector spaces over F3, F
n/2
3 is isomorphic to F3n/2 , the finite field with 3n/2

elements. Hence, it suffices to construct a Sidon set of size 3n/2 in F3n/2 × F3n/2

This follows easily from the following claim; for a proof, see [Cilleruelo 2012,
Example 1].

Claim. Let q be an odd prime power and Fq be the finite field of order q. Then the
set {(x, x2) : x ∈ Fq} is a Sidon set in Fq × Fq .

It is clear that the set {(x, x2) : x ∈ F3n/2} has size 3n/2, so we have r(2, Fn
3)≥ 3n/2.

For the upper bound, let C ⊂ Fn
3 be a 2-cap. Since n is even, 3n/2 is an integer, and

if |C | ≥ 3n/2
+ 1, this contradicts Proposition 3.3. Therefore, r(2, Fn

3)≤ 3n/2. �

Corollary 3.5. As n→∞, r(2, Fn
3) is 2(3n/2).

The construction above can be leveraged into the following partitioning theorem.

Theorem 3.6. When n is even, there is a partition of Fn
3 into maximal 2-caps.

This serves as an analogue to similar results for 1-caps in Fn
3 . It is well known

that F3
3 can be partitioned into three maximal 1-caps of size 9. It is possible to

partition F2
3 into a single point and two disjoint maximal 1-caps of size 4. Finally,

[Follett et al. 2014, Theorem 3.3] shows that F4
3 can be partitioned into a single

point and four disjoint maximal 1-caps of size 20.

Proof of Theorem 3.6. Since translations of Sidon sets are also Sidon sets, for
each a ∈ F3n/2 the set Sa := {(x, x2

+ a) : x ∈ F3n/2} is a maximal 2-cap. Since
(x, x2

+ a)= (y, y2
+ b) implies x = y and hence a = b, we have that Sa and Sb
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are disjoint for a 6= b. Therefore, as a ranges over F3n/2 the sets Sa cover 3n points
and thus there is the claimed partition. �

Question 3.7. By Corollary 2.3, all maximal 2-caps in F2
3 are affinely equivalent.

Is this true in Fn
3 when n is even?

We remark that when n = 4, a computer program verified that all maximal
2-caps sum to 0. If a set of nine points sums to 0 in F4

3, then its image under any
affine transformation will likewise sum to 0, so this is a necessary condition for all
maximal 2-caps in F4

3 to be affinely equivalent.

Odd dimension.

Lemma 3.8. If C = {a, b, c, d} is a 2-cap of size 4 in Fn
3 then D = {a, b, c, d,

a+ b+ c+ d} is a 2-cap of size 5.

Proof. First we note that the points of D are distinct since if, without loss of
generality, a+ b+ c+ d = a, this implies that b, c, and d are collinear, which is
impossible since C is a 2-cap.

Now, suppose for contradiction that D is not a 2-cap, so there exist some
x, y, z, w ∈ D with x + y = z + w. Since C is a 2-cap, we may assume that
x= a+b+c+d. Without loss of generality, we then have that one of the following
occurs:

(1) (a+ b+ c+ d)+ a = b+ c. Then a = d, which is impossible since C has
size 4.

(2) (a+ b+ c+ d)+ a = 2b. Then a+ b= c+ d, which is impossible since C is
a 2-cap.

(3) 2(a+ b+ c+ d)= b+ c. Then a+ d = b+ c, which is impossible since C is
a 2-cap.

(4) 2(a+ b+ c+ d) = 2a. Then b, c, and d are collinear, which is impossible
since C is a 2-cap.

Hence, D is a 2-cap. �

Theorem 3.9. In F3
3, a maximal 2-cap has size 5; that is, r(2, F3

3)= 5. Further, all
complete 2-caps are maximal and all maximal 2-caps are affinely equivalent.

Proof. Since {0, e1, e2, e3} is an affinely independent set in F3
3, by Lemma 3.8

{0, e1, e2, e3, e1+e2+e3} is a 2-cap in F3
3. Hence, r(2,F3

3)≥5. But by Proposition 3.3,
r(2, F3

3) < 6 and hence r(2, F3
3)= 5.

Let C be any complete 2-cap in F3
3. Since F3

3 is a 3-dimensional affine space, if
|C | ≤ 3, then F3

3 contains a point which is affinely independent from the points of C ,
so C cannot be complete. Hence, |C | ≥ 4. But if |C | = 4 then by Lemma 3.8, C is
not complete. Hence, |C | = 5, and any complete 2-cap in F3

3 is already maximal.
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For the final claim, suppose C is a maximal 2-cap in F3
3. Pick any four points

in C . Since these points are affinely independent, there exists an invertible affine
transformation mapping these points to the set {0, e1, e2, e3}. Hence, we need only
show that all maximal 2-caps containing {0, e1, e2, e3} are affinely equivalent.

It is easy to verify that there are exactly five such maximal 2-caps, namely

C1 = {0, e1, e2, e3, (1, 1, 1)}, C4 = {0, e1, e2, e3, (2, 2, 1)},

C2 = {0, e1, e2, e3, (1, 2, 2)}, C5 = {0, e1, e2, e3, (2, 2, 2)}.

C3 = {0, e1, e2, e3, (2, 1, 2)},

It suffices to exhibit an invertible affine transformation Ti mapping C1 to Ci for
i = 2, 3, 4, 5. We provide these Ti explicitly, writing Ti (x) = Ai x + bi for an
invertible matrix Ai and bi ∈ F3

3:

A2=

1 0 0
2 1 0
2 0 1

 and b2=

0
0
0

 , A4=

1 0 2
0 1 2
0 0 1

 and b4=

0
0
0

 ,

A3=

1 0 2
0 0 1
0 1 2

 and b3=

0
0
0

 , A5=

2 1 1
1 2 1
1 1 2

 and b5=

2
2
2

 . �

Theorem 3.10. A maximal 2-cap in F5
3 has size 13; that is, r(2, F5

3)= 13.

Proof. Let C be a maximal 2-cap in F5
3. By Theorem 3.4, r(2, F4

3) = 9 so by
Lemma 2.4 we may assume that |C | ≥ 9. We will apply a sequence of affine
transformations to C to conclude that lexicographically, the first points in C are
{0, e5, e4, e3, e3+ e4+ e5, e2} or {0, e5, e4, e3, e2}.

Given any four affinely independent points, there exists an invertible affine
transformation mapping them to 0, e5, e4, and e3, so without loss of generality we
may assume that C contains the subset {0, e5, e4, e3}. These points all lie in the
(0, 0)-affine subspace of F5

3. Since r(2, F3
3)= 5, the (0, 0)-affine subspace contains

four points or five points of C . If it contains five points, then by Theorem 3.9, we
may apply an affine transformation (using a block matrix) and assume that the fifth
point is e3+ e4+ e5.

Consider any other point a ∈C . Since a is not in the (0, 0)-affine subspace of F5
3,

{0, e5, e4, e3, a} is an affinely independent set so there exists an affine transformation
T fixing 0, e5, e4, and e3 and mapping a to e2. Notice that if T is given by
multiplication by the invertible matrix A followed by addition by b ∈ F5

3, we have

T (e3+e4+e5)= A(e3+e4+e5)+b= T (0)+T (e3)+T (e4)+T (e5)= e3+e4+e5,

so T fixes e3+ e4+ e5.
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Hence, up to affine equivalence, we may assume that the lexicographically earliest
points in C are {0, e5, e4, e3, e3 + e4 + e5, e2} or {0, e5, e4, e3, e2}. A computer
program was used to enumerate all possible complete 2-caps beginning with these
sets of points. This verified that r(2, F5

3)= 13. The C++ code for the program is
available on Won’s professional website. �

Remark 3.11. The maximal 2-cap in F5
3 that is lexicographically earliest is explicitly

given by the points

(0, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1, 1),

(0, 1, 0, 0, 0), (0, 1, 1, 1, 2), (0, 2, 1, 2, 0), (0, 2, 2, 1, 2), (1, 0, 0, 0, 0),

(1, 0, 1, 2, 1), (2, 0, 1, 0, 2), (2, 2, 0, 2, 2).

We conclude by giving bounds on r(2, F7
3).

Proposition 3.12. One has that 33≤ r(2, F7
3)≤ 47.

Proof. The upper bound on r(2, F7
3) is a consequence of Proposition 3.3. For the

lower bound, we constructed a 2-cap of size 33 by first embedding a maximal 2-cap
in F6

3 as a 2-cap C of size 27 in F7
3. We then used a computer program to enumerate

all complete 2-caps containing C as a subset. The largest of these complete 2-caps
has size 33. The lexicographically earliest one is given by the points

(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 2, 0, 0, 1),

(0, 0, 1, 0, 1, 0, 0), (0, 0, 1, 1, 1, 2, 1), (0, 0, 1, 2, 1, 1, 1),

(0, 0, 2, 0, 1, 0, 0), (0, 0, 2, 1, 1, 1, 1), (0, 0, 2, 2, 1, 2, 1),

(0, 1, 0, 0, 1, 2, 0), (0, 1, 0, 1, 0, 2, 1), (0, 1, 0, 2, 2, 2, 1),

(0, 1, 1, 0, 2, 1, 1), (0, 1, 1, 1, 1, 0, 2), (0, 1, 1, 2, 0, 2, 2),

(0, 1, 2, 0, 2, 0, 2), (0, 1, 2, 1, 1, 1, 0), (0, 1, 2, 2, 0, 2, 0),

(0, 2, 0, 0, 1, 2, 0), (0, 2, 0, 1, 2, 2, 1), (0, 2, 0, 2, 0, 2, 1),

(0, 2, 1, 0, 2, 0, 2), (0, 2, 1, 1, 0, 2, 0), (0, 2, 1, 2, 1, 1, 0),

(0, 2, 2, 0, 2, 1, 1), (0, 2, 2, 1, 0, 2, 2), (0, 2, 2, 2, 1, 0, 2),

(1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 1), (2, 0, 0, 1, 0, 2, 0),

(2, 0, 0, 1, 1, 0, 1), (2, 0, 0, 1, 1, 1, 2), (2, 0, 0, 1, 1, 2, 2). �
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