\bullet
 in Olve a journal of mathematics

On a theorem of Besicovitch and a problem in ergodic theory
Ethan Gwaltney, Paul Hagelstein, Daniel Herden and Brian King

On a theorem of Besicovitch and a problem in ergodic theory

Ethan Gwaltney, Paul Hagelstein, Daniel Herden and Brian King (Communicated by Kenneth S. Berenhaut)

Abstract

In 1935, Besicovitch proved a remarkable theorem indicating that an integrable function f on \mathbb{R}^{2} is strongly differentiable if and only if its associated strong maximal function $M_{S} f$ is finite a.e. We consider analogues of Besicovitch's result in the context of ergodic theory, in particular discussing the problem of whether or not, given a (not necessarily integrable) measurable function f on a nonatomic probability space and a measure-preserving transformation T on that space, the ergodic averages of f with respect to T converge a.e. if and only if the associated ergodic maximal function $T^{*} f$ is finite a.e. Of particular relevance to this discussion will be recent results in the field of inhomogeneous diophantine approximation.

Let f be an integrable function on \mathbb{R}^{2}. A classical result in analysis, the Lebesgue differentiation theorem, tells us that, for a.e. $x \in \mathbb{R}^{2}$, the averages of f over disks shrinking to x tend to $f(x)$ itself. More precisely, we have

$$
\lim _{r \rightarrow 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f=f(x) \text { a.e., }
$$

where $B(x, r)$ denotes the open disk centered at x of radius r and $|B(x, r)|=\pi r^{2}$ denotes the area of the disk. For a proof of this result, the reader is encouraged to consult [Stein 1970].

What happens if we average over sets other than disks, say, open rectangles? It turns out that there exist integrable functions f on \mathbb{R}^{2} such that, for a.e. $x \in \mathbb{R}^{2}$, there exists a sequence of rectangles $\left\{R_{x, j}\right\}$ shrinking toward x for which

$$
\lim _{j \rightarrow \infty} \frac{1}{\left|R_{x, j}\right|} \int_{R_{x, j}} f
$$

fails to converge. The news gets even more interesting. In fact, one can construct a function $f=\chi_{E}$ (that is, the characteristic function of a set $E \subset \mathbb{R}^{2}$) such that, for

[^0]a.e. $x \in \mathbb{R}^{2}$, there exists a sequence of rectangles $\left\{R_{x, j}\right\}$ shrinking toward x for which
$$
\lim _{j \rightarrow \infty} \frac{1}{\left|R_{x, j}\right|} \int_{R_{x, j}} \chi_{E}
$$
fails to converge. (See [de Guzmán 1975] for a nice exposition of this result. This result is closely related to the well-known Kakeya needle problem, and the interested reader is highly encouraged to consult [Falconer 1985].)

If we restrict the class of rectangles that we allow ourselves to average over, we obtain better results. Jessen, Marcinkiewicz, and Zygmund [Jessen et al. 1935] proved that if \mathcal{B}_{2} consists of all the open rectangles in \mathbb{R}^{2} whose sides are parallel to the coordinate axes, then for any function $f \in L^{p}\left(\mathbb{R}^{2}\right)$ with $1<p \leq \infty$ one has

$$
\lim _{j \rightarrow \infty} \frac{1}{\left|R_{j}\right|} \int_{R_{j}} f=f(x)
$$

for a.e. $x \in \mathbb{R}^{2}$, where here $\left\{R_{j}\right\}$ is any sequence of rectangles in \mathcal{B}_{2} shrinking toward x. (In this scenario we would say f is strongly differentiable.) Jessen, Marcinkiewicz, and Zygmund proved this by showing that the strong maximal operator M_{S}, defined by

$$
M_{S} f(x)=\sup _{x \in R \in \mathcal{B}_{2}} \frac{1}{|R|} \int_{R}|f|
$$

satisfies for every $1<p<\infty$ the weak-type (p, p) estimate

$$
\left|\left\{x \in \mathbb{R}^{2}: M_{S} f(x)>\alpha\right\}\right| \leq C_{p}\left(\frac{\|f\|_{L^{p}}}{\alpha}\right)^{p}
$$

This illustrates a paradigm that has been highly successful in the theory of differentiation of integrals. Namely, suppose one is given a collection of open sets $\mathcal{B} \subset \mathbb{R}^{n}$ and one wishes to ascertain whether, given a function f on \mathbb{R}^{n}, for a.e. x one must have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{\left|S_{j}\right|} \int_{S_{j}} f=f(x) \tag{0-1}
\end{equation*}
$$

whenever $\left\{S_{j}\right\}$ is a sequence of sets in \mathcal{B} shrinking toward x. (Here we assume that every point x is contained in a set in \mathcal{B} of arbitrarily small diameter.) We may associate to the collection \mathcal{B} a maximal operator $M_{\mathcal{B}}$ defined by

$$
M_{\mathcal{B}} f(x)=\sup _{x \in S \in \mathcal{B}} \frac{1}{|S|} \int_{S}|f| .
$$

It turns out that (0-1) will hold for every f in $L^{p}\left(\mathbb{R}^{n}\right)$ a.e. provided $M_{\mathcal{B}}$ satisfies a weak-type (p, p) estimate. A deep theorem of E. M. Stein [1961] tells us that, provided \mathcal{B} is translation invariant in the sense that if $S \in \mathcal{B}$ then every translate of S also lies in \mathcal{B}, the limits above will hold for every $f \in L^{p}\left(\mathbb{R}^{n}\right)$ only if $M_{\mathcal{B}}$ satisfies a weak-
type (p, p) estimate. It is for this reason that maximal operators are an indispensable tool for mathematicians working with the topic of differentiation of integrals.

Having said that, it is interesting to consider the paper in Fundamenta Mathematicae immediately preceding the famous paper of Jessen, Marcinkiewicz, and Zygmund. In it, Besicovitch [1935] proved that, given any integrable function f on \mathbb{R}^{2}, if $M_{S} f$ is finite a.e., then for a.e. x we have

$$
\lim _{j \rightarrow \infty} \frac{1}{\left|R_{j}\right|} \int_{R_{j}} f=f(x)
$$

whenever $\left\{R_{j}\right\}$ is a sequence of sets in \mathcal{B}_{2} shrinking to x. Of course, if $f \in L^{p}\left(\mathbb{R}^{2}\right)$ for $1<p<\infty$, the quantitative weak-type (p, p) bound satisfied by M_{S} implies that $M_{S} f$ will be finite a.e. It is for this reason that this paper of Besicovitch has received comparatively little attention. However, it is of note that Besicovitch provides a mechanism for obtaining a.e. differentiability results bypassing the need for quantitative weak-type bounds on an associated maximal operator.

Let us provide an illustration of the usefulness of this approach. Let $f(x, y)=$ $g(x) \chi_{[0,1] \times[0,1]}(x, y)$ be a function on \mathbb{R}^{2}, where $g \in L^{1}(\mathbb{R})$. Note f is in $L^{1}\left(\mathbb{R}^{2}\right)$ but not necessarily in $L^{p}\left(\mathbb{R}^{2}\right)$ for any $p>1$. Suppose we wish to show that f is strongly differentiable. We can use the Fubini theorem combined with the weaktype $(1,1)$ bounds of the Hardy-Littlewood maximal operator to show that $M_{S} f$ is finite a.e., so by the Besicovitch theorem we know that f is strongly differentiable. However, M_{S} is not of weak-type $(1,1)$. Note that here we did not show that every function in $L^{1}\left(\mathbb{R}^{2}\right)$ is strongly differentiable, only that some of these functions are.

Many results in the study of differentiation of integrals have a "companion" result in ergodic theory; for instance the Lebesgue differentiation theorem is structurally very similar to that of the Birkhoff ergodic theorem on integrable functions. This observation may be found at least as far back as [Wiener 1939]. In that regard, it is natural to consider what the companion result of Besicovitch's theorem might be, when replacing the strong maximal operator M_{S} by an ergodic maximal operator. We are led immediately to the following conjecture.
Conjecture 1. Let T be a measure-preserving transformation on the nonatomic probability space (X, Σ, μ) and let f be a μ-measurable function on that space. If $T^{*} f(x)$ is finite μ-a.e., where $T^{*} f$ is the ergodic maximal function defined by

$$
T^{*} f(x)=\sup _{N \geq 1} \frac{1}{N}\left|\sum_{j=0}^{N-1} f\left(T^{j} x\right)\right|,
$$

then the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)
$$

exists μ-a.e.

We remark that if f is integrable, then by the Birkhoff ergodic theorem the limit above automatically exists. If $f=f^{+}-f^{-}$is the difference of nonnegative measurable functions f^{+}and f^{-}, then by the proof of the Birkhoff ergodic theorem the limit above still holds provided that at least one of the functions f^{+}and f^{-} is integrable. (The reader may consult [Petersen 1983] for a proof of Birkhoff's classical result verifying that Fatou's lemma easily extends the given argument to the more general situation.) Thus, the interesting case is where $f=f^{+}-f^{-}$with

$$
\begin{equation*}
\int_{X} f^{+} d \mu=\int_{X} f^{-} d \mu=\infty \tag{0-2}
\end{equation*}
$$

The main purpose of this note, aside from advertising the conjecture above, is to consider what happens when T corresponds to an ergodic transformation associated to an irrational rotation on $[0,1$) (identified with the unit circle \mathbb{T}), and $f(x)=1 /\left(x-\frac{1}{2}\right)$. This scenario is so natural to consider that the reader might be surprised to find that it has not been treated before. (At least, the authors are unaware of any explicit treatment of this example.) In considering this situation, several issues immediately come to mind. First of all, f clearly satisfies (0-2), so we are not in a situation where we can apply the ergodic theorem. However, f exhibits a natural cancellation, so one might wonder whether the ergodic averages of f tend to 0 a.e. And, moreover, even if the ergodic averages of f did not tend to 0 a.e., it is still possible that the ergodic maximal function $T^{*} f$ is finite a.e. In that regard, this example seems to be a very worthy candidate for a counterexample of Conjecture 1.

It turns out that neither the ergodic averages of f with respect to T converge a.e. nor is the ergodic maximal function $T^{*} f$ finite a.e. The proof of the former follows readily from a theorem of Khintchine on the topic of inhomogeneous Diophantine approximation. The proof of the latter is much more subtle, following from relatively recent results of [Kim 2007].

Theorem 1. Let ξ be an irrational number, and define the measure-preserving transformation T on $[0,1)$ by

$$
T x=(x+\xi) \bmod 1 .
$$

Define the function f on $[0,1)$ by

$$
f(x)=\frac{1}{x-\frac{1}{2}}
$$

If $x \in[0,1)$, the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)
$$

fails to converge to a finite number. Moreover for a.e. $x \in[0,1)$ we have

$$
T^{*} f(x)=\sup _{N \geq 1} \frac{1}{N}\left|\sum_{j=0}^{N-1} f\left(T^{j} x\right)\right|=\infty
$$

Proof. We first show that at no point $x \in[0,1)$ does

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)
$$

converge to a finite value. It will be convenient for us to use the notation

$$
\|x\|=\min _{n \in \mathbb{Z}}|x-n| .
$$

We proceed by contradiction. Suppose for a given $x \in[0,1)$ that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)=L<\infty
$$

Note that since ξ is an irrational number, by a theorem of Khintchine on inhomogeneous Diophantine approximation (see [Hua 1982, p. 267]) we have

$$
\left\|q \xi+x-\frac{1}{2}\right\|<\frac{1}{q}
$$

and thus

$$
\left|f\left(T^{q} x\right)\right|=|f((q \xi+x) \bmod 1)|>q
$$

for infinitely many positive integers q. Observe that

$$
\frac{1}{q+1} \sum_{j=0}^{q} f\left(T^{j} x\right)-\frac{1}{q} \sum_{j=0}^{q-1} f\left(T^{j} x\right)=\frac{q}{q+1} \cdot \frac{1}{q} f\left(T^{q} x\right)-\frac{1}{q+1} \cdot \frac{1}{q} \sum_{j=0}^{q-1} f\left(T^{j} x\right)
$$

Hence

$$
\begin{aligned}
\limsup _{q \rightarrow \infty} \left\lvert\, \frac{1}{q+1} \sum_{j=0}^{q} f\left(T^{j} x\right)\right. & \left.-\frac{1}{q} \sum_{j=0}^{q-1} f\left(T^{j} x\right) \right\rvert\, \\
& =\limsup _{q \rightarrow \infty}\left|\frac{q}{q+1} \cdot \frac{1}{q} f\left(T^{q} x\right)-\frac{1}{q+1} \cdot \frac{1}{q} \sum_{j=0}^{q-1} f\left(T^{j} x\right)\right| \\
& =\limsup _{q \rightarrow \infty} \frac{1}{q}\left|f\left(T^{q} x\right)\right| \geq 1 .
\end{aligned}
$$

Accordingly, $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)$ cannot converge to a finite value L, contradicting the supposition that these ergodic averages indeed did converge to L.

We now show that for a.e. $x \in[0,1)$ we have

$$
T^{*} f(x)=\sup _{N \geq 1} \frac{1}{N}\left|\sum_{j=0}^{N-1} f\left(T^{j} x\right)\right|=\infty .
$$

To show this we use the relatively recent remarkable result of D. H. Kim [2007] that

$$
\liminf _{q \rightarrow \infty} q \cdot\left\|q \xi+x-\frac{1}{2}\right\|=0
$$

for a.e. $x \in[0,1)$. Thus

$$
\limsup _{q \rightarrow \infty} \frac{1}{q}\left|f\left(T^{q} x\right)\right|=\infty
$$

for a.e. $x \in[0,1)$. Let $x \in[0,1)$ be such that the limit superior above is infinite. We show that $T^{*} f(x)=\infty$. Again we proceed by contradiction. Suppose that

$$
\sup _{N \geq 1} \frac{1}{N}\left|\sum_{j=0}^{N-1} f\left(T^{j} x\right)\right|=M<\infty .
$$

Then, repeating the above calculation, we have the contradiction

$$
\begin{aligned}
2 M & \geq \limsup _{q \rightarrow \infty}\left|\frac{1}{q+1} \sum_{j=0}^{q} f\left(T^{j} x\right)-\frac{1}{q} \sum_{j=0}^{q-1} f\left(T^{j} x\right)\right| \\
& =\limsup _{q \rightarrow \infty} \frac{1}{q}\left|f\left(T^{q} x\right)\right|=\infty .
\end{aligned}
$$

In addition to Conjecture 1, we wish to indicate another conjecture the reader might find of interest. In Theorem 1 we showed that for a.e. $x \in[0,1)$ the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)
$$

does not converge to a finite number. What type of divergence is exhibited? By the apparent symmetries involved we would ordinarily expect that the ergodic averages of f do not converge to either positive or negative infinity, noting that the set

$$
S=\left\{x \in[0,1): \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)=\infty\right\}
$$

is invariant under the ergodic transformation T and thus either of measure 0 or 1 , and it would be strange for these averages to converge to $+\infty$ a.e. but not $-\infty$. Nonetheless, we do not have a proof of this, and the issue appears hard as the techniques involved in Kim's result do not indicate, given $x \in[0,1)$, on which "side" of $\frac{1}{2}$ the points $(x+q \xi) \bmod 1$ close to $\frac{1}{2}$ lie. We formalize these ideas in the following:

Conjecture 2. Let ξ be an irrational number, and define the measure-preserving transformation T on $[0,1)$ by

$$
T x=(x+\xi) \bmod 1 .
$$

Define the function f on $[0,1)$ by

$$
f(x)=\frac{1}{x-\frac{1}{2}} .
$$

Then, for a.e. $x \in[0,1)$

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)=\infty
$$

and

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f\left(T^{j} x\right)=-\infty
$$

Conjectures 1 and 2 are topics of ongoing research.

Acknowledgements

Hagelstein is partially supported by a grant from the Simons Foundation (\#521719). King is partially supported by a Baylor University Regents' Gold Scholarship and the Jim and Patricia Hickey Mathematics Endowed Scholarship Fund.

References

[Besicovitch 1935] A. S. Besicovitch, "On differentiation of Lebesgue double integrals", Fund. Math. 25 (1935), 209-216. Zbl
[Falconer 1985] K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Math. 85, Cambridge Univ. Press, 1985. MR Zbl
[de Guzmán 1975] M. de Guzmán, Differentiation of integrals in \mathbb{R}^{n}, Lecture Notes in Math. 481, Springer, 1975. MR Zbl
[Hua 1982] L. K. Hua, Introduction to number theory, Springer, 1982. MR Zbl
[Jessen et al. 1935] B. Jessen, J. Marcinkiewicz, and A. Zygmund, "Note on the differentiability of multiple integrals", Fund. Math. 25 (1935), 217-234. Zbl
[Kim 2007] D. H. Kim, "The shrinking target property of irrational rotations", Nonlinearity 20:7 (2007), 1637-1643. MR Zbl
[Petersen 1983] K. Petersen, Ergodic theory, Cambridge Studies in Adv. Math. 2, Cambridge Univ. Press, 1983. MR Zbl
[Stein 1961] E. M. Stein, "On limits of sequences of operators", Ann. of Math. (2) 74 (1961), 140-170. MR Zbl
[Stein 1970] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series 30, Princeton Univ. Press, 1970. MR Zbl
[Wiener 1939] N. Wiener, "The ergodic theorem", Duke Math. J. 5:1 (1939), 1-18. MR Zbl

Received: 2018-06-26	Revised: 2019-02-26 Accepted: 2019-03-21
ethan.gwaltney@rice.edu	Department of Mathematics, Rice University, Houston, TX, United States
paul_hagelstein@baylor.edu	Department of Mathematics, Baylor University, Waco, TX, United States
daniel_herden@baylor.edu	Department of Mathematics, Baylor University, Waco, TX, United States
bking@rice.edu	Department of Statistics, Rice University, Houston, TX, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology, US	SA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia M	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Univ. of Virginia, Charlottesville
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Virginia Commonwealth University, USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 6

Occurrence graphs of patterns in permutations 901
Bjarni Jens Kristinsson and Henning Ulfarsson
Truncated path algebras and Betti numbers of polynomial growth 919
Ryan Coopergard and Marju Purin
Orbit spaces of linear circle actions 941SuZanne Craig, Naiche Downey, Lucas Goad,Michael J. Mahoney and Jordan Watts
On a theorem of Besicovitch and a problem in ergodic theory 961Ethan Gwaltney, Paul Hagelstein, Daniel Herdenand Brian King
Algorithms for classifying points in a 2-adic Mandelbrot set 969
Brandon Bate, Kyle Craft and Jonathon Yuly
Sidon sets and 2-caps in \mathbb{F}_{3}^{n} 995Yixuan Huang, Michael Tait and Robert Won
Covering numbers of upper triangular matrix rings over finite fields 1005
Merrick Cai and Nicholas J. Werner
Nonstandard existence proofs for reaction diffusion equations 1015
Connor Olson, Marshall Mueller and Sigurd B.AngenentImproving multilabel classification via heterogeneous ensemble1035methods
Yujue Wu and Qing Wang
The number of fixed points of AND-OR networks with chain topology 1051
Alan Veliz-Cuba and Lauren Geiser
Positive solutions to singular second-order boundary value problems 1069for dynamic equations

[^0]: MSC2010: primary 37A30, 42B25; secondary 11J20.
 Keywords: ergodic theory, maximal operators, Diophantine approximation.

