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We show that the center-one configuration is always solvable in the Lights Out
puzzle on a square grid with odd vertices.

1. Introduction

Let 0 = (V, E) be a finite undirected simple graph, n = #V the number of vertices,
and F the set of functions on V with values in F2, the field with two elements. We
define the Laplacian 1 :F →F by

(1 f )(v) := f (v)+
∑

(v,w)∈E

f (w)

for f ∈ F , v ∈ V. Let ev denote the characteristic function of v ∈ V. Then
{ev : v ∈ V } is a basis of F as a vector space over F2, and by means of this basis
we identify F with Fn

2 . Under this identification, 1 is a linear map represented
by In + adj(0), where In denotes the identity matrix of degree n and adj(0) the
adjacency matrix of 0. Let the image and the kernel of 1 be denoted by C and H ,
respectively. C is the set of solvable configurations of the Lights Out puzzle on 0;
see [Fleischer and Yu 2013; Goldwasser and Klostermeyer 1997; Goshima and
Yamagishi 2010]. It is known that the all-one configuration is always solvable:

Theorem 1.1 [Sutner 1989]. For any 0, it holds that (1 1 · · · 1) ∈ C .

Since C is a linear subspace of Fn
2 , we may regard it as a binary linear code; see

[Goldwasser and Klostermeyer 1997] for this point of view. The weight enumerator
of C is defined by

WC (x, y)=
n∑

i=0

Ai xn−i yi ,
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where Ai is the number of vectors in C which have Hamming weight i . By Sutner’s
theorem, we have An−i = Ai . If 1 is bijective, then C = Fn

2 and we have

Ai =

(n
i

)
, WC (x, y)= (x + y)n.

In this paper, we are interested in A1 of the classical n× n Lights Out puzzle.
Our main result is Theorem 3.1, which states that the center-one configuration is
always solvable when n is odd. Our proof is a neat application of Sutner’s theorem
and is not constructive. Theorem 3.1 implies in particular that the minimal distance
of C is 1 when n is odd. For even n, it turns out that the minimal distance is at
most 2.

We then look at the case A1 ≤ 1 more closely, and make some conjectures based
on numerical computations. We also make an attempt to “explain” the value of A1.

2. Path and cycle graphs

Before proceeding to the main result, we consider the case of path and cycle graphs
as first examples.

Let 0 = Pn be the path graph with n vertices. We have

adj(0)=


0 1 0 · · · 0
1 0 1

. . .
...

0 1 0
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 0


under an obvious ordering of vertices. It is well known, see [Yamagishi 2015,
Lemma 3.1], that the characteristic polynomial of adj(0) is Sn(x), the n-th Cheby-
shev polynomial of the second kind, defined by

S0(x)= 1, S1(x)= x, Sn(x)= x Sn−1(x)− Sn−2(x) (n ≥ 2).

So we see that 1 is bijective if and only if Sn(−1) 6≡ 0 (mod 2) if and only if
n 6≡ 2 (mod 3).

In the case n ≡ 2 (mod 3), it is easy to see that H is one-dimensional, spanned
by the vector

(1 1 0 1 1 0 · · · 0 1 1), (2-1)

so that
WH (x, y)= xn

+ x (n−2)/3 y(2n+2)/3.

Since C =H ⊥, we have

WC (x, y)= 1
2((x + y)n + (x + y)(n−2)/3(x − y)(2n+2)/3) (2-2)
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by the MacWilliams identity [MacWilliams and Sloane 1977, p. 127]. In particular,
expanding (2-2), we find that

A1 =
1
3(n− 2), A2 =

1
18(5n2

− 5n+ 8).

Note that A1 and A2 can be seen more quickly as follows. In the general setting,
we have C =H ⊥ since adj(0) is a symmetric matrix. Suppose dim C = k < n, so
that dim H = n− k > 0. Any basis of H gives a parity check matrix H (of size
(n− k)× n) of C , and Ai is the number of unordered i-tuples of columns of H
whose sum is the zero vector. In the case 0 = Pn , n ≡ 2 (mod 3), the vector (2-1)
itself is a parity check matrix, and one easily sees that

A1 =
1
3(n− 2), A2 =

( 1
3(n− 2)

2

)
+

(1
3(2n+ 2)

2

)
.

Next let 0= Cn be the cycle graph with n vertices (n ≥ 3). It is also well known,
see [Yamagishi 2015, Lemma 3.1], that 1 is bijective if and only if Cn(−1) 6≡ 0
(mod 2) if and only if n 6≡0 (mod 3), where Cn(x) is the n-th Chebyshev polynomial
of the first kind, defined by

C0(x)= 2, C1(x)= x, Cn(x)= xCn−1(x)−Cn−2(x) (n ≥ 2).

In the case n ≡ 0 (mod 3), it is easy to see that H is two-dimensional, spanned
by the row vectors of (

1 1 0 1 1 0 · · · 1 1 0
1 0 1 1 0 1 · · · 1 0 1

)
, (2-3)

so that
WH (x, y)= xn

+ 3xn/3 y2n/3,

WC (x, y)= 1
4((x + y)n + 3(x + y)n/3(x − y)2n/3).

In particular, we obtain

A1 = 0, A2 =
1
6(n

2
− 3n).

As explained above, A1 and A2 can be seen directly from (2-3). This is clear
for A1. Since i-th and j-th columns add to zero if and only if i ≡ j (mod 3), we
see that A2 =

1
2 n
( 1

3 n− 1
)
. We also have an alternative proof for A1 = 0 as follows.

Suppose there is a vector in C with Hamming weight 1. Then any vector with
Hamming weight 1 belongs to C since 1 commutes with “shifts”. This implies
C = Fn

2 , which contradicts n ≡ 0 (mod 3).

3. The main theorem

In the following, we let0 be the Cartesian product Pn×Pn , forgetting the previous
meaning of n as the number of vertices. The corresponding objects V,F ,1,C ,H ,
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and Ai will be denoted by Vn , Fn , 1n , Cn , Hn , and Ai (n), respectively. We use
double indices for the vertices in a natural way:

Vn = {vi, j : 1≤ i, j ≤ n},

vi, j and vk,l are adjacent ⇐⇒ |i − k| + | j − l| = 1.

Let ei, j denote the characteristic function of vi, j .
The main result of this paper is the following, which states that the center-one

configuration is always solvable in the Lights Out puzzle on Pn× Pn when n is odd.

Theorem 3.1. If n = 2m+ 1 (m ≥ 0), then em+1,m+1 ∈ Cn .

Proof. The case m = 0 is trivial since 11 is the identity map, so we suppose m ≥ 1.
We identify a function f ∈Fn with the matrix (ai, j ) such that

f =
∑

1≤i, j≤n

ai, j ei, j (ai, j ∈ F2).

Let 1a,b denote the a × b matrix whose entries are all 1, and 0 the zero matrix
whose size will be clear from the context. Sutner’s theorem states that 1n,n ∈ Cn .
Applying Sutner’s theorem to Pm × Pm , we see that

f1 :=

1m,m x 0
y 0 0
0 0 0

 ∈ Cn

for a suitable column vector x and a row vector y. Since Cn is invariant under
horizontal reflection, say α, and vertical reflection, say β, we find that

f2 :=

1m,m 0 1m,m

0 0 0
1m,m 0 1m,m

= f1+α( f1)+β( f1)+αβ( f1) ∈ Cn.

Similarly, we have
f3 := (1n,m z 0) ∈ Cn

for a suitable column vector z, so that

f4 := (1n,m 0 1n,m)= f3+α( f3) ∈ Cn,

and likewise,

f5 :=

1m,n

0
1m,n

 ∈ Cn.

Therefore we have

em+1,m+1 = f2+ f4+ f5+ 1n,n ∈ Cn

as desired. �
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Remark 3.2. Our proof is not constructive; in the context of Lights Out puzzle, we
only know that em+1,m+1 is solvable, but do not know any solution (an inverse image
of em+1,m+1 under 1n). It would be interesting to find out a unified description of
a solution of em+1,m+1.

Remark 3.3. The center-one configuration is the only universal solvable configura-
tion of weight 1, since A1(n)= 1 for some (infinitely many, under Conjecture 4.4
below) odd integers n.

Since A1(n) is the number of ei, j ’s contained in Cn , taking symmetry (i.e.,
invariance of Cn under the horizontal and vertical reflections) into account, we have:

Corollary 3.4. A1(n)≡ 1 (mod 4) if n is odd. A1(n)≡ 0 (mod 4) if n is even.

Let dn denote the minimal distance of the linear code Cn . By Theorem 3.1, we
have dn = 1 for odd n. We see that dn ≤ 2 in general by the following:

Lemma 3.5. For n ≥ 4, we have e1,4+ e3,2 ∈ Cn .

Proof. We have e1,4+ e3,2 =1n(e1,1+ e1,2+ e1,3+ e2,2) ∈ Cn . �

Note that d2 = 1 since 12 is bijective. Thus the determination of dn is equivalent
to answering the following:

Problem 3.6. Characterize (necessarily even) n such that A1(n)= 0.

4. The case A1(n) ≤ 1

With the same notation as in the previous section, we consider the case A1(n)≤ 1.
A first look at Table 1 leads to the following two conjectures.

Conjecture 4.1. If A1(n)= 0, then n+ 1= 2l
± 1 for some l ≥ 2.

Conjecture 4.2. Let n ≥ 2. We have A1(n)≤ 1 if and only if A1(2n+ 1)≤ 1.

The “if” part of Conjecture 4.2 follows from:

Proposition 4.3. We have Ai (n)≤ Ai (2n+ 1) for n ≥ 1 and 0≤ i ≤ n.

Proof. We define a map ιn :Fn→F2n+1 by


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

an,1 an,2 · · · an,n

 7→



0 0 0 0 · · · 0 0
0 a1,1 0 a1,2 · · · a1,n 0
0 0 0 0 · · · 0 0
0 a2,1 0 a2,2 · · · a2,n 0
...

...
...

...
...

...

0 an,1 0 an,2 · · · an,n 0
0 0 0 0 · · · 0 0


,
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which is an analog of ι±m,n used in [Goshima and Yamagishi 2010] for Cm×Cn . One
can then verify the identity ιn1n=1

2
2n+1ιn , so it follows that ιn(Cn)⊂C2n+1. Since

ιn preserves the Hamming weight, we have Ai (n)≤ Ai (2n+ 1) for 0≤ i ≤ n. �

n A1(n) dim Hn n A1(n) dim Hn n A1(n) dim Hn n A1(n) dim Hn

1 1 0 41 701 2 81 6561 0 121 14641 0
2 4 0 42 1764 0 82 6724 0 122 14884 0
3 9 0 43 1849 0 83 1401 6 123 1 80
4 0 4 44 640 4 84 128 12 124 5376 4
5 5 2 45 2025 0 85 7225 0 125 1 50
6 36 0 46 2116 0 86 7396 0 126 0 56
7 49 0 47 9 30 87 7569 0 127 16129 0
8 64 0 48 2304 0 88 7744 0 128 0 56
9 1 8 49 401 8 89 829 10 129 1 56

10 100 0 50 196 8 90 8100 0 130 16900 0
11 9 6 51 2601 0 91 8281 0 131 1 86
12 144 0 52 2704 0 92 364 20 132 17424 0
13 169 0 53 1189 2 93 8649 0 133 17689 0
14 52 4 54 980 4 94 3060 4 134 6292 4
15 225 0 55 3025 0 95 9 62 135 1 64
16 0 8 56 3136 0 96 9216 0 136 18496 0
17 109 2 57 3249 0 97 9409 0 137 8189 2
18 324 0 58 3364 0 98 388 20 138 19044 0
19 1 16 59 53 22 99 801 16 139 1681 16
20 400 0 60 3600 0 100 10000 0 140 19600 0
21 441 0 61 1 40 101 197 18 141 19881 0
22 484 0 62 0 24 102 10404 0 142 20164 0
23 9 14 63 3969 0 103 10609 0 143 649 30
24 176 4 64 0 28 104 3760 4 144 7280 4
25 625 0 65 1 42 105 11025 0 145 21025 0
26 676 0 66 4356 0 106 11236 0 146 21316 0
27 729 0 67 1 32 107 2377 6 147 21609 0
28 784 0 68 4624 0 108 11664 0 148 21904 0
29 53 10 69 841 8 109 2201 8 149 2501 10
30 0 20 70 4900 0 110 12100 0 150 22500 0
31 961 0 71 361 14 111 12321 0 151 22801 0
32 0 20 72 5184 0 112 12544 0 152 2368 8
33 1 16 73 5329 0 113 5549 2 153 23409 0
34 372 4 74 1876 4 114 4532 4 154 240 24
35 217 6 75 5625 0 115 13225 0 155 5097 6
36 1296 0 76 5776 0 116 13456 0 156 24336 0
37 1369 0 77 2549 2 117 13689 0 157 24649 0
38 1444 0 78 6084 0 118 1380 8 158 24964 0
39 1 32 79 1 64 119 53 46 159 1 128
40 1600 0 80 6400 0 120 14400 0 160 25600 0

Table 1
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Applying Conjecture 4.2 repeatedly and using Corollary 3.4, we easily arrive at
the following:

Conjecture 4.4. Let n ≥ 3 be odd and let d be the maximal odd divisor of n+ 1.
Then we have A1(n)= 1 if and only if d > 1 and A1(d − 1)= 0.

Proposition 4.5. Conjectures 4.2 and 4.4 are equivalent.

Proof. It suffices to show the implication Conjecture 4.4⇒ Conjecture 4.2. Let
n ≥ 2 and let d be the maximal odd divisor of n + 1 (and hence of 2n + 2). By
Corollary 3.4, A1(2n + 1) ≤ 1 is equivalent to A1(2n+1)= 1, which, in turn, is
equivalent to d > 1 and A1(d−1)= 0 by Conjecture 4.4. If n is odd, then the same
reasoning shows A1(n)≤1⇐⇒d>1 and A1(d−1)= 0, so we are done. If n is even,
then d = n+1> 1 and we have A1(n)≤ 1⇐⇒ A1(d−1)= 0 by Corollary 3.4. �

Next we make an attempt to “explain” the value of A1(n). If the Laplacian 1n

is bijective, then we have Cn = Fn2

2 and hence A1(n) = n2. We comment here on
the bijectivity of 1n . Sutner [2000] proved

dim Hn = deg gcd(Sn(x), Sn(x + 1)),

where Sn is the n-th Chebyshev polynomial of the second kind, regarded as a
polynomial over F2. Some sufficient conditions for the bijectivity of 1n follow
from this identity and well-known properties of Chebyshev polynomials. For
example, n = 2l

−1 (l ≥ 1) is sufficient [Yamagishi 2015, Corollary 4.3]. Note that
this confirms Conjecture 4.4 for n = 2l

− 1, as A1(n)= n2 and d = 1. There seems
to be no simple characterization of n for which 1n is bijective.

Now we consider the case where 1n is not bijective, i.e., dim Hn > 0. As in
Conjecture 4.4, the divisors d of n+ 1 with A1(d − 1)= 0 play an important role
in the following two conjectures.

Conjecture 4.6. Let n be even. Then 1n is not bijective if and only if there exists a
(necessarily odd) divisor d > 1 of n+ 1 such that A1(d − 1)= 0.

Conjecture 4.7. Suppose n is even and 1n is not bijective. Assume Conjecture 4.6,
and let dk (1≤ k ≤ t) be the divisors of n+ 1 such that dk > 1 and A1(dk − 1)= 0.
Then for 1≤ i, j ≤ n, we have ei, j ∈ Cn if and only if

i ≡ 0 (mod dk) or j ≡ 0 (mod dk) (4-1)
for k = 1, 2, . . . , t .

Example 4.8. If A1(n) = 0, then we can take d1 = n + 1 and Conjecture 4.7 is
trivially true. But this gives no explanation of why A1(n) = 0. We exclude this
case in the following examples.

Example 4.9. Suppose t = 1 and put b= (n+1)/d1. The number of pairs (i, j) for
which (4-1) with k = 1 fails is (n− b+ 1)2, so we have A1(n)= n2

− (n− b+ 1)2.
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This applies for n = 14, 24, 34, 44, 54, 74, 94, 104, 114, 124, 134, 144 (d1 = 5),
n = 50, 118, 152 (d1 = 17), n = 92 (d1 = 31), and n = 98 (d1 = 33).

Example 4.10. For n = 84, we have t = 2, d1 = 5, d2 = 17, and (4-1) for k = 1, 2
reads as i j ≡ 0 (mod 85). Thus we have A1(84) = 2(5− 1)(17− 1) = 128. The
same reasoning applies for n = 154: t = 2, d1 = 5, d2 = 31 and A1(154) =
2(5− 1)(31− 1)= 240.

Finally, we note that an answer to Problem 3.6 would give, under Conjecture 4.4,
a characterization of (necessarily odd) n with A1(n)= 1, and, under Conjecture 4.6,
a characterization of even n with nonbijective 1n .

We also point out that, in Table 1, there are four exceptions n = 2, 6, 8, 14 for
the converse statement of Conjecture 4.1. Problem 3.6 would be settled if they are
the only exceptions.
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