\bullet
 involve

 a journal of mathematicsOn weight-one solvable configurations of the Lights Out puzzle
Yuki Hayata and Masakazu Yamagishi

On weight-one solvable configurations of the Lights Out puzzle

Yuki Hayata and Masakazu Yamagishi

(Communicated by Kenneth S. Berenhaut)

We show that the center-one configuration is always solvable in the Lights Out puzzle on a square grid with odd vertices.

1. Introduction

Let $\Gamma=(V, E)$ be a finite undirected simple graph, $n=\# V$ the number of vertices, and \mathscr{F} the set of functions on V with values in \mathbb{F}_{2}, the field with two elements. We define the Laplacian $\Delta: \mathscr{F} \rightarrow \mathscr{F}$ by

$$
(\Delta f)(v):=f(v)+\sum_{(v, w) \in E} f(w)
$$

for $f \in \mathscr{F}, v \in V$. Let \boldsymbol{e}_{v} denote the characteristic function of $v \in V$. Then $\left\{\boldsymbol{e}_{v}: v \in V\right\}$ is a basis of \mathscr{F} as a vector space over \mathbb{F}_{2}, and by means of this basis we identify \mathscr{F} with \mathbb{F}_{2}^{n}. Under this identification, Δ is a linear map represented by $I_{n}+\operatorname{adj}(\Gamma)$, where I_{n} denotes the identity matrix of degree n and $\operatorname{adj}(\Gamma)$ the adjacency matrix of Γ. Let the image and the kernel of Δ be denoted by \mathscr{C} and \mathscr{H}, respectively. \mathscr{C} is the set of solvable configurations of the Lights Out puzzle on Γ; see [Fleischer and Yu 2013; Goldwasser and Klostermeyer 1997; Goshima and Yamagishi 2010]. It is known that the all-one configuration is always solvable:

Theorem 1.1 [Sutner 1989]. For any Γ, it holds that $(11 \cdots 1) \in \mathscr{C}$.
Since \mathscr{C} is a linear subspace of \mathbb{F}_{2}^{n}, we may regard it as a binary linear code; see [Goldwasser and Klostermeyer 1997] for this point of view. The weight enumerator of \mathscr{C} is defined by

$$
W_{\mathscr{C}}(x, y)=\sum_{i=0}^{n} A_{i} x^{n-i} y^{i}
$$

[^0]where A_{i} is the number of vectors in \mathscr{C} which have Hamming weight i. By Sutner's theorem, we have $A_{n-i}=A_{i}$. If Δ is bijective, then $\mathscr{C}=\mathbb{F}_{2}^{n}$ and we have
$$
A_{i}=\binom{n}{i}, \quad W_{\mathscr{C}}(x, y)=(x+y)^{n} .
$$

In this paper, we are interested in A_{1} of the classical $n \times n$ Lights Out puzzle. Our main result is Theorem 3.1, which states that the center-one configuration is always solvable when n is odd. Our proof is a neat application of Sutner's theorem and is not constructive. Theorem 3.1 implies in particular that the minimal distance of \mathscr{C} is 1 when n is odd. For even n, it turns out that the minimal distance is at most 2.

We then look at the case $A_{1} \leq 1$ more closely, and make some conjectures based on numerical computations. We also make an attempt to "explain" the value of A_{1}.

2. Path and cycle graphs

Before proceeding to the main result, we consider the case of path and cycle graphs as first examples.

Let $\Gamma=\boldsymbol{P}_{n}$ be the path graph with n vertices. We have

$$
\operatorname{adj}(\Gamma)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \ddots & \vdots \\
0 & 1 & 0 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right)
$$

under an obvious ordering of vertices. It is well known, see [Yamagishi 2015, Lemma 3.1], that the characteristic polynomial of $\operatorname{adj}(\Gamma)$ is $S_{n}(x)$, the n-th Chebyshev polynomial of the second kind, defined by

$$
S_{0}(x)=1, \quad S_{1}(x)=x, \quad S_{n}(x)=x S_{n-1}(x)-S_{n-2}(x) \quad(n \geq 2) .
$$

So we see that Δ is bijective if and only if $S_{n}(-1) \not \equiv 0(\bmod 2)$ if and only if $n \neq 2(\bmod 3)$.

In the case $n \equiv 2(\bmod 3)$, it is easy to see that \mathscr{H} is one-dimensional, spanned by the vector

$$
\begin{equation*}
\text { (1 } 101100 \cdots 011 \text {), } \tag{2-1}
\end{equation*}
$$

so that

$$
W_{\mathscr{H}}(x, y)=x^{n}+x^{(n-2) / 3} y^{(2 n+2) / 3} .
$$

Since $\mathscr{C}=\mathscr{H}^{\perp}$, we have

$$
\begin{equation*}
W_{\mathscr{C}}(x, y)=\frac{1}{2}\left((x+y)^{n}+(x+y)^{(n-2) / 3}(x-y)^{(2 n+2) / 3}\right) \tag{2-2}
\end{equation*}
$$

by the MacWilliams identity [MacWilliams and Sloane 1977, p. 127]. In particular, expanding (2-2), we find that

$$
A_{1}=\frac{1}{3}(n-2), \quad A_{2}=\frac{1}{18}\left(5 n^{2}-5 n+8\right) .
$$

Note that A_{1} and A_{2} can be seen more quickly as follows. In the general setting, we have $\mathscr{C}=\mathscr{H}^{\perp}$ since $\operatorname{adj}(\Gamma)$ is a symmetric matrix. Suppose $\operatorname{dim} \mathscr{C}=k<n$, so that $\operatorname{dim} \mathscr{H}=n-k>0$. Any basis of \mathscr{H} gives a parity check matrix H (of size $(n-k) \times n)$ of \mathscr{C}, and A_{i} is the number of unordered i-tuples of columns of H whose sum is the zero vector. In the case $\Gamma=\boldsymbol{P}_{n}, n \equiv 2(\bmod 3)$, the vector (2-1) itself is a parity check matrix, and one easily sees that

$$
A_{1}=\frac{1}{3}(n-2), \quad A_{2}=\binom{\frac{1}{3}(n-2)}{2}+\binom{\frac{1}{3}(2 n+2)}{2}
$$

Next let $\Gamma=\boldsymbol{C}_{n}$ be the cycle graph with n vertices ($n \geq 3$). It is also well known, see [Yamagishi 2015, Lemma 3.1], that Δ is bijective if and only if $C_{n}(-1) \not \equiv 0$ $(\bmod 2)$ if and only if $n \not \equiv 0(\bmod 3)$, where $C_{n}(x)$ is the n-th Chebyshev polynomial of the first kind, defined by

$$
C_{0}(x)=2, \quad C_{1}(x)=x, \quad C_{n}(x)=x C_{n-1}(x)-C_{n-2}(x) \quad(n \geq 2) .
$$

In the case $n \equiv 0(\bmod 3)$, it is easy to see that \mathscr{H} is two-dimensional, spanned by the row vectors of

$$
\left(\begin{array}{cccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & \cdots & 1 & 1 & 0 \tag{2-3}\\
1 & 0 & 1 & 1 & 0 & 1 & \cdots & 1 & 0 & 1
\end{array}\right),
$$

so that

$$
\begin{aligned}
W_{\mathscr{H}}(x, y) & =x^{n}+3 x^{n / 3} y^{2 n / 3}, \\
W_{\mathscr{C}}(x, y) & =\frac{1}{4}\left((x+y)^{n}+3(x+y)^{n / 3}(x-y)^{2 n / 3}\right) .
\end{aligned}
$$

In particular, we obtain

$$
A_{1}=0, \quad A_{2}=\frac{1}{6}\left(n^{2}-3 n\right)
$$

As explained above, A_{1} and A_{2} can be seen directly from (2-3). This is clear for A_{1}. Since i-th and j-th columns add to zero if and only if $i \equiv j(\bmod 3)$, we see that $A_{2}=\frac{1}{2} n\left(\frac{1}{3} n-1\right)$. We also have an alternative proof for $A_{1}=0$ as follows. Suppose there is a vector in \mathscr{C} with Hamming weight 1 . Then any vector with Hamming weight 1 belongs to \mathscr{C} since Δ commutes with "shifts". This implies $\mathscr{C}=\mathbb{F}_{2}^{n}$, which contradicts $n \equiv 0(\bmod 3)$.

3. The main theorem

In the following, we let Γ be the Cartesian product $\boldsymbol{P}_{n} \times \boldsymbol{P}_{n}$, forgetting the previous meaning of n as the number of vertices. The corresponding objects $V, \mathscr{F}, \Delta, \mathscr{C}, \mathscr{H}$,
and A_{i} will be denoted by $V_{n}, \mathscr{F}_{n}, \Delta_{n}, \mathscr{C}_{n}, \mathscr{H}_{n}$, and $A_{i}(n)$, respectively. We use double indices for the vertices in a natural way:

$$
\begin{gathered}
V_{n}=\left\{v_{i, j}: 1 \leq i, j \leq n\right\}, \\
v_{i, j} \text { and } v_{k, l} \text { are adjacent } \Longleftrightarrow|i-k|+|j-l|=1 .
\end{gathered}
$$

Let $\boldsymbol{e}_{i, j}$ denote the characteristic function of $v_{i, j}$.
The main result of this paper is the following, which states that the center-one configuration is always solvable in the Lights Out puzzle on $\boldsymbol{P}_{n} \times \boldsymbol{P}_{n}$ when n is odd.

Theorem 3.1. If $n=2 m+1(m \geq 0)$, then $\boldsymbol{e}_{m+1, m+1} \in \mathscr{C}_{n}$.
Proof. The case $m=0$ is trivial since Δ_{1} is the identity map, so we suppose $m \geq 1$. We identify a function $f \in \mathscr{F}_{n}$ with the matrix $\left(a_{i, j}\right)$ such that

$$
f=\sum_{1 \leq i, j \leq n} a_{i, j} \boldsymbol{e}_{i, j} \quad\left(a_{i, j} \in \mathbb{F}_{2}\right) .
$$

Let $\mathbf{1}_{a, b}$ denote the $a \times b$ matrix whose entries are all 1 , and $\mathbf{0}$ the zero matrix whose size will be clear from the context. Sutner's theorem states that $\mathbf{1}_{n, n} \in \mathscr{C}_{n}$. Applying Sutner's theorem to $\boldsymbol{P}_{m} \times \boldsymbol{P}_{m}$, we see that

$$
f_{1}:=\left(\begin{array}{ccc}
\mathbf{1}_{m, m} & \boldsymbol{x} & \mathbf{0} \\
\boldsymbol{y} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right) \in \mathscr{C}_{n}
$$

for a suitable column vector \boldsymbol{x} and a row vector \boldsymbol{y}. Since \mathscr{C}_{n} is invariant under horizontal reflection, say α, and vertical reflection, say β, we find that

$$
f_{2}:=\left(\begin{array}{ccc}
\mathbf{1}_{m, m} & \mathbf{0} & \mathbf{1}_{m, m} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{1}_{m, m} & \mathbf{0} & \mathbf{1}_{m, m}
\end{array}\right)=f_{1}+\alpha\left(f_{1}\right)+\beta\left(f_{1}\right)+\alpha \beta\left(f_{1}\right) \in \mathscr{C}_{n} .
$$

Similarly, we have

$$
f_{3}:=\left(\begin{array}{lll}
\mathbf{1}_{n, m} & z & \mathbf{0}
\end{array}\right) \in \mathscr{C}_{n}
$$

for a suitable column vector z, so that

$$
f_{4}:=\left(\begin{array}{lll}
\mathbf{1}_{n, m} & \mathbf{0} & \mathbf{1}_{n, m}
\end{array}\right)=f_{3}+\alpha\left(f_{3}\right) \in \mathscr{C}_{n},
$$

and likewise,

$$
f_{5}:=\left(\begin{array}{c}
\mathbf{1}_{m, n} \\
\mathbf{0} \\
\mathbf{1}_{m, n}
\end{array}\right) \in \mathscr{C}_{n} .
$$

Therefore we have

$$
\boldsymbol{e}_{m+1, m+1}=f_{2}+f_{4}+f_{5}+\mathbf{1}_{n, n} \in \mathscr{C}_{n}
$$

as desired.

Remark 3.2. Our proof is not constructive; in the context of Lights Out puzzle, we only know that $\boldsymbol{e}_{m+1, m+1}$ is solvable, but do not know any solution (an inverse image of $\boldsymbol{e}_{m+1, m+1}$ under Δ_{n}). It would be interesting to find out a unified description of a solution of $\boldsymbol{e}_{m+1, m+1}$.

Remark 3.3. The center-one configuration is the only universal solvable configuration of weight 1 , since $A_{1}(n)=1$ for some (infinitely many, under Conjecture 4.4 below) odd integers n.

Since $A_{1}(n)$ is the number of $\boldsymbol{e}_{i, j}$'s contained in \mathscr{C}_{n}, taking symmetry (i.e., invariance of \mathscr{C}_{n} under the horizontal and vertical reflections) into account, we have:

Corollary 3.4. $A_{1}(n) \equiv 1(\bmod 4)$ if n is odd. $A_{1}(n) \equiv 0(\bmod 4)$ if n is even.
Let d_{n} denote the minimal distance of the linear code \mathscr{C}_{n}. By Theorem 3.1, we have $d_{n}=1$ for odd n. We see that $d_{n} \leq 2$ in general by the following:

Lemma 3.5. For $n \geq 4$, we have $\boldsymbol{e}_{1,4}+\boldsymbol{e}_{3,2} \in \mathscr{C}_{n}$.
Proof. We have $\boldsymbol{e}_{1,4}+\boldsymbol{e}_{3,2}=\Delta_{n}\left(\boldsymbol{e}_{1,1}+\boldsymbol{e}_{1,2}+\boldsymbol{e}_{1,3}+\boldsymbol{e}_{2,2}\right) \in \mathscr{C}_{n}$.
Note that $d_{2}=1$ since Δ_{2} is bijective. Thus the determination of d_{n} is equivalent to answering the following:

Problem 3.6. Characterize (necessarily even) n such that $A_{1}(n)=0$.

4. The case $A_{1}(n) \leq 1$

With the same notation as in the previous section, we consider the case $A_{1}(n) \leq 1$.
A first look at Table 1 leads to the following two conjectures.
Conjecture 4.1. If $A_{1}(n)=0$, then $n+1=2^{l} \pm 1$ for some $l \geq 2$.
Conjecture 4.2. Let $n \geq 2$. We have $A_{1}(n) \leq 1$ if and only if $A_{1}(2 n+1) \leq 1$.
The "if" part of Conjecture 4.2 follows from:
Proposition 4.3. We have $A_{i}(n) \leq A_{i}(2 n+1)$ for $n \geq 1$ and $0 \leq i \leq n$.
Proof. We define a map $\iota_{n}: \mathscr{F}_{n} \rightarrow \mathscr{F}_{2 n+1}$ by

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}
\end{array}\right) \mapsto\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{1,1} & 0 & a_{1,2} & \cdots & a_{1, n} & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{2,1} & 0 & a_{2,2} & \cdots & a_{2, n} & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & a_{n, 1} & 0 & a_{n, 2} & \cdots & a_{n, n} & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

which is an analog of $\iota_{m, n}^{ \pm}$used in [Goshima and Yamagishi 2010] for $\boldsymbol{C}_{m} \times \boldsymbol{C}_{n}$. One can then verify the identity $\iota_{n} \Delta_{n}=\Delta_{2 n+1}^{2} \iota_{n}$, so it follows that $\iota_{n}\left(\mathscr{C}_{n}\right) \subset \mathscr{C}_{2 n+1}$. Since ι_{n} preserves the Hamming weight, we have $A_{i}(n) \leq A_{i}(2 n+1)$ for $0 \leq i \leq n$. \square

n	$A_{1}(n)$	$\operatorname{dim} \mathscr{H}_{n}$									
1	1	0	41	701	2	81	6561	0	121	14641	0
2	4	0	42	1764	0	82	6724	0	122	14884	0
3	9	0	43	1849	0	83	1401	6	123	1	80
4	0	4	44	640	4	84	128	12	124	5376	4
5	5	2	45	2025	0	85	7225	0	125	1	50
6	36	0	46	2116	0	86	7396	0	126	0	56
7	49	0	47	9	30	87	7569	0	127	16129	0
8	64	0	48	2304	0	88	7744	0	128	0	56
9	1	8	49	401	8	89	829	10	129	1	56
10	100	0	50	196	8	90	8100	0	130	16900	0
11	9	6	51	2601	0	91	8281	0	131	1	86
12	144	0	52	2704	0	92	364	20	132	17424	0
13	169	0	53	1189	2	93	8649	0	133	17689	0
14	52	4	54	980	4	94	3060	4	134	6292	4
15	225	0	55	3025	0	95	9	62	135	1	64
16	0	8	56	3136	0	96	9216	0	136	18496	0
17	109	2	57	3249	0	97	9409	0	137	8189	2
18	324	0	58	3364	0	98	388	20	138	19044	0
19	1	16	59	53	22	99	801	16	139	1681	16
20	400	0	60	3600	0	100	10000	0	140	19600	0
21	441	0	61	1	40	101	197	18	141	19881	0
22	484	0	62	0	24	102	10404	0	142	20164	0
23	9	14	63	3969	0	103	10609	0	143	649	30
24	176	4	64	0	28	104	3760	4	144	7280	4
25	625	0	65	1	42	105	11025	0	145	21025	0
26	676	0	66	4356	0	106	11236	0	146	21316	0
27	729	0	67	1	32	107	2377	6	147	21609	0
28	784	0	68	4624	0	108	11664	0	148	21904	0
29	53	10	69	841	8	109	2201	8	149	2501	10
30	0	20	70	4900	0	110	12100	0	150	22500	0
31	961	0	71	361	14	111	12321	0	151	22801	0
32	0	20	72	5184	0	112	12544	0	152	2368	8
33	1	16	73	5329	0	113	5549	2	153	23409	0
34	372	4	74	1876	4	114	4532	4	154	240	24
35	217	6	75	5625	0	115	13225	0	155	5097	6
36	1296	0	76	5776	0	116	13456	0	156	24336	0
37	1369	0	77	2549	2	117	13689	0	157	24649	0
38	1444	0	78	6084	0	118	1380	8	158	24964	0
39	1	32	79	1	64	119	53	46	159	1	128
40	1600	0	80	6400	0	120	14400	0	160	25600	0
						0					

Table 1

Applying Conjecture 4.2 repeatedly and using Corollary 3.4, we easily arrive at the following:
Conjecture 4.4. Let $n \geq 3$ be odd and let d be the maximal odd divisor of $n+1$. Then we have $A_{1}(n)=1$ if and only if $d>1$ and $A_{1}(d-1)=0$.
Proposition 4.5. Conjectures 4.2 and 4.4 are equivalent.
Proof. It suffices to show the implication Conjecture $4.4 \Rightarrow$ Conjecture 4.2. Let $n \geq 2$ and let d be the maximal odd divisor of $n+1$ (and hence of $2 n+2$). By Corollary $3.4, A_{1}(2 n+1) \leq 1$ is equivalent to $A_{1}(2 n+1)=1$, which, in turn, is equivalent to $d>1$ and $A_{1}(d-1)=0$ by Conjecture 4.4. If n is odd, then the same reasoning shows $A_{1}(n) \leq 1 \Longleftrightarrow d>1$ and $A_{1}(d-1)=0$, so we are done. If n is even, then $d=n+1>1$ and we have $A_{1}(n) \leq 1 \Longleftrightarrow A_{1}(d-1)=0$ by Corollary 3.4.

Next we make an attempt to "explain" the value of $A_{1}(n)$. If the Laplacian Δ_{n} is bijective, then we have $\mathscr{C}_{n}=\mathbb{F}_{2}^{n^{2}}$ and hence $A_{1}(n)=n^{2}$. We comment here on the bijectivity of Δ_{n}. Sutner [2000] proved

$$
\operatorname{dim} \mathscr{H}_{n}=\operatorname{deg} \operatorname{gcd}\left(S_{n}(x), S_{n}(x+1)\right)
$$

where S_{n} is the n-th Chebyshev polynomial of the second kind, regarded as a polynomial over \mathbb{F}_{2}. Some sufficient conditions for the bijectivity of Δ_{n} follow from this identity and well-known properties of Chebyshev polynomials. For example, $n=2^{l}-1(l \geq 1)$ is sufficient [Yamagishi 2015, Corollary 4.3]. Note that this confirms Conjecture 4.4 for $n=2^{l}-1$, as $A_{1}(n)=n^{2}$ and $d=1$. There seems to be no simple characterization of n for which Δ_{n} is bijective.

Now we consider the case where Δ_{n} is not bijective, i.e., $\operatorname{dim} \mathscr{H}_{n}>0$. As in Conjecture 4.4, the divisors d of $n+1$ with $A_{1}(d-1)=0$ play an important role in the following two conjectures.
Conjecture 4.6. Let n be even. Then Δ_{n} is not bijective if and only if there exists a (necessarily odd) divisor $d>1$ of $n+1$ such that $A_{1}(d-1)=0$.
Conjecture 4.7. Suppose n is even and Δ_{n} is not bijective. Assume Conjecture 4.6, and let $d_{k}(1 \leq k \leq t)$ be the divisors of $n+1$ such that $d_{k}>1$ and $A_{1}\left(d_{k}-1\right)=0$. Then for $1 \leq i, j \leq n$, we have $\boldsymbol{e}_{i, j} \in \mathscr{C}_{n}$ if and only if

$$
\begin{equation*}
i \equiv 0\left(\bmod d_{k}\right) \quad \text { or } \quad j \equiv 0\left(\bmod d_{k}\right) \tag{4-1}
\end{equation*}
$$

for $k=1,2, \ldots, t$.
Example 4.8. If $A_{1}(n)=0$, then we can take $d_{1}=n+1$ and Conjecture 4.7 is trivially true. But this gives no explanation of why $A_{1}(n)=0$. We exclude this case in the following examples.

Example 4.9. Suppose $t=1$ and put $b=(n+1) / d_{1}$. The number of pairs (i, j) for which (4-1) with $k=1$ fails is $(n-b+1)^{2}$, so we have $A_{1}(n)=n^{2}-(n-b+1)^{2}$.

This applies for $n=14,24,34,44,54,74,94,104,114,124,134,144\left(d_{1}=5\right)$, $n=50,118,152\left(d_{1}=17\right), n=92\left(d_{1}=31\right)$, and $n=98\left(d_{1}=33\right)$.

Example 4.10. For $n=84$, we have $t=2, d_{1}=5, d_{2}=17$, and (4-1) for $k=1,2$ reads as $i j \equiv 0(\bmod 85)$. Thus we have $A_{1}(84)=2(5-1)(17-1)=128$. The same reasoning applies for $n=154$: $t=2, d_{1}=5, d_{2}=31$ and $A_{1}(154)=$ $2(5-1)(31-1)=240$.

Finally, we note that an answer to Problem 3.6 would give, under Conjecture 4.4, a characterization of (necessarily odd) n with $A_{1}(n)=1$, and, under Conjecture 4.6, a characterization of even n with nonbijective Δ_{n}.

We also point out that, in Table 1, there are four exceptions $n=2,6,8,14$ for the converse statement of Conjecture 4.1. Problem 3.6 would be settled if they are the only exceptions.

Acknowledgments

Yamagishi was supported by JSPS KAKENHI Grant Number JP17K05168. The authors are grateful to Professor Norihiro Nakashima for informing them of Lemma 3.5.

References

[Fleischer and Yu 2013] R. Fleischer and J. Yu, "A survey of the game 'Lights Out!"', pp. 176-198 in Space-efficient data structures, streams, and algorithms (Waterloo, ON, 2013), edited by A. Brodnik et al., Lecture Notes in Comput. Sci. 8066, Springer, 2013. MR Zbl
[Goldwasser and Klostermeyer 1997] J. Goldwasser and W. Klostermeyer, "Maximization versions of 'lights out' games in grids and graphs", Congr. Numer. $\mathbf{1 2 6}$ (1997), 99-111. MR Zbl
[Goshima and Yamagishi 2010] M. Goshima and M. Yamagishi, "On the dimension of the space of harmonic functions on a discrete torus", Experiment. Math. 19:4 (2010), 421-429. MR Zbl
[MacWilliams and Sloane 1977] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, North-Holland Math. Library 16, North-Holland, Amsterdam, 1977. MR Zbl
[Sutner 1989] K. Sutner, "Linear cellular automata and the Garden-of-Eden", Math. Intelligencer 11:2 (1989), 49-53. MR Zbl
[Sutner 2000] K. Sutner, " σ-automata and Chebyshev-polynomials", Theoret. Comput. Sci. 230:1-2 (2000), 49-73. MR Zbl
[Yamagishi 2015] M. Yamagishi, "Periodic harmonic functions on lattices and Chebyshev polynomials", Linear Algebra Appl. 476 (2015), 1-15. MR Zbl

Received: 2018-09-22 Accepted: 2018-10-25

29414088@stn.nitech.ac.jp	Field of Mathematics and Mathematical Science,
	Department of Computer Science and Engineering,
	Graduate School of Engineering,
	Nagoya Institute of Technology, Nagoya, Japan
yamagishi.masakazu@nitech.ac.jp	Department of Mathematics, Nagoya Institute of Technology, Nagoya, Japan

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 4

Euler's formula for the zeta function at the positive even integers 541
Samyukta Krishnamurthy and Micah B. Milinovich
Descents and des-Wilf equivalence of permutations avoiding certain 549nonclassical patternsCaden Bielawa, Robert Davis, Daniel Greeson andQinhan Zhou
The classification of involutions and symmetric spaces of modular groups 565
Marc Besson and Jennifer Schaefer
When is $a^{n}+1$ the sum of two squares? 585
Greg Dresden, Kylie Hess, Saimon Islam, Jeremy Rouse, Aaron Schmitt, Emily Stamm, Terrin Warren and Pan Yue
Irreducible character restrictions to maximal subgroups of low-rank 607
classical groups of types B and CKempton Albee, Mike Barnes, Aaron Parker, Eric Roonand A. A. Schaeffer Fry
Prime labelings of infinite graphs 633
Matthew Kenigsberg and Oscar Levin
Positional strategies in games of best choice647
Aaron Fowlkes and Brant Jones
Graphs with at most two trees in a forest-building process 659Steve Butler, Misa Hamanaka and Marie Hardt
Log-concavity of Hölder means and an application to geometric inequalities 671
Aurel I. Stan and Sergio D. Zapeta-TzulApplying prospect theory to multiattribute problems with independence687assumptionsJack Stanley and Frank P. A. Coolen
On weight-one solvable configurations of the Lights Out puzzle 713

[^0]: MSC2010: primary 05C57; secondary 05C38, 91A46, 94B60.
 Keywords: Lights Out, path graph, Cartesian product, linear code.

